Search Results

Search found 27011 results on 1081 pages for 'look and feel'.

Page 114/1081 | < Previous Page | 110 111 112 113 114 115 116 117 118 119 120 121  | Next Page >

  • The DOS DEBUG Environment

    - by MarkPearl
    Today I thought I would go back in time and have a look at the DEBUG command that has been available since the beginning of dawn in DOS, MS-DOS and Microsoft Windows. up to today I always knew it was there, but had no clue on how to use it so for those that are interested this might be a great geek party trick to pull out when you want the awe the younger generation and want to show them what “real” programming is about. But wait, you will have to do it relatively quickly as it seems like DEBUG was finally dumped from the Windows group in Windows 7. Not to worry, pull out that Windows XP box which will get you even more geek points and you can still poke DEBUG a bit. So, for those that are interested and want to find out a bit about the history of DEBUG read the wiki link here. That all put aside, lets get our hands dirty.. How to Start DEBUG in Windows Make sure your version of Windows supports DEBUG. Open up a console window Make a directory where you want to play with debug – in my instance I called it C221 Enter the directory and type Debug You will get a response with a – as illustrated in the image below…   The commands available in DEBUG There are several commands available in DEBUG. The most common ones are A (Assemble) R (Register) T (Trace) G (Go) D (Dump or Display) U (Unassemble) E (Enter) P (Proceed) N (Name) L (Load) W (Write) H (Hexadecimal) I (Input) O (Output) Q (Quit) I am not going to cover all these commands, but what I will do is go through a few of them briefly. A is for Assemble Command (to write code) The A command translates assembly language statements into machine code. It is quite useful for writing small assembly programs. Below I have written a very basic assembly program. The code typed out is as follows mov ax,0015 mov cx,0023 sub cx,ax mov [120],al mov cl,[120]A nop R is for Register (to jump to a point in memory) The r command turns out to be one of the most frequent commands you will use in DEBUG. It allows you to view the contents of registers and to change their values. It can be used with the following combinations… R – Displays the contents of all the registers R f – Displays the flags register R register_name – Displays the contents of a specific register All three methods are illustrated in the image above T is for Trace (To execute a program step by step) The t command allows us to execute the program step by step. Before we can trace the program we need to point back to the beginning of the program. We do this by typing in r ip, which moves us back to memory point 100. We then type trace which executes the first line of code (line 100) (As shown in the image below starting from the red arrow). You can see from the above image that the register AX now contains 0015 as per our instruction mov ax,0015 You can also see that the IP points to line 0103 which has the MOV CX,0023 command If we type t again it will now execute the second line of the program which moves 23 in the cx register. Again, we can see that the line of code was executed and that the CX register now holds the value of 23. What I would like to highlight now is the section underlined in red. These are the status flags. The ones we are going to look at now are 1st (NV), 4th (PL), 5th (NZ) & 8th (NC) NV means no overflow, the alternate would be OV PL means that the sign of the previous arithmetic operation was Plus, the alternate would be NG (Negative) NZ means that the results of the previous arithmetic operation operation was Not Zero, the alternate would be ZR NC means that No final Carry resulted from the previous arithmetic operation. CY means that there was a final Carry. We could now follow this process of entering the t command until the entire program is executed line by line. G is for Go (To execute a program up to a certain line number) So we have looked at executing a program line by line, which is fine if your program is minuscule BUT totally unpractical if we have any decent sized program. A quicker way to run some lines of code is to use the G command. The ‘g’ command executes a program up to a certain specified point. It can be used in connection with the the reset IP command. You would set your initial point and then run the G command with the line you want to end on. P is for Proceed (Similar to trace but slightly more streamlined) Another command similar to trace is the proceed command. All that the p command does is if it is called and it encounters a CALL, INT or LOOP command it terminates the program execution. In the example below I modified our example program to include an int 20 at the end of it as illustrated in the image below… Then when executing the code when I encountered the int 20 command I typed the P command and the program terminated normally (illustrated below). D is for Dump (or for those more polite Display) So, we have all these assembly lines of code, but if you have ever opened up an exe or com file in a text/hex editor, it looks nothing like assembly code. The D command is a way that we can see what our code looks like in memory (or in a hex editor). If we examined the image above, we can see that Debug is storing our assembly code with each instruction following immediately after the previous one. For instance in memory address 110 we have int and 111 we have 20. If we examine the dump of memory we can see at memory point 110 CD is stored and at memory point 111 20 is stored. U is for Unassemble (or Convert Machine code to Assembly Code) So up to now we have gone through a bunch of commands, but probably one of the most useful is the U command. Let’s say we don’t understand machine code so well and so instead we want to see it in its equivalent assembly code. We can type the U command followed by the start memory point, followed by the end memory point and it will show us the assembly code equivalent of the machine code. E is for a bunch of things… The E command can be used for a bunch of things… One example is to enter data or machine code instructions directly into memory. It can also be used to display the contents of memory locations. I am not going to worry to much about it in this post. N / L / W is for Name, Load & Write So we have written out assembly code in debug, and now we want to save it to disk, or write it as a com file or load it. This is where the N, L & W command come in handy. The n command is used to give a name to the executable program file and is pretty simple to use. The w command is a bit trickier. It saves to disk all the memory between point bx and point cx so you need to specify the bx memory address and the cx memory address for it to write your code. Let’s look at an example illustrated below. You do this by calling the r command followed by the either bx or cx. We can then go to the directory where we were working and will see the new file with the name we specified. The L command is relatively simple. You would first specify the name of the file you would like to load using the N command, and then call the L command. Q is for Quit The last command that I am going to write about in this post is the Q command. Simply put, calling the Q command exits DEBUG. Commands we did not Cover Out of the standard DEBUG commands we covered A, T, G, D, U, E, P, R, N, L & W. The ones we did not cover were H, I & O – I might make mention of these in a later post, but for the basics they are not really needed. Some Useful Resources Please note this post is based on the COS2213 handouts for UNISA A Guide to DEBUG - http://mirror.href.com/thestarman/asm/debug/debug.htm#NT

    Read the article

  • .NET Framework 4 on Windows Azure coming

    The Azure Team blogged today about the upcoming .NET 4 support.  Read it here var addthis_pub="guybarrette";...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • .NET development on a “Retina” MacBook Pro

    - by Jeff
    The rumor that Apple would release a super high resolution version of its 15” laptop has been around for quite awhile, and one I watched closely. After more than three years with a 17” MacBook Pro, and all of the screen real estate it offered, I was ready to replace it with something much lighter. It was a fantastic machine, still doing 6 or 7 hours after 460 charge cycles, but I wanted lighter and faster. With the SSD I put in it, I was able to sell it for $750. The appeal of higher resolution goes way back, when I would plug into a projector and scale up. Consolas, as it turns out, is a nice looking font for code when it’s bigger. While I have mostly indifference for iOS, I have to admit that a higher dot pitch on the iPhone and iPad is pretty to look at. So I ordered the new 15” “Retina” model as soon as the Apple Store went live with it, and got it seven days later. I’ve been primarily using Parallels as my VM of choice from OS X for about five years. They recently put out an update for compatibility with the display, though I’m not entirely sure what that means. I figured there would have to be some messing around to get the VM to look right. The combination that seems to work best is this: Set the display in OS X to “more room,” which is roughly the equivalent of the 1920x1200 that my 17” did. It’s not as stunning as the text at the default 1440x900 equivalent (in OS X), but it’s still quite readable. Parallels still doesn’t entirely know what to do with the high resolution, though what it should do is somehow treat it as native. That flaw aside, I set the Windows 7 scaling to 125%, and it generally looks pretty good. It’s not really taking advantage of the display for sharpness, but hopefully that’s something that Parallels will figure out. Screen tweaking aside, I got the base model with 16 gigs of RAM, so I give the VM 8. I can boot a Windows 7 VM in 9 seconds. Nine seconds! The Windows Experience Index scores are all 7 and above, except for graphics, which are both at 6. Again, that’s in a VM. It’s hard to believe there’s something so fast in a little slim package like that. Hopefully this one gets me at least three years, like the last one.

    Read the article

  • Autoscaling in a modern world&hellip;. Part 3

    - by Steve Loethen
    The Wasabi Hands on Labs give you a good look at the basic mechanics, but I don’t find the setup too practical.  Using a local console application to host the Autoscaler and rules files is probably the (IMHO) least likely architecture.  Far more common would be hosting in a service on premise (if you want to have the Autoscaler local) or most likely, host it in a Azure role of it’s own.  I chose to go the Azure route. First step was to get the rules.xml and the services.xml files into the cloud.  I tend to be a “one step at a time” sort of guy, so running the console application with the rules sitting in a Azure hosted set of blobs seemed to be the logical first step.  Here are the steps: 1) Create a container in the storage account you wish to use.  Name does not matter, you will get a chance to set the container name (as well as the file names) in the app.config 2) Copy the two files from where you created them to your  container.  I used the same files I had locally.  I made the container public to eliminate security issues, but in the final application, a bit of security needs to be applied (one problem at a time).  The content type was set to text/xml.  I found one reference claiming the importance of this step, and it makes sense. 3) Adjust the app.config to set the location of the files.  This will let you set all the storage account and key information needed to reach into the cloud form your console application.  The sections of your app.config will look like this: <rulesStores> <add name="Blob Rules Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.Rules.Configuration.BlobXmlFileRulesStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="rules.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </rulesStores> <serviceInformationStores> <add name="Blob Service Information Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.ServiceModel.Configuration.BlobXmlFileServiceInformationStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="services.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </serviceInformationStores> Once I had the files up in the sky, I renamed the local copies to just to make my self feel better about the application using the correct set of rules and services.  Deploy the web role to the cloud.  Once it is up and running, start the console application.  You should find the application scales up and down in response to the buttons on the web site.  Tune in next time for moving the hosting of the Autoscaler to a worker role, discussions on getting the logging information into diagnostics into storage, and a set of discussions about certs and how they play a role.

    Read the article

  • Using Lightbox with _Screen

    Although, I have to admit that I discovered Bernard Bout's ideas and concepts about implementing a lightbox in Visual FoxPro quite a while ago, there was no "spare" time in active projects that allowed me to have a closer look into his solution(s). Luckily, these days I received a demand to focus a little bit more on this. This article describes the steps about how to integrate and make use of Bernard's lightbox class in combination with _Screen in Visual FoxPro. The requirement in this project was to be able to visually lock the whole application (_Screen area) and guide the user to an information that should not be ignored easily. Depending on the importance any current user activity should be interrupted and focus put onto the notification. Getting the "meat", eh, source code Please check out Bernard's blog on Foxite directly in order to get the latest and greatest version. As time of writing this article I use version 6.0 as described in this blog entry: The Fastest Lightbox Ever The Lightbox class is sub-classed from the imgCanvas class from the GdiPlusX project on VFPx and therefore you need to have the source code of GdiPlusX as well, and integrate it into your development environment. The version I use is available here: Release GDIPlusX 1.20 As soon as you open the bbGdiLightbox class the first it, VFP might ask you to update the reference to the gdiplusx.vcx. As we have the sources, no problem and you have access to Bernard's code. The class itself is pretty easy to understand, some properties that you do not need to change and three methods: Setup(), ShowLightbox() and BeforeDraw() The challenge - _Screen or not? Reading Bernard's article about the fastest lightbox ever, he states the following: "The class will only work on a form. It will not support any other containers" Really? And what about _Screen? Isn't that a form class, too? Yes, of course it is but nonetheless trying to use _Screen directly will fail. Well, let's have look at the code to see why: WITH This .Left = 0 .Top = 0 .Height = ThisForm.Height .Width = ThisForm.Width .ZOrder(0) .Visible = .F.ENDWITH During the setup of the lightbox as well as while capturing the image as replacement for your forms and controls, the object reference Thisform is used. Which is a little bit restrictive to my opinion but let's continue. The second issue lies in the method ShowLightbox() and introduced by the call of .Bitmap.FromScreen(): Lparameters tlVisiblilty* tlVisiblilty - show or hide (T/F)* grab a screen dump with controlsIF tlVisiblilty Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = IIF(ThisForm.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = IIF(ThisForm.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing loCaptureBmp = .Bitmap.FromScreen(ThisForm.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; ThisForm.Width ,; ThisForm.Height) ENDWITH * save it to a property This.capturebmp = loCaptureBmp ThisForm.SetAll("Visible",.F.) This.DraW() This.Visible = .T.ELSE ThisForm.SetAll("Visible",.T.) This.Visible = .F.ENDIF My first trials in using the class ended in an exception - GdiPlusError:OutOfMemory - thrown by the Bitmap object. Frankly speaking, this happened mainly because of my lack of knowledge about GdiPlusX. After reading some documentation, especially about the FromScreen() method I experimented a little bit. Capturing the visible area of _Screen actually was not the real problem but the dimensions I specified for the bitmap. The modifications - step by step First of all, it is to get rid of restrictive object references on Thisform and to change them into either This.Parent or more generic into This.oForm (even better: This.oControl). The Lightbox.Setup() method now sets the necessary object reference like so: *====================================================================* Initial setup* Default value: This.oControl = "This.Parent"* Alternative: This.oControl = "_Screen"*====================================================================With This .oControl = Evaluate(.oControl) If Vartype(.oControl) == T_OBJECT .Anchor = 0 .Left = 0 .Top = 0 .Width = .oControl.Width .Height = .oControl.Height .Anchor = 15 .ZOrder(0) .Visible = .F. EndIfEndwith Also, based on other developers' comments in Bernard articles on his lightbox concept and evolution I found the source code to handle the differences between a form and _Screen and goes into Lightbox.ShowLightbox() like this: *====================================================================* tlVisibility - show or hide (T/F)* grab a screen dump with controls*====================================================================Lparameters tlVisibility Local loControl m.loControl = This.oControl If m.tlVisibility Local loCaptureBmp As xfcBitmap Local lnTitleHeight, lnLeftBorder, lnTopBorder, lcImage, loImage lnTitleHeight = Iif(m.loControl.TitleBar = 1,Sysmetric(9),0) lnLeftBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(3)) lnTopBorder = Iif(m.loControl.BorderStyle < 2,0,Sysmetric(4)) With _Screen.System.Drawing If Upper(m.loControl.Name) == Upper("Screen") loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd) Else loCaptureBmp = .Bitmap.FromScreen(m.loControl.HWnd,; lnLeftBorder,; lnTopBorder+lnTitleHeight,; m.loControl.Width ,; m.loControl.Height) EndIf Endwith * save it to a property This.CaptureBmp = loCaptureBmp m.loControl.SetAll("Visible",.F.) This.Draw() This.Visible = .T. Else This.CaptureBmp = .Null. m.loControl.SetAll("Visible",.T.) This.Visible = .F. Endif {loadposition content_adsense} Are we done? Almost... Although, Bernard says it clearly in his article: "Just drop the class on a form and call it as shown." It did not come clear to my mind in the first place with _Screen, but, yeah, he is right. Dropping the class on a form provides a permanent link between those two classes, it creates a valid This.Parent object reference. Bearing in mind that the lightbox class can not be "dropped" on the _Screen, we have to create the same type of binding during runtime execution like so: *====================================================================* Create global lightbox component*==================================================================== Local llOk, loException As Exception m.llOk = .F. m.loException = .Null. If Not Vartype(_Screen.Lightbox) == "O" Try _Screen.AddObject("Lightbox", "bbGdiLightbox") Catch To m.loException Assert .F. Message m.loException.Message EndTry EndIf m.llOk = (Vartype(_Screen.Lightbox) == "O")Return m.llOk Through runtime instantiation we create a valid binding to This.Parent in the lightbox object and the code works as expected with _Screen. Ease your life: Use properties instead of constants Having a closer look at the BeforeDraw() method might wet your appetite to simplify the code a little bit. Looking at the sample screenshots in Bernard's article you see several forms in different colors. This got me to modify the code like so: *====================================================================* Apply the actual lightbox effect on the captured bitmap.*====================================================================If Vartype(This.CaptureBmp) == T_OBJECT Local loGfx As xfcGraphics loGfx = This.oGfx With _Screen.System.Drawing loGfx.DrawImage(This.CaptureBmp,This.Rectangle,This.Rectangle,.GraphicsUnit.Pixel) * change the colours as needed here * possible colours are (220,128,0,0),(220,0,0,128) etc. loBrush = .SolidBrush.New(.Color.FromArgb( ; This.Opacity, .Color.FromRGB(This.BorderColor))) loGfx.FillRectangle(loBrush,This.Rectangle) EndwithEndif Create an additional property Opacity to specify the grade of translucency you would like to have without the need to change the code in each instance of the class. This way you only need to change the values of Opacity and BorderColor to tweak the appearance of your lightbox. This could be quite helpful to signalize different levels of importance (ie. green, yellow, orange, red, etc...) of notifications to the users of the application. Final thoughts Using the lightbox concept in combination with _Screen instead of forms is possible. Already Jim Wiggins comments in Bernard's article to loop through the _Screen.Forms collection in order to cascade the lightbox visibility to all active forms. Good idea. But honestly, I believe that instead of looping all forms one could use _Screen.SetAll("ShowLightbox", .T./.F., "Form") with Form.ShowLightbox_Access method to gain more speed. The modifications described above might provide even more features to your applications while consuming less resources and performance. Additionally, the restrictions to capture only forms does not exist anymore. Using _Screen you are able to capture and cover anything. The captured area of _Screen does not include any toolbars, docked windows, or menus. Therefore, it is advised to take this concept on a higher level and to combine it with additional classes that handle the state of toolbars, docked windows and menus. Which I did for the customer's project.

    Read the article

  • SQLAuthority News SQL Server Cheat Sheet from MidnightDBA

    When I read the article from MidnightDBA (I should say MidnightDBAs because it is about Jen and Sean) regarding T-SQL for the Absentminded DBA, my natural reaction was that it is a perfect extension.A year ago around the same month, I had created SQL Server Cheatsheet. I have distributed a lot of copies of it [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SQLAuthority News Meeting with Allen Bailochan Tuladhar An Unlimited Experience

    Allen TuladharI recently came back from my 9-day trip in Nepal and I must say that this is one of the best trips I had in my lifetime. Allen Bailochan Tuladhar is a wonderful person and an extreme enthusiast for Microsoft Technology. Allen is the Chief Executive Officer of Unlimited Technologies Pvt Ltd., Country Manager [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Sweet JavaFX App on the Winter Olympics Website

    - by kerry
    Though it may be old news for people following JavaFX closely, I have just run across the JavaFX application on the Winter Olympics website.  Slick transitions and useful data make this a great example of what JavaFX can do.  I think it’s really cool that you can look at past olympics as well as the current year. Maybe this will help generate a little buzz around JavaFX. Check out the application on vancouver2010.com

    Read the article

  • TSAM 11gR1

    - by todd.little
    The Tuxedo System and Application Monitor (TSAM) 11gR1 release provides powerful new application monitoring capabilities, as well as significant improvements in ease of use. The first thing users will notice is the completely redesigned user interface in the TSAM console. Based on Oracle ADF, the console is much easier to navigate, provides a Web 2.0 style interface with dynamically updating panels, and a look and feel familiar to those that have used Oracle Enterprise Manager. Monitoring data can be viewed in both tabular and graphical form and exported to Excel for further analysis. A number of new metrics are collected and displayed in this release. Call path monitoring now displays CPU time, message size, total transport time, and client address giving even more end-to-end information about a specific Tuxedo request. As well the call path display has been completely revamped to make it much easier to see the branches of the call path. The call pattern display now provides statistics on successful vs failed calls, system and application failures, and end-to-end average elapsed time. Service monitoring now displays minimum and maximum message size, CPU usage, and client address. System server monitoring now includes monitoring the SALT gateway servers to provide detailed performance metrics about those servers. Perhaps the most significant new feature is the consolidation of alert definitions and policy management. In previous versions of TSAM, some alerts were defined and checked on the monitored systems while others were defined and checked in the console. Policy management could be performed on both the monitored node via environment variable or command, as well as from the console. Now all alert definitions and policy definitions are only made using the console. For alerts this means that regardless of where the alert is evaluated it is defined in one and only one place. Thus the plug-in alert mechanism of previous releases can now be managed using the TSAM console, making SLA alert definition much easier and cleaner. Finally there is support in TSAM for monitoring rehosted mainframe applications. The newly announced Oracle Tuxedo Application Runtime for CICS and Batch can be monitored in the TSAM console using traditional mainframe views of the application such as regions. Look for a future blog entry with more details on this as well as some entries providing a glimpse of the console. TSAM gives users a single point for monitoring the performance of all of their Tuxedo applications.

    Read the article

  • SQLAuthority News Speaking Sessions at TechEd India 3 Sessions 1 Panel Discussion

    Microsoft Tech-Ed India 2010 is considered as the major Technology event of the year for various IT professionals and developers. This event will feature a comprehensive forum in order to learn, connect, explore, and evolve the current technologies we have today. I would recommend this event to you since here you will learn about todays [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • FREE Windows Azure evening in London on April 15th including FREE access to Windows Azure

    - by Eric Nelson
    [Did I overdo the use of FREE in the title? :-)] April 12th to 16th is Microsoft Tech Days – 5 days of sessions on Visual Studio 2010 through to Windows 7 Phone Series. Many of these days are now full (Tip - Thursday still has room if rich client applications is your thing) but the good news is the development community in the UK has pulled together an awesome series of “fringe events” during April in London and elsewhere in the UK. There are sessions on Silverlight, SQL Server 2008 R2, Sharepoint 2010 and … the Windows Azure Platform. The UK AzureNET user group is planning to put on a great evening and AzureNET will be giving away hundreds of free subscriptions to the Windows Azure Platform during the evening. The subscription includes up to 20 Windows Azure Compute nodes and 3 SQL Azure databases for you to play with over the 2 weeks following the event. This is a great opportunity to really explore the Windows Azure Platform in detail – without a credit card! Register now! (and you might also want to join the UK Fans of Azure Community while I have your attention) FYI The Thursday day time event includes an introduction to Windows Azure session delivered by my colleague David – which would be an ideal session to attend if you are new to Azure and want to get the most out of the evening session. 7:00pm: See the difference: How Windows Azure helped build a new way of giving Simon Evans and James Broome (@broomej) They will cover the business context for Azure and then go into patterns used and lessons learnt from the project....as well as showing off the app of course! 8:00pm: UK AzureNET update 8:15pm: NoSQL databases or: How I learned to love the hash table Mark Rendle (@markrendle) In this session Mark will look at how Azure Table Service works and how to use it. We’ll look briefly at the high-level Data Services SDK, talk about its limitations, and then quickly move on to the REST API and how to use it to improve performance and reduce costs. We’ll make-up some pretend real-world problems and solve them in new and interesting ways. We’ll denormalise data (for fun and profit). We’ll talk about how certain social networking sites can deal with huge volumes of data so quickly, and why it sometimes goes wrong. Check out the complete list of fringe events which covers the UK fairly well:

    Read the article

  • New T-SQL Features in SQL Server 2011

    - by Divya Agrawal
    SQL Server 2011 (or Denali) CTP is now available and can be downloaded at http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6a04f16f-f6be-4f92-9c92-f7e5677d91f9&displaylang=en SQL Server 2011 has several major enhancements including a new look for SSMS. SSMS is now   similar to Visual Studio   with greatly improved Intellisense support. This article we will focus on the T-SQL Enhancements in SQL Server 2011. The main [...]

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • Fun with Aggregates

    - by Paul White
    There are interesting things to be learned from even the simplest queries.  For example, imagine you are given the task of writing a query to list AdventureWorks product names where the product has at least one entry in the transaction history table, but fewer than ten. One possible query to meet that specification is: SELECT p.Name FROM Production.Product AS p JOIN Production.TransactionHistory AS th ON p.ProductID = th.ProductID GROUP BY p.ProductID, p.Name HAVING COUNT_BIG(*) < 10; That query correctly returns 23 rows (execution plan and data sample shown below): The execution plan looks a bit different from the written form of the query: the base tables are accessed in reverse order, and the aggregation is performed before the join.  The general idea is to read all rows from the history table, compute the count of rows grouped by ProductID, merge join the results to the Product table on ProductID, and finally filter to only return rows where the count is less than ten. This ‘fully-optimized’ plan has an estimated cost of around 0.33 units.  The reason for the quote marks there is that this plan is not quite as optimal as it could be – surely it would make sense to push the Filter down past the join too?  To answer that, let’s look at some other ways to formulate this query.  This being SQL, there are any number of ways to write logically-equivalent query specifications, so we’ll just look at a couple of interesting ones.  The first query is an attempt to reverse-engineer T-SQL from the optimized query plan shown above.  It joins the result of pre-aggregating the history table to the Product table before filtering: SELECT p.Name FROM ( SELECT th.ProductID, cnt = COUNT_BIG(*) FROM Production.TransactionHistory AS th GROUP BY th.ProductID ) AS q1 JOIN Production.Product AS p ON p.ProductID = q1.ProductID WHERE q1.cnt < 10; Perhaps a little surprisingly, we get a slightly different execution plan: The results are the same (23 rows) but this time the Filter is pushed below the join!  The optimizer chooses nested loops for the join, because the cardinality estimate for rows passing the Filter is a bit low (estimate 1 versus 23 actual), though you can force a merge join with a hint and the Filter still appears below the join.  In yet another variation, the < 10 predicate can be ‘manually pushed’ by specifying it in a HAVING clause in the “q1” sub-query instead of in the WHERE clause as written above. The reason this predicate can be pushed past the join in this query form, but not in the original formulation is simply an optimizer limitation – it does make efforts (primarily during the simplification phase) to encourage logically-equivalent query specifications to produce the same execution plan, but the implementation is not completely comprehensive. Moving on to a second example, the following query specification results from phrasing the requirement as “list the products where there exists fewer than ten correlated rows in the history table”: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) < 10 ); Unfortunately, this query produces an incorrect result (86 rows): The problem is that it lists products with no history rows, though the reasons are interesting.  The COUNT_BIG(*) in the EXISTS clause is a scalar aggregate (meaning there is no GROUP BY clause) and scalar aggregates always produce a value, even when the input is an empty set.  In the case of the COUNT aggregate, the result of aggregating the empty set is zero (the other standard aggregates produce a NULL).  To make the point really clear, let’s look at product 709, which happens to be one for which no history rows exist: -- Scalar aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709;   -- Vector aggregate SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = 709 GROUP BY th.ProductID; The estimated execution plans for these two statements are almost identical: You might expect the Stream Aggregate to have a Group By for the second statement, but this is not the case.  The query includes an equality comparison to a constant value (709), so all qualified rows are guaranteed to have the same value for ProductID and the Group By is optimized away. In fact there are some minor differences between the two plans (the first is auto-parameterized and qualifies for trivial plan, whereas the second is not auto-parameterized and requires cost-based optimization), but there is nothing to indicate that one is a scalar aggregate and the other is a vector aggregate.  This is something I would like to see exposed in show plan so I suggested it on Connect.  Anyway, the results of running the two queries show the difference at runtime: The scalar aggregate (no GROUP BY) returns a result of zero, whereas the vector aggregate (with a GROUP BY clause) returns nothing at all.  Returning to our EXISTS query, we could ‘fix’ it by changing the HAVING clause to reject rows where the scalar aggregate returns zero: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID HAVING COUNT_BIG(*) BETWEEN 1 AND 9 ); The query now returns the correct 23 rows: Unfortunately, the execution plan is less efficient now – it has an estimated cost of 0.78 compared to 0.33 for the earlier plans.  Let’s try adding a redundant GROUP BY instead of changing the HAVING clause: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY th.ProductID HAVING COUNT_BIG(*) < 10 ); Not only do we now get correct results (23 rows), this is the execution plan: I like to compare that plan to quantum physics: if you don’t find it shocking, you haven’t understood it properly :)  The simple addition of a redundant GROUP BY has resulted in the EXISTS form of the query being transformed into exactly the same optimal plan we found earlier.  What’s more, in SQL Server 2008 and later, we can replace the odd-looking GROUP BY with an explicit GROUP BY on the empty set: SELECT p.Name FROM Production.Product AS p WHERE EXISTS ( SELECT * FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ); I offer that as an alternative because some people find it more intuitive (and it perhaps has more geek value too).  Whichever way you prefer, it’s rather satisfying to note that the result of the sub-query does not exist for a particular correlated value where a vector aggregate is used (the scalar COUNT aggregate always returns a value, even if zero, so it always ‘EXISTS’ regardless which ProductID is logically being evaluated). The following query forms also produce the optimal plan and correct results, so long as a vector aggregate is used (you can probably find more equivalent query forms): WHERE Clause SELECT p.Name FROM Production.Product AS p WHERE ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) < 10; APPLY SELECT p.Name FROM Production.Product AS p CROSS APPLY ( SELECT NULL FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () HAVING COUNT_BIG(*) < 10 ) AS ca (dummy); FROM Clause SELECT q1.Name FROM ( SELECT p.Name, cnt = ( SELECT COUNT_BIG(*) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID GROUP BY () ) FROM Production.Product AS p ) AS q1 WHERE q1.cnt < 10; This last example uses SUM(1) instead of COUNT and does not require a vector aggregate…you should be able to work out why :) SELECT q.Name FROM ( SELECT p.Name, cnt = ( SELECT SUM(1) FROM Production.TransactionHistory AS th WHERE th.ProductID = p.ProductID ) FROM Production.Product AS p ) AS q WHERE q.cnt < 10; The semantics of SQL aggregates are rather odd in places.  It definitely pays to get to know the rules, and to be careful to check whether your queries are using scalar or vector aggregates.  As we have seen, query plans do not show in which ‘mode’ an aggregate is running and getting it wrong can cause poor performance, wrong results, or both. © 2012 Paul White Twitter: @SQL_Kiwi email: [email protected]

    Read the article

  • DevConnections VS 2010 Issue

    The latest issue of DevConnections is focused around the Visual Studio 2010 launch. One of the ads is a brand new Visual Studio ad (click to expand).  Looks like the infinite loop is everywhere. var addthis_pub="guybarrette";...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How should I remember what I was doing and why on a project 3 months back?

    - by TheIndependentAquarius
    I was working on this project 3 months back, and then suddenly another urgent project appeared and I was asked to shift my attention there. Now, from tomorrow I'll be heading back to my old project and I realize that I do not remember what exactly was I doing and where to start! I wish to know how to document the project such that anytime I look back it shouldn't take me more than a few minutes to get going from wherever I left!

    Read the article

  • Vampires – Folklore, Fantasy, and Fact

    - by Akemi Iwaya
    Halloween is practically here, so what better time is there than now to look into the history of vampires? Michael Molina has put together a great presentation looking at the folklore and types of vampires throughout history, sorting facts from fiction, and more in the TED-Ed channel’s latest video. Vampires: Folklore, fantasy and fact – Michael Molina [YouTube]     

    Read the article

  • Chose the Right Zen Cart Developer For Your Shopping Cart

    Zen Cart is an easy and flexible shopping cart solution for most ecommerce sites. Companies can now hire the best Zen Cart developers from the software development market with relative ease. This article briefly describes Zen Cart as a shopping cart development tool and takes a look at Zen Cart developers.

    Read the article

  • I am speaking at the Lubbock .Net User Group on March 29th

    If you live in the area, or if you are a student at Texas Tech University, come on out to the Lubbock .Net Users Group.  More details to follow. http://www.ldnug.net/ ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Interview with Tim Danaher - Editor of Retail Week

    - by sarah.taylor(at)oracle.com
    Last week I caught up with Tim Danaher from Retail Week about the judging process for the Oracle Retail Week Awards.  It was great to get Tim's perspective on the retail industry and his thoughts on emerging trends in the entries this year.   The Oracle Retail Week Awards are going to be very exciting this year and I'm very priviledged to be presenting awards to winners again.  The awards ceremony is on March 17th - if you're coming then I look forward to seeing you there. 

    Read the article

  • Oracle Security Inside Out Newsletter – June Edition

    - by Troy Kitch
    This month’s Information In Depth Newsletter, Security Inside Out Edition is now available. In this edition we look at the Gartner Security and Risk Management Summit 2011, discuss safeguarding data from threats with Oracle Database Vault, and reveal the latest database security webcasts, videos, training, events and more. If you don’t have a subscription to this bi-monthly security information update, you can sign up here at the bottom of the page.

    Read the article

  • Darth Vader Wins Big [Humorous Comic]

    - by Asian Angel
    Everyone’s favorite Star Wars villain receives a notice in the mail saying he won a contest, but did he really hit it big or is karma dishing out some payback? Note: Make sure to take a close look at the letter shown in the second panel for an additional laugh! Darth Vader Wins Big (Dorkly) [via Neatorama] HTG Explains: Why Linux Doesn’t Need Defragmenting How to Convert News Feeds to Ebooks with Calibre How To Customize Your Wallpaper with Google Image Searches, RSS Feeds, and More

    Read the article

< Previous Page | 110 111 112 113 114 115 116 117 118 119 120 121  | Next Page >