Search Results

Search found 7061 results on 283 pages for 'target'.

Page 113/283 | < Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • What's the best way of marketing to programmers?

    - by Stuart
    Disclaimer up front - I'm definitely not going to include any links in here - this question isn't part of my marketing! I've had a few projects recently where the end product is something that developers will use. In the past I've been on the receiving end of all sorts of marketing - as a developer I've gotten no end of junk - 1000s of pens, tee-shirts and mouse pads; enough CDs to keep my desk tea-free; some very useful USB keys with some logos I no longer recognise; a small forest's worth of leaflets; a bulging spam folder full of ignored emails, etc... So that's my question - What are good ways to market to developers? And as an aside - are developers the wrong people to target? - since we so often don't have a purchasing budget anyways!

    Read the article

  • 2d tank movement and turret solution

    - by Phil
    Hi! I'm making a simple top-down tank game on the ipad where the user controls the movement of the tank with the left "joystick" and the rotation of the turret with the right one. I've spent several hours just trying to get it to work decently but now I turn to the pros :) I have two referencial objects, one for the movement and one for the rotation. The referencial objects always stay max two units away from the tank and I use them to tell the tank in what direction to move. I chose this approach to decouple movement and rotational behaviour from the raw input of the joysticks, I believe this will make it simpler to implement whatever behaviour I want for the tank. My problem is 1; the turret rotates the long way to the target. With this I mean that the target can be -5 degrees away in rotation and still it rotates 355 degrees instead of -5 degrees. I can't figure out why. The other problem is with the movement. It just doesn't feel right to have the tank turn while moving. I'd like to have a solution that would work as well for the AI as for the player. A blackbox function for the movement where the player only specifies in what direction it should move and it moves there under the constraints that are imposed on it. I am using the standard joystick class found in the Unity iPhone package. This is the code I'm using for the movement: public class TankFollow : MonoBehaviour { //Check angle difference and turn accordingly public GameObject followPoint; public float speed; public float turningSpeed; void Update() { transform.position = Vector3.Slerp(transform.position, followPoint.transform.position, speed * Time.deltaTime); //Calculate angle var forwardA = transform.forward; var forwardB = (followPoint.transform.position - transform.position); var angleA = Mathf.Atan2(forwardA.x, forwardA.z) * Mathf.Rad2Deg; var angleB = Mathf.Atan2(forwardB.x, forwardB.z) * Mathf.Rad2Deg; var angleDiff = Mathf.DeltaAngle(angleA, angleB); //print(angleDiff.ToString()); if (angleDiff > 5) { //Rotate to transform.Rotate(new Vector3(0, (-turningSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else if (angleDiff < 5) { transform.Rotate(new Vector3(0, (turningSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else { } transform.position = new Vector3(transform.position.x, 0, transform.position.z); } } And this is the code I'm using to rotate the turret: void LookAt() { var forwardA = -transform.right; var forwardB = (toLookAt.transform.position - transform.position); var angleA = Mathf.Atan2(forwardA.x, forwardA.z) * Mathf.Rad2Deg; var angleB = Mathf.Atan2(forwardB.x, forwardB.z) * Mathf.Rad2Deg; var angleDiff = Mathf.DeltaAngle(angleA, angleB); //print(angleDiff.ToString()); if (angleDiff - 180 > 1) { //Rotate to transform.Rotate(new Vector3(0, (turretSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); } else if (angleDiff - 180 < -1) { transform.Rotate(new Vector3(0, (-turretSpeed * Time.deltaTime),0)); //transform.rotation = new Quaternion(transform.rotation.x, transform.rotation.y + adjustment, transform.rotation.z, transform.rotation.w); print((angleDiff - 180).ToString()); } else { } } Since I want the turret reference point to turn in relation to the tank (when you rotate the body, the turret should follow and not stay locked on since it makes it impossible to control when you've got two thumbs to work with), I've made the TurretFollowPoint a child of the Turret object, which in turn is a child of the body. I'm thinking that I'm making it too difficult for myself with the reference points but I'm imagining that it's a good idea. Please be honest about this point. So I'll be grateful for any help I can get! I'm using Unity3d iPhone. Thanks!

    Read the article

  • Dash is slow and shows irrelevant results

    - by Alexey Frishman
    I currently have the latest Ubuntu 12.10 installed on my laptop. Usually I use Launchy application to have a quick access to any app/config/file etc. Now I'm trying to get used to Dash, which is supposed to be default way to do such things in recent Ubuntu versions. The difference between the usage of Launchy and Dash is following: Launchy: Alt+Space - Launchy shell shown instantly - type your request - open the target Dash: SuperKey - PERIOD - Dash is shown - type your request - PERIOD - navigate with arrow buttons between the results - open the desired result Another problem. When I type the term "ryth" (which is incorrectly spelled part of "Rhythmbox") what is shown in these 2 shells: Launchy: 1 result, which is Rhythmbox. The letters 'r', 'y', 't' and 'h' are highlighted. Dash: 2 results, which are MP3s from Amazon and are completely irrelevant to my request So is there any way to tweak the Dash to allow me to use it as I use Launchy with the same performance and results?

    Read the article

  • Editing sqlcmdvariable nodes in SSDT Publish Profile files using msbuild

    - by jamiet
    Publish profile files are a new feature of SSDT database projects that enable you to package up all environment-specific properties into a single file for use at publish time; I have written about them before at Publish Profile Files in SQL Server Data Tools (SSDT) and if it wasn’t obvious from that blog post, I’m a big fan! As I have used Publish Profile files more and more I have realised that there may be times when you need to edit those Publish profile files during your build process, you may think of such an operation as a kind of pre-processor step. In my case I have a sqlcmd variable called DeployTag, it holds a value representing the current build number that later gets inserted into a table using a Post-Deployment script (that’s a technique that I wrote about in Implementing SQL Server solutions using Visual Studio 2010 Database Projects – a compendium of project experiences – search for “Putting a build number into the DB”). Here are the contents of my Publish Profile file (simplified for demo purposes) : Notice that DeployTag defaults to “UNKNOWN”. On my current project we are using msbuild scripts to control what gets built and what I want to do is take the build number from our build engine and edit the Publish profile files accordingly. Here is the pertinent portion of the the msbuild script I came up with to do that:   <ItemGroup>     <Namespaces Include="myns">       <Prefix>myns</Prefix>       <Uri>http://schemas.microsoft.com/developer/msbuild/2003</Uri>     </Namespaces>   </ItemGroup>   <Target Name="UpdateBuildNumber">     <ItemGroup>       <SSDTPublishFiles Include="$(DESTINATION)\**\$(CONFIGURATION)\**\*.publish.xml" />     </ItemGroup>     <MSBuild.ExtensionPack.Xml.XmlFile Condition="%(SSDTPublishFiles.Identity) != ''"                                        TaskAction="UpdateElement"                                        File="%(SSDTPublishFiles.Identity)"                                        Namespaces="@(Namespaces)"                                         XPath="//myns:SqlCmdVariable[@Include='DeployTag']/myns:Value"                                         InnerText="$(BuildNumber)"/>   </Target> The important bits here are the definition of the namespace http://schemas.microsoft.com/developer/msbuild/2003: and the XPath expression //myns:SqlCmdVariable[@Include='DeployTag']/myns:Value: Some extra info: I use a fantastic tool called XMLPad to discover/test XPath expressions, read more at XMLPad – a new tool in my developer utility belt MSBuild.ExtensionPack.Xml.XmlFile is a msbuild task used to edit XML files and is available from Mike Fourie’s MSBuild Extension Pack I’m using a property called $(BuildNumber) to hold the value to substitute into the file and also $(DESTINATION)\**\$(CONFIGURATION)\**\*.publish.xml to define an ItemGroup all of my Publish Profile files. Populating those properties is basic msbuild stuff and is therefore outside the scope of this blog post however if you want to learn more check out MSBuild properties & How To: Use Wildcards to Build All Files in a Directory. Hope this is useful! @Jamiet

    Read the article

  • Url Navigation

    - by russ.bishop
    One of the new features is URL-based navigation which is useful for creating intranet links or auto-generating email links (such as from workflow systems, etc). For IIS 6 and earlier, the format is as follows: http://machine/drm-client/Logon.aspx? app=<appname>&action=go&ver=<version name>&hier=<hier name>&node=<node name> Just replace the fields with their appropriate values (URL-encoded of course). <node name> is optional. If provided it will open the hierarchy and expand directly to the target node. Otherwise the hierarchy is opened to the top node. Note that if the specified version is not loaded it will be loaded automatically.

    Read the article

  • Multi-Device Development in Visual Studio

    - by Daniel Moth
    You've read on Soma's blog post that Microsoft is broadening Visual Studio's reach to other platforms (including for example Android)…  specifically this is what Soma wrote: "With bring-your-own-device trends in the enterprise, and heterogeneity in the consumer mobile device market, developers are increasingly focused on building apps that can target a variety of devices. We are committed to enabling developers to build apps for this heterogeneous, mobile-first world with Visual Studio for the technology of your choice - whether .NET, C++ or JavaScript." If you live in Washington state in the USA (or are willing to relocate here) I am looking for a Program Manager to help with this effort – read the rest of the job description here which is also where you can apply for the position (or email me). Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Microsoft Codename Houston

    - by kaleidoscope
    On one of the final talks about SQL Azure in Day 3 of PDC09, David Robinson, Senior PM on the Azure team, announced a project codenamed ‘Houston’ which is basically a Silverlight equivalent of SQL Server Management Studio. The concept comes from the SQL Azure being within the cloud, and if the only way to interact with it is by installing SSMS locally then it does not feel like a consistent story. From the limited preview, it only contains the basics but it clearly lets you create tables, stored procedures and views, edit them, even add data to tables in a grid view reminiscent of Microsoft Access. The UI was based around the standard ribbon bar, object window on the left and working pane on the right. As of now this tool is still pre-alpha and it seems like a basic tool that will facilitate rapid database development on cloud. When asked about general availability, no dates were given but calendar 2010 was indicated as the target. More information can be found at:      http://sqlfascination.com/2009/11/20/pdc-09-day-3-sql-azure-and-codename-houston-announcement/   Tinu, O

    Read the article

  • New Horizons now less than 6 Au from Pluto

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/22/new-horizons-now-less-than-6-au-from-pluto.aspxThe New Horizons space craft as of 13:00 hrs UTC yesterday is now within 6 AU of  its next target - Pluto. While this is still a long way yet from Pluto, it is the closest spacecraft to Pluto. Closest approach is now some 752 days away on 14 July 2015.There are very interesting articles on the investigation work the New Horizons team has done to plan the path of New Horizons through the Plutonian system:http://pluto.jhuapl.edu/overview/piPerspective.phphttp://pluto.jhuapl.edu/news_center/news/20130614.phpWell done New Horizons team!

    Read the article

  • concurrency::accelerator

    - by Daniel Moth
    Overview An accelerator represents a "target" on which C++ AMP code can execute and where data can reside. Typically (but not necessarily) an accelerator is a GPU device. Accelerators are represented in C++ AMP as objects of the accelerator class. For many scenarios, you do not need to obtain an accelerator object, since the runtime has a notion of a default accelerator, which is what it thinks is the best one in the system. Examples where you need to deal with accelerator objects are if you need to pick your own accelerator (based on your specific criteria), or if you need to use more than one accelerators from your app. Construction and operator usage You can query and obtain a std::vector of all the accelerators on your system, which the runtime discovers on startup. Beyond enumerating accelerators, you can also create one directly by passing to the constructor a system-wide unique path to a device if you know it (i.e. the “Device Instance Path” property for the device in Device Manager), e.g. accelerator acc(L"PCI\\VEN_1002&DEV_6898&SUBSYS_0B001002etc"); There are some predefined strings (for predefined accelerators) that you can pass to the accelerator constructor (and there are corresponding constants for those on the accelerator class itself, so you don’t have to hardcode them every time). Examples are the following: accelerator::default_accelerator represents the default accelerator that the C++ AMP runtime picks for you if you don’t pick one (the heuristics of how it picks one will be covered in a future post). Example: accelerator acc; accelerator::direct3d_ref represents the reference rasterizer emulator that simulates a direct3d device on the CPU (in a very slow manner). This emulator is available on systems with Visual Studio installed and is useful for debugging. More on debugging in general in future posts. Example: accelerator acc(accelerator::direct3d_ref); accelerator::direct3d_warp represents a target that I will cover in future blog posts. Example: accelerator acc(accelerator::direct3d_warp); accelerator::cpu_accelerator represents the CPU. In this first release the only use of this accelerator is for using the staging arrays technique that I'll cover separately. Example: accelerator acc(accelerator::cpu_accelerator); You can also create an accelerator by shallow copying another accelerator instance (via the corresponding constructor) or simply assigning it to another accelerator instance (via the operator overloading of =). Speaking of operator overloading, you can also compare (for equality and inequality) two accelerator objects between them to determine if they refer to the same underlying device. Querying accelerator characteristics Given an accelerator object, you can access its description, version, device path, size of dedicated memory in KB, whether it is some kind of emulator, whether it has a display attached, whether it supports double precision, and whether it was created with the debugging layer enabled for extensive error reporting. Below is example code that accesses some of the properties; in your real code you'd probably be checking one or more of them in order to pick an accelerator (or check that the default one is good enough for your specific workload): void inspect_accelerator(concurrency::accelerator acc) { std::wcout << "New accelerator: " << acc.description << std::endl; std::wcout << "is_debug = " << acc.is_debug << std::endl; std::wcout << "is_emulated = " << acc.is_emulated << std::endl; std::wcout << "dedicated_memory = " << acc.dedicated_memory << std::endl; std::wcout << "device_path = " << acc.device_path << std::endl; std::wcout << "has_display = " << acc.has_display << std::endl; std::wcout << "version = " << (acc.version >> 16) << '.' << (acc.version & 0xFFFF) << std::endl; } accelerator_view In my next blog post I'll cover a related class: accelerator_view. Suffice to say here that each accelerator may have from 1..n related accelerator_view objects. You can get the accelerator_view from an accelerator via the default_view property, or create new ones by invoking the create_view method that creates an accelerator_view object for you (by also accepting a queuing_mode enum value of deferred or immediate that we'll also explore in the next blog post). Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Expression Blend 4 available and training resources

    - by pluginbaby
    As you may know Expression Blend 4 has shipped! It is still part of Expression Studio, which now comes in 2 “flavors”: Expression Studio 4 Ultimate Expression Blend SketchFlow Expression Web + SuperPreview Expression Encoder Expression Design Expression Studio 4 Web Professional Expression Web + SuperPreview Expression Encoder Expression Design So the version you want for Silverlight is Expression Studio 4 Ultimate (because you can’t buy Expression Blend alone). Expression Blend is an awesome tool but might be difficult to approach at first, specially for people coming from Visual Studio… this tool target designers so it can takes time for a developer to get comfortable enough. Good news is the availability of a free “Blend Fundamentals Training” which contains plenty of resources to help you master Expression Blend in 5 days: http://www.microsoft.com/expression/resources/BlendTraining/   Also don’t forget the .toolbox: http://www.microsoft.com/design/toolbox/ This Microsoft website contains courses and tutorials to help you learn UI Design for Silverlight with Expression Blend.

    Read the article

  • Doing your first mock with JustMock

    In this post, i will start with a  more traditional mocking example that  includes a fund transfer scenario between two different currency account using JustMock.Our target interface that we will be mocking looks similar to: public interface ICurrencyService { float GetConversionRate(string fromCurrency, string toCurrency); } Moving forward the SUT or class that will be consuming the  service and will be invoked by user [provided that the ICurrencyService will be passed...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Dynamic Memory Allocation and Memory Management

    - by Bunkai.Satori
    In an average game, there are hundreds or maybe thousands of objects in the scene. Is it completely correct to allocate memory for all objects, including gun shots (bullets), dynamically via default new()? Should I create any memory pool for dynamic allocation, or is there no need to bother with this? What if the target platform are mobile devices? Is there a need for a memory manager in a mobile game, please? Thank you. Language Used: C++; Currently developed under Windows, but planned to be ported later.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Exporting SWF With Transparent Background For Scaleform/UDK

    - by Alex Shepard
    After looking all over in the UDN and forums I have yet to find a solution for this: I am currently using Flash CS3 and Actionscript 2.0 to build my scaleform menus and I can use them in the UDK. For various reasons I can't use the handy plugin Autodesk supplies to enable this export so I publish my flash documents to swf the old fassioned way and manually use the gfxexport.exe tool to get my .gfx file. I can then import into the UDK the normal way. My problem is that the flash movies that I import will not alpha blend even if the material is set to blend in the alpha channel of the target render texture. My project images are set up to export properly. My classpath for Actionscript 2.0 is set to the correct location. My HTML publish settings have window mode set to Transparent Windowless. Is it possible to export without the scaleform flash extension and still get the desired effects and if so how might I do so? Am I merely missing something from my project setup?

    Read the article

  • Can I share a TV card?

    - by Boris
    My environment: 2 PCs, a desktop and a laptop, both on Oneiric they are connected together by ethernet wire nfs-common is installed and configured: the desktop is the server a TV tuner card is installed on the desktop, I can watch TV with the software Me-TV It works fine, TV on desktop, and my network too: I share folders thanks to NFS. But I would like more: How can I share my TV tuner card from the desktop and be able to watch TV on the laptop too? If possible I would like a solution that allows me to keep using the software Me-TV, on both PCs. I bet that there is a solution to create a fake TV card on the 2nd PC with xNBD. I'm trying xnbd-server --target /dev/dvb/adapter0/demux0 but I cant make it work. Trying to understand some examples of xNBD command lines, it seems to be meant only for sharing disk player. If someone as ever used xNBD, he's welcome.

    Read the article

  • OS Analytics with Oracle Enterprise Manager (by Eran Steiner)

    - by Zeynep Koch
    Oracle Enterprise Manager Ops Center provides a feature called "OS Analytics". This feature allows you to get a better understanding of how the Operating System is being utilized. You can research the historical usage as well as real time data. This post will show how you can benefit from OS Analytics and how it works behind the scenes. The recording of our call to discuss this blog is available here: https://oracleconferencing.webex.com/oracleconferencing/ldr.php?AT=pb&SP=MC&rID=71517797&rKey=4ec9d4a3508564b3Download the presentation here See also: Blog about Alert Monitoring and Problem Notification Blog about Using Operational Profiles to Install Packages and other content Here is quick summary of what you can do with OS Analytics in Ops Center: View historical charts and real time value of CPU, memory, network and disk utilization Find the top CPU and Memory processes in real time or at a certain historical day Determine proper monitoring thresholds based on historical data Drill down into a process details Where to start To start with OS Analytics, choose the OS asset in the tree and click the Analytics tab. You can see the CPU utilization, Memory utilization and Network utilization, along with the current real time top 5 processes in each category (click the image to see a larger version):  In the above screen, you can click each of the top 5 processes to see a more detailed view of that process. Here is an example of one of the processes: One of the cool things is that you can see the process tree for this process along with some port binding and open file descriptors. Next, click the "Processes" tab to see real time information of all the processes on the machine: An interesting column is the "Target" column. If you configured Ops Center to work with Enterprise Manager Cloud Control, then the two products will talk to each other and Ops Center will display the correlated target from Cloud Control in this table. If you are only using Ops Center - this column will remain empty. The "Threshold" tab is particularly helpful - you can view historical trends of different monitored values and based on the graph - determine what the monitoring values should be: You can ask Ops Center to suggest monitoring levels based on the historical values or you can set your own. The different colors in the graph represent the current set levels: Red for critical, Yellow for warning and Blue for Information, allowing you to quickly see how they're positioned against real data. It's important to note that when looking at longer periods, Ops Center smooths out the data and uses averages. So when looking at values such as CPU Usage, try shorter time frames which are more detailed, such as one hour or one day. Applying new monitoring values When first applying new values to monitored attributes - a popup will come up asking if it's OK to get you out of the current Monitoring Policy. This is OK if you want to either have custom monitoring for a specific machine, or if you want to use this current machine as a "Gold image" and extract a Monitoring Policy from it. You can later apply the new Monitoring Policy to other machines and also set it as a default Monitoring Profile. Once you're done with applying the different monitoring values, you can review and change them in the "Monitoring" tab. You can also click the "Extract a Monitoring Policy" in the actions pane on the right to save all the new values to a new Monitoring Policy, which can then be found under "Plan Management" -> "Monitoring Policies". Visiting the past Under the "History" tab you can "go back in time". This is very helpful when you know that a machine was busy a few hours ago (perhaps in the middle of the night?), but you were not around to take a look at it in real time. Here's a view into yesterday's data on one of the machines: You can see an interesting CPU spike happening at around 3:30 am along with some memory use. In the bottom table you can see the top 5 CPU and Memory consumers at the requested time. Very quickly you can see that this spike is related to the Solaris 11 IPS repository synchronization process using the "pkgrecv" command. The "time machine" doesn't stop here - you can also view historical data to determine which of the zones was the busiest at a given time: Under the hood The data collected is stored on each of the agents under /var/opt/sun/xvm/analytics/historical/ An "os.zip" file exists for the main OS. Inside you will find many small text files, named after the Epoch time stamp in which they were taken If you have any zones, there will be a file called "guests.zip" containing the same small files for all the zones, as well as a folder with the name of the zone along with "os.zip" in it If this is the Enterprise Controller or the Proxy Controller, you will have folders called "proxy" and "sat" in which you will find the "os.zip" for that controller The actual script collecting the data can be viewed for debugging purposes as well: On Linux, the location is: /opt/sun/xvmoc/private/os_analytics/collect If you would like to redirect all the standard error into a file for debugging, touch the following file and the output will go into it: # touch /tmp/.collect.stderr   The temporary data is collected under /var/opt/sun/xvm/analytics/.collectdb until it is zipped. If you would like to review the properties for the Analytics, you can view those per each agent in /opt/sun/n1gc/lib/XVM.properties. Find the section "Analytics configurable properties for OS and VSC" to view the Analytics specific values. I hope you find this helpful! Please post questions in the comments below. Eran Steiner

    Read the article

  • Oracle Database 11g Helps Control Exponential Data Growth

    - by [email protected]
    The 2010 ESG annual customer survey is now available. As part of it, ESG interviewed 300 customers about their IT priorities and, unsurprisingly, "Manage Data Growth" is top of the list. Perhaps less self-evident is the proposed solution to target this prime concern: "Often overlooked because it is a database platform, Oracle Database 11g offers additional capabilities such as automatic storage management (ASM), advanced data compression, and data protection that make managing data growth much easier for organizations of any size." The paper goes on to discuss these capabilities and highlights their potential benefits. Oracle Database 11g Helps Control Exponential Database Growth - a worthwhile read for anyone having to deal with rapidly increasing amounts of data. Download your free copy here.

    Read the article

  • Web Site Performance and Assembly Versioning – Part 2 Versioning Combined Files Using Subversion

    - by capgpilk
    Ok so it took a while to post this second part. Many apologies, we had a big roll out of a new platform at work and many things had to get sidelined. So this is the second part in a short series of website performance and using versioning to help improve it. Minification and Concatination of JavaScript and CSS Files Versioning Combined Files Using Subversion – this post Versioning Combined Files Using Mercurial – published shortly In the previous post we used AjaxMin to shrink js and css files then concatenated them into one file each which had the file name of site-script.combined.min.js and site-style.combined.min.css. These file names are fine, but you can configure IIS 7 to cache these static files and so lower the amount of data transferred between server and client. This is done by editing the response headers in IIS. 1. In IIS7 Manager, choose the directory where these files are located and select HTTP Response Headers. 2. Check the Expire Web Content and set a time period well into the future. 3. When refreshing the web page, the server will respond with HTTP 304 forcing the browser to retrieve the file from its cache. 4. As can be seen in FireBug, the Cache-Control header has a max age of 31536000 seconds which equates to 365 days.   The server will always send this HTTP 304 message unless the file changes forcing it to send new content. To help force this we can change the file name based on the latest build using the SVN revision number in the filename. So we have lowered data transfer on content that hasn’t changed, but forced it to be sent when you have made a change to the css or js files. Now to get the SVN revision number in to the file name. 1. Import the MSBuildCommunityTasks targets which can be dowloaded from here. 1: <Import Project="$(MSBuildExtensionsPath) 2: \MSBuildCommunityTasks 3: \MSBuild.Community.Tasks.Targets" /> 2. Edit the BeforeBuild target to call out to svn and get the latest revision 1: <SvnVersion LocalPath="$(MSBuildProjectDirectory)" 2: ToolPath="$(ProgramFiles)\VisualSVN Server\bin"> 3: <Output TaskParameter="Revision" PropertyName="Revision" /> 4: </SvnVersion> 3. Set it to update the project AssemblyInfo.cs file for the svn revision. 1: <FileUpdate Files="Properties\AssemblyInfo.cs" 2: Regex="(\d+)\.(\d+)\.(\d+)\.(\d+)" 3: ReplacementText="$1.$2.$3.$(Revision)" /> 4. Now edit the AfterBuild target to get the full dll version. You could combine these two steps and just get the version from svn, I am working on one project that updates the AssemblyInfo file and another project that allows manual editing of the file, but needs that version within the file name; so I just combined the two for this post. 1: <MSBuild.ExtensionPack.Framework.Assembly 2: TaskAction="GetInfo" 3: NetAssembly="$(OutputPath)\mydll.dll"> 4: <Output TaskParameter="OutputItems" ItemName="Info" /> 5: </MSBuild.ExtensionPack.Framework.Assembly> 6: <Message Text="Version: %(Info.AssemblyVersion)" 7: Importance="High" /> 5. Use this Info.AssemblyVersion to write out the combined css and js files as described in the last post. 1: <WriteLinestoFile File="Scripts\site-%(Info.AssemblyVersion).combined.min.js" 2: Lines="@(JSLinesSite)" Overwrite="true" />   In the next post I will cover doing the same, but for a Mercurial repository.

    Read the article

  • Drawing beam effect in UDK?

    - by sgrif
    I'm having trouble drawing a particle effect between two actors in UDK - Both the source and the target are not static objects, so as far as I can tell I need to do it in the code not in kismet. Here's what I've got at the moment and it seems to not be doing anything at all. Ideas? BeamEmitter[0] = new(self) class'UTParticleSystemComponent'; BeamEmitter[0].SetAbsolute(false, false, false); BeamEmitter[0].SetTemplate(BeamTemplate[0]); BeamEmitter[0].SetTickGroup(TG_PostUpdateWork); BeamEmitter[0].bUpdateComponentInTick = true; self.AttachComponent(BeamEmitter[0]); BeamEmitter[0].SetBeamEndPoint(2, tarPos); BeamEmitter[0].ActivateSystem();

    Read the article

  • What is the best practice to move sprites using mouse order in Tile games?

    - by Robin-Hood
    I am trying to make my first Tile-game using XNA. I have no problem drawing the map layers using TiledLib from codeplex, but, now I want to give sprite an (order) to move to a specific position on map, by selecting the sprite (left mouse click) and then right mouse click somewhere on the map to specify the target position. I don’t know what is the best practice to move sprite this way, considering that there may be collision objects in the direct path. what is the best practice to do this? Is there any demo covering this issue? thanks. BTW: I couldn’t upload snapshot because of my low score :(

    Read the article

  • 10.04 drops to '(initramfs)' prompt on boot

    - by David Yenor
    I'm not sure what to do to solve the problem, I received this error upon boot. mount: mounting /dev/disk/by-uuid/f60e3ce2-0237-45bb-bf07-581d0090cbc7 on /root failed: Invalid argument mount: mounting /dev on /root/dev failed: No such file or directory mount: mounting /sys on /root/sys failed: No such file or directory mount: mounting /proc on /root/proc failed: No such file or directory Target filesystem doesn't have /sbin/init. No init found. Try passing init= bootarg. BusyBox v1.13.3 (Ubuntu 1:1.13.3-1ubuntu11) built-in shell (ash) Enter 'help' for a list of built-in commands. (initramfs) _

    Read the article

  • How to install gnome shell extensions offline?

    - by nosklo
    I know how to go to the https://extensions.gnome.org/ website and download gnome-shell extensions, but now I need to install some extensions available there on a computer without any internet access at all. It is in a internal corporate network and there's no way I can get outside internet access on it, so I must find another way. I can copy files in a usb disk. At my home computer, I have found my extensions at ~/.local/share/gnome-shell/extensions/ but just copying this folder to the target corporate computer didn't do the trick. Running gnome-tweak-tool gives me a "Install Shell Extension" button but I don't know how to download an extension in a format acceptable to install using this button. I have tried to point to the folder above but it didn't work either. What do I need to do?

    Read the article

  • 13 Mobile Development Questions to Think About

    - by Eric Johnson
    Why is this important to our business? How is this different than how we develop today?   Why now? What new skills and technologies are required? What devices and standards should we target? Is context-awareness important? Where will applications be deployed? What enterprise capabilities are required to support mobile? What is the roadmap? How is this related or not related to the portal? Are we targeting internal apps, external apps, or both?   Who will consume the apps and with what? How does this change IT service offerings?

    Read the article

  • Best Practices For Database Consolidation On Exadata - New Whitepapers

    - by Javier Puerta
     Best Practices For Database Consolidation On Exadata Database Machine (Nov. 2011) Consolidation can minimize idle resources, maximize efficiency, and lower costs when you host multiple schemas, applications or databases on a target system. Consolidation is a core enabler for deploying Oracle database on public and private clouds.This paper provides the Exadata Database Machine (Exadata) consolidation best practices to setup and manage systems and applications for maximum stability and availability:Download here Oracle Exadata Database Machine Consolidation: Segregating Databases and Roles (Sep. 2011) This paper is focused on the aspects of segregating databases from each other in a platform consolidation environment on an Oracle Exadata Database Machine. Platform consolidation is the consolidation of multiple databases on to a single Oracle Exadata Database Machine. When multiple databases are consolidated on a single Database Machine, it may be necessary to isolate certain database components or functions in order to meet business requirements and provide best practices for a secure consolidation. In this paper we outline the use of Oracle Exadata database-scoped security to securely separate database management and provide a detailed case study that illustrates the best practices. Download here

    Read the article

< Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >