Search Results

Search found 3458 results on 139 pages for 'concurrent queue'.

Page 116/139 | < Previous Page | 112 113 114 115 116 117 118 119 120 121 122 123  | Next Page >

  • Windows Azure Emulators On Your Desktop

    - by BuckWoody
    Many people feel they have to set up a full Azure subscription online to try out and develop on Windows Azure. But you don’t have to do that right away. In fact, you can download the Windows Azure Compute Emulator – a “cloud development environment” – right on your desktop. No, it’s not for production use, and no, you won’t have other people using your system as a cloud provider, and yes, there are some differences with Production Windows Azure, but you’ll be able code, run, test, diagnose, watch, change and configure code without having any connection to the Internet at all. The best thing about this approach is that when you are ready to deploy the code you’ve been testing, a few clicks deploys it to your subscription when you make one.   So what deep-magic does it take to run such a thing right on your laptop or even a Virtual PC? Well, it’s actually not all that difficult. You simply download and install the Windows Azure SDK (you can even get a free version of Visual Studio for it to run on – you’re welcome) from here: http://msdn.microsoft.com/en-us/windowsazure/cc974146.aspx   This SDK will also install the Windows Azure Compute Emulator and the Windows Azure Storage Emulator – and then you’re all set. Right-click the icon for Visual Studio and select “Run as Administrator”:    Now open a new “Cloud” type of project:   Add your Web and Worker Roles that you want to code:   And when you’re done with your design, press F5 to start the desktop version of Azure:   Want to learn more about what’s happening underneath? Right-click the tray icon with the Azure logo, and select the two emulators to see what they are doing:          In the configuration files, you’ll see a “Use Development Storage” setting. You can call the BLOB, Table or Queue storage and it will all run on your desktop. When you’re ready to deploy everything to Windows Azure, you simply change the configuration settings and add the storage keys and so on that you need.   Want to learn more about all this?   Overview of the Windows Azure Compute Emulator: http://msdn.microsoft.com/en-us/library/gg432968.aspx Overview of the Windows Azure Storage Emulator: http://msdn.microsoft.com/en-us/library/gg432983.aspx January 2011 Training Kit: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=413E88F8-5966-4A83-B309-53B7B77EDF78&displaylang=en      

    Read the article

  • College Courses through distance learning

    - by Matt
    I realize this isn't really a programming question, but didn't really know where to post this in the stackexchange and because I am a computer science major i thought id ask here. This is pretty unique to the programmer community since my degree is about 95% programming. I have 1 semester left, but i work full time. I would like to finish up in December, but to make things easier i like to take online classes whenever I can. So, my question is does anyone know of any colleges that offer distance learning courses for computer science? I have been searching around and found a few potential classes, but not sure yet. I would like to gather some classes and see what i can get approval for. Class I need: Only need one C SC 437 Geometric Algorithms C SC 445 Algorithms C SC 473 Automata Only need one C SC 452 Operating Systems C SC 453 Compilers/Systems Software While i only need of each of the above courses i still need to take two more electives. These also have to be upper 400 level classes. So i can take multiple in each category. Some other classes I can take are: CSC 447 - Green Computing CSC 425 - Computer Networking CSC 460 - Database Design CSC 466 - Computer Security I hoping to take one or two of these courses over the summer. If not, then online over the regular semester would be ok too. Any help in helping find these classes would be awesome. Maybe you went to a college that offered distance learning. Some of these classes may be considered to be graduate courses too. Descriptions are listed below if you need. Thanks! Descriptions Computer Security This is an introductory course covering the fundamentals of computer security. In particular, the course will cover basic concepts of computer security such as threat models and security policies, and will show how these concepts apply to specific areas such as communication security, software security, operating systems security, network security, web security, and hardware-based security. Computer Networking Theory and practice of computer networks, emphasizing the principles underlying the design of network software and the role of the communications system in distributed computing. Topics include routing, flow and congestion control, end-to-end protocols, and multicast. Database Design Functions of a database system. Data modeling and logical database design. Query languages and query optimization. Efficient data storage and access. Database access through standalone and web applications. Green Computing This course covers fundamental principles of energy management faced by designers of hardware, operating systems, and data centers. We will explore basic energy management option in individual components such as CPUs, network interfaces, hard drives, memory. We will further present the energy management policies at the operating system level that consider performance vs. energy saving tradeoffs. Finally we will consider large scale data centers where energy management is done at multiple layers from individual components in the system to shutting down entries subset of machines. We will also discuss energy generation and delivery and well as cooling issues in large data centers. Compilers/Systems Software Basic concepts of compilation and related systems software. Topics include lexical analysis, parsing, semantic analysis, code generation; assemblers, loaders, linkers; debuggers. Operating Systems Concepts of modern operating systems; concurrent processes; process synchronization and communication; resource allocation; kernels; deadlock; memory management; file systems. Algorithms Introduction to the design and analysis of algorithms: basic analysis techniques (asymptotics, sums, recurrences); basic design techniques (divide and conquer, dynamic programming, greedy, amortization); acquiring an algorithm repertoire (sorting, median finding, strong components, spanning trees, shortest paths, maximum flow, string matching); and handling intractability (approximation algorithms, branch and bound). Automata Introduction to models of computation (finite automata, pushdown automata, Turing machines), representations of languages (regular expressions, context-free grammars), and the basic hierarchy of languages (regular, context-free, decidable, and undecidable languages). Geometric Algorithms The study of algorithms for geometric objects, using a computational geometry approach, with an emphasis on applications for graphics, VLSI, GIS, robotics, and sensor networks. Topics may include the representation and overlaying of maps, finding nearest neighbors, solving linear programming problems, and searching geometric databases.

    Read the article

  • Explaining Explain Plan Notes for Auto DOP

    - by jean-pierre.dijcks
    I've recently gotten some questions around "why do I not see a parallel plan" while Auto DOP is on (I think)...? It is probably worthwhile to quickly go over some of the ways to find out what Auto DOP was thinking. In general, there is no need to go tracing sessions and look under the hood. The thing to start with is to do an explain plan on your statement and to look at the parameter settings on the system. Parameter Settings to Look At First and foremost, make sure that parallel_degree_policy = AUTO. If you have that parameter set to LIMITED you will not have queuing and we will only do the auto magic if your objects are set to default parallel (so no degree specified). Next you want to look at the value of parallel_degree_limit. It is typically set to CPU, which in default settings equates to the Default DOP of the system. If you are testing Auto DOP itself and the impact it has on performance you may want to leave it at this CPU setting. If you are running concurrent statements you may want to give this some more thoughts. See here for more information. In general, do stick with either CPU or with a specific number. For now avoid the IO setting as I've seen some mixed results with that... In 11.2.0.2 you should also check that IO Calibrate has been run. Best to simply do a: SQL> select * from V$IO_CALIBRATION_STATUS; STATUS        CALIBRATION_TIME ------------- ---------------------------------------------------------------- READY         04-JAN-11 10.04.13.104 AM You should see that your IO Calibrate is READY and therefore Auto DOP is ready. In any case, if you did not run the IO Calibrate step you will get the following note in the explain plan: Note -----    - automatic DOP: skipped because of IO calibrate statistics are missing One more note on calibrate_io, if you do not have asynchronous IO enabled you will see:  ERROR at line 1: ORA-56708: Could not find any datafiles with asynchronous i/o capability ORA-06512: at "SYS.DBMS_RMIN", line 463 ORA-06512: at "SYS.DBMS_RESOURCE_MANAGER", line 1296 ORA-06512: at line 7 While this is changed in some fixes to the calibrate procedure, you should really consider switching asynchronous IO on for your data warehouse. Explain Plan Explanation To see the notes that are shown and explained here (and the above little snippet ) you can use a simple explain plan mechanism. There should  be no need to add +parallel etc. explain plan for <statement> SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY()); Auto DOP The note structure displaying why Auto DOP did not work (with the exception noted above on IO Calibrate) is like this: Automatic degree of parallelism is disabled: <reason> These are the reason codes: Parameter -  parallel_degree_policy = manual which will not allow Auto DOP to kick in  Hint - One of the following hints are used NOPARALLEL, PARALLEL(1), PARALLEL(MANUAL) Outline - A SQL outline of an older version (before 11.2) is used SQL property restriction - The statement type does not allow for parallel processing Rule-based mode - Instead of the Cost Based Optimizer the system is using the RBO Recursive SQL statement - The statement type does not allow for parallel processing pq disabled/pdml disabled/pddl disabled - For some reason (alter session?) parallelism is disabled Limited mode but no parallel objects referenced - your parallel_degree_policy = LIMITED and no objects in the statement are decorated with the default PARALLEL degree. In most cases all objects have a specific degree in which case Auto DOP will honor that degree. Parallel Degree Limited When Auto DOP does it works you may see the cap you imposed with parallel_degree_limit showing up in the note section of the explain plan: Note -----    - automatic DOP: Computed Degree of Parallelism is 16 because of degree limit This is an obvious indication that your are being capped for this statement. There is one quite interesting one that happens when you are being capped at DOP = 1. First of you get a serial plan and the note changes slightly in that it does not indicate it is being capped (we hope to update the note at some point in time to be more specific). It right now looks like this: Note -----    - automatic DOP: Computed Degree of Parallelism is 1 Dynamic Sampling With 11.2.0.2 you will start seeing another interesting change in parallel plans, and since we are talking about the note section here, I figured we throw this in for good measure. If we deem the parallel (!) statement complex enough, we will enact dynamic sampling on your query. This happens as long as you did not change the default for dynamic sampling on the system. The note looks like this: Note ----- - dynamic sampling used for this statement (level=5)

    Read the article

  • SQL SERVER – BACKUPIO, BACKUPBUFFER – Wait Type – Day 14 of 28

    - by pinaldave
    Backup is the most important task for any database admin. Your data is at risk if you are not performing database backup. Honestly, I have seen many DBAs who know how to take backups but do not know how to restore it. (Sigh!) In this blog post we are going to discuss about one of my real experiences with one of my clients – BACKUPIO. When I started to deal with it, I really had no idea how to fix the issue. However, after fixing it at two places, I think I know why this is happening but at the same time, I am not sure the fix is the best solution. The reality is that the fix is not a solution but a workaround (which is not optimal, but get your things done). From Book On-Line: BACKUPIO Occurs when a backup task is waiting for data, or is waiting for a buffer in which to store data. This type is not typical, except when a task is waiting for a tape mount. BACKUPBUFFER Occurs when a backup task is waiting for data, or is waiting for a buffer in which to store data. This type is not typical, except when a task is waiting for a tape mount. BACKUPIO and BACKUPBUFFER Explanation: This wait stats will occur when you are taking the backup on the tape or any other extremely slow backup system. Reducing BACKUPIO and BACKUPBUFFER wait: In my recent consultancy, backup on tape was very slow probably because the tape system was very old. During the time when I explained this wait type reason in the consultancy, the owners immediately decided to replace the tape drive with an alternate system. They had a small SAN enclosure not being used on side, which they decided to re-purpose. After a week, I had received an email from their DBA, saying that the wait stats have reduced drastically. At another location, my client was using a third party tool (please don’t ask me the name of the tool) to take backup. This tool was compressing the backup along with taking backup. I have had a very good experience with this tool almost all the time except this one sparse experience. When I tried to take backup using the native SQL Server compressed backup, there was a very small value on this wait type and the backup was much faster. However, when I attempted with the third party backup tool, this value was very high again and was taking much more time. The third party tool had many other features but the client was not using these features. We end up using the native SQL Server Compressed backup and it worked very well. If I get to see this higher in my future consultancy, I will try to understand this wait type much more in detail and so probably I would able to come to some solid solution. Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • JDK bug migration: components and subcomponents

    - by darcy
    One subtask of the JDK migration from the legacy bug tracking system to JIRA was reclassifying bugs from a three-level taxonomy in the legacy system, (product, category, subcategory), to a fundamentally two-level scheme in our customized JIRA instance, (component, subcomponent). In the JDK JIRA system, there is technically a third project-level classification, but by design a large majority of JDK-related bugs were migrated into a single "JDK" project. In the end, over 450 legacy subcategories were simplified into about 120 subcomponents in JIRA. The 120 subcomponents are distributed among 17 components. A rule of thumb used was that a subcategory had to have at least 50 bugs in it for it to be retained. Below is a listing the component / subcomponent classification of the JDK JIRA project along with some notes and guidance on which OpenJDK email addresses cover different areas. Eventually, a separate incidents project to host new issues filed at bugs.sun.com will use a slightly simplified version of this scheme. The preponderance of bugs and subcomponents for the JDK are in library-related areas, with components named foo-libs and subcomponents primarily named after packages. While there was an overall condensation of subcomponents in the migration, in some cases long-standing informal divisions in core libraries based on naming conventions in the description were promoted to formal subcomponents. For example, hundreds of bugs in the java.util subcomponent whose descriptions started with "(coll)" were moved into java.util:collections. Likewise, java.lang bugs starting with "(reflect)" and "(proxy)" were moved into java.lang:reflect. client-libs (Predominantly discussed on 2d-dev and awt-dev and swing-dev.) 2d demo java.awt java.awt:i18n java.beans (See beans-dev.) javax.accessibility javax.imageio javax.sound (See sound-dev.) javax.swing core-libs (See core-libs-dev.) java.io java.io:serialization java.lang java.lang.invoke java.lang:class_loading java.lang:reflect java.math java.net java.nio (Discussed on nio-dev.) java.nio.charsets java.rmi java.sql java.sql:bridge java.text java.util java.util.concurrent java.util.jar java.util.logging java.util.regex java.util:collections java.util:i18n javax.annotation.processing javax.lang.model javax.naming (JNDI) javax.script javax.script:javascript javax.sql org.openjdk.jigsaw (See jigsaw-dev.) security-libs (See security-dev.) java.security javax.crypto (JCE: includes SunJCE/MSCAPI/UCRYPTO/ECC) javax.crypto:pkcs11 (JCE: PKCS11 only) javax.net.ssl (JSSE, includes javax.security.cert) javax.security javax.smartcardio javax.xml.crypto org.ietf.jgss org.ietf.jgss:krb5 other-libs corba corba:idl corba:orb corba:rmi-iiop javadb other (When no other subcomponent is more appropriate; use judiciously.) Most of the subcomponents in the xml component are related to jaxp. xml jax-ws jaxb javax.xml.parsers (JAXP) javax.xml.stream (JAXP) javax.xml.transform (JAXP) javax.xml.validation (JAXP) javax.xml.xpath (JAXP) jaxp (JAXP) org.w3c.dom (JAXP) org.xml.sax (JAXP) For OpenJDK, most JVM-related bugs are connected to the HotSpot Java virtual machine. hotspot (See hotspot-dev.) build compiler (See hotspot-compiler-dev.) gc (garbage collection, see hotspot-gc-dev.) jfr (Java Flight Recorder) jni (Java Native Interface) jvmti (JVM Tool Interface) mvm (Multi-Tasking Virtual Machine) runtime (See hotspot-runtime-dev.) svc (Servicability) test core-svc (See serviceability-dev.) debugger java.lang.instrument java.lang.management javax.management tools The full JDK bug database contains entries related to legacy virtual machines that predate HotSpot as well as retired APIs. vm-legacy jit (Sun Exact VM) jit_symantec (Symantec VM, before Exact VM) jvmdi (JVM Debug Interface ) jvmpi (JVM Profiler Interface ) runtime (Exact VM Runtime) Notable command line tools in the $JDK/bin directory have corresponding subcomponents. tools appletviewer apt (See compiler-dev.) hprof jar javac (See compiler-dev.) javadoc(tool) (See compiler-dev.) javah (See compiler-dev.) javap (See compiler-dev.) jconsole launcher updaters (Timezone updaters, etc.) visualvm Some aspects of JDK infrastructure directly affect JDK Hg repositories, but other do not. infrastructure build (See build-dev and build-infra-dev.) licensing (Covers updates to the third party readme, licenses, and similar files.) release_eng (Release engineering) staging (Staging of web pages related to JDK releases.) The specification subcomponent encompasses the formal language and virtual machine specifications. specification language (The Java Language Specification) vm (The Java Virtual Machine Specification) The code for the deploy and install areas is not currently included in OpenJDK. deploy deployment_toolkit plugin webstart install auto_update install servicetags In the JDK, there are a number of cross-cutting concerns whose organization is essentially orthogonal to other areas. Since these areas generally have dedicated teams working on them, it is easier to find bugs of interest if these bugs are grouped first by their cross-cutting component rather than by the affected technology. docs doclet guides hotspot release_notes tools tutorial embedded build hotspot libraries globalization locale-data translation performance hotspot libraries The list of subcomponents will no doubt grow over time, but my inclination is to resist that growth since the addition of each subcomponent makes the system as a whole more complicated and harder to use. When the system gets closer to being externalized, I plan to post more blog entries describing recommended use of various custom fields in the JDK project.

    Read the article

  • General Availability of Oracle E-Business Suite Plug-in 12.1.0.1.0

    - by user810030
    We are pleased to announce the General Availability of Oracle E-Business Suite Plug-in 12.1.0.1.0, an integral part of Application Management Suite for Oracle E-Business Suite. The combination of Enterprise Manager 12c Cloud Control and the Application Management Suite combines functionality that was available in the standalone Application Management Pack for Oracle E-Business Suite and Application Change Management Pack for Oracle E-Business Suite with Oracle’s Real User Experience Insight product and the Configuration & Compliance capabilities to provide the most complete solution for managing Oracle E-Business Suite applications. The features that were available in the standalone management packs are now packaged into the Oracle E-Business Suite Plug-in, which is now fully certified with Oracle Enterprise Manager 12c Cloud Control. This latest plug-in extends Cloud Control with E-Business Suite specific system management capabilities and features enhanced change management support. This new release offers the following key enhancements: General: Oracle Enterprise Manager 12c Base Platform uptake: All components of the management suite are certified with Oracle Enterprise Manager 12c Cloud Control. Security: Privilege Delegation: The Oracle E-Business Suite Plug-in now extends Enterprise Manager’s privilege delegation through Sudo and PowerBroker to Oracle E-Business Suite Plug-in host targets.  Privileges and Roles for Managing Oracle E-Business Suite: This release includes new ready-to-use target and resource privileges to monitor, manage, and perform Change Management functionality.  Cloning: Named Credentials Uptake in Cloning: The Clone module transactions now let users leverage the Named Credential feature introduced in Enterprise Manager 12c, thereby passing all the benefits of Named Credentials features in Enterprise Manager to the Oracle E-Business Suite Plug-in users.  Smart Clone improvements: The new and improved Smart Clone UI supports the adding of "pre and post" custom steps to a copy of the ready-to-use cloning deployment procedure. Now a user can pass parameters to the custom steps through the interview screen of the UI as well as pass ready-to-use parameters to the custom steps.  Change Management Enhancements Application Management Suite for Oracle E-Business Suite provides a centralized view to monitor and orchestrate changes (both functional and technical) across multiple Oracle E-Business Suite systems. In this latest release, it provides even more control and flexibility in managing Oracle E-Business Suite changes. Customization Manager: Support for longer file names: Customization Manager now handles file names up to thirty characters in length.  Patch Manager: Queuing of Patch Manager Runs: This feature allows patch runs to queue up if Patch Manager detects a specific target is in a blackout state.  Multi-node system patching: The patch run interview has been enhanced to allow Enterprise Manager Administrator to choose which nodes adpatch will run on.  New AD Administration Options: The patch run interview has been extended to include AD Administration Options "Relink Application Programs", "Generate Product Jars Files", "Generate Report Files", and "Generate Form Files".  Release Technical Details Product documentation for the plug-in is available on My Oracle Support as note 1434392.1.  The Oracle E-Business Suite Plug-in can be accessed in one of the following ways:  Fresh install  Enterprise Manager Store  Oracle Software Delivery Cloud Upgrades  Oracle Technology Network Please refer to the Application Management Pack for Oracle E-Business Suite Guide for further details.  Related Software Component Oracle Real User Experience Insight 12.1.0.0.1  Product documentation is available on Oracle Technology Network in the "Oracle Enterprise Manager 12c Release 1 (12.1) Documentation" set under the "Associated Document" tab. (http://docs.oracle.com/cd/E26370_01/index.htm)  Product may be downloaded individually from Oracle Technology Network software download page for Oracle Enterprise Manager under "Additional Enterprise Manager Downloads." (http://www.oracle.com/technetwork/oem/grid-control/downloads/index.html)  Product may also be downloaded individually from the Oracle Software Delivery Cloud. Select "Oracle Enterprise Manager" product pack, "Oracle Real User Experience Insight 12c Release 1 Media Pack for x8  Collateral Can be accessed on the Application Management Page on Oracle Technology Network

    Read the article

  • Polite busy-waiting with WRPAUSE on SPARC

    - by Dave
    Unbounded busy-waiting is an poor idea for user-space code, so we typically use spin-then-block strategies when, say, waiting for a lock to be released or some other event. If we're going to spin, even briefly, then we'd prefer to do so in a manner that minimizes performance degradation for other sibling logical processors ("strands") that share compute resources. We want to spin politely and refrain from impeding the progress and performance of other threads — ostensibly doing useful work and making progress — that run on the same core. On a SPARC T4, for instance, 8 strands will share a core, and that core has its own L1 cache and 2 pipelines. On x86 we have the PAUSE instruction, which, naively, can be thought of as a hardware "yield" operator which temporarily surrenders compute resources to threads on sibling strands. Of course this helps avoid intra-core performance interference. On the SPARC T2 our preferred busy-waiting idiom was "RD %CCR,%G0" which is a high-latency no-nop. The T4 provides a dedicated and extremely useful WRPAUSE instruction. The processor architecture manuals are the authoritative source, but briefly, WRPAUSE writes a cycle count into the the PAUSE register, which is ASR27. Barring interrupts, the processor then delays for the requested period. There's no need for the operating system to save the PAUSE register over context switches as it always resets to 0 on traps. Digressing briefly, if you use unbounded spinning then ultimately the kernel will preempt and deschedule your thread if there are other ready threads than are starving. But by using a spin-then-block strategy we can allow other ready threads to run without resorting to involuntary time-slicing, which operates on a long-ish time scale. Generally, that makes your application more responsive. In addition, by blocking voluntarily we give the operating system far more latitude regarding power management. Finally, I should note that while we have OS-level facilities like sched_yield() at our disposal, yielding almost never does what you'd want or naively expect. Returning to WRPAUSE, it's natural to ask how well it works. To help answer that question I wrote a very simple C/pthreads benchmark that launches 8 concurrent threads and binds those threads to processors 0..7. The processors are numbered geographically on the T4, so those threads will all be running on just one core. Unlike the SPARC T2, where logical CPUs 0,1,2 and 3 were assigned to the first pipeline, and CPUs 4,5,6 and 7 were assigned to the 2nd, there's no fixed mapping between CPUs and pipelines in the T4. And in some circumstances when the other 7 logical processors are idling quietly, it's possible for the remaining logical processor to leverage both pipelines. Some number T of the threads will iterate in a tight loop advancing a simple Marsaglia xor-shift pseudo-random number generator. T is a command-line argument. The main thread loops, reporting the aggregate number of PRNG steps performed collectively by those T threads in the last 10 second measurement interval. The other threads (there are 8-T of these) run in a loop busy-waiting concurrently with the T threads. We vary T between 1 and 8 threads, and report on various busy-waiting idioms. The values in the table are the aggregate number of PRNG steps completed by the set of T threads. The unit is millions of iterations per 10 seconds. For the "PRNG step" busy-waiting mode, the busy-waiting threads execute exactly the same code as the T worker threads. We can easily compute the average rate of progress for individual worker threads by dividing the aggregate score by the number of worker threads T. I should note that the PRNG steps are extremely cycle-heavy and access almost no memory, so arguably this microbenchmark is not as representative of "normal" code as it could be. And for the purposes of comparison I included a row in the table that reflects a waiting policy where the waiting threads call poll(NULL,0,1000) and block in the kernel. Obviously this isn't busy-waiting, but the data is interesting for reference. _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } _td { border: 1px green solid; } _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } Aggregate progress T = #worker threads Wait Mechanism for 8-T threadsT=1T=2T=3T=4T=5T=6T=7T=8 Park thread in poll() 32653347334833483348334833483348 no-op 415 831 124316482060249729303349 RD %ccr,%g0 "pause" 14262429269228623013316232553349 PRNG step 412 829 124616702092251029303348 WRPause(8000) 32443361333133483349334833483348 WRPause(4000) 32153308331533223347334833473348 WRPause(1000) 30853199322432513310334833483348 WRPause(500) 29173070315032223270330933483348 WRPause(250) 26942864294930773205338833483348 WRPause(100) 21552469262227902911321433303348

    Read the article

  • Improving the running time of Breadth First Search and Adjacency List creation

    - by user45957
    We are given an array of integers where all elements are between 0-9. have to start from the 1st position and reach end in minimum no of moves such that we can from an index i move 1 position back and forward i.e i-1 and i+1 and jump to any index having the same value as index i. Time Limit : 1 second Max input size : 100000 I have tried to solve this problem use a single source shortest path approach using Breadth First Search and though BFS itself is O(V+E) and runs in time the adjacency list creation takes O(n2) time and therefore overall complexity becomes O(n2). is there any way i can decrease the time complexity of adjacency list creation? or is there a better and more efficient way of solving the problem? int main(){ vector<int> v; string str; vector<int> sets[10]; cin>>str; int in; for(int i=0;i<str.length();i++){ in=str[i]-'0'; v.push_back(in); sets[in].push_back(i); } int n=v.size(); if(n==1){ cout<<"0\n"; return 0; } if(v[0]==v[n-1]){ cout<<"1\n"; return 0; } vector<int> adj[100001]; for(int i=0;i<10;i++){ for(int j=0;j<sets[i].size();j++){ if(sets[i][j]>0) adj[sets[i][j]].push_back(sets[i][j]-1); if(sets[i][j]<n-1) adj[sets[i][j]].push_back(sets[i][j]+1); for(int k=j+1;k<sets[i].size();k++){ if(abs(sets[i][j]-sets[i][k])!=1){ adj[sets[i][j]].push_back(sets[i][k]); adj[sets[i][k]].push_back(sets[i][j]); } } } } queue<int> q; q.push(0); int dist[100001]; bool visited[100001]={false}; dist[0]=0; visited[0]=true; int c=0; while(!q.empty()){ int dq=q.front(); q.pop(); c++; for(int i=0;i<adj[dq].size();i++){ if(visited[adj[dq][i]]==false){ dist[adj[dq][i]]=dist[dq]+1; visited[adj[dq][i]]=true; q.push(adj[dq][i]); } } } cout<<dist[n-1]<<"\n"; return 0; }

    Read the article

  • Windows Azure Emulators On Your Desktop

    - by BuckWoody
    Many people feel they have to set up a full Azure subscription online to try out and develop on Windows Azure. But you don’t have to do that right away. In fact, you can download the Windows Azure Compute Emulator – a “cloud development environment” – right on your desktop. No, it’s not for production use, and no, you won’t have other people using your system as a cloud provider, and yes, there are some differences with Production Windows Azure, but you’ll be able code, run, test, diagnose, watch, change and configure code without having any connection to the Internet at all. The best thing about this approach is that when you are ready to deploy the code you’ve been testing, a few clicks deploys it to your subscription when you make one.   So what deep-magic does it take to run such a thing right on your laptop or even a Virtual PC? Well, it’s actually not all that difficult. You simply download and install the Windows Azure SDK (you can even get a free version of Visual Studio for it to run on – you’re welcome) from here: http://msdn.microsoft.com/en-us/windowsazure/cc974146.aspx   This SDK will also install the Windows Azure Compute Emulator and the Windows Azure Storage Emulator – and then you’re all set. Right-click the icon for Visual Studio and select “Run as Administrator”:    Now open a new “Cloud” type of project:   Add your Web and Worker Roles that you want to code:   And when you’re done with your design, press F5 to start the desktop version of Azure:   Want to learn more about what’s happening underneath? Right-click the tray icon with the Azure logo, and select the two emulators to see what they are doing:          In the configuration files, you’ll see a “Use Development Storage” setting. You can call the BLOB, Table or Queue storage and it will all run on your desktop. When you’re ready to deploy everything to Windows Azure, you simply change the configuration settings and add the storage keys and so on that you need.   Want to learn more about all this?   Overview of the Windows Azure Compute Emulator: http://msdn.microsoft.com/en-us/library/gg432968.aspx Overview of the Windows Azure Storage Emulator: http://msdn.microsoft.com/en-us/library/gg432983.aspx January 2011 Training Kit: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=413E88F8-5966-4A83-B309-53B7B77EDF78&displaylang=en      

    Read the article

  • BizTalk: Instance Subscription: Details

    - by Leonid Ganeline
    It has interesting behavior and it is not always what we are waiting for. An orchestration can be enlisted with many subscriptions. In other word it can have several Receive shapes. Usually the first Receive uses the Activation subscription but other Receives create the Instance subscriptions. [See “Publish and Subscribe Architecture” in MSDN] Here is a sample process. This orchestration has two receives. It is a typical Sequential Convoy. [See "BizTalk Server 2004 Convoy Deep Dive" in MSDN by Stephen W. Thomas]. Let's experiment started.   There are three typical scenarios. First scenario: everything is OK Activation subscription for the Sample message is created when the orchestration the SampleProcess is enlisted. The Instance subscription is created only when the SampleProcess orchestration instance is started and it is removed when the orchestration instance is ended. So far so good, the Message_2 was delivered exactly in this time interval and was consumed. Second scenario: no consumers Three Sample_2 messages were delivered. One was delivered before the SampleProcess was started and before the instance subscription was created. Second message was delivered in the correct time interval. The third one was delivered after the SampleProcess orchestration was ended and the instance subscription was removed. Note: ·         It was not the first Sample_2 was consumed. It was first in the queue but in was not waiting, it was suspended when it was delivered to the Message Box and didn’t have any subscribers at this moment. The first and the last Sample_2 messages were Suspended (Nonresumable) in the Message Box. For each of this message we have got two (!) service instances associated with this suspended message. One service instance has the ServiceClass of Messaging, and we can see its Error Description:   The second service instance has the ServiceClass of RoutingFailureReport, and we can see its Error Description:   Third scenario: something goes wrong Two Sample_2 messages were delivered. Both were delivered in the same interval when the SampleProcess orchestration was working and the instance subscription was created and was working too. First Sample_2 was consumed. The second Sample_2 has the subscription but the subscriber, the SampleProcess orchestration, will not consume it. After the SampleProcess orchestration is ended (And only after! I will discuss this in the next article.), it is suspended (Nonresumable). In this time only one service instance associated with this kind of scenario is suspended. This service instance has the ServiceClass of Orchestration, and we can see its Error Description: In the Message tab we will see the Sample_2 message in the Suspended (Resumable) status. Note: ·         This behavior looks ambiguous. We see here the orchestration consumes the extra message(s) and gets suspended together with those extra messages. These messages are not consumed in term of “processed by orchestration”. But they are consumed in term of the “delivered to the subscriber”. The receive shape in the orchestration is not received these extra messages. But these messages are routed to the orchestration.     Unified Sequential convoy  Now one more scenario. It is the unified sequential convoy. That means the activation subscription is for the same message type as it for the instance subscription. The Sample_2 message is now the Sample message. For simplicity the SampleProcess orchestration consumes only two Sample messages. Usually the orchestration consumes a lot of messages inside loop, but now it is only two of them. First message starts the orchestration, the second message goes inside this orchestration. Then the next pair of messages follows, and so on. But if the input messages follow in shorter intervals we have got the problem. We lost messages in unpredictable manner. Note: ·         Maybe the better behavior would be if the orchestration removes the instance subscription after the message is consumed, not in the end on the orchestration. Right now it is a “feature” of the BizTalk subscription mechanism.

    Read the article

  • Subterranean IL: The ThreadLocal type

    - by Simon Cooper
    I came across ThreadLocal<T> while I was researching ConcurrentBag. To look at it, it doesn't really make much sense. What's all those extra Cn classes doing in there? Why is there a GenericHolder<T,U,V,W> class? What's going on? However, digging deeper, it's a rather ingenious solution to a tricky problem. Thread statics Declaring that a variable is thread static, that is, values assigned and read from the field is specific to the thread doing the reading, is quite easy in .NET: [ThreadStatic] private static string s_ThreadStaticField; ThreadStaticAttribute is not a pseudo-custom attribute; it is compiled as a normal attribute, but the CLR has in-built magic, activated by that attribute, to redirect accesses to the field based on the executing thread's identity. TheadStaticAttribute provides a simple solution when you want to use a single field as thread-static. What if you want to create an arbitary number of thread static variables at runtime? Thread-static fields can only be declared, and are fixed, at compile time. Prior to .NET 4, you only had one solution - thread local data slots. This is a lesser-known function of Thread that has existed since .NET 1.1: LocalDataStoreSlot threadSlot = Thread.AllocateNamedDataSlot("slot1"); string value = "foo"; Thread.SetData(threadSlot, value); string gettedValue = (string)Thread.GetData(threadSlot); Each instance of LocalStoreDataSlot mediates access to a single slot, and each slot acts like a separate thread-static field. As you can see, using thread data slots is quite cumbersome. You need to keep track of LocalDataStoreSlot objects, it's not obvious how instances of LocalDataStoreSlot correspond to individual thread-static variables, and it's not type safe. It's also relatively slow and complicated; the internal implementation consists of a whole series of classes hanging off a single thread-static field in Thread itself, using various arrays, lists, and locks for synchronization. ThreadLocal<T> is far simpler and easier to use. ThreadLocal ThreadLocal provides an abstraction around thread-static fields that allows it to be used just like any other class; it can be used as a replacement for a thread-static field, it can be used in a List<ThreadLocal<T>>, you can create as many as you need at runtime. So what does it do? It can't just have an instance-specific thread-static field, because thread-static fields have to be declared as static, and so shared between all instances of the declaring type. There's something else going on here. The values stored in instances of ThreadLocal<T> are stored in instantiations of the GenericHolder<T,U,V,W> class, which contains a single ThreadStatic field (s_value) to store the actual value. This class is then instantiated with various combinations of the Cn types for generic arguments. In .NET, each separate instantiation of a generic type has its own static state. For example, GenericHolder<int,C0,C1,C2> has a completely separate s_value field to GenericHolder<int,C1,C14,C1>. This feature is (ab)used by ThreadLocal to emulate instance thread-static fields. Every time an instance of ThreadLocal is constructed, it is assigned a unique number from the static s_currentTypeId field using Interlocked.Increment, in the FindNextTypeIndex method. The hexadecimal representation of that number then defines the specific Cn types that instantiates the GenericHolder class. That instantiation is therefore 'owned' by that instance of ThreadLocal. This gives each instance of ThreadLocal its own ThreadStatic field through a specific unique instantiation of the GenericHolder class. Although GenericHolder has four type variables, the first one is always instantiated to the type stored in the ThreadLocal<T>. This gives three free type variables, each of which can be instantiated to one of 16 types (C0 to C15). This puts an upper limit of 4096 (163) on the number of ThreadLocal<T> instances that can be created for each value of T. That is, there can be a maximum of 4096 instances of ThreadLocal<string>, and separately a maximum of 4096 instances of ThreadLocal<object>, etc. However, there is an upper limit of 16384 enforced on the total number of ThreadLocal instances in the AppDomain. This is to stop too much memory being used by thousands of instantiations of GenericHolder<T,U,V,W>, as once a type is loaded into an AppDomain it cannot be unloaded, and will continue to sit there taking up memory until the AppDomain is unloaded. The total number of ThreadLocal instances created is tracked by the ThreadLocalGlobalCounter class. So what happens when either limit is reached? Firstly, to try and stop this limit being reached, it recycles GenericHolder type indexes of ThreadLocal instances that get disposed using the s_availableIndices concurrent stack. This allows GenericHolder instantiations of disposed ThreadLocal instances to be re-used. But if there aren't any available instantiations, then ThreadLocal falls back on a standard thread local slot using TLSHolder. This makes it very important to dispose of your ThreadLocal instances if you'll be using lots of them, so the type instantiations can be recycled. The previous way of creating arbitary thread-static variables, thread data slots, was slow, clunky, and hard to use. In comparison, ThreadLocal can be used just like any other type, and each instance appears from the outside to be a non-static thread-static variable. It does this by using the CLR type system to assign each instance of ThreadLocal its own instantiated type containing a thread-static field, and so delegating a lot of the bookkeeping that thread data slots had to do to the CLR type system itself! That's a very clever use of the CLR type system.

    Read the article

  • 4 Ways Your Brand Can Jump From the Edge of Space

    - by Mike Stiles
    Can your brand’s social media content captivate the world and make it hold its collective breath? Can you put something on the screen that’s so compelling that your audience can’t look away? Will they want to make sure their friends see it so they can talk about it? If not, you’re probably not with Red Bull. I was impressed with Red Bull’s approach to social content even before Felix Baumgartner’s stunning skydive from the edge of space. And then they did this. According to Visible Measures, videos of the jump scored 50 million views in 4 days. 1,700 clips were generated from both official and organic sources. The live stream was the most watched YouTube Stream of all time (8 million concurrent viewers). The 2nd most watched live stream was…Felix’ first attempt Oct. 9. Are you ready to compete with that? I ask that question because some brands are still out there tying themselves up in knots about whether or not they should tweet. The public’s time and attention are scarce commodities, commodities they value greatly. The competition amongst brands for that time and attention is intense and going up like Felix’s capsule. If you still view your press releases as “content,” you won’t even be counted as being among the competition. Here are 5 lessons learned from Red Bull’s big leap: 1. They have a total understanding of their target market and audience. Not only do they have an understanding of it, they do something about it. They act on it. They fill the majority of their thoughts with what the audience wants. They hunger for wild applause from that audience. They want to do things that embrace the audience’s lifestyle and immerse in it so the target will identify the brand as “one of them.” Takeaway: BE your target market. 2. They deliver content that strikes the audience right where they emotionally live. If you want your content to have impact, you have to make your audience’s heart race, or make them tear up, or make them laugh. Label them “data points” all you want, but humans are emotional creatures. No message connects that’s not carried in on an emotion. Takeaway: You’re on the inside. If your content doesn’t make you say “wow,” it’s unlikely it will register with fans. 3. They put aside old school marketing and don’t let their content be degraded into a commercial. Their execs seem to understand the value in keeping a lid on the hard sell. So many brands just can’t bring themselves to disconnect advertising and social content. The result is, otherwise decent content gets contaminated with a desperation the viewer can smell a mile away. Think the Baumgartner skydive didn’t do Red Bull any good since he wasn’t drinking one on the way down while singing a jingle? Analysis company Taykey discovered that at the peak of the skydive buzz, about 1% of all online conversation was about the jump. Mentions of Red Bull constituted 1/3 of 1% of all Internet activity. Views of other Red Bull videos also shot up. Takeaway: Chill out with the ads. Your brand will get full credit for entertaining/informing fans in a relevant way, provided you do it. 4. They don’t hesitate to ask, “What can we do next”? Most corporate cultures are a virtual training facility for “we can’t do that.” Few are encouraged to innovate or think big, if think at all. Thinking big involves faith, and work. It means freedom and letting employees run a little wild with their ideas. There will always be the opportunity to let fear of everything that moves creep in and kill grand visions dead in their tracks. Experimenting must be allowed. Failure must be allowed. Red Bull didn’t think big. They thought mega. They tried to outdo themselves. Felix could have gone ahead and jumped halfway up, thinking, “This is still relatively high up. Good enough.” But that wouldn’t have left us breathless. Takeaway: Go for it. Jump. In putting up social properties and gathering fans of your brand, you’ve basically invited people to a party. A good host doesn’t just set out warm beer and stale chips because that’s inexpensive and easy. Be on the lookout for ways to make your guests walk away saying, “That was epic.”

    Read the article

  • Is my class structure good enough?

    - by Rivten
    So I wanted to try out this challenge on reddit which is mostly about how you structure your data the best you can. I decided to challenge my C++ skills. Here's how I planned this. First, there's the Game class. It deals with time and is the only class main has access to. A game has a Forest. For now, this class does not have a lot of things, only a size and a Factory. Will be put in better use when it will come to SDL-stuff I guess A Factory is the thing that deals with the Game Objects (a.k.a. Trees, Lumberjack and Bears). It has a vector of all GameObjects and a queue of Events which will be managed at the end of one month. A GameObject is an abstract class which can be updated and which can notify the Event Listener The EventListener is a class which handles all the Events of a simulation. It can recieve events from a Game Object and notify the Factory if needed, the latter will manage correctly the event. So, the Tree, Lumberjack and Bear classes all inherits from GameObject. And Sapling and Elder Tree inherits from Tree. Finally, an Event is defined by an event_type enumeration (LUMBERJACK_MAWED, SAPPLING_EVOLUTION, ...) and an event_protagonists union (a GameObject or a pair of GameObject (who killed who ?)). I was quite happy at first with this because it seems quite logic and flexible. But I ended up questionning this structure. Here's why : I dislike the fact that a GameObject need to know about the Factory. Indeed, when a Bear moves somewhere, it needs to know if there's a Lumberjack ! Or it is the Factory which handles places and objects. It would be great if a GameObject could only interact with the EventListener... or maybe it's not that much of a big deal. Wouldn't it be better if I separate the Factory in three vectors ? One for each kind of GameObject. The idea would be to optimize research. If I'm looking do delete a dead lumberjack, I would only have to look in one shorter vector rather than a very long vector. Another problem arises when I want to know if there is any particular object in a given case because I have to look for all the gameObjects and see if they are at the given case. I would tend to think that the other idea would be to use a matrix but then the issue would be that I would have empty cases (and therefore unused space). I don't really know if Sapling and Elder Tree should inherit from Tree. Indeed, a Sapling is a Tree but what about its evolution ? Should I just delete the sapling and say to the factory to create a new Tree at the exact same place ? It doesn't seem natural to me to do so. How could I improve this ? Is the design of an Event quite good ? I've never used unions before in C++ but I didn't have any other ideas about what to use. Well, I hope I have been clear enough. Thank you for taking the time to help me !

    Read the article

  • Best way to load application settings

    - by enzom83
    A simple way to keep the settings of a Java application is represented by a text file with ".properties" extension containing the identifier of each setting associated with a specific value (this value may be a number, string, date, etc..). C# uses a similar approach, but the text file must be named "App.config". In both cases, in source code you must initialize a specific class for reading settings: this class has a method that returns the value (as string) associated with the specified setting identifier. // Java example Properties config = new Properties(); config.load(...); String valueStr = config.getProperty("listening-port"); // ... // C# example NameValueCollection setting = ConfigurationManager.AppSettings; string valueStr = setting["listening-port"]; // ... In both cases we should parse strings loaded from the configuration file and assign the ??converted values to the related typed objects (parsing errors could occur during this phase). After the parsing step, we must check that the setting values ??belong to a specific domain of validity: for example, the maximum size of a queue should be a positive value, some values ??may be related (example: min < max), and so on. Suppose that the application should load the settings as soon as it starts: in other words, the first operation performed by the application is to load the settings. Any invalid values for the settings ??must be replaced automatically with default values??: if this happens to a group of related settings, those settings are all set with default values. The easiest way to perform these operations is to create a method that first parses all the settings, then checks the loaded values ??and finally sets any default values??. However maintenance is difficult if you use this approach: as the number of settings increases while developing the application, it becomes increasingly difficult to update the code. In order to solve this problem, I had thought of using the Template Method pattern, as follows. public abstract class Setting { protected abstract bool TryParseValues(); protected abstract bool CheckValues(); public abstract void SetDefaultValues(); /// <summary> /// Template Method /// </summary> public bool TrySetValuesOrDefault() { if (!TryParseValues() || !CheckValues()) { // parsing error or domain error SetDefaultValues(); return false; } return true; } } public class RangeSetting : Setting { private string minStr, maxStr; private byte min, max; public RangeSetting(string minStr, maxStr) { this.minStr = minStr; this.maxStr = maxStr; } protected override bool TryParseValues() { return (byte.TryParse(minStr, out min) && byte.TryParse(maxStr, out max)); } protected override bool CheckValues() { return (0 < min && min < max); } public override void SetDefaultValues() { min = 5; max = 10; } } The problem is that in this way we need to create a new class for each setting, even for a single value. Are there other solutions to this kind of problem? In summary: Easy maintenance: for example, the addition of one or more parameters. Extensibility: a first version of the application could read a single configuration file, but later versions may give the possibility of a multi-user setup (admin sets up a basic configuration, users can set only certain settings, etc..). Object oriented design.

    Read the article

  • motion computation from video using pyglet in python

    - by kuaywai
    Hi, I am writing a simple motion detection program but i want it to be cross platform so im using python and the pyglet library since it provides a simple way to load videos in different formats (specially wmv and mpeg). So far i have the code given below which loads the movie and plays it in a window. Now i need to: 1) grab frame at time t and t-1 2) do a subtraction to see which pixels are active for motion detection. any ideas on how to grab frames and to skip over frames and is it possible to put the pixel values into a matrix in numpy or something directly from pyglet? or should look into using something other than pyglet? thanks kuaywai import pyglet import sys window = pyglet.window.Window(resizable=True) window.set_minimum_size(320,200) window.set_caption('Motion detect 1.0') video_intro = pyglet.resource.media('movie1.wmv') player = pyglet.media.Player() player.queue(video_intro) print 'calculating movie size...' if not player.source or not player.source.video_format: sys.exit myWidth = player.source.video_format.width myHeight = player.source.video_format.height if player.source.video_format.sample_aspect 1: myWidth *= player.source.video_format.sample_aspect elif player.source.video_format.sample_aspect < 1: myHeight /= player.source.video_format.sample_aspect print 'its size is %d,%d' % (myWidth,myHeight) player.play() @window.event def on_draw(): window.clear() (w,h) = window.get_size() player.get_texture().blit(0, h-myHeight, width=myWidth, height=myHeight) pyglet.app.run()

    Read the article

  • TFS Build errors TF224003, TF215085, TF215076

    - by iamdudley
    Hi, I am using TFS2008 and VS2008. I run nightly builds for about 20 applications using one build agent and the builds are scheduled for either 1am or 2am. Most of the build succeed, however 6 of them fail regularly with similar errors. The errors are either the first two below, or the third one by itself: TF215085: An error occurred while connecting to agent \xxxx\BUILDMACHINE: TF215076: Team Foundation Build on computer BUILDMACHINE (port 9191) is not responding. (Detail Message: The request was aborted: The operation has timed out.) 11/04/2010 2:10:10 AM TF224003: An exception occurred on the build computer BUILDMACHINE: The build (vstfs:///Build/Build/2632) has already completed and cannot be started again.. TF215085: An error occurred while connecting to agent \yyyyy\BA_WKSTFSBUILD: Team Foundation services are not available from server srvtfs. Technical information (for administrator): The operation has timed out It looks to me like some kind of communication error, maybe the port gets over loaded - can this happen? Should I spread the builds out a bit more? In the build definition it says "Queue the build on the default build agent at", so I figured if I scheduled them to start at the same time they would be queued and occur sequentially. Most of the suggestions I've found online for these errors are for all or nothing scenarios where no builds work at all whereas my problem is most build but some consistently do not. Judging by the dates of the last successful builds of these 6 failing builds I believe it is the same 6 failing every night. (I'm editing the build definitions now to keep the failed builds so I can get some more info on the problem) Any help on this would be much appreciated. James.

    Read the article

  • Windows 7 - Enable Network DTC Access

    - by Russ Clark
    I have a Visual Studio 2010 Windows Forms application in which I start a transaction using the TransactionScope class. I then Receive a message from a Sql Server Broker Services message queue, which works fine. I next try to call a stored procedure from the same database with a call to my data access layer which is a Visual Studio dataset (xsd file). When I make this second call to the database I get the following error message: The MSDTC transaction manager was unable to pull the transaction from the source transaction manager due to communication problems. Possible causes are: a firewall is present and it doesn't have an exception for the MSDTC process, the two machines cannot find each other by their NetBIOS names, or the support for network transactions is not enabled for one of the two transaction managers. (Exception from HRESULT: 0x8004D02B). I've seen several posts on the web that talk about Enabling DTC access through dcomcnfg.exe, and allowing DTC to communicate through Windows Firewall. I've done those things, and am still having this problem. I know our remote database server is setup to Enable DTC access, because we are using similar transactions in other projects built with Visual Studio 2008 on Windows XP and Vista. I think there is something specific about Windows 7 and Visual Studio 2010 causing this problem, but haven't been able to find out what it is. Can anyone help with this problem?

    Read the article

  • Using RabbitMQ (Java client), is there a way to determine if network connection is closed during con

    - by MItch Branting
    I'm using RabbitMQ on RHEL 5.3 using the Java client. I have 2 nodes (machines). Node1 is consuming messages from a queue on Node2 using the Java helper class QueueingConsumer. QueueingConsumer consumer = new QueueingConsumer(channel); channel.basicConsume("MyQueueOnNode2", noAck, consumer); while (true) { QueueingConsumer.Delivery delivery = consumer.nextDelivery(); ... Process message - delivery.getBody() } If the interface is brought down on Node1 or Node2 (e.g. ifconfig eth1 down), the client (above) never knows the network isn't there anymore. Does RabbitMQ provide some type of configuration on the Java client that can be used to determine if the connection has gone away. Shutting down the RabbitMQ server on Node2 will trigger a ShutdownSignalException, which can be caught and the app can go into a reconnect loop. But bringing down the interface doesn't cause any type of exception to happen, so the code will be waiting forever on consumer.nextDelivery(). I've also tried using the timeout version of this call. e.g. QueueingConsumer consumer = new QueueingConsumer(channel); channel.basicConsume("MyQueueOnNode2", noAck, consumer); int timeout_ms = 30000; while (true) { QueueingConsumer.Delivery delivery = consumer.nextDelivery(timeout_ms); if (delivery == null) { if (channel.isOpen() == false) // Seems to always return true { throw new ShutdownSignalException(); } } else { ... Process message - delivery.getBody() } } but appears that this always returns true (even though the interface is down). I assume registering for the ShutdownListener on the connection will yield the same results, but haven't tried that yet. Is there a way to configure some sort of heartbeat, or do you just have to write custom lease logic (e.g. "I'm here now") in order to get this to work?

    Read the article

  • How to preserve the aspect ratio of video using AVAssetWriter

    - by Satoshi Nakajima
    I have a following code, which captures the video from the camera and stores it as a QuickMovie file using AVAssetWriter. It works fine, but the aspect ratio is not perfect because the width and height are hardcoded (480 x 320) in the outputSettings for AVAssetWriterInput. I'd rather find out the aspect ratio of the source video, and specify the appropriate height (480 x aspect ratio). Does anybody know how to do it? Should I defer the creation of AssetWriterInput until the first sampleBuffer? // set the sessionPreset to 'medium' self.captureSession = [[AVCaptureSession alloc] init]; self.captureSession.sessionPreset = AVCaptureSessionPresetMedium; ... // create AVCaptureVideoDataOutput self.captureVideo = [[AVCaptureVideoDataOutput alloc] init]; NSString* formatTypeKey = (NSString*)kCVPixelBufferPixelFormatTypeKey; self.captureVideo.videoSettings = @{ formatTypeKey:[NSNumber numberWithInt:kCVPixelFormatType_32BGRA] }; [self.captureVideo setSampleBufferDelegate:self queue:dispatch_get_main_queue()]; // create an AVAssetWriter NSError* error = nil; self.videoWriter = [[AVAssetWriter alloc] initWithURL:url fileType:AVFileTypeQuickTimeMovie error:&error]; ... // create AVAssetWriterInput with specified settings NSDictionary* compression = @{ AVVideoAverageBitRateKey:[NSNumber numberWithInt:960000], AVVideoMaxKeyFrameIntervalKey:[NSNumber numberWithInt:1] }; self.videoInput = [AVAssetWriterInput assetWriterInputWithMediaType:AVMediaTypeVideo outputSettings:@{ AVVideoCodecKey:AVVideoCodecH264, AVVideoCompressionPropertiesKey:compression, AVVideoWidthKey:[NSNumber numberWithInt:480], // required AVVideoHeightKey:[NSNumber numberWithInt:320] // required }]; // add it to the AVAssetWriter [self.videoWriter addInput:self.videoInput];

    Read the article

  • Notification Email Best Practices--From Server Setup to Programming

    - by Andrew Wagner
    All, I'm in the process now of building a SaaS tool that allows network admins to generate notification emails to the members of the end-users of our platform (among many many other things). I'm running into a bit of an "out of my expertise" wall, as I know there are a lot of variables involved with configuring an application that can: Run in a distributed way via load balancing and still-- Leverage a single mail server for sending notification emails Process unsubscribe requests Avoid any ISP blacklisting in the process. If anyone has the time and has done this before, I'd love if you could walk me through the A-Z of best practices both from a configuration perspective and an execution perspective for generating these emails (anything from necessary DNS settings to ideal SMTP setup and configuration) Currently, our application generates email via Google Apps using the PHPMailer class. While this works well, it doesn't queue messages (potential for timeout problems if any of our clients amass a very large list of end-users), and Google limits the amount of allowed generated email messages to 500/day. I know this is a lofty question, but any guidance you could provide would be smashing and a big help as we work through this hurtle in our beta development stage. Thanks!

    Read the article

  • .NET client connecting to IBM MQ over SSL

    - by user171523
    I got key files from our client where I need to use them to connect to MQ over SSL. The files we have got from client are: xxx.crl xxx.kdb xxx.rdb xxx.sth xxx.tab They said client channel table in that. I am trying to connect using the below code. And they are saying I don't need to specify the Queue Manager it will be defined in the Client Channel Table. But one thing is they have done while created key with the using "user1". Code: Hashtable connectionProperties = new Hashtable(); // Add the connection type connectionProperties.Add(MQC.TRANSPORT_PROPERTY, connectionType); MQQueueManager qMgr; MQEnvironment.SSLCipherSpec = "TRIPLE_DES_SHA_US"; MQEnvironment.SSLKeyRepository = @"D:\Cert\BB\key"; MQEnvironment.UserId = "user1"; MQEnvironment.properties.Add(MQC.TRANSPORT_PROPERTY, connectionType); qMgr = new MQQueueManager(); Error I am getting: Message = "MQRC_Q_MGR_NAME_ERROR" I also tried telneting the server which I am able to do. Can some help me what is wrong I am doing here and why I am getting this error.

    Read the article

  • Running and managing NSTimer in different NSThread/NSRunLoop

    - by mips
    I'm writing a Cocoa application, with a GUI designed in Interface Builder. I need to schedule background activity (at regular intervals) without blocking the UI, so I run it in a separate thread, like this: - (void)applicationDidFinishLaunching:(NSNotification *)aNotification { [self performSelectorInBackground:@selector(schedule) withObject:nil]; } - (void) schedule { NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init]; NSRunLoop* runLoop = [NSRunLoop currentRunLoop]; timer = [[NSTimer scheduledTimerWithTimeInterval:FEED_UPDATE_INTERVAL target:activityObj selector:@selector(run:) userInfo:nil repeats:YES] retain]; [runLoop run]; [pool release]; } I retain the timer, so I can easily invalidate and reschedule. Problem: I must also fire the run: method in response to GUI events, so it is synchronous (i.e. a "perform activity" button). Like this: [timer fire]; I could do this with performSelectorInBackground too, and of course it doesn't block the UI. But this synchronous firings run in another runloop! So I have no guarantee that they won't overlap. How can I queue all of my firings on the same runloop?

    Read the article

  • AVFoundation: Video to OpenGL texture working - How to play and sync audio?

    - by j00hi
    I've managed to load a video-track of a movie frame by frame into a OpenGL texture with AVFoundation. I followed the steps described in the answer here: iOS4: how do I use video file as an OpenGL texture? and took some code from the GLVideoFrame sample from WWDC2010 which can be downloaded here: http://bit.ly/cEf0rM How do I play the audio-track of the movie synchronously to the video. I think it would not be a good idea to play it in a separate player, but to use the audio-track of the same AVAsset. AVAssetTrack* audioTrack = [[asset tracksWithMediaType:AVMediaTypeAudio] objectAtIndex:0]; I retrieve a videoframe and it's timestamp in the CADisplayLink-callback via CMSampleBufferRef sampleBuffer = [self.readerOutput copyNextSampleBuffer]; CMTime timestamp = CMSampleBufferGetPresentationTimeStamp( sampleBuffer ); where readerOutput is of type AVAssetReaderTrackOutput* How to get the corresponding audio-samples? And how to play them? Edit: I've looked around a bit and I think, best would be to use AudioQueue from the AudioToolbox.framework using the approach described here: AVAssetReader and Audio Queue streaming problem There is also an audio-player in the AVFoundation: AVAudioPlayer. But I don't know exactly how I should pass data to it's initWithData-initializer which expects NSData. Furthermore I don't think it's the best choice for my case because a new AVAudioPlayer-instance would have to be created for every new chunk of audio samples, as I understand it. Any other suggestions? What's the best way to play the raw audio samples which i get from the AVAssetReaderTrackOutput?

    Read the article

  • Find Port Number and Domain Name to connect to Hive Table

    - by user1419563
    I am new to Hive, MapReduce and Hadoop. I am using Putty to connect to hive table and access records in the tables. So what I did is- I opened Putty and in the host name I typed- ares-ingest.vip.host.com and then I click Open. And then I entered my username and password and then few commands to get to Hive sql. Below is the list what I did $ bash bash-3.00$ hive Hive history file=/tmp/rjamal/hive_job_log_rjamal_201207010451_1212680168.txt hive> set mapred.job.queue.name=hdmi-technology; hive> select * from table LIMIT 1; So my question is- I was trying to connect to Hive Tables using Squirrel SQL Client, so in that my Connection URL is- jdbc:hive://ares-ingest.vip.host.com:10000/default. So whenever I try to connect with these attributes, I always get Hive: Could not establish connection to ares-ingest.vip.host.com:10000/default: java.net.ConnectException: Connection timed out: connect. It might be possible I am using wrong port number or domain name here. Is there any way from the command prompt I can find out these two things, like what Domain Name and Port Number(where Hive server is running) should I use to connect to Hive table from Squirrel SQL Client. As I know host and port are determined by where the hive server is running

    Read the article

  • Dojo addOnLoad, but is Dojo loaded?

    - by adamrice32
    I've encountered what seems like a chicken & egg problem, and have what I think is a logical solution. However, it occurred to me that others must have encountered something similar, so I figured I'd float it out there for the masses. The situation is that I want to use dojo's addOnLoad function to queue up a number of callbacks which should be executed after the DOM has completed rendering on the client side. So what I'm doing is as follows: <html> <head> <script type="text/javascript" src="dojo.xd.js"></script> ... </head> <body> ... <script type="text/javascript"> dojo.addOnLoad( ... ); dojo.addOnLoad( ... ); ... </script> </body> </html> Now, the issue is that I seem to be calling dojo.addOnLoad before the entire Dojo library has been downloaded the browser. This makes sense in a way, because the inline SCRIPT contents should be executed before the entire DOM is loaded (and the normal body onload callback is triggered). My question is this - is my approach sound, or would it make more sense to register a normal/standard body onload JavaScript callback to call a function, which does the same work that each of the dojo.addOnLoads is doing in the SCRIPT block. Of course, this begs the question, why would you ever then use dojo.addOnLoad if you're not guaranteed that the Dojo library will be loaded prior to using the library? Hopefully this situation makes sense to someone other than me. Seems like someone else may have encountered this situation. Thoughts? Best Regards, Adam Rice

    Read the article

< Previous Page | 112 113 114 115 116 117 118 119 120 121 122 123  | Next Page >