Search Results

Search found 12528 results on 502 pages for 'objects recognition'.

Page 112/502 | < Previous Page | 108 109 110 111 112 113 114 115 116 117 118 119  | Next Page >

  • Dependency injection: At what point am I allowed to create a new object?

    - by Gaz_Edge
    I am refactoring a PHP application, and I am trying to do has much dependency injection (DI) as possible. I feel like I've got a good grasp of how it works, and I can certainly see my classes becoming a lot leaner and more robust. I'm refactoring so that I can inject a dependency rather than create a new object within the class, but at some point I am going to have to create some objects, that is, use the dreaded new keyword. The problem I have now run into is at what point can I actually create new objects? It's looking like I'll end up at a top level class, creating loads of new objects as there is no where else to go. This feels wrong. I've read some blogs that use factory classes to create all the objects, and then you inject the factory into other classes. You can then call the factory methods, and the factory creates the new object for you. My concern with doing this is now my factory classes are going to be a new free-for-all! I guess this may be OK as they are factory classes, but are there some rules to stick to when using a factory pattern and DI, or am I going way off the mark here?

    Read the article

  • Dependency Injection: What point am I allowed to create a new object?

    - by Gaz_Edge
    I am refactoring a php application and I am trying to do has much dependency injection as possible. I feel like I've got a good grasp of how it works, and I can certainly see my classes becoming a lot leaner and more robust. Im refactoring so that I can inject a dependency rather than create a new object within the class, but at some point I am going to have to create some objects i.e. use the dreaded new keyword. The problem I have now run into is at what point can I actually create new objects? Its looking like I'll end up at a top level class, creating loads of new objects as there is no where else to go. This feels wrong. I've read some blogs that use factory classes to create all the objects, and then you inject the factory into other classes. You can then call the factory methods, and the factory creates the new object for you. My concern with doing this is now my factory classes are going to be a new free-for-all! I guess this may be ok as they are factory classes, but are there some rules to stick to when using factory pattern and DI, or am I going way off the mark here.

    Read the article

  • iPhone: CPU power to do DSP/Fourier transform/frequency domain?

    - by mahboudz
    I want to analyze MIC audio on an ongoing basis (not just a snipper or prerecorded sample), and display frequency graph and filter out certain aspects of the audio. Is the iPhone powerful enough for that? I suspect the answer is a yes, given the Google and iPhone voice recognition, Shazaam and other music recognition apps, and guitar tuner apps out there. However, I don't know what limitations I'll have to deal with. Anyone play around with this area?

    Read the article

  • ODI 12c - Parallel Table Load

    - by David Allan
    In this post we will look at the ODI 12c capability of parallel table load from the aspect of the mapping developer and the knowledge module developer - two quite different viewpoints. This is about parallel table loading which isn't to be confused with loading multiple targets per se. It supports the ability for ODI mappings to be executed concurrently especially if there is an overlap of the datastores that they access, so any temporary resources created may be uniquely constructed by ODI. Temporary objects can be anything basically - common examples are staging tables, indexes, views, directories - anything in the ETL to help the data integration flow do its job. In ODI 11g users found a few workarounds (such as changing the technology prefixes - see here) to build unique temporary names but it was more of a challenge in error cases. ODI 12c mappings by default operate exactly as they did in ODI 11g with respect to these temporary names (this is also true for upgraded interfaces and scenarios) but can be configured to support the uniqueness capabilities. We will look at this feature from two aspects; that of a mapping developer and that of a developer (of procedures or KMs). 1. Firstly as a Mapping Developer..... 1.1 Control when uniqueness is enabled A new property is available to set unique name generation on/off. When unique names have been enabled for a mapping, all temporary names used by the collection and integration objects will be generated using unique names. This property is presented as a check-box in the Property Inspector for a deployment specification. 1.2 Handle cleanup after successful execution Provided that all temporary objects that are created have a corresponding drop statement then all of the temporary objects should be removed during a successful execution. This should be the case with the KMs developed by Oracle. 1.3 Handle cleanup after unsuccessful execution If an execution failed in ODI 11g then temporary tables would have been left around and cleaned up in the subsequent run. In ODI 12c, KM tasks can now have a cleanup-type task which is executed even after a failure in the main tasks. These cleanup tasks will be executed even on failure if the property 'Remove Temporary Objects on Error' is set. If the agent was to crash and not be able to execute this task, then there is an ODI tool (OdiRemoveTemporaryObjects here) you can invoke to cleanup the tables - it supports date ranges and the like. That's all there is to it from the aspect of the mapping developer it's much, much simpler and straightforward. You can now execute the same mapping concurrently or execute many mappings using the same resource concurrently without worrying about conflict.  2. Secondly as a Procedure or KM Developer..... In the ODI Operator the executed code shows the actual name that is generated - you can also see the runtime code prior to execution (introduced in 11.1.1.7), for example below in the code type I selected 'Pre-executed Code' this lets you see the code about to be processed and you can also see the executed code (which is the default view). References to the collection (C$) and integration (I$) names will be automatically made unique by using the odiRef APIs - these objects will have unique names whenever concurrency has been enabled for a particular mapping deployment specification. It's also possible to use name uniqueness functions in procedures and your own KMs. 2.1 New uniqueness tags  You can also make your own temporary objects have unique names by explicitly including either %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG in the name passed to calls to the odiRef APIs. Such names would always include the unique tag regardless of the concurrency setting. To illustrate, let's look at the getObjectName() method. At <% expansion time, this API will append %UNIQUE_STEP_TAG to the object name for collection and integration tables. The name parameter passed to this API may contain  %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. This API always generates to the <? version of getObjectName() At execution time this API will replace the unique tag macros with a string that is unique to the current execution scope. The returned name will conform to the name-length restriction for the target technology, and its pattern for the unique tag. Any necessary truncation will be performed against the initial name for the object and any other fixed text that may have been specified. Examples are:- <?=odiRef.getObjectName("L", "%COL_PRFEMP%UNIQUE_STEP_TAG", "D")?> SCOTT.C$_EABH7QI1BR1EQI3M76PG9SIMBQQ <?=odiRef.getObjectName("L", "EMP%UNIQUE_STEP_TAG_AE", "D")?> SCOTT.EMPAO96Q2JEKO0FTHQP77TMSAIOSR_ Methods which have this kind of support include getFrom, getTableName, getTable, getObjectShortName and getTemporaryIndex. There are APIs for retrieving this tag info also, the getInfo API has been extended with the following properties (the UNIQUE* properties can also be used in ODI procedures); UNIQUE_STEP_TAG - Returns the unique value for the current step scope, e.g. 5rvmd8hOIy7OU2o1FhsF61 Note that this will be a different value for each loop-iteration when the step is in a loop. UNIQUE_SESSION_TAG - Returns the unique value for the current session scope, e.g. 6N38vXLrgjwUwT5MseHHY9 IS_CONCURRENT - Returns info about the current mapping, will return 0 or 1 (only in % phase) GUID_SRC_SET - Returns the UUID for the current source set/execution unit (only in % phase) The getPop API has been extended with the IS_CONCURRENT property which returns info about an mapping, will return 0 or 1.  2.2 Additional APIs Some new APIs are provided including getFormattedName which will allow KM developers to construct a name from fixed-text or ODI symbols that can be optionally truncate to a max length and use a specific encoding for the unique tag. It has syntax getFormattedName(String pName[, String pTechnologyCode]) This API is available at both the % and the ? phase.  The format string can contain the ODI prefixes that are available for getObjectName(), e.g. %INT_PRF, %COL_PRF, %ERR_PRF, %IDX_PRF alongwith %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. The latter tags will be expanded into a unique string according to the specified technology. Calls to this API within the same execution context are guaranteed to return the same unique name provided that the same parameters are passed to the call. e.g. <%=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")%> <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")?> C$_MY_TAB7wDiBe80vBog1auacS1xB_AE <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG.log", "FILE")?> C2_MY_TAB7wDiBe80vBog1auacS1xB.log 2.3 Name length generation  As part of name generation, the length of the generated name will be compared with the maximum length for the target technology and truncation may need to be applied. When a unique tag is included in the generated string it is important that uniqueness is not compromised by truncation of the unique tag. When a unique tag is NOT part of the generated name, the name will be truncated by removing characters from the end - this is the existing 11g algorithm. When a unique tag is included, the algorithm will first truncate the <postfix> and if necessary  the <prefix>. It is recommended that users will ensure there is sufficient uniqueness in the <prefix> section to ensure uniqueness of the final resultant name. SUMMARY To summarize, ODI 12c make it much simpler to utilize mappings in concurrent cases and provides APIs for helping developing any procedures or custom knowledge modules in such a way they can be used in highly concurrent, parallel scenarios. 

    Read the article

  • SQL Monitor’s data repository

    - by Chris Lambrou
    As one of the developers of SQL Monitor, I often get requests passed on by our support people from customers who are looking to dip into SQL Monitor’s own data repository, in order to pull out bits of information that they’re interested in. Since there’s clearly interest out there in playing around directly with the data repository, I thought I’d write some blog posts to start to describe how it all works. The hardest part for me is knowing where to begin, since the schema of the data repository is pretty big. Hmmm… I guess it’s tricky for anyone to write anything but the most trivial of queries against the data repository without understanding the hierarchy of monitored objects, so perhaps my first post should start there. I always imagine that whenever a customer fires up SSMS and starts to explore their SQL Monitor data repository database, they become immediately bewildered by the schema – that was certainly my experience when I did so for the first time. The following query shows the number of different object types in the data repository schema: SELECT type_desc, COUNT(*) AS [count] FROM sys.objects GROUP BY type_desc ORDER BY type_desc;  type_desccount 1DEFAULT_CONSTRAINT63 2FOREIGN_KEY_CONSTRAINT181 3INTERNAL_TABLE3 4PRIMARY_KEY_CONSTRAINT190 5SERVICE_QUEUE3 6SQL_INLINE_TABLE_VALUED_FUNCTION381 7SQL_SCALAR_FUNCTION2 8SQL_STORED_PROCEDURE100 9SYSTEM_TABLE41 10UNIQUE_CONSTRAINT54 11USER_TABLE193 12VIEW124 With 193 tables, 124 views, 100 stored procedures and 381 table valued functions, that’s quite a hefty schema, and when you browse through it using SSMS, it can be a bit daunting at first. So, where to begin? Well, let’s narrow things down a bit and only look at the tables belonging to the data schema. That’s where all of the collected monitoring data is stored by SQL Monitor. The following query gives us the names of those tables: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' ORDER BY sch.name, obj.name; This query still returns 110 tables. I won’t show them all here, but let’s have a look at the first few of them:  name 1data.Cluster_Keys 2data.Cluster_Machine_ClockSkew_UnstableSamples 3data.Cluster_Machine_Cluster_StableSamples 4data.Cluster_Machine_Keys 5data.Cluster_Machine_LogicalDisk_Capacity_StableSamples 6data.Cluster_Machine_LogicalDisk_Keys 7data.Cluster_Machine_LogicalDisk_Sightings 8data.Cluster_Machine_LogicalDisk_UnstableSamples 9data.Cluster_Machine_LogicalDisk_Volume_StableSamples 10data.Cluster_Machine_Memory_Capacity_StableSamples 11data.Cluster_Machine_Memory_UnstableSamples 12data.Cluster_Machine_Network_Capacity_StableSamples 13data.Cluster_Machine_Network_Keys 14data.Cluster_Machine_Network_Sightings 15data.Cluster_Machine_Network_UnstableSamples 16data.Cluster_Machine_OperatingSystem_StableSamples 17data.Cluster_Machine_Ping_UnstableSamples 18data.Cluster_Machine_Process_Instances 19data.Cluster_Machine_Process_Keys 20data.Cluster_Machine_Process_Owner_Instances 21data.Cluster_Machine_Process_Sightings 22data.Cluster_Machine_Process_UnstableSamples 23… There are two things I want to draw your attention to: The table names describe a hierarchy of the different types of object that are monitored by SQL Monitor (e.g. clusters, machines and disks). For each object type in the hierarchy, there are multiple tables, ending in the suffixes _Keys, _Sightings, _StableSamples and _UnstableSamples. Not every object type has a table for every suffix, but the _Keys suffix is especially important and a _Keys table does indeed exist for every object type. In fact, if we limit the query to return only those tables ending in _Keys, we reveal the full object hierarchy: SELECT sch.name + '.' + obj.name AS [name] FROM sys.objects obj JOIN sys.schemas sch ON sch.schema_id = obj.schema_id WHERE obj.type_desc = 'USER_TABLE' AND sch.name = 'data' AND obj.name LIKE '%_Keys' ORDER BY sch.name, obj.name;  name 1data.Cluster_Keys 2data.Cluster_Machine_Keys 3data.Cluster_Machine_LogicalDisk_Keys 4data.Cluster_Machine_Network_Keys 5data.Cluster_Machine_Process_Keys 6data.Cluster_Machine_Services_Keys 7data.Cluster_ResourceGroup_Keys 8data.Cluster_ResourceGroup_Resource_Keys 9data.Cluster_SqlServer_Agent_Job_History_Keys 10data.Cluster_SqlServer_Agent_Job_Keys 11data.Cluster_SqlServer_Database_BackupType_Backup_Keys 12data.Cluster_SqlServer_Database_BackupType_Keys 13data.Cluster_SqlServer_Database_CustomMetric_Keys 14data.Cluster_SqlServer_Database_File_Keys 15data.Cluster_SqlServer_Database_Keys 16data.Cluster_SqlServer_Database_Table_Index_Keys 17data.Cluster_SqlServer_Database_Table_Keys 18data.Cluster_SqlServer_Error_Keys 19data.Cluster_SqlServer_Keys 20data.Cluster_SqlServer_Services_Keys 21data.Cluster_SqlServer_SqlProcess_Keys 22data.Cluster_SqlServer_TopQueries_Keys 23data.Cluster_SqlServer_Trace_Keys 24data.Group_Keys The full object type hierarchy looks like this: Cluster Machine LogicalDisk Network Process Services ResourceGroup Resource SqlServer Agent Job History Database BackupType Backup CustomMetric File Table Index Error Services SqlProcess TopQueries Trace Group Okay, but what about the individual objects themselves represented at each level in this hierarchy? Well that’s what the _Keys tables are for. This is probably best illustrated by way of a simple example – how can I query my own data repository to find the databases on my own PC for which monitoring data has been collected? Like this: SELECT clstr._Name AS cluster_name, srvr._Name AS instance_name, db._Name AS database_name FROM data.Cluster_SqlServer_Database_Keys db JOIN data.Cluster_SqlServer_Keys srvr ON db.ParentId = srvr.Id -- Note here how the parent of a Database is a Server JOIN data.Cluster_Keys clstr ON srvr.ParentId = clstr.Id -- Note here how the parent of a Server is a Cluster WHERE clstr._Name = 'dev-chrisl2' -- This is the hostname of my own PC ORDER BY clstr._Name, srvr._Name, db._Name;  cluster_nameinstance_namedatabase_name 1dev-chrisl2SqlMonitorData 2dev-chrisl2master 3dev-chrisl2model 4dev-chrisl2msdb 5dev-chrisl2mssqlsystemresource 6dev-chrisl2tempdb 7dev-chrisl2sql2005SqlMonitorData 8dev-chrisl2sql2005TestDatabase 9dev-chrisl2sql2005master 10dev-chrisl2sql2005model 11dev-chrisl2sql2005msdb 12dev-chrisl2sql2005mssqlsystemresource 13dev-chrisl2sql2005tempdb 14dev-chrisl2sql2008SqlMonitorData 15dev-chrisl2sql2008master 16dev-chrisl2sql2008model 17dev-chrisl2sql2008msdb 18dev-chrisl2sql2008mssqlsystemresource 19dev-chrisl2sql2008tempdb These results show that I have three SQL Server instances on my machine (a default instance, one named sql2005 and one named sql2008), and each instance has the usual set of system databases, along with a database named SqlMonitorData. Basically, this is where I test SQL Monitor on different versions of SQL Server, when I’m developing. There are a few important things we can learn from this query: Each _Keys table has a column named Id. This is the primary key. Each _Keys table has a column named ParentId. A foreign key relationship is defined between each _Keys table and its parent _Keys table in the hierarchy. There are two exceptions to this, Cluster_Keys and Group_Keys, because clusters and groups live at the root level of the object hierarchy. Each _Keys table has a column named _Name. This is used to uniquely identify objects in the table within the scope of the same shared parent object. Actually, that last item isn’t always true. In some cases, the _Name column is actually called something else. For example, the data.Cluster_Machine_Services_Keys table has a column named _ServiceName instead of _Name (sorry for the inconsistency). In other cases, a name isn’t sufficient to uniquely identify an object. For example, right now my PC has multiple processes running, all sharing the same name, Chrome (one for each tab open in my web-browser). In such cases, multiple columns are used to uniquely identify an object within the scope of the same shared parent object. Well, that’s it for now. I’ve given you enough information for you to explore the _Keys tables to see how objects are stored in your own data repositories. In a future post, I’ll try to explain how monitoring data is stored for each object, using the _StableSamples and _UnstableSamples tables. If you have any questions about this post, or suggestions for future posts, just submit them in the comments section below.

    Read the article

  • How accurate is "Business logic should be in a service, not in a model"?

    - by Jeroen Vannevel
    Situation Earlier this evening I gave an answer to a question on StackOverflow. The question: Editing of an existing object should be done in repository layer or in service? For example if I have a User that has debt. I want to change his debt. Should I do it in UserRepository or in service for example BuyingService by getting an object, editing it and saving it ? My answer: You should leave the responsibility of mutating an object to that same object and use the repository to retrieve this object. Example situation: class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } A comment I received: Business logic should really be in a service. Not in a model. What does the internet say? So, this got me searching since I've never really (consciously) used a service layer. I started reading up on the Service Layer pattern and the Unit Of Work pattern but so far I can't say I'm convinced a service layer has to be used. Take for example this article by Martin Fowler on the anti-pattern of an Anemic Domain Model: There are objects, many named after the nouns in the domain space, and these objects are connected with the rich relationships and structure that true domain models have. The catch comes when you look at the behavior, and you realize that there is hardly any behavior on these objects, making them little more than bags of getters and setters. Indeed often these models come with design rules that say that you are not to put any domain logic in the the domain objects. Instead there are a set of service objects which capture all the domain logic. These services live on top of the domain model and use the domain model for data. (...) The logic that should be in a domain object is domain logic - validations, calculations, business rules - whatever you like to call it. To me, this seemed exactly what the situation was about: I advocated the manipulation of an object's data by introducing methods inside that class that do just that. However I realize that this should be a given either way, and it probably has more to do with how these methods are invoked (using a repository). I also had the feeling that in that article (see below), a Service Layer is more considered as a façade that delegates work to the underlying model, than an actual work-intensive layer. Application Layer [his name for Service Layer]: Defines the jobs the software is supposed to do and directs the expressive domain objects to work out problems. The tasks this layer is responsible for are meaningful to the business or necessary for interaction with the application layers of other systems. This layer is kept thin. It does not contain business rules or knowledge, but only coordinates tasks and delegates work to collaborations of domain objects in the next layer down. It does not have state reflecting the business situation, but it can have state that reflects the progress of a task for the user or the program. Which is reinforced here: Service interfaces. Services expose a service interface to which all inbound messages are sent. You can think of a service interface as a façade that exposes the business logic implemented in the application (typically, logic in the business layer) to potential consumers. And here: The service layer should be devoid of any application or business logic and should focus primarily on a few concerns. It should wrap Business Layer calls, translate your Domain in a common language that your clients can understand, and handle the communication medium between server and requesting client. This is a serious contrast to other resources that talk about the Service Layer: The service layer should consist of classes with methods that are units of work with actions that belong in the same transaction. Or the second answer to a question I've already linked: At some point, your application will want some business logic. Also, you might want to validate the input to make sure that there isn't something evil or nonperforming being requested. This logic belongs in your service layer. "Solution"? Following the guidelines in this answer, I came up with the following approach that uses a Service Layer: class UserController : Controller { private UserService _userService; public UserController(UserService userService){ _userService = userService; } public ActionResult MakeHimPay(string username, int amount) { _userService.MakeHimPay(username, amount); return RedirectToAction("ShowUserOverview"); } public ActionResult ShowUserOverview() { return View(); } } class UserService { private IUserRepository _userRepository; public UserService(IUserRepository userRepository) { _userRepository = userRepository; } public void MakeHimPay(username, amount) { _userRepository.GetUserByName(username).makePayment(amount); } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } Conclusion All together not much has changed here: code from the controller has moved to the service layer (which is a good thing, so there is an upside to this approach). However this doesn't look like it had anything to do with my original answer. I realize design patterns are guidelines, not rules set in stone to be implemented whenever possible. Yet I have not found a definitive explanation of the service layer and how it should be regarded. Is it a means to simply extract logic from the controller and put it inside a service instead? Is it supposed to form a contract between the controller and the domain? Should there be a layer between the domain and the service layer? And, last but not least: following the original comment Business logic should really be in a service. Not in a model. Is this correct? How would I introduce my business logic in a service instead of the model?

    Read the article

  • creating objects from trivial graph format text file. java. dijkstra algorithm.

    - by user560084
    i want to create objects, vertex and edge, from trivial graph format txt file. one of programmers here suggested that i use trivial graph format to store data for dijkstra algorithm. the problem is that at the moment all the information, e.g., weight, links, is in the sourcecode. i want to have a separate text file for that and read it into the program. i thought about using a code for scanning through the text file by using scanner. but i am not quite sure how to create different objects from the same file. could i have some help please? the file is v0 Harrisburg v1 Baltimore v2 Washington v3 Philadelphia v4 Binghamton v5 Allentown v6 New York # v0 v1 79.83 v0 v5 81.15 v1 v0 79.75 v1 v2 39.42 v1 v3 103.00 v2 v1 38.65 v3 v1 102.53 v3 v5 61.44 v3 v6 96.79 v4 v5 133.04 v5 v0 81.77 v5 v3 62.05 v5 v4 134.47 v5 v6 91.63 v6 v3 97.24 v6 v5 87.94 and the dijkstra algorithm code is Downloaded from: http://en.literateprograms.org/Special:Downloadcode/Dijkstra%27s_algorithm_%28Java%29 */ import java.util.PriorityQueue; import java.util.List; import java.util.ArrayList; import java.util.Collections; class Vertex implements Comparable<Vertex> { public final String name; public Edge[] adjacencies; public double minDistance = Double.POSITIVE_INFINITY; public Vertex previous; public Vertex(String argName) { name = argName; } public String toString() { return name; } public int compareTo(Vertex other) { return Double.compare(minDistance, other.minDistance); } } class Edge { public final Vertex target; public final double weight; public Edge(Vertex argTarget, double argWeight) { target = argTarget; weight = argWeight; } } public class Dijkstra { public static void computePaths(Vertex source) { source.minDistance = 0.; PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>(); vertexQueue.add(source); while (!vertexQueue.isEmpty()) { Vertex u = vertexQueue.poll(); // Visit each edge exiting u for (Edge e : u.adjacencies) { Vertex v = e.target; double weight = e.weight; double distanceThroughU = u.minDistance + weight; if (distanceThroughU < v.minDistance) { vertexQueue.remove(v); v.minDistance = distanceThroughU ; v.previous = u; vertexQueue.add(v); } } } } public static List<Vertex> getShortestPathTo(Vertex target) { List<Vertex> path = new ArrayList<Vertex>(); for (Vertex vertex = target; vertex != null; vertex = vertex.previous) path.add(vertex); Collections.reverse(path); return path; } public static void main(String[] args) { Vertex v0 = new Vertex("Nottinghill_Gate"); Vertex v1 = new Vertex("High_Street_kensignton"); Vertex v2 = new Vertex("Glouchester_Road"); Vertex v3 = new Vertex("South_Kensignton"); Vertex v4 = new Vertex("Sloane_Square"); Vertex v5 = new Vertex("Victoria"); Vertex v6 = new Vertex("Westminster"); v0.adjacencies = new Edge[]{new Edge(v1, 79.83), new Edge(v6, 97.24)}; v1.adjacencies = new Edge[]{new Edge(v2, 39.42), new Edge(v0, 79.83)}; v2.adjacencies = new Edge[]{new Edge(v3, 38.65), new Edge(v1, 39.42)}; v3.adjacencies = new Edge[]{new Edge(v4, 102.53), new Edge(v2, 38.65)}; v4.adjacencies = new Edge[]{new Edge(v5, 133.04), new Edge(v3, 102.53)}; v5.adjacencies = new Edge[]{new Edge(v6, 81.77), new Edge(v4, 133.04)}; v6.adjacencies = new Edge[]{new Edge(v0, 97.24), new Edge(v5, 81.77)}; Vertex[] vertices = { v0, v1, v2, v3, v4, v5, v6 }; computePaths(v0); for (Vertex v : vertices) { System.out.println("Distance to " + v + ": " + v.minDistance); List<Vertex> path = getShortestPathTo(v); System.out.println("Path: " + path); } } } and the code for scanning file is import java.util.Scanner; import java.io.File; import java.io.FileNotFoundException; public class DataScanner1 { //private int total = 0; //private int distance = 0; private String vector; private String stations; private double [] Edge = new double []; /*public int getTotal(){ return total; } */ /* public void getMenuInput(){ KeyboardInput in = new KeyboardInput; System.out.println("Enter the destination? "); String val = in.readString(); return val; } */ public void readFile(String fileName) { try { Scanner scanner = new Scanner(new File(fileName)); scanner.useDelimiter (System.getProperty("line.separator")); while (scanner.hasNext()) { parseLine(scanner.next()); } scanner.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } public void parseLine(String line) { Scanner lineScanner = new Scanner(line); lineScanner.useDelimiter("\\s*,\\s*"); vector = lineScanner.next(); stations = lineScanner.next(); System.out.println("The current station is " + vector + " and the destination to the next station is " + stations + "."); //total += distance; //System.out.println("The total distance is " + total); } public static void main(String[] args) { /* if (args.length != 1) { System.err.println("usage: java TextScanner2" + "file location"); System.exit(0); } */ DataScanner1 scanner = new DataScanner1(); scanner.readFile(args[0]); //int total =+ distance; //System.out.println(""); //System.out.println("The total distance is " + scanner.getTotal()); } }

    Read the article

  • I am having a problem of class cast exception. Can anyone please help me out?

    - by Piyush
    This is my code: package com.example.userpage; import android.app.Activity; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.widget.Button; import android.widget.EditText; import android.widget.TextView; public class UserPage extends Activity { String tv,tv1; EditText name,pass; TextView x,y; /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); Button button = (Button) findViewById(R.id.widget44); button.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { name.setText(" "); pass.setText(" "); } }); x = (TextView) findViewById(R.id.widget46); y = (TextView) findViewById(R.id.widget47); name = (EditText)findViewById(R.id.widget41); pass = (EditText)findViewById(R.id.widget42); Button button1 = (Button) findViewById(R.id.widget45); button1.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { tv= name.getText().toString(); tv1 = pass.getText().toString(); x.setText(tv); y.setText(tv1); } }); } } And this is my log cat: 02-16 12:24:30.488: DEBUG/AndroidRuntime(973): >>>>>>>>>>>>>> AndroidRuntime START <<<<<<<<<<<<<< 02-16 12:24:30.488: DEBUG/AndroidRuntime(973): CheckJNI is ON 02-16 12:24:31.208: DEBUG/AndroidRuntime(973): --- registering native functions --- 02-16 12:24:33.498: DEBUG/AndroidRuntime(973): Shutting down VM 02-16 12:24:33.537: DEBUG/dalvikvm(973): Debugger has detached; object registry had 1 entries 02-16 12:24:33.537: INFO/AndroidRuntime(973): NOTE: attach of thread 'Binder Thread #3' failed 02-16 12:24:34.917: DEBUG/AndroidRuntime(981): >>>>>>>>>>>>>> AndroidRuntime START <<<<<<<<<<<<<< 02-16 12:24:34.927: DEBUG/AndroidRuntime(981): CheckJNI is ON 02-16 12:24:35.617: DEBUG/AndroidRuntime(981): --- registering native functions --- 02-16 12:24:38.029: INFO/ActivityManager(67): Starting activity: Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] flg=0x10000000 cmp=com.example.userpage/.UserPage } 02-16 12:24:38.129: DEBUG/AndroidRuntime(981): Shutting down VM 02-16 12:24:38.160: DEBUG/dalvikvm(981): Debugger has detached; object registry had 1 entries 02-16 12:24:38.168: INFO/AndroidRuntime(981): NOTE: attach of thread 'Binder Thread #3' failed 02-16 12:25:12.028: DEBUG/AndroidRuntime(990): >>>>>>>>>>>>>> AndroidRuntime START <<<<<<<<<<<<<< 02-16 12:25:12.038: DEBUG/AndroidRuntime(990): CheckJNI is ON 02-16 12:25:12.708: DEBUG/AndroidRuntime(990): --- registering native functions --- 02-16 12:25:15.178: DEBUG/dalvikvm(176): GC_EXPLICIT freed 114 objects / 5880 bytes in 115ms 02-16 12:25:15.318: DEBUG/PackageParser(67): Scanning package: /data/app/vmdl25170.tmp 02-16 12:25:15.588: INFO/PackageManager(67): Removing non-system package:com.example.userpage 02-16 12:25:15.597: INFO/ActivityManager(67): Force stopping package com.example.userpage uid=10036 02-16 12:25:15.648: INFO/Process(67): Sending signal. PID: 916 SIG: 9 02-16 12:25:15.877: INFO/UsageStats(67): Unexpected resume of com.android.launcher while already resumed in com.example.userpage 02-16 12:25:17.028: WARN/InputManagerService(67): Window already focused, ignoring focus gain of: com.android.internal.view.IInputMethodClient$Stub$Proxy@4400ecf8 02-16 12:25:17.928: DEBUG/PackageManager(67): Scanning package com.example.userpage 02-16 12:25:17.949: INFO/PackageManager(67): Package com.example.userpage codePath changed from /data/app/com.example.userpage-1.apk to /data/app/com.example.userpage-2.apk; Retaining data and using new 02-16 12:25:17.987: INFO/PackageManager(67): /data/app/com.example.userpage-2.apk changed; unpacking 02-16 12:25:18.037: DEBUG/installd(35): DexInv: --- BEGIN '/data/app/com.example.userpage-2.apk' --- 02-16 12:25:18.737: DEBUG/dalvikvm(997): DexOpt: load 81ms, verify 112ms, opt 6ms 02-16 12:25:18.768: DEBUG/installd(35): DexInv: --- END '/data/app/com.example.userpage-2.apk' (success) --- 02-16 12:25:18.799: INFO/ActivityManager(67): Force stopping package com.example.userpage uid=10036 02-16 12:25:18.808: WARN/PackageManager(67): Code path for pkg : com.example.userpage changing from /data/app/com.example.userpage-1.apk to /data/app/com.example.userpage-2.apk 02-16 12:25:18.839: WARN/PackageManager(67): Resource path for pkg : com.example.userpage changing from /data/app/com.example.userpage-1.apk to /data/app/com.example.userpage-2.apk 02-16 12:25:18.868: DEBUG/PackageManager(67): Activities: com.example.userpage.UserPage 02-16 12:25:19.297: INFO/installd(35): move /data/dalvik-cache/data@[email protected]@classes.dex -> /data/dalvik-cache/data@[email protected]@classes.dex 02-16 12:25:19.297: DEBUG/PackageManager(67): New package installed in /data/app/com.example.userpage-2.apk 02-16 12:25:19.598: DEBUG/dalvikvm(67): GC_FOR_MALLOC freed 7979 objects / 516856 bytes in 246ms 02-16 12:25:20.498: INFO/ActivityManager(67): Force stopping package com.example.userpage uid=10036 02-16 12:25:20.708: DEBUG/dalvikvm(129): GC_EXPLICIT freed 124 objects / 5672 bytes in 157ms 02-16 12:25:21.838: DEBUG/dalvikvm(67): GC_EXPLICIT freed 4208 objects / 236264 bytes in 419ms 02-16 12:25:21.918: WARN/RecognitionManagerService(67): no available voice recognition services found 02-16 12:25:22.127: INFO/installd(35): unlink /data/dalvik-cache/data@[email protected]@classes.dex 02-16 12:25:22.478: DEBUG/AndroidRuntime(990): Shutting down VM 02-16 12:25:22.488: DEBUG/dalvikvm(990): Debugger has detached; object registry had 1 entries 02-16 12:25:22.588: INFO/AndroidRuntime(990): NOTE: attach of thread 'Binder Thread #3' failed 02-16 12:25:24.137: DEBUG/AndroidRuntime(1003): >>>>>>>>>>>>>> AndroidRuntime START <<<<<<<<<<<<<< 02-16 12:25:24.147: DEBUG/AndroidRuntime(1003): CheckJNI is ON 02-16 12:25:24.817: DEBUG/AndroidRuntime(1003): --- registering native functions --- 02-16 12:25:27.450: INFO/ActivityManager(67): Starting activity: Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] flg=0x10000000 cmp=com.example.userpage/.UserPage } 02-16 12:25:27.628: DEBUG/AndroidRuntime(1003): Shutting down VM 02-16 12:25:27.780: INFO/AndroidRuntime(1003): NOTE: attach of thread 'Binder Thread #3' failed 02-16 12:25:28.018: DEBUG/dalvikvm(1003): Debugger has detached; object registry had 1 entries 02-16 12:25:28.148: INFO/ActivityManager(67): Start proc com.example.userpage for activity com.example.userpage/.UserPage: pid=1010 uid=10036 gids={} 02-16 12:25:30.308: DEBUG/AndroidRuntime(1010): Shutting down VM 02-16 12:25:30.308: WARN/dalvikvm(1010): threadid=1: thread exiting with uncaught exception (group=0x4001d800) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): FATAL EXCEPTION: main 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.example.userpage/com.example.userpage.UserPage}: java.lang.ClassCastException: android.widget.TextView 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2663) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2679) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.app.ActivityThread.access$2300(ActivityThread.java:125) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:2033) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.os.Handler.dispatchMessage(Handler.java:99) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.os.Looper.loop(Looper.java:123) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.app.ActivityThread.main(ActivityThread.java:4627) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at java.lang.reflect.Method.invokeNative(Native Method) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at java.lang.reflect.Method.invoke(Method.java:521) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:868) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:626) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at dalvik.system.NativeStart.main(Native Method) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): Caused by: java.lang.ClassCastException: android.widget.TextView 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at com.example.userpage.UserPage.onCreate(UserPage.java:35) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1047) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2627) 02-16 12:25:30.388: ERROR/AndroidRuntime(1010): ... 11 more 02-16 12:25:30.438: WARN/ActivityManager(67): Force finishing activity com.example.userpage/.UserPage 02-16 12:25:31.088: WARN/ActivityManager(67): Activity pause timeout for HistoryRecord{43f164f8 com.example.userpage/.UserPage} 02-16 12:25:32.588: DEBUG/dalvikvm(292): GC_EXPLICIT freed 46 objects / 2240 bytes in 6282ms 02-16 12:25:35.267: INFO/Process(1010): Sending signal. PID: 1010 SIG: 9 02-16 12:25:35.468: WARN/InputManagerService(67): Window already focused, ignoring focus gain of: com.android.internal.view.IInputMethodClient$Stub$Proxy@43e60a90 02-16 12:25:35.900: INFO/ActivityManager(67): Process com.example.userpage (pid 1010) has died. 02-16 12:25:38.278: DEBUG/dalvikvm(176): GC_EXPLICIT freed 172 objects / 12280 bytes in 127ms 02-16 12:25:43.011: WARN/ActivityManager(67): Activity destroy timeout for HistoryRecord{43f164f8 com.example.userpage/.UserPage} 02-16 12:28:12.698: DEBUG/AndroidRuntime(1019): >>>>>>>>>>>>>> AndroidRuntime START <<<<<<<<<<<<<< 02-16 12:28:12.711: DEBUG/AndroidRuntime(1019): CheckJNI is ON 02-16 12:28:13.367: DEBUG/AndroidRuntime(1019): --- registering native functions --- 02-16 12:28:15.998: DEBUG/dalvikvm(176): GC_EXPLICIT freed 114 objects / 5888 bytes in 183ms 02-16 12:28:16.539: DEBUG/PackageParser(67): Scanning package: /data/app/vmdl25171.tmp 02-16 12:28:16.867: INFO/PackageManager(67): Removing non-system package:com.example.userpage 02-16 12:28:16.867: INFO/ActivityManager(67): Force stopping package com.example.userpage uid=10036 02-16 12:28:17.277: DEBUG/PackageManager(67): Scanning package com.example.userpage 02-16 12:28:17.308: INFO/PackageManager(67): Package com.example.userpage codePath changed from /data/app/com.example.userpage-2.apk to /data/app/com.example.userpage-1.apk; Retaining data and using new 02-16 12:28:17.328: INFO/PackageManager(67): /data/app/com.example.userpage-1.apk changed; unpacking 02-16 12:28:17.367: DEBUG/installd(35): DexInv: --- BEGIN '/data/app/com.example.userpage-1.apk' --- 02-16 12:28:18.357: DEBUG/dalvikvm(1026): DexOpt: load 85ms, verify 114ms, opt 6ms 02-16 12:28:18.398: DEBUG/installd(35): DexInv: --- END '/data/app/com.example.userpage-1.apk' (success) --- 02-16 12:28:18.428: INFO/ActivityManager(67): Force stopping package com.example.userpage uid=10036 02-16 12:28:18.438: WARN/PackageManager(67): Code path for pkg : com.example.userpage changing from /data/app/com.example.userpage-2.apk to /data/app/com.example.userpage-1.apk 02-16 12:28:18.477: WARN/PackageManager(67): Resource path for pkg : com.example.userpage changing from /data/app/com.example.userpage-2.apk to /data/app/com.example.userpage-1.apk 02-16 12:28:18.477: DEBUG/PackageManager(67): Activities: com.example.userpage.UserPage 02-16 12:28:18.977: INFO/installd(35): move /data/dalvik-cache/data@[email protected]@classes.dex -> /data/dalvik-cache/data@[email protected]@classes.dex 02-16 12:28:18.988: DEBUG/PackageManager(67): New package installed in /data/app/com.example.userpage-1.apk 02-16 12:28:19.528: DEBUG/dalvikvm(67): GC_FOR_MALLOC freed 6733 objects / 459728 bytes in 211ms 02-16 12:28:20.138: INFO/ActivityManager(67): Force stopping package com.example.userpage uid=10036 02-16 12:28:20.368: DEBUG/dalvikvm(129): GC_EXPLICIT freed 892 objects / 48744 bytes in 175ms 02-16 12:28:21.317: WARN/RecognitionManagerService(67): no available voice recognition services found 02-16 12:28:22.827: DEBUG/dalvikvm(67): GC_EXPLICIT freed 3877 objects / 241128 bytes in 452ms 02-16 12:28:22.979: INFO/installd(35): unlink /data/dalvik-cache/data@[email protected]@classes.dex 02-16 12:28:23.277: DEBUG/AndroidRuntime(1019): Shutting down VM 02-16 12:28:23.307: DEBUG/dalvikvm(1019): Debugger has detached; object registry had 1 entries 02-16 12:28:23.328: INFO/AndroidRuntime(1019): NOTE: attach of thread 'Binder Thread #3' failed 02-16 12:28:24.989: DEBUG/AndroidRuntime(1032): >>>>>>>>>>>>>> AndroidRuntime START <<<<<<<<<<<<<< 02-16 12:28:24.989: DEBUG/AndroidRuntime(1032): CheckJNI is ON 02-16 12:28:25.888: DEBUG/AndroidRuntime(1032): --- registering native functions --- 02-16 12:28:28.588: INFO/ActivityManager(67): Starting activity: Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] flg=0x10000000 cmp=com.example.userpage/.UserPage } 02-16 12:28:28.888: DEBUG/AndroidRuntime(1032): Shutting down VM 02-16 12:28:28.997: DEBUG/dalvikvm(1032): Debugger has detached; object registry had 1 entries 02-16 12:28:29.038: INFO/AndroidRuntime(1032): NOTE: attach of thread 'Binder Thread #3' failed 02-16 12:28:30.417: INFO/ActivityManager(67): Start proc com.example.userpage for activity com.example.userpage/.UserPage: pid=1039 uid=10036 gids={} 02-16 12:28:32.588: DEBUG/AndroidRuntime(1039): Shutting down VM 02-16 12:28:32.598: WARN/dalvikvm(1039): threadid=1: thread exiting with uncaught exception (group=0x4001d800) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): FATAL EXCEPTION: main 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.example.userpage/com.example.userpage.UserPage}: java.lang.ClassCastException: android.widget.TextView 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2663) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2679) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.app.ActivityThread.access$2300(ActivityThread.java:125) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.app.ActivityThread$H.handleMessage(ActivityThread.java:2033) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.os.Handler.dispatchMessage(Handler.java:99) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.os.Looper.loop(Looper.java:123) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.app.ActivityThread.main(ActivityThread.java:4627) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at java.lang.reflect.Method.invokeNative(Native Method) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at java.lang.reflect.Method.invoke(Method.java:521) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:868) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:626) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at dalvik.system.NativeStart.main(Native Method) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): Caused by: java.lang.ClassCastException: android.widget.TextView 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at com.example.userpage.UserPage.onCreate(UserPage.java:34) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1047) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2627) 02-16 12:28:32.648: ERROR/AndroidRuntime(1039): ... 11 more 02-16 12:28:32.698: WARN/ActivityManager(67): Force finishing activity com.example.userpage/.UserPage 02-16 12:28:32.967: DEBUG/dalvikvm(292): GC_EXPLICIT freed 46 objects / 2240 bytes in 6840ms 02-16 12:28:33.247: WARN/ActivityManager(67): Activity pause timeout for HistoryRecord{43ee7b70 com.example.userpage/.UserPage} 02-16 12:28:36.947: INFO/Process(1039): Sending signal. PID: 1039 SIG: 9 02-16 12:28:37.017: INFO/ActivityManager(67): Process com.example.userpage (pid 1039) has died. 02-16 12:28:37.128: WARN/InputManagerService(67): Window already focused, ignoring focus gain of: com.android.internal.view.IInputMethodClient$Stub$Proxy@43e872f8 02-16 12:28:42.087: DEBUG/dalvikvm(176): GC_EXPLICIT freed 156 objects / 11488 bytes in 145ms 02-16 12:28:45.391: WARN/ActivityManager(67): Activity destroy timeout for HistoryRecord{43ee7b70 com.example.userpage/.UserPage} 02-16 12:28:47.177: DEBUG/SntpClient(67): request time failed: java.net.SocketException: Address family not supported by protocol

    Read the article

  • Find Nearest Object

    - by ultifinitus
    I have a fairly sizable game engine created, and I'm adding some needed features, such as this, how do I find the nearest object from a list of points? In this case, I could simply use the Pythagorean theorem to find the distance, and check the results. I know I can't simply add x and y, because that's the distance to the object, if you only took right angle turns. However I'm wondering if there's something else I could do? I also have a collision system, where essentially I turn objects into smaller objects on a smaller grid, kind of like a minimap, and only if objects exist in the same gridspace do I check for collisions, I could do the same thing, only make the gridspace larger to check for closeness. (rather than checking every. single. object) however that would take additional setup in my base class and clutter up the already cluttered object. TL;DR Question: Is there something efficient and accurate that I can use to detect which object is closest, based on a list of points and sizes?

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Querying Visual Studio project files using T-SQL and Powershell

    - by jamiet
    Earlier today I had a need to get some information out of a Visual Studio project file and in this blog post I’m going to share a couple of ways of going about that because I’m pretty sure I won’t be the only person that ever wants to do this. The specific problem I was trying to solve was finding out how many objects in my database project (i.e. in my .dbproj file) had any warnings suppressed but the techniques discussed below will work pretty well for any Visual Studio project file because every such file is simply an XML document, hence it can be queried by anything that can query XML documents. Ever heard the phrase “when all you’ve got is hammer everything looks like a nail”? Well that’s me with querying stuff – if I can write SQL then I’m writing SQL. Here’s a little noddy database project I put together for demo purposes: Two views and a stored procedure, nothing fancy. I suppressed warnings for [View1] & [Procedure1] and hence the pertinent part my project file looks like this:   <ItemGroup>    <Build Include="Schema Objects\Schemas\dbo\Views\View1.view.sql">      <SubType>Code</SubType>      <SuppressWarnings>4151,3276</SuppressWarnings>    </Build>    <Build Include="Schema Objects\Schemas\dbo\Views\View2.view.sql">      <SubType>Code</SubType>    </Build>    <Build Include="Schema Objects\Schemas\dbo\Programmability\Stored Procedures\Procedure1.proc.sql">      <SubType>Code</SubType>      <SuppressWarnings>4151</SuppressWarnings>    </Build>  </ItemGroup>  <ItemGroup> Note the <SuppressWarnings> elements – those are the bits of information that I am after. With a lot of help from folks on the SQL Server XML forum  I came up with the following query that nailed what I was after. It reads the contents of the .dbproj file into a variable of type XML and then shreds it using T-SQL’s XML data type methods: DECLARE @xml XML; SELECT @xml = CAST(pkgblob.BulkColumn AS XML) FROM   OPENROWSET(BULK 'C:\temp\QueryingProjectFileDemo\QueryingProjectFileDemo.dbproj' -- <-Change this path!                    ,single_blob) AS pkgblob                    ;WITH XMLNAMESPACES( 'http://schemas.microsoft.com/developer/msbuild/2003' AS ns) SELECT  REVERSE(SUBSTRING(REVERSE(ObjectPath),0,CHARINDEX('\',REVERSE(ObjectPath)))) AS [ObjectName]        ,[SuppressedWarnings] FROM   (        SELECT  build.query('.') AS [_node]        ,       build.value('ns:SuppressWarnings[1]','nvarchar(100)') AS [SuppressedWarnings]        ,       build.value('@Include','nvarchar(1000)') AS [ObjectPath]        FROM    @xml.nodes('//ns:Build[ns:SuppressWarnings]') AS R(build)        )q And here’s the output: And that’s it – an easy way of discovering which warnings have been suppressed and for which objects in your database projects. I won’t bother going over the code as it is fairly self-explanatory – peruse it at your leisure.   Once I had the SQL above I figured I’d share it around a little in case it was ever useful to anyone else; hence I’m writing this blog post and I also posted it on the Visual Studio Database Development Tools forum at FYI: Discover which objects have had warnings suppressed. Luckily Kevin Goode saw the thread and he posted a different solution to the same problem, one that uses Powershell. The advantage of Kevin’s Powershell approach is that it is easy to analyse many .dbproj files at the same time. Below is Kevin’s code which I have tweaked ever so slightly so that it produces the same results as my SQL script (I just want any object that had had a warning suppressed whereas Kevin was querying specifically for warning 4151):   cd 'C:\Temp\QueryingProjectFileDemo\' cls $projects = ls -r -i *.dbproj Foreach($project in $projects) { $xml = new-object System.Xml.XmlDocument $xml.set_PreserveWhiteSpace( $true ) $xml.Load($project) #$xpath = @{Start="/e:Project/e:ItemGroup/e:Build[e:SuppressWarnings=4151]/@Include"} #$xpath = @{Start="/e:Project/e:ItemGroup/e:Build[contains(e:SuppressWarnings,'4151')]/@Include"} $xpath = @{Start="/e:Project/e:ItemGroup/e:Build[e:SuppressWarnings]/@Include"} $ns = @{ e = "http://schemas.microsoft.com/developer/msbuild/2003" } $xml | Select-Xml -XPath $xpath.Start -Namespace $ns |Select -Expand Node | Select -expand Value } and here’s the output: Nice reusable Powershell and SQL scripts – not bad for an evening’s work. Thank you to Kevin for allowing me to share his code. Don’t forget that these techniques can easily be adapted to query any Visual Studio project file, they’re only XML documents after all! Doubtless many people out there already have code for doing this but nonetheless here is another offering to the great script library in the sky. Have fun! @Jamiet

    Read the article

  • "Optimal" game loop for 2D side-scroller

    - by MrDatabase
    Is it possible to describe an "optimal" (in terms of performance) layout for a 2D side-scroller's game loop? In this context the "game loop" takes user input, updates the states of game objects and draws the game objects. For example having a GameObject base class with a deep inheritance hierarchy could be good for maintenance... you can do something like the following: foreach(GameObject g in gameObjects) g.update(); However I think this approach can create performance issues. On the other hand all game objects' data and functions could be global. Which would be a maintenance headache but might be closer to an optimally performing game loop. Any thoughts? I'm interested in practical applications of near optimal game loop structure... even if I get a maintenance headache in exchange for great performance.

    Read the article

  • C Problem with Compiler?

    - by Solomon081
    I just started learning C, and wrote my hello world program: #include <stdio.h> main() { printf("Hello World"); return 0; } When I run the code, I get a really long error: Apple Mach-O Linker (id) Error Ld /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug/CProj normal x86_64 cd /Users/Solomon/Desktop/C/CProj setenv MACOSX_DEPLOYMENT_TARGET 10.7 /Developer/usr/bin/clang -arch x86_64 -isysroot /Developer/SDKs/MacOSX10.7.sdk -L/Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug -F/Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug -filelist /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Intermediates/CProj.build/Debug/CProj.build/Objects-normal/x86_64/CProj.LinkFileList -mmacosx-version-min=10.7 -o /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug/CProj ld: duplicate symbol _main in /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Intermediates/CProj.build/Debug/CProj.build/Objects-normal/x86_64/helloworld.o and /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Intermediates/CProj.build/Debug/CProj.build/Objects-normal/x86_64/main.o for architecture x86_64 Command /Developer/usr/bin/clang failed with exit code 1 I am running xCode Should I reinstall DevTools?

    Read the article

  • Multiple Object Instantiation

    - by Ricky Baby
    I am trying to get my head around object oriented programming as it pertains to web development (more specifically PHP). I understand inheritance and abstraction etc, and know all the "buzz-words" like encapsulation and single purpose and why I should be doing all this. But my knowledge is falling short with actually creating objects that relate to the data I have in my database, creating a single object that a representative of a single entity makes sense, but what are the best practises when creating 100, 1,000 or 10,000 objects of the same type. for instance, when trying to display a list of the items, ideally I would like to be consistent with the objects I use, but where exactly should I run the query/get the data to populate the object(s) as running 10,000 queries seems wasteful. As an example, say I have a database of cats, and I want a list of all black cats, do I need to set up a FactoryObject which grabs the data needed for each cat from my database, then passes that data into each individual CatObject and returns the results in a array/object - or should I pass each CatObject it's identifier and let it populate itself in a separate query.

    Read the article

  • Read only array, deep copy or retrieve copies one by one? (Performance and Memory)

    - by Arthur Wulf White
    In a garbage collection based system, what is the most effective way to handle a read only array if such a structure does not exist natively in the language. Is it better to return a copy of an array or allow other classes to retrieve copies of the objects stored in the array one by one? @JustinSkiles: It is not very broad. It is performance related and can actually be answered specifically for two general cases. You only need very few items: in this situation it's more effective to retrieve copies of the objects one by one. You wish to iterate over 30% or more objects. In this cases it is superior to retrieve all the array at once. This saves on functions calls. Function calls are very expansive when compared to reading directly from an array. A good specific answer could include performance, reading from an array and reading indirectly through a function. It is a simple performance related question.

    Read the article

  • How can I create and animate 2D skeletons for HTML5 Javascript games? [on hold]

    - by user414209
    I'm trying to make a 2D fighting game in HTML5(somewhat like street fighter). So basically there are two players, one AI and one Human. The players need to have animations for the body movements. Also, there needs to be some collision detection system. I'm using createjs for coding but to design models/objects/animations, I need some other software. So I'm looking for a software that can: easily make custom animation of 2d objects. The objects structure(skeleton etc.) will be same once defined but need to be defined once. Can export the animations and models in a js readable format(preferably json) Collision detection can be done easily after the exported format is loaded in a game engine. For point 1, I'm looking for some generic skeleton based animation. Sprite-sheet based animations will be difficult for collision detection.

    Read the article

  • Is there really Object-relational impedance mismatch?

    - by user52763
    It is always stated that it is hard to store applications objects in relational databases - the object-relational impedance mismatch - and that is why Document databases are better. However, is there really an impedance mismatch? And object has a key (albeit it may be hidden away by the runtime as a pointer to memory), a set of values, and foreign keys to other objects. Objects are as much made up of tables as it is a document. Neither really fit. I can see a use for databases to model the data into specific shapes for scenarios in the application - e.g. to speed up database lookup and avoid joins, etc., but won't it be better to keep the data as normalized as possible at the core, and transform as required?

    Read the article

  • XNA Transparency depending on drawing order?

    - by DarthRoman
    I am drawing two 3D objects, both of them can fade from opaque to transparent independently, and they can intersect between them (so you cannot say when one of them is before the other one). Look at the image for a better understanding (one of the object is a terrain and the other one an area): Now, if I apply transparency to both of them, and draw the terrain before the area, the terrain is not transparent respecting to the area, but the area is: And finally, if I draw the area before the terrain, then the area is not transparent respecting of the terrain: QUESTION: How can I make all the objects transparent to the rest of objects without depending on the drawing order?

    Read the article

  • Solving 2D Collision Detection Issues with Relative Velocities

    - by Jengerer
    Imagine you have a situation where two objects are moving parallel to one-another and are both within range to collide with a static wall, like this: A common method used in dynamic collision detection is to loop through all objects in arbitrary order, solve for pair-wise collision detection using relative velocities, and then move the object to the nearest collision, if any. However, in this case, if the red object is checked first against the blue one, it would see that the relative velocity to the blue object is -20 m/s (and would thereby not collide this time frame). Then it would see that the red object would collide with the static wall, and the solution would be: And the red object passes through the blue one. So it appears to be a matter of choosing the right order in which you check collisions; but how can you determine which order is correct? How can this passing through of objects be avoided? Is ignoring relative velocity and considering every object as static during pair-wise checks a better idea for this reason?

    Read the article

  • What is a correct step by step logic of exporting scene with baked occlusion for loading it at runtime?

    - by myWallJSON
    I wonder what is a correct step by step logic of exporting scene with baked occlusion (Culling data) for loading that scene at runtime (on fly from the internet for example))? So currently my plan looks like this: I create prefabs Place them onto my scene (into Hierarchy) (say create 20 buffolows and some hourses and some buildings) Create empty prefab and drag all my scene objects from hierarchy onto it Export prefab So generally I put all my scene objects into one large prefab and export it but it seems that all objects that were marked as static get this property turned off when loading them at runtime and so no Frustrum Culling, and no Occlusion culling happens. So I wonder what is a correct way of exporting Sceen + Objecrts + Occlusion (and onther culing) data for future load of such scene at runtime? I wonder about current 3.5.2 Pro and future 4 Pro versions of U3D.

    Read the article

  • Motivation and use of move constructors in C++

    - by Giorgio
    I recently have been reading about move constructors in C++ (see e.g. here) and I am trying to understand how they work and when I should use them. As far as I understand, a move constructor is used to alleviate the performance problems caused by copying large objects. The wikipedia page says: "A chronic performance problem with C++03 is the costly and unnecessary deep copies that can happen implicitly when objects are passed by value." I normally address such situations by passing the objects by reference, or by using smart pointers (e.g. boost::shared_ptr) to pass around the object (the smart pointers get copied instead of the object). What are the situations in which the above two techniques are not sufficient and using a move constructor is more convenient?

    Read the article

  • 2D vector graphic html5 framework

    - by Yury
    I trying to find html5 game framework by following criteria: 1)Real good performance. 2)Good support of vector graphic( objects which contains canvas elements -line, rec,bezierCurve etc.) 3)Easy port to mobile. Optional- Physics Engine. I found 1)Pixi.js- it looks like real good, but i didn't find any info about "vector objects" support. 2) i found "vector objects" support in paper.js I need something like these: http://paperjs.org/examples/chain/ and http://paperjs.org/examples/path-intersections/. But it looks like paper.js- not so good performance as pixi.js. And it is not game engine. Is there any good framework meets these requirements? P.S. I found similar question here Which free HTML5-based game engine meets these requirements?. But it was a long time ago. A lot of new things were created since 2011.

    Read the article

  • Find Nearest Object

    - by ultifinitus
    I have a fairly sizable game engine created, and I'm adding some needed features, such as this, how do I find the nearest object from a list of points? In this case, I could simply use the Pythagorean theorem to find the distance, and check the results. I know I can't simply add x and y, because that's the distance to the object, if you only took right angle turns. However I'm wondering if there's something else I could do? I also have a collision system, where essentially I turn objects into smaller objects on a smaller grid, kind of like a minimap, and only if objects exist in the same gridspace do I check for collisions, I could do the same thing, only make the gridspace larger to check for closeness. (rather than checking every. single. object) however that would take additional setup in my base class and clutter up the already cluttered object. TL;DR Question: Is there something efficient and accurate that I can use to detect which object is closest, based on a list of points and sizes?

    Read the article

  • ADF Business Components

    - by Arda Eralp
    ADF Business Components and JDeveloper simplify the development, delivery, and customization of business applications for the Java EE platform. With ADF Business Components, developers aren't required to write the application infrastructure code required by the typical Java EE application to: Connect to the database Retrieve data Lock database records Manage transactions   ADF Business Components addresses these tasks through its library of reusable software components and through the supporting design time facilities in JDeveloper. Most importantly, developers save time using ADF Business Components since the JDeveloper design time makes typical development tasks entirely declarative. In particular, JDeveloper supports declarative development with ADF Business Components to: Author and test business logic in components which automatically integrate with databases Reuse business logic through multiple SQL-based views of data, supporting different application tasks Access and update the views from browser, desktop, mobile, and web service clients Customize application functionality in layers without requiring modification of the delivered application The goal of ADF Business Components is to make the business services developer more productive.   ADF Business Components provides a foundation of Java classes that allow your business-tier application components to leverage the functionality provided in the following areas: Simplifying Data Access Design a data model for client displays, including only necessary data Include master-detail hierarchies of any complexity as part of the data model Implement end-user Query-by-Example data filtering without code Automatically coordinate data model changes with business services layer Automatically validate and save any changes to the database   Enforcing Business Domain Validation and Business Logic Declaratively enforce required fields, primary key uniqueness, data precision-scale, and foreign key references Easily capture and enforce both simple and complex business rules, programmatically or declaratively, with multilevel validation support Navigate relationships between business domain objects and enforce constraints related to compound components   Supporting Sophisticated UIs with Multipage Units of Work Automatically reflect changes made by business service application logic in the user interface Retrieve reference information from related tables, and automatically maintain the information when the user changes foreign-key values Simplify multistep web-based business transactions with automatic web-tier state management Handle images, video, sound, and documents without having to use code Synchronize pending data changes across multiple views of data Consistently apply prompts, tooltips, format masks, and error messages in any application Define custom metadata for any business components to support metadata-driven user interface or application functionality Add dynamic attributes at runtime to simplify per-row state management   Implementing High-Performance Service-Oriented Architecture Support highly functional web service interfaces for business integration without writing code Enforce best-practice interface-based programming style Simplify application security with automatic JAAS integration and audit maintenance "Write once, run anywhere": use the same business service as plain Java class, EJB session bean, or web service   Streamlining Application Customization Extend component functionality after delivery without modifying source code Globally substitute delivered components with extended ones without modifying the application   ADF Business Components implements the business service through the following set of cooperating components: Entity object An entity object represents a row in a database table and simplifies modifying its data by handling all data manipulation language (DML) operations for you. These are basically your 1 to 1 representation of a database table. Each table in the database will have 1 and only 1 EO. The EO contains the mapping between columns and attributes. EO's also contain the business logic and validation. These are you core data services. They are responsible for updating, inserting and deleting records. The Attributes tab displays the actual mapping between attributes and columns, the mapping has following fields: Name : contains the name of the attribute we expose in our data model. Type : defines the data type of the attribute in our application. Column : specifies the column to which we want to map the attribute with Column Type : contains the type of the column in the database   View object A view object represents a SQL query. You use the full power of the familiar SQL language to join, filter, sort, and aggregate data into exactly the shape required by the end-user task. The attributes in the View Objects are actually coming from the Entity Object. In the end the VO will generate a query but you basically build a VO by selecting which EO need to participate in the VO and which attributes of those EO you want to use. That's why you have the Entity Usage column so you can see the relation between VO and EO. In the query tab you can clearly see the query that will be generated for the VO. At this stage we don't need it and just use it for information purpose. In later stages we might use it. Application module An application module is the controller of your data layer. It is responsible for keeping hold of the transaction. It exposes the data model to the view layer. You expose the VO's through the Application Module. This is the abstraction of your data layer which you want to show to the outside word.It defines an updatable data model and top-level procedures and functions (called service methods) related to a logical unit of work related to an end-user task. While the base components handle all the common cases through built-in behavior, customization is always possible and the default behavior provided by the base components can be easily overridden or augmented. When you create EO's, a foreign key will be translated into an association in our model. It defines the type of relation and who is the master and child as well as how the visibility of the association looks like. A similar concept exists to identify relations between view objects. These are called view links. These are almost identical as association except that a view link is based upon attributes defined in the view object. It can also be based upon an association. Here's a short summary: Entity Objects: representations of tables Association: Relations between EO's. Representations of foreign keys View Objects: Logical model View Links: Relationships between view objects Application Model: interface to your application  

    Read the article

  • QuadTree: store only points, or regions?

    - by alekop
    I am developing a quadtree to keep track of moving objects for collision detection. Each object has a bounding shape, let's say they are all circles. (It's a 2D top-down game) I am unsure whether to store only the position of each object, or the whole bounding shape. If working with points, insertion and subdivision is easy, because objects will never span multiple nodes. On the other hand, a proximity query for an object may miss collisions, because it won't take the objects' dimensions into account. How to calculate the query region when you only have points? If working with regions, how to handle an object that spans multiple nodes? Should it be inserted in the nearest parent node that completely contains it, even if this exceeds the node's capacity? Thanks.

    Read the article

< Previous Page | 108 109 110 111 112 113 114 115 116 117 118 119  | Next Page >