Search Results

Search found 19586 results on 784 pages for 'machine instruction'.

Page 110/784 | < Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >

  • Windows 7 system freezes: would like to know if they could be related to MrxSmb, Event ID 8003 errors

    - by lifegoeson
    First, this question centers around a home network. Is it okay to ask here? Or should I go to SuperUser? (I see less answers over there, but I'll go there if that would be more appropriate.) Network setup: 1 Machine running XP Pro 1 Machine running Win7 Ultimate Comcast router Linksys WRT610N Wireless router The Win7 machine goes into a total, unrecoverable system freeze frequently. I was tearing out my hair trying to ascertain a cause, but I noticed that it usually seems to correspond with performing operations on the shared folders on the XP machine. The last 2 occasions that the Win7 machine froze, I saw this entry for Event ID 8003 from source MrxSmb in the Event log of the XP machine: The master browser has received a server announcement from the computer WIN7_COMPUTER that believes that it is the master browser for the domain on transport NetBT_Tcpip_{320B32A7-FED9. The master browser is stopping or an election is being forced. My question is twofold: Could this cause a Win7 system freeze? If so, what could I configure differently on my network to stop these conflicts over who is the master browser? Thank you for your help!

    Read the article

  • System calls on Windows

    - by b-gen-jack-o-neill
    Hi, I just want to ask, I know that standart system calls in Linux are done by int instruction pointing into Interrupt Vector Table. I assume this is similiar on Windows. But, how do you call some higher-level specific system routines? Such as how do you tell Windows to create a window? I know this is handled by the code in the dll, but what actually happend at assembler-instruction level? Does the routine in dll calls software interrupt by int instruction, or is there any different approach to handle this? Thanks.

    Read the article

  • Tracing\profiling instructions

    - by LeChuck2k
    Hi Y'all. I'd like to statistically profile my C code at the instruction level. I need to know how many additions, multiplications, devides, etc,... I'm performing. This is not your usual run of the mill code profiling requirement. I'm an algorithm developer and I want to estimate the cost of converting my code to hardware implementations. For this, I'm being asked the instruction call breakdown during run-time (parsing the compiled assembly isn't sufficient as it doesn't consider loops in the code). After looking around, It seems VMWare may offer a possible solution, but I still couldn't find the specific feature that will allow me to trace the instruction call stream of my process. Are you aware of any profiling tools which enable this?

    Read the article

  • 128bit hash comparison with SSE

    - by fokenrute
    Hi, In my current project, I have to compare 128bit values (actually md5 hashes) and I thought it would be possible to accelerate the comparison by using SSE instructions. My problem is that I can't manage to find good documentation on SSE instructions; I'm searching for a 128bit integer comparison instruction that let me know if one hash is larger, smaller or equal to another. Does such an instruction exists? PS: The targeted machines are x86_64 servers with SSE2 instructions; I'm also interested in a NEON instruction for the same job.

    Read the article

  • Masking a bit in C returning unexpected result

    - by Eamorr
    0x7F000000 is 0111 1111 0000 0000 0000 0000 0000 0000 in 32 bit binary. 0x01000058 is 0000 0001 0000 0000 0000 0000 0101 1000. When I AND the two numbers together I expect 0000 0001 0000 0000 0000 0000 0000 0000, but for some reason I get 0. Here is my code: #define MASK_binop 0x80000000 #define MASK_operation 0x7F000000 int instruction=atoi(line); if((MASK_binop & instruction)>0) printf("binop\n"); else if((MASK_operation & instruction)>0) printf("operation\n"); Each of the above comparisons keeps returning zero. Is it something to do with 32/64 bits? I'm using 64-bit compiler.

    Read the article

  • Can't ping devices by IP address for devices allocated IPs by DHCP

    - by GiddyUpHorsey
    I have a home network with a Trendnet wireless router and a Windows Domain. The Domain Controller/DNS server is a Windows 2000 Server and is configured to forward queries to DNS servers provided by the ISP. The router provides DHCP and is configured with the Windows 2000 Server as the DNS server. The network has been set up for a couple of years and usually works fine. When I connect iPhones to the network over WiFi, the router can ping the iPhones through its browser based admin interface, but Windows machines that are part of the Windows Domain cannot. A laptop was connected to the network over WiFi that wasn't joined to the domain and it could see the iPhones. The router UI shows that the laptop has a reserved IP allocated via DHCP. All machines either have a static or DHCP allocated IP on the 192.168.0.* subnet. Router - 192.168.0.1 - Static - Wired Windows Domain Controller - 192.168.0.8 - Static - Virtual Windows 7 Workstation - 192.168.0.200 - DHCP Auto - Wired VMWare ESXi Host - 192.168.0.201 - Static? - Wired iPhone 1 - 192.168.0.202 - DHCP Auto - WiFi iPhone 2 - 192.168.0.203 - DHCP Auto - WiFi Windows Vista Laptop - 192.168.0.204 - DHCP Reserved - WiFi Using the Windows 7 machine (200), I try to ping each machine and the only DHCP machine that responds is itself. The other DHCP machines fail with Reply from 192.168.0.200: Destination host unreachable.. Using nslookup fails with *** domain.controller.name can't find 192.168.0.203: Non-existent domain. Using the Windows 2000 Domain Controller (8), I try to ping each machine and the only DHCP machine that responds is the Windows 7 machine (200). Pinging the other DHCP machines fails with Request timed out.. Using nslookup also fails with *** domain.controller.name can't find 192.168.0.203: Non-existent domain. Using the iPhone 2 (203), I try to ping (Network Ping Lite) the machines with static IP addresses and that works fine. When I try to ping the Windows 7 machine (200) it is unable to get a response. How do I configure the DNS server/Windows Domain/Router properly so that the Windows Domain machines can see the IPs allocated via DHCP?

    Read the article

  • TCP/IP & throughput between FreeNAS (BSD) server & other LAN machines

    - by Tim Dickerson
    I have got a question for someone that knows BSD a bit better than me that are in regards to my LAN setup at home/work here outside Chicago. I can't seem to fully optimize my network's (LAN) thoughput via my FreeNAS (BSD based) file server. It runs with the latest FreeBSD release which is modified to support several protocols for file transfers and more. Every machine that is behind my Smoothwall (Linux based) router is on the usual 192.168.0.x subnet and for most part works just fine. Behind the Smoothwall box, all machines are connected to a GB HP unmanaged switch. I host a large WISP here and have an OC-3 connection here at home/work and have no issues with downloading/uploading from/to the 'net'. My problem is with throughput. When I try and transfer large files...really any for that matter..between any of the machines to/and from the FreeNAS server via FTP, the max throughput I can achieve say between a Win 7 or a Linux box is ~65Mbit/sec. All machines are running Intel Pro 1000 GB NIC's and all cable is CAT6. Each is set to 'auto negotiation' and each shows 1500 MTU Full Duplex @1GB so I know the hardware is okay. I have not adjusted the MTU on any machine as I understand it to be pointless unless certain configurations are used (I assume I am not one of those). My settings for the FreeNAS machine are the following: # FreeNAS /etc/sysctl.conf - pertinent settings shown kern.ipc.maxsockbuf=262144 kern.ipc.nmbclusters=32768 kern.ipc.somaxconn=8192 kern.maxfiles=65536 kern.maxfilesperproc=32768 net.inet.tcp.delayed_ack=0 net.inet.tcp.inflight.enable=0 net.inet.tcp.path_mtu_discovery=0 net.inet.tcp.recvbuf_auto=1 net.inet.tcp.recvbuf_inc=524288 net.inet.tcp.recvbuf_max=16777216 net.inet.tcp.recvspace=65536 net.inet.tcp.rfc1323=1 net.inet.tcp.sendbuf_inc=16384 net.inet.tcp.sendbuf_max=16777216 net.inet.tcp.sendspace=65536 net.inet.udp.recvspace=65536 net.local.stream.recvspace=65536 net.local.stream.sendspace=65536 net.inet.tcp.hostcache.expire=1 From what I can tell, that looks to be a somewhat optimized profile for a typical BSD machine acting as a server for a LAN. I might be wrong and just wanted to find out from someone that knows BSD better than I do if indeed that is ok or if something is out of tune or what. Are there other ways I would find better for P2P file transfers? I honestly do not know what I SHOULD be looking for with respect to throughput between the NAS box and another client when xferring files via FTP, but I am told that what I get on average (40-70MB/sec) is too low for what it could be. I have thought about adding another NIC in the FreeNAS box as well as the Win7 machine and use a X-over cable via a static route, but wanted to check with someone first to see if that might be worth it or not. I don't know if doing that would bypass the HP GB switch and allow for a machine to machine xfer anyways. The FTP client I use is: Filezilla and have tried both active and passive modes with no real gain over each other. The NAS box runs ProFTPD.

    Read the article

  • Sycronizing/deploying scripts across several systems

    - by otto
    I have a few time consuming tasks that I like to spread across several computers. These tasks require running an identical ruby or python script (or series of scripts that call each other) on each machine. The machines will a separate config file telling the script what portion of the task to complete. I want to figure out the best way to syncronize the scripts on these machines prior to running them. Up until now, I have been making changes to a copy of the script on a network share and then copying a fresh copy to each machine when I want to run it. But this is cumbersome and leaves a chance for error ( e.g missing a file on the copy or not clicking "copy and replace"). Lets assume the systems are standard windows machines that are not dedicated to this task and I don't need to run these scripts all the time (so I don't want a solution that runs 24/7 and always keeps them up to date, I'd prefer something that pushes/pulls on command). My thoughts on various options: Simple adaptation of my current workflow: Keep the originals on the network drive, but write a batch file that copies over the latest version of the scripts so everything is a one-click operation. Requires action on each system, but that's not the end of the world (since each one usually needs their configuration file changed slightly too). Put everything in a Mercurial/Git reposotory and pull a fresh copy onto each node. Going straight to the repo from each machine would guarantee a current version (and would have the fringe benefit of allowing edits to the script to be made from any machine). Cons would be that it requires VCS to be installed on each machine and there might be some pains dealing with authentication since I wouldn't use a public repo. Open up write access on a shared folder and write a script to use rsync (or similar) to push the changes out to all of the machines at once. This gets a current version on every machine (though you would have to change the script if you want to omit a machine or add a new one). Possible issue would be that each computer has to allow write access. Dropbox is a reasonable suggestion (and could work well) but I dont want to use an external service and I'd prefer not to have to have dropbox running 24/7 on systems that would normally not need it. Is there something simple that I am missing? Some tool designed expressly for doing this kind of thing? Otherwise I am leaning toward just tying all of the systems into Mercurial since, while it requires extra software, it is a little more robust than writing a batch file (e.g. if I split part of a script into a separate module, Mercurial will know what to do whereas I would have to add a line to the batch file).

    Read the article

  • Installing jdk without sudo?

    - by Legend
    Currently, I have a machine on which I am working in Eclipse, it says that the JRE System Library version is sun-jdk-1.5.0.11 but on my active development machine, it is java-6-sun-1.6.0.16. What is the difference between these two (of course, besides the versioning)? Is there any way I can make the first machine to use the same "java-6-sun-1.6.0.16" version without having sudo permissions on the machine?

    Read the article

  • Help with SSh Tunnel [closed]

    - by Andrew Johnson
    I am running a Django instance locally and doing some Facebook development. So, I set up a port on a remote machine to forward to my local machine, so that Facebook can hit the web server, and have the requests forwarded to my local machine. Unfortunately, I'm getting the following error in my browser when I try and access the page: http://dev.thegreathive.com/ Any idea what I'm doing wrong? I think the problem is on my local machine, since if I kill the SSH tunnel, the error message changes.

    Read the article

  • P2V converter for desktop MS Virtual PC

    - by Wavel
    Are there any tools available for converting a desktop vista machine into a virtual machine to run with MS Virtual PC? I am buying a new workstation and would like to virtualize my old machine onto the new one. I know of the tools for Hyper-V, but i'll be running Win7 on the new machine, not Hyper-V server.

    Read the article

  • remsh rsh error redirect problem

    - by soField
    using following command on hp-ux remsh opera -l myuser crontab -l /opt1/exp_opera_crontab 2/opt/a.log and when i echo $? i get 0 because its executing crontab -l on remote machine but i dont have opt1 directory so export wont be copied to my local machine in /opt1/exp_opera_crontab i dont get any error about this when i run this remsh or rsh command is there any way to identify both of remote and local machine related errors and redirecting them into my local machine ?

    Read the article

  • how to avoid deadlock in mysql

    - by noam
    I have the following query (all tables are innoDB) INSERT INTO busy_machines(machine) SELECT machine FROM all_machines WHERE machine NOT IN (SELECT machine FROM busy_machines) and machine_name!='Main' LIMIT 1 Which causes a deadlock when I run it in threads, obviously because of the inner select, right? The error I get is: (1213, 'Deadlock found when trying to get lock; try restarting transaction') How can I avoid the deadlock? Is there a way to change to query to make it work, or do I need to do something else?

    Read the article

  • How to include files from remote server in Eclipse project without copy to local PC?

    - by user209559
    I have to PC, one is server on Linux containing project files ( also build machine ) and another working desktop machine on WinXP. I want to create a project in Eclipse on my desktop machine without coping files to local machine, actually I want to be able to modify remote files and immediately run build, unlike modifying local files and synchronizing with remote project.Is it possible? Thanks

    Read the article

  • (Java) weird value of System.getProperty("os.version")

    - by Helpme
    hello fellow java developers, Im trying toget the System.getProperty("os.name") of my own machine. I am running a java application directly from the machine from within eclipse. My machine is "windows 7" the returned value is "windows vista" ! Seems wrong, very wrong. and yes I am sure that I am running the app on a windows 7 machine... Any ideas as to what is going on here?

    Read the article

  • arp problems with transparent bridge on linux

    - by Mink
    I've been trying to secure my virtual machines on my esx server by putting them behind a transparent bridge with 2 interfaces, one in front, one at the back. My intention is to put all the firewall rules in one place (instead of on each virtual server). I've been using as bridge a blank new virtual machine based on arch linux (but I suspect it doesn't matter which brand of linux it is). What I have is 2 virtual switchs (thus two Virtual Network, VN_front and VN_back), each with 2 types of ports (switched/separated or promiscious/where the machine can see all packets). On my bridge machine, I've set up 2 virtual NIC, one on VN_front, one on VN_back, both in promisc mode. I've created a bridge br0 with both NIC in it: brctl addbr br0 brctl stp br0 off brctl addif br0 front_if brctl addif br0 back_if Then brought them up: ifconfig front_if 0.0.0.0 promisc ifconfig back_if 0.0.0.0 promisc ifconfig br0 0.0.0.0 (I use promisc mode, because I'm not sure I can do without, thinking that maybe the packets don't reach the NICs) Then I took one of my virtual server sitting on VN_front, and plugged it to VN_back instead (that's the nifty use case I'm thinking about, being able to move my servers around just by changing the VN they are plugged into, without changing anything in the configuration). Then I looked into the macs "seen" by my addressless bridge using brctl showmacs br0 and it did show my server from both sides: I get something that looks like this : port no mac addr is local? ageing timer 2 00:0c:29:e1:54:75 no 9.27 1 00:0c:29:fd:86:0c no 9.27 2 00:50:56:90:05:86 no 73.38 1 00:50:56:90:05:88 no 0.10 2 00:50:56:90:05:8b yes 0.00 << FRONT VN 1 00:50:56:90:05:8c yes 0.00 << BACK VN 2 00:50:56:90:19:18 no 13.55 2 00:50:56:90:3c:cf no 13.57 the thing is that the server that are plugged in front/back are not shown on the correct port. I suspect some horrible thing happening in the ARP-world... :-/ If I ping from a front virtual server to a back virtual server, I can only see the back machine if that back machine pings something in the front. As soon as I stop the ping from the back machine, the ping from the front machine stops getting through... I've noticed that if the back machine pings, then its port on the bridge is the correct one... I've tried to play with the arp_ switch of /proc/sys, but with no clear effect on the end result... /proc/sys/net/ipv4/ip_forward doesn't seem to be of any use when using a bridge (seems it's all taken care of by brctl) /proc/sys/net/ipv4/conf//arp_ don't seem to change much either... (tried arp_announce to 2 or 8 - like suggested elsewhere - and arp_ignore to 0 or 1 ) All the examples I've seen have a different subnet on either side like 10.0.1.0/24 and 10.0.2.0/24... In my case I want 10.0.1.0/24 on both side (just like a transparent switch - except it's a hidden fw ). Turning stp on/off doesn't seem to have any impact on my issue. It's as if the arp packets where getting through the bridge, corrupting the other side with false data... I've tried to use the -arp on each interface, br0, front, back... it breaks the thing altogether... I suspect it has something to do with both side being on the same subnet... I've thought about putting all my machine behind the fw, so as to have all the same subnet at the back... but I'm stuck with my provider's gateway standing at the front with part of my subnet (in fact 3 appliance to route the whole subnet), so I'll always have ips from the same subnet on both side, whatever I do... (I'm using fixed front IPs on my delegated subnet). I'm at a loss... -_-'' Thx for your help. (As anyone tried something like this? from within ESXi?) (It's not just a stunt, the idea is to have something like fail2ban running on some servers, sending their banned IP to the bridge/fw so that it too could ban them - saving all the other servers from that same attacker in one go, allowing for some honeypot that would trigger the fw from any kind of suitable response, and stuffs of the sort... I am aware I could use something like snort, but it addresses some completely different kind of problems, in a completely different way... )

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

  • Detecting Duplicates Using Oracle Business Rules

    - by joeywong-Oracle
    Recently I was involved with a Business Process Management Proof of Concept (BPM PoC) where we wanted to show how customers could use Oracle Business Rules (OBR) to easily define some rules to detect certain conditions, such as duplicate account numbers, duplicate names, high transaction amounts, etc, in a set of transactions. Traditionally you would have to loop through the transactions and compare each transaction with each other to find matching conditions. This is not particularly nice as it relies on more traditional approaches (coding) and is not the most efficient way. OBR is a great place to house these types’ of rules as it allows users/developers to externalise the rules, in a simpler manner, externalising the rules from the message flows and allows users to change them when required. So I went ahead looking for some examples. After quite a bit of time spent Googling, I did not find much out in the blogosphere. In fact the best example was actually from...... wait for it...... Oracle Documentation! (http://docs.oracle.com/cd/E28271_01/user.1111/e10228/rules_start.htm#ASRUG228) However, if you followed the link there was not much explanation provided with the example. So the aim of this article is to provide a little more explanation to the example so that it can be better understood. Note: I won’t be covering the BPM parts in great detail. Use case: Payment instruction file is required to be processed. Before instruction file can be processed it needs to be approved by a business user. Before the approval process, it would be useful to run the payment instruction file through OBR to look for transactions of interest. The output of the OBR can then be used to flag the transactions for the approvers to investigate. Example BPM Process So let’s start defining the Business Rules Dictionary. For the input into our rules, we will be passing in an array of payments which contain some basic information for our demo purposes. Input to Business Rules And for our output we want to have an array of rule output messages. Note that the element I am using for the output is only for one rule message element and not an array. We will configure the Business Rules component later to return an array instead. Output from Business Rules Business Rule – Create Dictionary Fill in all the details and click OK. Open the Business Rules component and select Decision Functions from the side. Modify the Decision Function Configuration Select the decision function and click on the edit button (the pencil), don’t worry that JDeveloper indicates that there is an error with the decision function. Then click the Ouputs tab and make sure the checkbox under the List column is checked, this is to tell the Business Rules component that it should return an array of rule message elements. Updating the Decision Service Next we will define the actual rules. Click on Ruleset1 on the side and then the Create Rule in the IF/THEN Rule section. Creating new rule in ruleset Ok, this is where some detailed explanation is required. Remember that the input to this Business Rules dictionary is a list of payments, each of those payments were of the complex type PaymentType. Each of those payments in the Oracle Business Rules engine is treated as a fact in its working memory. Implemented rule So in the IF/THEN rule, the first task is to grab two PaymentType facts from the working memory and assign them to temporary variable names (payment1 and payment2 in our example). Matching facts Once we have them in the temporary variables, we can then start comparing them to each other. For our demonstration we want to find payments where the account numbers were the same but the account name was different. Suspicious payment instruction And to stop the rule from comparing the same facts to each other, over and over again, we have to include the last test. Stop rule from comparing endlessly And that’s it! No for loops, no need to keep track of what you have or have not compared, OBR handles all that for you because everything is done in its working memory. And once all the tests have been satisfied we need to assert a new fact for the output. Assert the output fact Save your Business Rules. Next step is to complete the data association in the BPM process. Pay extra care to use Copy List instead of the default Copy when doing data association at an array level. Input and output data association Deploy and test. Test data Rule matched Parting words: Ideally you would then use the output of the Business Rules component to then display/flag the transactions which triggered the rule so that the approver can investigate. Link: SOA Project Archive [Download]

    Read the article

  • How to install Percona Xtrabackup to Ubuntu 12.04LTS?

    - by coding crow
    I am trying to install Percona Xtrabackup to my Ubuntu 12.04 LTS insatlled on Amazon EC2. I am trying to follow instruction on the Xtrabackup installation page here. The instruction follows as Add this to /etc/apt/sources.list, replacing squeeze with the name of your distribution: deb http://repo.percona.com/apt squeeze main deb-src http://repo.percona.com/apt squeeze main In my case I will replace squeeze with precise but when I open /etc/apt/sources.list for editing it says the following It is suggestion three alternatives instead of editing which are listed a.), b.) and c.). My Question What should I do to install Percona Xtrabackup to my box?

    Read the article

  • projective geometry: how do I turn a projection of a rectangle in 3D into a 2D view

    - by bonomo
    So the problem is that I have a 3D projection of a rectangle that I want to turn into 2D. That is I have a photo of a sheet of paper laying on a table which I want to transform into a 2D view of that sheet. So what I need is to get an undistorted 2D image by reverting all the 3D/projection transformations and getting a plain view of the sheet from the top. I happened to find some directions on the subject but they don't suggest an immediate instruction on how this can be achieved. It would be really helpful to get a step-by-step instruction of what needs to be done. Or, alternatively, a link on a resource that breaks it down to little details. Thank you

    Read the article

  • Why are cryptic short identifiers still so common in low-level programming?

    - by romkyns
    There used to be very good reasons for keeping instruction / register names short. Those reasons no longer apply, but short cryptic names are still very common in low-level programming. Why is this? Is it just because old habits are hard to break, or are there better reasons? For example: Atmel ATMEGA32U2 (2010?): TIFR1 (instead of TimerCounter1InterruptFlag), ICR1H (instead of InputCapture1High), DDRB (instead of DataDirectionPortB), etc. .NET CLR instruction set (2002): bge.s (instead of branch-if-greater.signed), etc. Aren't the longer, non-cryptic names easier to work with?

    Read the article

  • Azure, don't give me multiple VMs, give me one elastic VM

    - by FransBouma
    Yesterday, Microsoft revealed new major features for Windows Azure (see ScottGu's post). It all looks shiny and great, but after reading most of the material describing the new features, I still find the overall idea behind all of it flawed: why should I care on how much VMs my web app runs? Isn't that a problem to solve for the Windows Azure engineers / software? And what if I need the file system, why can't I simply get a virtual filesystem ? To illustrate my point, let's use a real example: a product website with a customer system/database and next to it a support site with accompanying database. Both are written in .NET, using ASP.NET and use a SQL Server database each. The product website offers files to download by customers, very simple. You have a couple of options to host these websites: Buy a server, place it in a rack at an ISP and run the sites on that server Use 'shared hosting' with an ISP, which means your sites' appdomains are running on the same machine, as well as the files stored, and the databases are hosted in the same server as the other shared databases. Hire a VM, install your OS of choice at an ISP, and host the sites on that VM, basically the same as the first option, except you don't have a physical server At some cloud-vendor, either host the sites 'shared' or in a VM. See above. With all of those options, scalability is a problem, even the cloud-based ones, though not due to the same reasons: The physical server solution has the obvious problem that if you need more power, you need to buy a bigger server or more servers which requires you to add replication and other overhead Shared hosting solutions are almost always capped on memory usage / traffic and database size: if your sites get too big, you have to move out of the shared hosting environment and start over with one of the other solutions The VM solution, be it a VM at an ISP or 'in the cloud' at e.g. Windows Azure or Amazon, in theory allows scaling out by simply instantiating more VMs, however that too introduces the same overhead problems as with the physical servers: suddenly more than 1 instance runs your sites. If a cloud vendor offers its services in the form of VMs, you won't gain much over having a VM at some ISP: the main problems you have to work around are still there: when you spin up more than one VM, your application must be completely stateless at any moment, including the DB sub system, because what's in memory in instance 1 might not be in memory in instance 2. This might sounds trivial but it's not. A lot of the websites out there started rather small: they were perfectly runnable on a single machine with normal memory and CPU power. After all, you don't need a big machine to run a website with even thousands of users a day. Moving these sites to a multi-VM environment will cause a problem: all the in-memory state they use, all the multi-page transitions they use while keeping state across the transition, they can't do that anymore like they did that on a single machine: state is something of the past, you have to store every byte of state in either a DB or in a viewstate or in a cookie somewhere so with the next request, all state information is available through the request, as nothing is kept in-memory. Our example uses a bunch of files in a file system. Using multiple VMs will require that these files move to a cloud storage system which is mounted in each VM so we don't have to store the files on each VM. This might require different file paths, but this change should be minor. What's perhaps less minor is the maintenance procedure in place on the new type of cloud storage used: instead of ftp-ing into a VM, you might have to update the files using different ways / tools. All in all this makes moving an existing website which was written for an environment that's based around a VM (namely .NET with its CLR) overly cumbersome and problematic: it forces you to refactor your website system to be able to be used 'in the cloud', which is caused by the limited way how e.g. Windows Azure offers its cloud services: in blocks of VMs. Offer a scalable, flexible VM which extends with my needs Instead, cloud vendors should offer simply one VM to me. On that VM I run the websites, store my DB and my files. As it's a virtual machine, how this machine is actually ran on physical hardware (e.g. partitioned), I don't care, as that's the problem for the cloud vendor to solve. If I need more resources, e.g. I have more traffic to my server, way more visitors per day, the VM stretches, like I bought a bigger box. This frees me from the problem which comes with multiple VMs: I don't have any refactoring to do at all: I can simply build my website as if it runs on my local hardware server, upload it to the VM offered by the cloud vendor, install it on the VM and I'm done. "But that might require changes to windows!" Yes, but Microsoft is Windows. Windows Azure is their service, they can make whatever change to what they offer to make it look like it's windows. Yet, they're stuck, like Amazon, in thinking in VMs, which forces developers to 'think ahead' and gamble whether they would need to migrate to a cloud with multiple VMs in the future or not. Which comes down to: gamble whether they should invest time in code / architecture which they might never need. (YAGNI anyone?) So the VM we're talking about, is that a low-level VM which runs a guest OS, or is that VM a different kind of VM? The flexible VM: .NET's CLR ? My example websites are ASP.NET based, which means they run inside a .NET appdomain, on the .NET CLR, which is a VM. The only physical OS resource the sites need is the file system, however this too is accessed through .NET. In short: all the websites see is what .NET allows the websites to see, the world as the websites know it is what .NET shows them and lets them access. How the .NET appdomain is run physically, that's the concern of .NET, not mine. This begs the question why Windows Azure doesn't offer virtual appdomains? Or better: .NET environments which look like one machine but could be physically multiple machines. In such an environment, no change has to be made to the websites to migrate them from a local machine or own server to the cloud to get proper scaling: the .NET VM will simply scale with the need: more memory needed, more CPU power needed, it stretches. What it offers to the application running inside the appdomain is simply increasing, but not fragmented: all resources are available to the application: this means that the problem of how to scale is back to where it should be: with the cloud vendor. "Yeah, great, but what about the databases?" The .NET application communicates with the database server through a .NET ADO.NET provider. Where the database is located is not a problem of the appdomain: the ADO.NET provider has to solve that. I.o.w.: we can host the databases in an environment which offers itself as a single resource and is accessible through one connection string without replication overhead on the outside, and use that environment inside the .NET VM as if it was a single DB. But what about memory replication and other problems? This environment isn't simple, at least not for the cloud vendor. But it is simple for the customer who wants to run his sites in that cloud: no work needed. No refactoring needed of existing code. Upload it, run it. Perhaps I'm dreaming and what I described above isn't possible. Yet, I think if cloud vendors don't move into that direction, what they're offering isn't interesting: it doesn't solve a problem at all, it simply offers a way to instantiate more VMs with the guest OS of choice at the cost of me needing to refactor my website code so it can run in the straight jacket form factor dictated by the cloud vendor. Let's not kid ourselves here: most of us developers will never build a website which needs a truck load of VMs to run it: almost all websites created by developers can run on just a few VMs at most. Yet, the most expensive change is right at the start: moving from one to two VMs. As soon as you have refactored your website code to run across multiple VMs, adding another one is just as easy as clicking a mouse button. But that first step, that's the problem here and as it's right there at the beginning of scaling the website, it's particularly strange that cloud vendors refuse to solve that problem and leave it to the developers to solve that. Which makes migrating 'to the cloud' particularly expensive.

    Read the article

  • Creating a Training Lab on Windows Azure

    - by Michael Stephenson
    Originally posted on: http://geekswithblogs.net/michaelstephenson/archive/2013/06/17/153149.aspxThis week we are preparing for a training course that Alan Smith will be running for the support teams at one of my customers around Windows Azure. In order to facilitate the training lab we have a few prerequisites we need to handle. One of the biggest ones is that although the support team all have MSDN accounts the local desktops they work on are not ideal for running most of the labs as we want to give them some additional developer background training around Azure. Some recent Azure announcements really help us in this area: MSDN software can now be used on Azure VM You don't pay for Azure VM's when they are no longer used  Since the support team only have limited experience of Windows Azure and the organisation also have an Enterprise Agreement we decided it would be best value for money to spin up a training lab in a subscription on the EA and then we can turn the machines off when we are done. At the same time we would be able to spin them back up when the users need to do some additional lab work once the training course is completed. In order to achieve this I wanted to create a powershell script which would setup my training lab. The aim was to create 18 VM's which would be based on a prebuilt template with Visual Studio and the Azure development tools. The script I used is described below The Start & Variables The below text will setup the powershell environment and some variables which I will use elsewhere in the script. It will also import the Azure Powershell cmdlets. You can see below that I will need to download my publisher settings file and know some details from my Azure account. At this point I will assume you have a basic understanding of Azure & Powershell so already know how to do this. Set-ExecutionPolicy Unrestrictedcls $startTime = get-dateImport-Module "C:\Program Files (x86)\Microsoft SDKs\Windows Azure\PowerShell\Azure\Azure.psd1"# Azure Publisher Settings $azurePublisherSettings = '<Your settings file>.publishsettings'  # Subscription Details $subscriptionName = "<Your subscription name>" $defaultStorageAccount = "<Your default storage account>"  # Affinity Group Details $affinityGroup = '<Your affinity group>' $dataCenter = 'West Europe' # From Get-AzureLocation  # VM Details $baseVMName = 'TRN' $adminUserName = '<Your admin username>' $password = '<Your admin password>' $size = 'Medium' $vmTemplate = '<The name of your VM template image>' $rdpFilePath = '<File path to save RDP files to>' $machineSettingsPath = '<File path to save machine info to>'    Functions In the next section of the script I have some functions which are used to perform certain actions. The first is called CreateVM. This will do the following actions: If the VM already exists it will be deleted Create the cloud service Create the VM from the template I have created Add an endpoint so we can RDP to them all over the same port Download the RDP file so there is a short cut the trainees can easily access the machine via Write settings for the machine to a log file  function CreateVM($machineNo) { # Specify a name for the new VM $machineName = "$baseVMName-$machineNo" Write-Host "Creating VM: $machineName"       # Get the Azure VM Image      $myImage = Get-AzureVMImage $vmTemplate   #If the VM already exists delete and re-create it $existingVm = Get-AzureVM -Name $machineName -ServiceName $serviceName if($existingVm -ne $null) { Write-Host "VM already exists so deleting it" Remove-AzureVM -Name $machineName -ServiceName $serviceName }   "Creating Service" $serviceName = "bupa-azure-train-$machineName" Remove-AzureService -Force -ServiceName $serviceName New-AzureService -Location $dataCenter -ServiceName $serviceName   Write-Host "Creating VM: $machineName" New-AzureQuickVM -Windows -name $machineName -ServiceName $serviceName -ImageName $myImage.ImageName -InstanceSize $size -AdminUsername $adminUserName -Password $password  Write-Host "Updating the RDP endpoint for $machineName" Get-AzureVM -name $machineName -ServiceName $serviceName ` | Add-AzureEndpoint -Name RDP -Protocol TCP -LocalPort 3389 -PublicPort 550 ` | Update-AzureVM    Write-Host "Get the RDP File for machine $machineName" $machineRDPFilePath = "$rdpFilePath\$machineName.rdp" Get-AzureRemoteDesktopFile -name $machineName -ServiceName $serviceName -LocalPath "$machineRDPFilePath"   WriteMachineSettings "$machineName" "$serviceName" }    The delete machine settings function is used to delete the log file before we start re-running the process.  function DeleteMachineSettings() { Write-Host "Deleting the machine settings output file" [System.IO.File]::Delete("$machineSettingsPath"); }    The write machine settings function will get the VM and then record its details to the log file. The importance of the log file is that I can easily provide the information for all of the VM's to our infrastructure team to be able to configure access to all of the VM's    function WriteMachineSettings([string]$vmName, [string]$vmServiceName) { Write-Host "Writing to the machine settings output file"   $vm = Get-AzureVM -name $vmName -ServiceName $vmServiceName $vmEndpoint = Get-AzureEndpoint -VM $vm -Name RDP   $sb = new-object System.Text.StringBuilder $sb.Append("Service Name: "); $sb.Append($vm.ServiceName); $sb.Append(", "); $sb.Append("VM: "); $sb.Append($vm.Name); $sb.Append(", "); $sb.Append("RDP Public Port: "); $sb.Append($vmEndpoint.Port); $sb.Append(", "); $sb.Append("Public DNS: "); $sb.Append($vmEndpoint.Vip); $sb.AppendLine(""); [System.IO.File]::AppendAllText($machineSettingsPath, $sb.ToString());  } # end functions    Rest of Script In the rest of the script it is really just the bit that orchestrates the actions we want to happen. It will load the publisher settings, select the Azure subscription and then loop around the CreateVM function and create 16 VM's  Import-AzurePublishSettingsFile $azurePublisherSettings Set-AzureSubscription -SubscriptionName $subscriptionName -CurrentStorageAccount $defaultStorageAccount Select-AzureSubscription -SubscriptionName $subscriptionName  DeleteMachineSettings    "Starting creating Bupa International Azure Training Lab" $numberOfVMs = 16  for ($index=1; $index -le $numberOfVMs; $index++) { $vmNo = "$index" CreateVM($vmNo); }    "Finished creating Bupa International Azure Training Lab" # Give it a Minute Start-Sleep -s 60  $endTime = get-date "Script run time " + ($endTime - $startTime)    Conclusion As you can see there is nothing too fancy about this script but in our case of creating a small isolated training lab which is not connected to our corporate network then we can easily use this to provision the lab. Im sure if this is of use to anyone you can easily modify it to do other things with the lab environment too. A couple of points to note are that there are some soft limits in Azure about the number of cores and services your subscription can use. You may need to contact the Azure support team to be able to increase this limit. In terms of the real business value of this approach, it was not possible to use the existing desktops to do the training on, and getting some internal virtual machines would have been relatively expensive and time consuming for our ops team to do. With the Azure option we are able to spin these machines up for a temporary period during the training course and then throw them away when we are done. We expect the costing of this test lab to be very small, especially considering we have EA pricing. As a ball park I think my 18 lab VM training environment will cost in the region of $80 per day on our EA. This is a fraction of the cost of the creation of a single VM on premise.

    Read the article

  • Remote Debug Windows Azure Cloud Service

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/11/02/remote-debug-windows-azure-cloud-service.aspxOn the 22nd of October Microsoft Announced the new Windows Azure SDK 2.2. It introduced a lot of cool features but one of it shocked most, which is the remote debug support for Windows Azure Cloud Service (a.k.a. WACS).   Live Debug is Nightmare for Cloud Application When we are developing against public cloud, debug might be the most difficult task, especially after the application had been deployed. In order to minimize the debug effort, Microsoft provided local emulator for cloud service and storage once the Windows Azure platform was announced. By using local emulator developers could be able run their application on local machine with almost the same behavior as running on Windows Azure, and that could be debug easily and quickly. But when we deployed our application to Azure, we have to use log, diagnostic monitor to debug, which is very low efficient. Visual Studio 2012 introduced a new feature named "anonymous remote debug" which allows any workstation under any user could be able to attach the remote process. This is less secure comparing the authenticated remote debug but much easier and simpler to use. Now in Windows Azure SDK 2.2, we could be able to attach our application from our local machine to Windows Azure, and it's very easy.   How to Use Remote Debugger First, let's create a new Windows Azure Cloud Project in Visual Studio and selected ASP.NET Web Role. Then create an ASP.NET WebForm application. Then right click on the cloud project and select "publish". In the publish dialog we need to make sure the application will be built in debug mode, since .NET assembly cannot be debugged in release mode. I enabled Remote Desktop as I will log into the virtual machine later in this post. It's NOT necessary for remote debug. And selected "advanced settings" tab, make sure we checked "Enable Remote Debugger for all roles". In WACS, a cloud service could be able to have one or more roles and each role could be able to have one or more instances. The remote debugger will be enabled for all roles and all instances if we checked. Currently there's no way for us to specify which role(s) and which instance(s) to enable. Finally click "publish" button. In the windows azure activity window in Visual Studio we can find some information about remote debugger. To attache remote process would be easy. Open the "server explorer" window in Visual Studio and expand "cloud services" node, find the cloud service, role and instance we had just published and wanted to debug, right click on the instance and select "attach debugger". Then after a while (it's based on how fast our Internet connect to Windows Azure Data Center) the Visual Studio will be switched to debug mode. Let's add a breakpoint in the default web page's form load function and refresh the page in browser to see what's happen. We can see that the our application was stopped at the breakpoint. The call stack, watch features are all available to use. Now let's hit F5 to continue the step, then back to the browser we will find the page was rendered successfully.   What Under the Hood Remote debugger is a WACS plugin. When we checked the "enable remote debugger" in the publish dialog, Visual Studio will add two cloud configuration settings in the CSCFG file. Since they were appended when deployment, we cannot find in our project's CSCFG file. But if we opened the publish package we could find as below. At the same time, Visual Studio will generate a certificate and included into the package for remote debugger. If we went to the azure management portal we will find there will a certificate under our application which was created, uploaded by remote debugger plugin. Since I enabled Remote Desktop there will be two certificates in the screenshot below. The other one is for remote debugger. When our application was deployed, windows azure system will open related ports for remote debugger. As below you can see there are two new ports opened on my application. Finally, in our WACS virtual machine, windows azure system will copy the remote debug component based on which version of Visual Studio we are using and start. Our application then can be debugged remotely through the visual studio remote debugger. Below is the task manager on the virtual machine of my WACS application.   Summary In this post I demonstrated one of the feature introduced in Windows Azure SDK 2.2, which is Remote Debugger. It allows us to attach our application from local machine to windows azure virtual machine once it had been deployed. Remote debugger is powerful and easy to use, but it brings more security risk. And since it's only available for debug build this means the performance will be worse than release build. Hence we should only use this feature for staging test and bug fix (publish our beta version to azure staging slot), rather than for production.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Windows Media Center 6 Development on Vista

    - by Clever Human
    I have two development machines -- one is Windows 7, the other is Windows Vista. Depending on where I am in my house is which machine I use. I am writing a Windows Media Center 6 (which ships as part of Windows 7) application. I installed the WMC6 SDK on my Windows 7 machine with no issues. However, when I try and install it on my Vista machine, I am told the WMC6 SDK cannot be installed on Vista. So my questions are: How can I develop a WMC6 app on Vista? If I use the Vista version of the SDK (WMC5.3 SDK) will I be able to edit / compile and test the same application from each machine. I imagine the answer to the second question is "no" because the API changed between those two versions. So can I only work on this application from my Windows 7 machine? That really sucks if it is true!

    Read the article

< Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >