Search Results

Search found 14049 results on 562 pages for 'non ascii chars'.

Page 113/562 | < Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >

  • Efficient JSON encoding for data that may be binary, but is often text

    - by Evgeny
    I need to send a JSON packet across the wire with the contents of an arbitrary file. This may be a binary file (like a ZIP file), but most often it will be plain ASCII text. I'm currently using base64 encoding, which handles all files, but it increases the size of the data significantly - even if the file is ASCII to begin with. Is there a more efficient way I can encode the data, other than manually checking for any non-ASCII characters and then deciding whether or not to base64-encode it? I'm currently writing this in Python, but will probably need to do the same in Java, C# and C++, so an easily portable solution would be preferable.

    Read the article

  • invalid token error while parsing an XML file with UTF-8 encoding

    - by Niranjan
    invalid token error while parsing an XML file with UTF-8 encoding. This error is coming when it encountered extended ASCII character 'â' { "â", "â" }. When I have changed the encoding from UTF-8 to ISO-8859-1 the parsing is successful. But my application should support UTF-8, ASCII and extended ASCII characters. What should I do for this? Any ideas are welcome. Thanks in Advance for your time and solution.

    Read the article

  • Overloading assignment operator in C++

    - by jasonline
    As I've understand, when overloading operator=, the return value should should be a non-const reference. A& A::operator=( const A& ) { // check for self-assignment, do assignment return *this; } It is non-const to allow non-const member functions to be called in cases like: ( a = b ).f(); But why should it return a reference? In what instance will it give a problem if the return value is not declared a reference, let's say return by value?

    Read the article

  • Fill in word form field with more than 255 characters

    - by user1308743
    I am trying to programmaticly fill in a microsoft word form. I am successfully able to do so if the string is under 255 chars with the following code below, however it says the string is too long if i try and use a string over 255 chars... How do I get past this limitation? If I open the word doc in word I can type in more than 255 chars without a problem. Does anyone know how to input more characters via c# code? object fileName = strFileName; object readOnly = false; object isVisible = true; object missing = System.Reflection.Missing.Value; //open doc _oDoc = _oWordApplic.Documents.Open(ref fileName, ref missing, ref readOnly, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref isVisible, ref missing, ref missing, ref missing, ref missing); _oDoc.Activate(); //write string _oDoc.FormFields[oBookMark].Result = value; //save and close oDoc.SaveAs(ref fileName, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing, ref missing); _oWordApplic.Application.Quit(ref missing, ref missing, ref missing);

    Read the article

  • Is it safe to use random Unicode for complex delimiter sequences in strings?

    - by ccomet
    Question: In terms of program stability and ensuring that the system will actually operate, how safe is it to use chars like ¦, § or ‡ for complex delimiter sequences in strings? Can I reliable believe that I won't run into any issues in a program reading these incorrectly? I am working in a system, using C# code, in which I have to store a fairly complex set of information within a single string. The readability of this string is only necessary on the computer side, end-users should only ever see the information after it has been parsed by the appropriate methods. Because some of the data in these strings will be collections of variable size, I use different delimiters to identify what parts of the string correspond to a certain tier of organization. There are enough cases that the standard sets of ;, |, and similar ilk have been exhausted. I considered two-char delimiters, like ;# or ;|, but I felt that it would be very inefficient. There probably isn't that large of a performance difference in storing with one char versus two chars, but when I have the option of picking the smaller option, it just feels wrong to pick the larger one. So finally, I considered using the set of characters like the double dagger and section. They only take up one char, and they are definitely not going to show up in the actual text that I'll be storing, so they won't be confused for anything. But character encoding is finicky. While the visibility to the end user is meaningless (since they, in fact, won't see it), I became recently concerned about how the programs in the system will read it. The string is stored in one database, while a separate program is responsible for both encoding and decoding the string into different object types for the rest of the application to work with. And if something is expected to be written one way, is possibly written another, then maybe the whole system will fail and I can't really let that happen. So is it safe to use these kind of chars for background delimiters?

    Read the article

  • Why i cant save a long text on my MySQL database?

    - by DomingoSL
    im trying to save to my data base a long text (about 2500 chars) input by my users using a web form and passed to the server using php. When i look in phpmyadmin, the text gets crop. How can i config my table in order to get the complete text? This is my table config: CREATE TABLE `extra_879` ( `id` bigint(20) NOT NULL auto_increment, `id_user` bigint(20) NOT NULL, `title` varchar(300) NOT NULL, `content` varchar(3000) NOT NULL, PRIMARY KEY (`id`), UNIQUE KEY `id_user` (`id_user`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ; Take a look of the field content that have a limit of 3000 chars, but the texts always gets crop at 690 chars. Thanks for any help! EDIT: I found the problem but i dont know how to solve it. The query is getting crop always in the same char, an special char: ù EDIT 2: This is the cropped query: INSERT INTO extra_879 (id,id_user,title,content) VALUES (NULL,'1','Informazione Extra',' Riconoscimenti Laurea di ingegneria presa a le 22 anni e in il terso posto della promozione Diploma analista di sistemi ottenuto il rating massimo 20/20, primo posto della promozione. Borsa di Studio (offerta dal Ministero Esteri Italiano) vinta nel 2010 (Valutazione del territorio attraverso le nueve tecnologie) Pubblicazione di paper; Stima del RCS della nave CCGS radar sulla base dei risultati di H. Leong e H. Wilson. http://www.ing.uc.edu.vek-azozayalarchivospdf/PAPER-Sarmiento.pdf Tesi di laurea: PROGETTAZIONE E REALIZZAZIONE DI UN SIS-TEMA DI TELEMETRIA GSM PER IL CONTROLLO DELLO STATO DI TRANSITO VEICOLARE E CLIMA (ottenuto il punteggio pi') It gets crop just when the (ottenuto il punteggio più alto) phrase, just when ù appear... EDIT 3: I using jquery + ajax to send the query $.ajax({type: "POST", url: "handler.php", data: "e_text="+ $('#e_text').val() + "&e_title="+ $('#extra_title').val(),

    Read the article

  • How to skip to next iteration in jQuery.each() util?

    - by Josh
    I'm trying to iterate through an array of elements. jQuery's documentation says: jquery.Each() documentation Returning non-false is the same as a continue statement in a for loop, it will skip immediately to the next iteration. I've tried calling 'return non-false;' and 'non-false;' (sans return) neither of which skip to the next iteration. Instead, they break the loop. What am i missing?

    Read the article

  • Decryption Key value not match

    - by Jitendra Jadav
    public class TrippleENCRSPDESCSP { public TrippleENCRSPDESCSP() { } public void EncryptIt(string sData,ref byte[] sEncData,ref byte[] Key1,ref byte[] Key2) { try { // Create a new TripleDESCryptoServiceProvider object // to generate a key and initialization vector (IV). TripleDESCryptoServiceProvider tDESalg = new TripleDESCryptoServiceProvider(); // Create a string to encrypt. // Encrypt the string to an in-memory buffer. byte[] Data = EncryptTextToMemory(sData,tDESalg.Key,tDESalg.IV); sEncData = Data; Key1 = tDESalg.Key; Key2 = tDESalg.IV; } catch (Exception) { throw; } } public string DecryptIt(byte[] sEncData) { //byte[] toEncrypt = new ASCIIEncoding().GetBytes(sEncData); //XElement xParser = null; //XmlDocument xDoc = new XmlDocument(); try { //string Final = ""; string sPwd = null; string sKey1 = null; string sKey2 = null; //System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding(); string soutxml = ""; //soutxml = encoding.GetString(sEncData); soutxml = ASCIIEncoding.ASCII.GetString(sEncData); sPwd = soutxml.Substring(18, soutxml.LastIndexOf("</EncPwd>") - 18); sKey1 = soutxml.Substring(18 + sPwd.Length + 15, soutxml.LastIndexOf("</Key1>") - (18 + sPwd.Length + 15)); sKey2 = soutxml.Substring(18 + sPwd.Length + 15 + sKey1.Length + 13, soutxml.LastIndexOf("</Key2>") - (18 + sPwd.Length + 15 + sKey1.Length + 13)); //xDoc.LoadXml(soutxml); //xParser = XElement.Parse(soutxml); //IEnumerable<XElement> elemsValidations = // from el in xParser.Elements("EmailPwd") // select el; #region OldCode //XmlNodeList objXmlNode = xDoc.SelectNodes("EmailPwd"); //foreach (XmlNode xmllist in objXmlNode) //{ // XmlNode xmlsubnode; // xmlsubnode = xmllist.SelectSingleNode("EncPwd"); // xmlsubnode = xmllist.SelectSingleNode("Key1"); // xmlsubnode = xmllist.SelectSingleNode("Key2"); //} #endregion //foreach (XElement elemValidation in elemsValidations) //{ // sPwd = elemValidation.Element("EncPwd").Value; // sKey1 = elemValidation.Element("Key1").Value; // sKey2 = elemValidation.Element("Key2").Value; //} //byte[] Key1 = encoding.GetBytes(sKey1); //byte[] Key2 = encoding.GetBytes(sKey2); //byte[] Data = encoding.GetBytes(sPwd); byte[] Key1 = ASCIIEncoding.ASCII.GetBytes(sKey1); byte[] Key2 = ASCIIEncoding.ASCII.GetBytes(sKey2); byte[] Data = ASCIIEncoding.ASCII.GetBytes(sPwd); // Decrypt the buffer back to a string. string Final = DecryptTextFromMemory(Data, Key1, Key2); return Final; } catch (Exception) { throw; } } public static byte[] EncryptTextToMemory(string Data,byte[] Key,byte[] IV) { try { // Create a MemoryStream. MemoryStream mStream = new MemoryStream(); // Create a CryptoStream using the MemoryStream // and the passed key and initialization vector (IV). CryptoStream cStream = new CryptoStream(mStream, new TripleDESCryptoServiceProvider().CreateEncryptor(Key, IV), CryptoStreamMode.Write); // Convert the passed string to a byte array. //byte[] toEncrypt = new ASCIIEncoding().GetBytes(Data); byte[] toEncrypt = ASCIIEncoding.ASCII.GetBytes(Data); // Write the byte array to the crypto stream and flush it. cStream.Write(toEncrypt, 0, toEncrypt.Length); cStream.FlushFinalBlock(); // Get an array of bytes from the // MemoryStream that holds the // encrypted data. byte[] ret = mStream.ToArray(); // Close the streams. cStream.Close(); mStream.Close(); // Return the encrypted buffer. return ret; } catch (CryptographicException e) { MessageBox.Show("A Cryptographic error occurred: {0}", e.Message); return null; } } public static string DecryptTextFromMemory(byte[] Data, byte[] Key, byte[] IV) { try { // Create a new MemoryStream using the passed // array of encrypted data. MemoryStream msDecrypt = new MemoryStream(Data); // Create a CryptoStream using the MemoryStream // and the passed key and initialization vector (IV). CryptoStream csDecrypt = new CryptoStream(msDecrypt, new TripleDESCryptoServiceProvider().CreateDecryptor(Key, IV), CryptoStreamMode.Write); csDecrypt.Write(Data, 0, Data.Length); //csDecrypt.FlushFinalBlock(); msDecrypt.Position = 0; // Create buffer to hold the decrypted data. byte[] fromEncrypt = new byte[msDecrypt.Length]; // Read the decrypted data out of the crypto stream // and place it into the temporary buffer. msDecrypt.Read(fromEncrypt, 0, msDecrypt.ToArray().Length); //csDecrypt.Close(); MessageBox.Show(ASCIIEncoding.ASCII.GetString(fromEncrypt)); //Convert the buffer into a string and return it. return new ASCIIEncoding().GetString(fromEncrypt); } catch (CryptographicException e) { MessageBox.Show("A Cryptographic error occurred: {0}", e.Message); return null; } } }

    Read the article

  • Integer output in Java method not same as pre-converted char value.

    - by David
    I'm trying to parse a simple text file in an integer method and then output an integer from such file so that other parts of the program can use it. For testing purposes it also displays the character value (9 in this case). The integer value for some reason is 57. I've also tried it with another part of the text file (which in that case should be 5, but is instead 53). After looking at an ASCII chart, I see that 57 is the ASCII version of the "symbol" 9 and that 53 is the ASCII version of the "symbol" 5. Is there any simple way I can fix this? I'm getting kind of frustrated as I'm a Java newbie (I've mostly only used FreePascal before this).

    Read the article

  • Data Access from single table in sql server 2005 is too slow

    - by Muhammad Kashif Nadeem
    Following is the script of table. Accessing data from this table is too slow. SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE TABLE [dbo].[Emails]( [id] [int] IDENTITY(1,1) NOT NULL, [datecreated] [datetime] NULL CONSTRAINT [DF_Emails_datecreated] DEFAULT (getdate()), [UID] [nvarchar](250) COLLATE Latin1_General_CI_AS NULL, [From] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [To] [nvarchar](100) COLLATE Latin1_General_CI_AS NULL, [Subject] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [Body] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [HTML] [nvarchar](max) COLLATE Latin1_General_CI_AS NULL, [AttachmentCount] [int] NULL, [Dated] [datetime] NULL ) ON [PRIMARY] Following query takes 50 seconds to fetch data. select id, datecreated, UID, [From], [To], Subject, AttachmentCount, Dated from emails If I include Body and Html in select then time is event worse. indexes are on: id unique clustered From Non unique non clustered To Non unique non clustered Tabls has currently 180000+ records. There might be 100,000 records each month so this will become more slow as time will pass. Does splitting data into two table will solve the problem? What other indexes should be there?

    Read the article

  • Ruby string encoding problem

    - by John Prideaux
    I've looked at the other ruby/encoding related posts but haven't been able to figure out why the following is not working. Likely just because I'm dense, but here's the situation. Using Ruby 1.9 on windows. I have a set of CSV files that need some data appended to the end of each line. Whenever I run my script, the appended characters are gibberish. The input text appears to be IBM437 encoding, whereas my string I'm appending starts as US-ASCII. Nothing I've tried with respect to forcing encoding on the input strings or the append string seems to change the resultant output. I'm stumped. The current encoding version is simply the last that I tried. def append_salesperson(txt, salesperson) if txt.length > 2 return txt.chomp.force_encoding('US-ASCII') + %(, "", "", "#{salesperson}") end end salespeople = Hash[ "fname", "Record Manager"] outfile = File.open("ActData.csv", "w:US-ASCII") salespeople.each do | filename, recordManager | infile = File.open("#{filename}.txt") infile.each do |line| outfile.puts append_salesperson(line, recordManager) end infile.close end outfile.close

    Read the article

  • String Encoding doesn't ouput all characters

    - by AndroidXTr3meN
    My client uses InputStreamReader/BufferedReader to fetch text from the Internet. However when I save the Text to a *.txt the text shows extra weird special symbols like 'Â'. I've tried Convert the String to ASCII but that mess upp å,ä,ö,Ø which I use. I've tried food = food.replace("Â", ""); and IndexOf(); But string won't find it. But it's there in HEX Editor. So summary: When I use text.setText(Android), the output looks fine with NO weird symbols, but when I save the text to *.txt I get about 4 of 'Â'. I do not want ASCII because I use other Non-ASCII character. The 'Â' is displayed as a Whitespace on my Android and in notepad. Thanks! Have A great Weekend! EDIT* found:   in Wordpad

    Read the article

  • Database locking: ActiveRecord + Heroku

    - by JP
    I'm building a Sinatra based app for deployment on Heroku. You can imagine it like a standard URL shortener but where old shortcodes expire and become available for new URLs (I realise this is a silly concept but its easier to explain this way). I'm representing the shortcode in my database as an integer and redefining its reader to give a nice short and unique string from the integer. As some rows will be deleted, I've written code that goes thru all the shortcode integers and picks the first free one to use just before_save. Unfortunately I can make my code create two rows with identical shortcode integers if I run two instances very quickly one after another, which is obviously no good! How should I implement a locking system so that I can quickly save my record with a unique shortcode integer? Here's what I have so far: Chars = ('a'..'z').to_a + ('A'..'Z').to_a + ('0'..'9').to_a CharLength = Chars.length class Shorts < ActiveRecord::Base before_save :gen_shortcode after_save :done_shortcode def shortcode i = read_attribute(:shortcode).to_i return '0' if i == 0 s = '' while i > 0 s << Chars[i.modulo(CharLength)] i /= 62 end s end private def gen_shortcode shortcode = 0 self.class.find(:all,:order=>"shortcode ASC").each do |s| if s.read_attribute(:shortcode).to_i != shortcode # Begin locking? break end shortcode += 1 end write_attribute(:shortcode,shortcode) end def done_shortcode # End Locking? end end

    Read the article

  • c++ creating ambigram from string

    - by mike_hornbeck
    I have a task to implement "void makeAmbigram(char*)" that will print on screen ambigram of latin string or return something like 'ambigram not possible'. Guess it's just about checking if string contains only of SNOXZHI and printing string backwards. Or am I wrong ? I'm a complete noob when dealing with cpp so that's what I've created : #include <iostream> using namespace std; char[]words; char[]reversed; char[] ret_str(char* s) { if(*s != '\0') ret_str(s+1); return s; } void makeAmbigram(char* c) { /* finding chars XIHNOZS and printing ambigram */ } int main() { cin>>words; reversed = ret_str(words); makeAmbigram(reversed); return 0; } I can reverse string but how to check if my reversed string contains only needed chars ? I've found some function but it's hard or even imposible to implement it for greater amount of chars : http://www.java2s.com/Code/C/String/Findcharacterinstringhowtousestrchr.htm

    Read the article

  • Using external SOAP service in Workflow service

    - by whirlwin
    I am using the .NET 4 framework and have made a WCF Workflow Service Application. I want to use a SOAP web service (.NET 3.5) I have running in another instance of VS. The only method that is exposed is the following: [WebMethod] public string Reverse(string input) { char[] chars = input.ToCharArray(); Array.Reverse(chars); return new string(chars); } I have used the following steps to add the service in my Workflow: Add Service Reference Provided the WSDL (the operation shows in the Operations box as expected) Clicked OK Build the solution to ensure that the service shows in my toolbox Drag the service from the toolbox into the workflow However, when I look at the properties of the service in the workflow, there is no way to specify the input argument or where to store the result of the invocation of the service. I only have the option of specifying some obscure parameters such as Body:InArgument<ReverseRequestBody and outBody:OutArgument<ReverseResponseBody (none of which are strings). Here is a screenshot depicting the properties of the service in the workflow: My question is therefore: Is it possible at all to use the SOAP service by specifying a string as the input argument (like it is meant to be used), and also assign the result to a workflow variable?

    Read the article

  • JavaScript Key Codes

    - by Jonathan Wood
    I'm working with a JavaScript routine I didn't write. It is called from a text box's onkeydown attribute to prevent unwanted keystrokes. The first argument is apparently not used. The second argument is a list of characters that should be allowed. function RestrictChars(evt, chars) { var key; var keychar; if (window.event) key = window.event.keyCode; else if (e) key = e.which; else return true; keychar = String.fromCharCode(key); if ((key == null) || (key == 0) || (key == 8) || (key == 9) || (key == 13) || (key == 27)) // Control key return true; else if (((chars).indexOf(keychar) > -1)) return true; else return false; } This seems to work for alpha-numeric characters. However, characters such as . and / cause this function to return false, even when these characters are included in the chars parameter. For example, if the . key is pressed, key is set to 190, and keychar gets set to the "3/4" character. Can anyone see how this was meant to work and/or why it doesn't? I don't know enough about JavaScript to see what it's trying to do.

    Read the article

  • What SQL query should I perform to get the result set expected?

    - by texai
    What SQL query should I perform to get the result set expected, giving the first element of the chain (2) as input data, or any of them ? table name: changes +----+---------------+---------------+ | id | new_record_id | old_record_id | +----+---------------+---------------+ | 1| 4| 2| | -- non relevant data -- | | 6| 7| 4| | -- non relevant data -- | | 11| 13| 7| | 12| 14| 13| | -- non relevant data -- | | 31| 20| 14| +----+---------------+---------------+ Result set expected: +--+ | 2| | 4| | 7| |13| |14| |20| +--+ I know I should consider change my data model, but: What if I couldn't? Thank you in advance!

    Read the article

  • get random password with puppet function

    - by ninja-2
    I have a function that allow me to generate random password. My function is working well without a puppetmaster. When i tried with a master an error appear when I called the function : Error 400 on SERVER: bad value for range Here is my function module Puppet::Parser::Functions newfunction(:get_random_password, :type => :rvalue, :doc => <<-EOS Returns a random password. EOS ) do |args| raise(Puppet::ParseError, "get_random_password(): Wrong number of arguments " + "given (#{args.size} for 1)") if args.size != 1 specials = ((33..33).to_a + (35..38).to_a + (40..47).to_a + (58..64).to_a + (91..93).to_a + (95..96).to_a + (123..125).to_a).pack('U*').chars.to_a numbers = (0..9).to_a alphal = ('a'..'z').to_a alphau = ('A'..'Z').to_a length = args[0] CHARS = (alphal + specials + numbers + alphau) pwd = CHARS.sort_by { rand }.join[0...length] return pwd end end The function is called in both case with $pwd = get_random_password(10). When I specified the length directly in the function to 10 for example. the password is well generated in master mode. Have you any idea why i can't specify the lentgth value ? Thanks for any help.

    Read the article

  • sudo apt-get update problem

    - by Jeon
    I have a problem with sudo apt-get update that I can't seem to fix and It's causing problems with alot of installations I want to do. I run Ubuntu 12.04. Ign http://ftp.availo.se precise InRelease Ign http://ftp.availo.se precise-updates InRelease Ign http://ftp.availo.se precise-backports InRelease Ign http://ftp.availo.se precise-security InRelease Get:1 http://repository.spotify.com stable InRelease [2,979 B] Ign http://ppa.launchpad.net precise InRelease Ign http://extras.ubuntu.com precise InRelease Ign http://archive.canonical.com precise InRelease Ign http://ppa.launchpad.net precise InRelease Ign http://ppa.launchpad.net precise InRelease Ign http://repository.spotify.com stable InRelease Ign http://ftp.availo.se precise Release.gpg Ign http://ftp.availo.se precise-updates Release.gpg Ign http://ftp.availo.se precise-backports Release.gpg Ign http://repository.spotify.com stable/non-free amd64 Packages/DiffIndex Hit http://ppa.launchpad.net precise Release.gpg Hit http://ppa.launchpad.net precise Release.gpg Hit http://archive.canonical.com precise Release.gpg Hit http://extras.ubuntu.com precise Release.gpg Ign http://ftp.availo.se precise-security Release.gpg Ign http://repository.spotify.com stable/non-free i386 Packages/DiffIndex Ign http://repository.spotify.com stable/non-free TranslationIndex Hit http://ppa.launchpad.net precise Release.gpg Hit http://archive.canonical.com precise Release Hit http://extras.ubuntu.com precise Release Ign http://ftp.availo.se precise Release Ign http://ftp.availo.se precise-updates Release Hit http://ppa.launchpad.net precise Release Hit http://archive.canonical.com precise/partner amd64 Packages Hit http://extras.ubuntu.com precise/main Sources Ign http://ftp.availo.se precise-backports Release Ign http://ftp.availo.se precise-security Release Hit http://ppa.launchpad.net precise Release Hit http://archive.canonical.com precise/partner i386 Packages Ign http://archive.canonical.com precise/partner TranslationIndex Hit http://ppa.launchpad.net precise Release Hit http://extras.ubuntu.com precise/main amd64 Packages Hit http://extras.ubuntu.com precise/main i386 Packages Ign http://ftp.availo.se precise/main TranslationIndex Ign http://ftp.availo.se precise/multiverse TranslationIndex Ign http://ftp.availo.se precise/restricted TranslationIndex Hit http://ppa.launchpad.net precise/main Sources Hit http://ppa.launchpad.net precise/main amd64 Packages Hit http://ppa.launchpad.net precise/main i386 Packages Ign http://ppa.launchpad.net precise/main TranslationIndex Ign http://extras.ubuntu.com precise/main TranslationIndex Ign http://ftp.availo.se precise/universe TranslationIndex Hit http://ppa.launchpad.net precise/main Sources Hit http://ppa.launchpad.net precise/main amd64 Packages Hit http://ppa.launchpad.net precise/main i386 Packages Ign http://ppa.launchpad.net precise/main TranslationIndex Hit http://ppa.launchpad.net precise/main Sources Hit http://ppa.launchpad.net precise/main amd64 Packages Hit http://ppa.launchpad.net precise/main i386 Packages Ign http://ppa.launchpad.net precise/main TranslationIndex Ign http://ftp.availo.se precise-updates/main TranslationIndex Ign http://ftp.availo.se precise-updates/multiverse TranslationIndex Ign http://ftp.availo.se precise-updates/restricted TranslationIndex Ign http://ftp.availo.se precise-updates/universe TranslationIndex Hit http://repository.spotify.com stable/non-free amd64 Packages Ign http://ftp.availo.se precise-backports/main TranslationIndex Ign http://ftp.availo.se precise-backports/multiverse TranslationIndex Ign http://ftp.availo.se precise-backports/restricted TranslationIndex Ign http://ftp.availo.se precise-backports/universe TranslationIndex Hit http://repository.spotify.com stable/non-free i386 Packages Ign http://archive.canonical.com precise/partner Translation-en_US Ign http://ftp.availo.se precise-security/main TranslationIndex Ign http://ftp.availo.se precise-security/multiverse TranslationIndex Ign http://ftp.availo.se precise-security/restricted TranslationIndex Ign http://ftp.availo.se precise-security/universe TranslationIndex Ign http://repository.spotify.com stable/non-free Translation-en_US Ign http://archive.canonical.com precise/partner Translation-en Ign http://repository.spotify.com stable/non-free Translation-en Ign http://extras.ubuntu.com precise/main Translation-en_US Ign http://extras.ubuntu.com precise/main Translation-en Ign http://ppa.launchpad.net precise/main Translation-en_US Ign http://ppa.launchpad.net precise/main Translation-en Ign http://ppa.launchpad.net precise/main Translation-en_US Ign http://ppa.launchpad.net precise/main Translation-en Ign http://ppa.launchpad.net precise/main Translation-en_US Ign http://ppa.launchpad.net precise/main Translation-en Err http://ftp.availo.se precise/main Sources 404 Not Found Err http://ftp.availo.se precise/restricted Sources 404 Not Found Err http://ftp.availo.se precise/universe Sources 404 Not Found Err http://ftp.availo.se precise/multiverse Sources 404 Not Found Err http://ftp.availo.se precise/main amd64 Packages 404 Not Found Err http://ftp.availo.se precise/restricted amd64 Packages 404 Not Found Err http://ftp.availo.se precise/universe amd64 Packages 404 Not Found Err http://ftp.availo.se precise/multiverse amd64 Packages 404 Not Found Err http://ftp.availo.se precise/main i386 Packages 404 Not Found Err http://ftp.availo.se precise/restricted i386 Packages 404 Not Found Err http://ftp.availo.se precise/universe i386 Packages 404 Not Found Err http://ftp.availo.se precise/multiverse i386 Packages 404 Not Found Err http://ftp.availo.se precise-updates/main Sources 404 Not Found Err http://ftp.availo.se precise-updates/restricted Sources 404 Not Found Err http://ftp.availo.se precise-updates/universe Sources 404 Not Found Err http://ftp.availo.se precise-updates/multiverse Sources 404 Not Found Err http://ftp.availo.se precise-updates/main amd64 Packages 404 Not Found Err http://ftp.availo.se precise-updates/restricted amd64 Packages 404 Not Found Err http://ftp.availo.se precise-updates/universe amd64 Packages 404 Not Found Err http://ftp.availo.se precise-updates/multiverse amd64 Packages 404 Not Found Err http://ftp.availo.se precise-updates/main i386 Packages 404 Not Found Err http://ftp.availo.se precise-updates/restricted i386 Packages 404 Not Found Err http://ftp.availo.se precise-updates/universe i386 Packages 404 Not Found Err http://ftp.availo.se precise-updates/multiverse i386 Packages 404 Not Found Err http://ftp.availo.se precise-backports/main Sources 404 Not Found Err http://ftp.availo.se precise-backports/restricted Sources 404 Not Found Err http://ftp.availo.se precise-backports/universe Sources 404 Not Found Err http://ftp.availo.se precise-backports/multiverse Sources 404 Not Found Err http://ftp.availo.se precise-backports/main amd64 Packages 404 Not Found Err http://ftp.availo.se precise-backports/restricted amd64 Packages 404 Not Found Err http://ftp.availo.se precise-backports/universe amd64 Packages 404 Not Found Err http://ftp.availo.se precise-backports/multiverse amd64 Packages 404 Not Found Err http://ftp.availo.se precise-backports/main i386 Packages 404 Not Found Err http://ftp.availo.se precise-backports/restricted i386 Packages 404 Not Found Err http://ftp.availo.se precise-backports/universe i386 Packages 404 Not Found Err http://ftp.availo.se precise-backports/multiverse i386 Packages 404 Not Found Err http://ftp.availo.se precise-security/main Sources 404 Not Found Err http://ftp.availo.se precise-security/restricted Sources 404 Not Found Err http://ftp.availo.se precise-security/universe Sources 404 Not Found Err http://ftp.availo.se precise-security/multiverse Sources 404 Not Found Err http://ftp.availo.se precise-security/main amd64 Packages 404 Not Found Err http://ftp.availo.se precise-security/restricted amd64 Packages 404 Not Found Err http://ftp.availo.se precise-security/universe amd64 Packages 404 Not Found Err http://ftp.availo.se precise-security/multiverse amd64 Packages 404 Not Found Err http://ftp.availo.se precise-security/main i386 Packages 404 Not Found Err http://ftp.availo.se precise-security/restricted i386 Packages 404 Not Found Err http://ftp.availo.se precise-security/universe i386 Packages 404 Not Found Err http://ftp.availo.se precise-security/multiverse i386 Packages 404 Not Found Ign http://ftp.availo.se precise/main Translation-en_US Ign http://ftp.availo.se precise/main Translation-en Ign http://ftp.availo.se precise/multiverse Translation-en_US Ign http://ftp.availo.se precise/multiverse Translation-en Ign http://ftp.availo.se precise/restricted Translation-en_US Ign http://ftp.availo.se precise/restricted Translation-en Ign http://ftp.availo.se precise/universe Translation-en_US Ign http://ftp.availo.se precise/universe Translation-en Ign http://ftp.availo.se precise-updates/main Translation-en_US Ign http://ftp.availo.se precise-updates/main Translation-en Ign http://ftp.availo.se precise-updates/multiverse Translation-en_US Ign http://ftp.availo.se precise-updates/multiverse Translation-en Ign http://ftp.availo.se precise-updates/restricted Translation-en_US Ign http://ftp.availo.se precise-updates/restricted Translation-en Ign http://ftp.availo.se precise-updates/universe Translation-en_US Ign http://ftp.availo.se precise-updates/universe Translation-en Ign http://ftp.availo.se precise-backports/main Translation-en_US Ign http://ftp.availo.se precise-backports/main Translation-en Ign http://ftp.availo.se precise-backports/multiverse Translation-en_US Ign http://ftp.availo.se precise-backports/multiverse Translation-en Ign http://ftp.availo.se precise-backports/restricted Translation-en_US Ign http://ftp.availo.se precise-backports/restricted Translation-en Ign http://ftp.availo.se precise-backports/universe Translation-en_US Ign http://ftp.availo.se precise-backports/universe Translation-en Ign http://ftp.availo.se precise-security/main Translation-en_US Ign http://ftp.availo.se precise-security/main Translation-en Ign http://ftp.availo.se precise-security/multiverse Translation-en_US Ign http://ftp.availo.se precise-security/multiverse Translation-en Ign http://ftp.availo.se precise-security/restricted Translation-en_US Ign http://ftp.availo.se precise-security/restricted Translation-en Ign http://ftp.availo.se precise-security/universe Translation-en_US Ign http://ftp.availo.se precise-security/universe Translation-en Fetched 2,979 B in 9s (328 B/s) W: GPG error: http://repository.spotify.com stable InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY 082CCEDF94558F59 W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/main/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/restricted/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/universe/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/multiverse/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/main/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/restricted/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/universe/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/multiverse/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/main/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/restricted/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/universe/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise/multiverse/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/main/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/restricted/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/universe/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/multiverse/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/main/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/restricted/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/universe/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/multiverse/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/main/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/restricted/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/universe/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-updates/multiverse/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/main/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/restricted/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/universe/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/multiverse/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/main/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/restricted/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/universe/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/multiverse/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/main/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/restricted/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/universe/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-backports/multiverse/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/main/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/restricted/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/universe/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/multiverse/source/Sources 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/main/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/restricted/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/universe/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/multiverse/binary-amd64/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/main/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/restricted/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/universe/binary-i386/Packages 404 Not Found W: Failed to fetch http://ftp.availo.se/ubuntu/dists/precise-security/multiverse/binary-i386/Packages 404 Not Found E: Some index files failed to download. They have been ignored, or old ones used instead. I would appreciate a fix to this. Thank you for the help.

    Read the article

  • So…is it a Seek or a Scan?

    - by Paul White
    You’re probably most familiar with the terms ‘Seek’ and ‘Scan’ from the graphical plans produced by SQL Server Management Studio (SSMS).  The image to the left shows the most common ones, with the three types of scan at the top, followed by four types of seek.  You might look to the SSMS tool-tip descriptions to explain the differences between them: Not hugely helpful are they?  Both mention scans and ranges (nothing about seeks) and the Index Seek description implies that it will not scan the index entirely (which isn’t necessarily true). Recall also yesterday’s post where we saw two Clustered Index Seek operations doing very different things.  The first Seek performed 63 single-row seeking operations; and the second performed a ‘Range Scan’ (more on those later in this post).  I hope you agree that those were two very different operations, and perhaps you are wondering why there aren’t different graphical plan icons for Range Scans and Seeks?  I have often wondered about that, and the first person to mention it after yesterday’s post was Erin Stellato (twitter | blog): Before we go on to make sense of all this, let’s look at another example of how SQL Server confusingly mixes the terms ‘Scan’ and ‘Seek’ in different contexts.  The diagram below shows a very simple heap table with two columns, one of which is the non-clustered Primary Key, and the other has a non-unique non-clustered index defined on it.  The right hand side of the diagram shows a simple query, it’s associated query plan, and a couple of extracts from the SSMS tool-tip and Properties windows. Notice the ‘scan direction’ entry in the Properties window snippet.  Is this a seek or a scan?  The different references to Scans and Seeks are even more pronounced in the XML plan output that the graphical plan is based on.  This fragment is what lies behind the single Index Seek icon shown above: You’ll find the same confusing references to Seeks and Scans throughout the product and its documentation. Making Sense of Seeks Let’s forget all about scans for a moment, and think purely about seeks.  Loosely speaking, a seek is the process of navigating an index B-tree to find a particular index record, most often at the leaf level.  A seek starts at the root and navigates down through the levels of the index to find the point of interest: Singleton Lookups The simplest sort of seek predicate performs this traversal to find (at most) a single record.  This is the case when we search for a single value using a unique index and an equality predicate.  It should be readily apparent that this type of search will either find one record, or none at all.  This operation is known as a singleton lookup.  Given the example table from before, the following query is an example of a singleton lookup seek: Sadly, there’s nothing in the graphical plan or XML output to show that this is a singleton lookup – you have to infer it from the fact that this is a single-value equality seek on a unique index.  The other common examples of a singleton lookup are bookmark lookups – both the RID and Key Lookup forms are singleton lookups (an RID lookup finds a single record in a heap from the unique row locator, and a Key Lookup does much the same thing on a clustered table).  If you happen to run your query with STATISTICS IO ON, you will notice that ‘Scan Count’ is always zero for a singleton lookup. Range Scans The other type of seek predicate is a ‘seek plus range scan’, which I will refer to simply as a range scan.  The seek operation makes an initial descent into the index structure to find the first leaf row that qualifies, and then performs a range scan (either backwards or forwards in the index) until it reaches the end of the scan range. The ability of a range scan to proceed in either direction comes about because index pages at the same level are connected by a doubly-linked list – each page has a pointer to the previous page (in logical key order) as well as a pointer to the following page.  The doubly-linked list is represented by the green and red dotted arrows in the index diagram presented earlier.  One subtle (but important) point is that the notion of a ‘forward’ or ‘backward’ scan applies to the logical key order defined when the index was built.  In the present case, the non-clustered primary key index was created as follows: CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col ASC) ) ; Notice that the primary key index specifies an ascending sort order for the single key column.  This means that a forward scan of the index will retrieve keys in ascending order, while a backward scan would retrieve keys in descending key order.  If the index had been created instead on key_col DESC, a forward scan would retrieve keys in descending order, and a backward scan would return keys in ascending order. A range scan seek predicate may have a Start condition, an End condition, or both.  Where one is missing, the scan starts (or ends) at one extreme end of the index, depending on the scan direction.  Some examples might help clarify that: the following diagram shows four queries, each of which performs a single seek against a column holding every integer from 1 to 100 inclusive.  The results from each query are shown in the blue columns, and relevant attributes from the Properties window appear on the right: Query 1 specifies that all key_col values less than 5 should be returned in ascending order.  The query plan achieves this by seeking to the start of the index leaf (there is no explicit starting value) and scanning forward until the End condition (key_col < 5) is no longer satisfied (SQL Server knows it can stop looking as soon as it finds a key_col value that isn’t less than 5 because all later index entries are guaranteed to sort higher). Query 2 asks for key_col values greater than 95, in descending order.  SQL Server returns these results by seeking to the end of the index, and scanning backwards (in descending key order) until it comes across a row that isn’t greater than 95.  Sharp-eyed readers may notice that the end-of-scan condition is shown as a Start range value.  This is a bug in the XML show plan which bubbles up to the Properties window – when a backward scan is performed, the roles of the Start and End values are reversed, but the plan does not reflect that.  Oh well. Query 3 looks for key_col values that are greater than or equal to 10, and less than 15, in ascending order.  This time, SQL Server seeks to the first index record that matches the Start condition (key_col >= 10) and then scans forward through the leaf pages until the End condition (key_col < 15) is no longer met. Query 4 performs much the same sort of operation as Query 3, but requests the output in descending order.  Again, we have to mentally reverse the Start and End conditions because of the bug, but otherwise the process is the same as always: SQL Server finds the highest-sorting record that meets the condition ‘key_col < 25’ and scans backward until ‘key_col >= 20’ is no longer true. One final point to note: seek operations always have the Ordered: True attribute.  This means that the operator always produces rows in a sorted order, either ascending or descending depending on how the index was defined, and whether the scan part of the operation is forward or backward.  You cannot rely on this sort order in your queries of course (you must always specify an ORDER BY clause if order is important) but SQL Server can make use of the sort order internally.  In the four queries above, the query optimizer was able to avoid an explicit Sort operator to honour the ORDER BY clause, for example. Multiple Seek Predicates As we saw yesterday, a single index seek plan operator can contain one or more seek predicates.  These seek predicates can either be all singleton seeks or all range scans – SQL Server does not mix them.  For example, you might expect the following query to contain two seek predicates, a singleton seek to find the single record in the unique index where key_col = 10, and a range scan to find the key_col values between 15 and 20: SELECT key_col FROM dbo.Example WHERE key_col = 10 OR key_col BETWEEN 15 AND 20 ORDER BY key_col ASC ; In fact, SQL Server transforms the singleton seek (key_col = 10) to the equivalent range scan, Start:[key_col >= 10], End:[key_col <= 10].  This allows both range scans to be evaluated by a single seek operator.  To be clear, this query results in two range scans: one from 10 to 10, and one from 15 to 20. Final Thoughts That’s it for today – tomorrow we’ll look at monitoring singleton lookups and range scans, and I’ll show you a seek on a heap table. Yes, a seek.  On a heap.  Not an index! If you would like to run the queries in this post for yourself, there’s a script below.  Thanks for reading! IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; -- ================ -- Singleton lookup -- ================ ; -- Single value equality seek in a unique index -- Scan count = 0 when STATISTIS IO is ON -- Check the XML SHOWPLAN SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 32 ; -- =========== -- Range Scans -- =========== ; -- Query 1 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col <= 5 ORDER BY E.key_col ASC ; -- Query 2 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col > 95 ORDER BY E.key_col DESC ; -- Query 3 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 10 AND E.key_col < 15 ORDER BY E.key_col ASC ; -- Query 4 SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col >= 20 AND E.key_col < 25 ORDER BY E.key_col DESC ; -- Final query (singleton + range = 2 range scans) SELECT E.key_col FROM dbo.Example AS E WHERE E.key_col = 10 OR E.key_col BETWEEN 15 AND 20 ORDER BY E.key_col ASC ; -- === TIDY UP === DROP TABLE dbo.Example; © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Google Rules for Retail

    - by David Dorf
    In the book What Would Google Do?, Jeff Jarvis outlines ten "Google Rules" that define how Google acts.  These rules help define how Web 2.0 businesses operate today and into the future.  While there's a chapter in the book on applying these rules to the retail industry, it wasn't very in-depth.  So I've decided to more directly apply the rules to retail, along with some notable examples of success.  The table below shows Jeff's Google Rule, some Industry Examples, and New Retailer Rules that I created. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} table.MsoTableGrid {mso-style-name:"Table Grid"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-priority:59; mso-style-unhide:no; border:solid black 1.0pt; mso-border-themecolor:text1; mso-border-alt:solid black .5pt; mso-border-themecolor:text1; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-border-insideh:.5pt solid black; mso-border-insideh-themecolor:text1; mso-border-insidev:.5pt solid black; mso-border-insidev-themecolor:text1; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Google Rule Industry Examples New Retailer Rule New Relationship Your worst customer is your friend; you best customer is your partner Newegg.com lets manufacturers respond to customer comments that are critical of the product, and their EggXpert site lets customers help other customers. Listen to what your customers are saying about you.  Convert the critics to fans and the fans to influencers. New Architecture Join a network; be a platform Tesco and BestBuy released APIs for their product catalogs so third-parties could create new applications. Become a destination for information. New Publicness Life is public, so is business Zappos and WholeFoods founders are prolific tweeters/bloggers, sharing their opinions and connecting to customers.  It's not always pretty, but it's genuine. Be transparent.  Share both your successes and failures with your customers. New Society Elegant organization Wet Seal helps their customers assemble outfits and show them off to each other.  Barnes & Noble has a community site that includes a bookclub. Communities of your customers already exist, so help them organize better. New Economy Mass market is dead; long live the mass of niches lululemon found a niche for yoga inspired athletic wear.  Threadless uses crowd-sourcing to design short-runs of T-shirts. Serve small markets with niche products. New Business Reality Decide what business you're in When Lowes realized catering to women brought the men along, their sales increased. Customers want experiences to go with the products they buy. New Attitude Trust the people and listen In 2008 Starbucks launched MyStartbucksIdea to solicit ideas from their customers. Use social networks as additional data points for making better merchandising decisions. New Ethic Be honest and transparent; don't be evil Target is giving away reusable shopping bags for Earth Day.  Kohl's has outfitted 67 stores with solar arrays. Being green earns customers' respect and lowers costs too. New Speed Life is live H&M and Zara keep up with fashion trends. Be prepared to pounce on you customers' fickle interests. New Imperatives Encourage, enable and protect innovation 1-800-Flowers was the first do sales in Facebook and an early adopter of mobile commerce.  The Sears Personal Shopper mobile app finds products based on a photo. Give your staff permission to fail so innovation won't be stifled. Jeff will be a keynote speaker at Crosstalk, our upcoming annual user conference, so I'm looking forward to hearing more of his perspective on retail and the new economy.

    Read the article

  • How do i return integers from a string ?

    - by kannan.ambadi
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Suppose you are passing a string(for e.g.: “My name has 1 K, 2 A and 3 N”)  which may contain integers, letters or special characters. I want to retrieve only numbers from the input string. We can implement it in many ways such as splitting the string into an array or by using TryParse method. I would like to share another idea, that’s by using Regular expressions. All you have to do is, create an instance of Regular Expression with a specified pattern for integer. Regular expression class defines a method called Split, which splits the specified input string based on the pattern provided during object initialization.     We can write the code as given below:   public static int[] SplitIdSeqenceValues(object combinedArgs)         {             var _argsSeperator = new Regex(@"\D+", RegexOptions.Compiled);               string[] splitedIntegers = _argsSeperator.Split(combinedArgs.ToString());               var args = new int[splitedIntegers.Length];               for (int i = 0; i < splitedIntegers.Length; i++)                 args[i] = MakeSafe.ToSafeInt32(splitedIntegers[i]);                           return args;         }    It would be better, if we set to RegexOptions.Compiled so that the regular expression will have performance boost by faster compilation.   Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Happy Programming  :))   

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

< Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >