Search Results

Search found 28841 results on 1154 pages for 'simple as could be'.

Page 116/1154 | < Previous Page | 112 113 114 115 116 117 118 119 120 121 122 123  | Next Page >

  • In search of database delivery practitioners and enthusiasts

    - by Claire Brooking
    We know from speaking with many of you at tradeshows and user groups that database delivery is not a factory production line. During planning, evaluation, quality control, and disaster mitigation, the people having their say at each step means that successful database deployment is a carefully managed course of action. With so many factors involved at every stage, we would love to find a way for our software to help out, by simplifying processes, speeding them up or joining together the people and the steps that make it all happen. We’re hoping our new research group for database delivery (SQL Server and Oracle) will help us understand the views and experiences of those of you out there in the trenches managing database changes. As part of our new group, we’ll be running a variety of research sessions, including surveys and phone interviews, over coming months. If you have opinions to share on Continuous Integration or Continuous Delivery for databases, we’d love to hear from you. Your feedback really will count as the product teams at Red Gate build plans. For some of our more in-depth sessions, we’ll also be offering participants an Amazon voucher as a thank-you for your time. If you’re not yet practising automated database deployment processes, but are contemplating or planning it, please do consider joining our research group too. If you’d like to sign up to the group and find out more, please fill in a quick form online, and we’ll be in touch to let you know about new research opportunities you might be interested in. We look forward to hearing your stories!

    Read the article

  • Exploring In-memory OLTP Engine (Hekaton) in SQL Server 2014 CTP1

    The continuing drop in the price of memory has made fast in-memory OLTP increasingly viable. SQL Server 2014 allows you to migrate the most-used tables in an existing database to memory-optimised 'Hekaton' technology, but how you balance between disk tables and in-memory tables for optimum performance requires judgement and experiment. What is this technology, and how can you exploit it? Rob Garrison explains.

    Read the article

  • Good DBAs Do Baselines

    - by Louis Davidson
    One morning, you wake up and feel funny. You can’t quite put your finger on it, but something isn’t quite right. What now? Unless you happen to be a hypochondriac, you likely drag yourself out of bed, get on with the day and gather more “evidence”. You check your symptoms over the next few days; do you feel the same, better, worse? If better, then great, it was some temporal issue, perhaps caused by an allergic reaction to some suspiciously spicy chicken. If the same or worse then you go to the doctor for some health advice, but armed with some data to share, and having ruled out certain possible causes that are fixed with a bit of rest and perhaps an antacid. Whether you realize it or not, in comparing how you feel one day to the next, you have taken baseline measurements. In much the same way, a DBA uses baselines to gauge the gauge health of their database servers. Of course, while SQL Server is very willing to share data regarding its health and activities, it has almost no idea of the difference between good and bad. Over time, experienced DBAs develop “mental” baselines with which they can gauge the health of their servers almost as easily as their own body. They accumulate knowledge of the daily, natural state of each part of their database system, and so know instinctively when one of their databases “feels funny”. Equally, they know when an “issue” is just a passing tremor. They see their SQL Server with all of its four CPU cores running close 100% and don’t panic anymore. Why? It’s 5PM and every day the same thing occurs when the end-of-day reports, which are very CPU intensive, are running. Equally, they know when they need to respond in earnest when it is the first time they have heard about an issue, even if it has been happening every day. Nevertheless, no DBA can retain mental baselines for every characteristic of their systems, so we need to collect physical baselines too. In my experience, surprisingly few DBAs do this very well. Part of the problem is that SQL Server provides a lot of instrumentation. If you look, you will find an almost overwhelming amount of data regarding user activity on your SQL Server instances, and use and abuse of the available CPU, I/O and memory. It seems like a huge task even to work out which data you need to collect, let alone start collecting it on a regular basis, managing its storage over time, and performing detailed comparative analysis. However, without baselines, though, it is very difficult to pinpoint what ails a server, just by looking at a single snapshot of the data, or to spot retrospectively what caused the problem by examining aggregated data for the server, collected over many months. It isn’t as hard as you think to get started. You’ve probably already established some troubleshooting queries of the type SELECT Value FROM SomeSystemTableOrView. Capturing a set of baseline values for such a query can be as easy as changing it as follows: INSERT into BaseLine.SomeSystemTable (value, captureTime) SELECT Value, SYSDATETIME() FROM SomeSystemTableOrView; Of course, there are monitoring tools that will collect and manage this baseline data for you, automatically, and allow you to perform comparison of metrics over different periods. However, to get yourself started and to prove to yourself (or perhaps the person who writes the checks for tools) the value of baselines, stick something similar to the above query into an agent job, running every hour or so, and you are on your way with no excuses! Then, the next time you investigate a slow server, and see x open transactions, y users logged in, and z rows added per hour in the Orders table, compare to your baselines and see immediately what, if anything, has changed!

    Read the article

  • Metrics - A little knowledge can be a dangerous thing (or 'Why you're not clever enough to interpret metrics data')

    - by Jason Crease
    At RedGate Software, I work on a .NET obfuscator  called SmartAssembly.  Various features of it use a database to store various things (exception reports, name-mappings, etc.) The user is given the option of using either a SQL-Server database (which requires them to have Microsoft SQL Server), or a Microsoft Access MDB file (which requires nothing). MDB is the default option, but power-users soon switch to using a SQL Server database because it offers better performance and data-sharing. In the fashionable spirit of optimization and metrics, an obvious product-management question is 'Which is the most popular? SQL Server or MDB?' We've collected data about this fact, using our 'Feature-Usage-Reporting' technology (available as part of SmartAssembly) and more recently our 'Application Metrics' technology: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 28 19.0 8115 8115 MDB 114 77.6 1449 1449 (As a disclaimer, please note than SmartAssembly has far more than 132 users . This data is just a selection of one build) So, it would appear that SQL-Server is used by fewer users, but more often. Great. But here's why these numbers are useless to me: Only the original developers understand the data What does a single 'usage' of 'MDB' mean? Does this happen once per run? Once per option change? On clicking the 'Obfuscate Now' button? When running the command-line version or just from the UI version? Each question could skew the data 10-fold either way, and the answers only known by the developer that instrumented the application in the first place. In other words, only the original developer can interpret the data - product-managers cannot interpret the data unaided. Most of the data is from uninterested users About half of people who download and run a free-trial from the internet quit it almost immediately. Only a small fraction use it sufficiently to make informed choices. Since the MDB option is the default one, we don't know how many of those 114 were people CHOOSING to use the MDB, or how many were JUST HAPPENING to use this MDB default for their 20-second trial. This is a problem we see across all our metrics: Are people are using X because it's the default or are they using X because they want to use X? We need to segment the data further - asking what percentage of each percentage meet our criteria for an 'established user' or 'informed user'. You end up spending hours writing sophisticated and dubious SQL queries to segment the data further. Not fun. You can't find out why they used this feature Metrics can answer the when and what, but not the why. Why did people use feature X? If you're anything like me, you often click on random buttons in unfamiliar applications just to explore the feature-set. If we listened uncritically to metrics at RedGate, we would eliminate the most-important and more-complex features which people actually buy the software for, leaving just big buttons on the main page and the About-Box. "Ah, that's interesting!" rather than "Ah, that's actionable!" People do love data. Did you know you eat 1201 chickens in a lifetime? But just 4 cows? Interesting, but useless. Often metrics give you a nice number: '5.8% of users have 3 or more monitors' . But unless the statistic is both SUPRISING and ACTIONABLE, it's useless. Most metrics are collected, reviewed with lots of cooing. and then forgotten. Unless a piece-of-data could change things, it's useless collecting it. People get obsessed with significance levels The first things that lots of people do with this data is do a t-test to get a significance level ("Hey! We know with 99.64% confidence that people prefer SQL Server to MDBs!") Believe me: other causes of error/misinterpretation in your data are FAR more significant than your t-test could ever comprehend. Confirmation bias prevents objectivity If the data appears to match our instinct, we feel satisfied and move on. If it doesn't, we suspect the data and dig deeper, plummeting down a rabbit-hole of segmentation and filtering until we give-up and move-on. Data is only useful if it can change our preconceptions. Do you trust this dodgy data more than your own understanding, knowledge and intelligence?  I don't. There's always multiple plausible ways to interpret/action any data Let's say we segment the above data, and get this data: Post-trial users (i.e. those using a paid version after the 14-day free-trial is over): Parameter Number of users % of total users Number of sessions Number of usages SQL Server 13 9.0 1115 1115 MDB 5 4.2 449 449 Trial users: Parameter Number of users % of total users Number of sessions Number of usages SQL Server 15 10.0 7000 7000 MDB 114 77.6 1000 1000 How do you interpret this data? It's one of: Mostly SQL Server users buy our software. People who can't afford SQL Server tend to be unable to afford or unwilling to buy our software. Therefore, ditch MDB-support. Our MDB support is so poor and buggy that our massive MDB user-base doesn't buy it.  Therefore, spend loads of money improving it, and think about ditching SQL-Server support. People 'graduate' naturally from MDB to SQL Server as they use the software more. Things are fine the way they are. We're marketing the tool wrong. The large number of MDB users represent uninformed downloaders. Tell marketing to aggressively target SQL Server users. To choose an interpretation you need to segment again. And again. And again, and again. Opting-out is correlated with feature-usage Metrics tends to be opt-in. This skews the data even further. Between 5% and 30% of people choose to opt-in to metrics (often called 'customer improvement program' or something like that). Casual trial-users who are uninterested in your product or company are less likely to opt-in. This group is probably also likely to be MDB users. How much does this skew your data by? Who knows? It's not all doom and gloom. There are some things metrics can answer well. Environment facts. How many people have 3 monitors? Have Windows 7? Have .NET 4 installed? Have Japanese Windows? Minor optimizations.  Is the text-box big enough for average user-input? Performance data. How long does our app take to start? How many databases does the average user have on their server? As you can see, questions about who-the-user-is rather than what-the-user-does are easier to answer and action. Conclusion Use SmartAssembly. If not for the metrics (called 'Feature-Usage-Reporting'), then at least for the obfuscation/error-reporting. Data raises more questions than it answers. Questions about environment are the easiest to answer.

    Read the article

  • Security Issues When Creating Pages in SharePoint

    - by Damon
    I was speaking (or rather IM'ing) with Ben Collins a while back and he came across an interesting problem that I wanted to document for the sake of posterity.  If you have a SharePoint user who has permissions to create a page in a page library, but that user is having security issues trying to actually make a page, then it the security issue may be related to their access rights on the master page gallery.  Users who create pages must have at least restricted read access to the master page gallery for page creation to succeed. That is one of the joys of working in SharePoint. if something doesn't show up there is usually a good but obscure reason for it, but SharePoint certainly won't tell you outright why it is.  All I have to say is that I'm glad he ran into that issue and not me.

    Read the article

  • Antenna Aligner Part 3: Kaspersky

    - by Chris George
    Quick one today. Since starting this project, I've been encountering times where Nomad fails to build my app. It would then take repeated attempts at building to then see a build go through successfully. Rob, who works on Nomad at Red Gate, investigated this and it showed that certain parts of the message required to trigger the 'cloud build' were not getting through to the Nomad app, causing the HTTP connection to stall until timeout. After much scratching heads, it turns out that the Kaspersky Internet Security system I have installed on my laptop at home, was being very aggressive and was causing the problem. Perhaps it's trying to protect me from myself? Anyway, we came up with an interim solution why the Nomad guys investigate with Kaspersky by setting Visual Studio to be a trusted application with the Kaspersky settings and setting it to not scan network traffic. Hey presto! This worked and I have not had a single build problem since (other than losing internet connection, or that embarrassing moment when you blame everyone else then realise you've accidentally switched off your wireless on the laptop).

    Read the article

  • Antenna Aligner part 2: Finding the right direction

    - by Chris George
    Last time I managed to get "my first app(tm)" built, published and running on my iPhone. This was really cool, a piece of my code running on my very own device. Ok, so I'm easily pleased! The next challenge was actually trying to determine what it was I wanted this app to do, and how to do it. Reverting back to good old paper and pen, I started sketching out designs for the app. I knew I wanted it to get a list of transmitters, then clicking on a transmitter would display a compass type view, with an arrow pointing the right way. I figured there would not be much point in continuing until I know I could do the graphical part of the project, i.e. the rotating compass, so armed with that reasoning (plus the fact I just wanted to get on and code!), I once again dived into visual studio. Using my friend (google) I found some example code for getting the compass data from the phone using the PhoneGap framework. // onSuccess: Get the current heading // function onSuccess(heading) {    alert('Heading: ' + heading); } navigator.compass.getCurrentHeading(onSuccess, onError); Using the ripple mobile emulator this showed that it was successfully getting the compass heading. But it didn't work when uploaded to my phone. It turns out that the examples I had been looking at were for PhoneGap 1.0, and Nomad uses PhoneGap 1.4.1. In 1.4.1, getCurrentHeading provides a compass object to onSuccess, not just a numeric value, so the code now looks like // onSuccess: Get the current magnetic heading // function onSuccess(heading) {    alert('Heading: ' + heading.magneticHeading); }; navigator.compass.getCurrentHeading(onSuccess, onError); So the lesson learnt from this... read the documentation for the version you are actually using! This does, however, lead to compatibility problems with ripple as it only supports 1.0 which is a real pain. I hope that the ripple system is updated sometime soon.

    Read the article

  • Calling all developers building ASP.NET applications

    - by Laila Lotfi
    We know that developers building desktop apps have to contend with memory management issues, and we’d like to learn more about the memory challenges ASP.NET developers are facing. To be more specific, we’re carrying out some exploratory research leading into the next phase of development on ANTS Memory Profiler, and our development team would love to speak to developers building ASP.NET applications. You don’t need to have ever used ANTS profiler – this will be a more general conversation about: - your current site architecture, and how you manage the memory requirements of your applications on your back-end servers and web services. - how you currently diagnose memory leaks and where you do this (production server, or during testing phase, or if you normally manage to get them all during the local development). - what specific memory problems you’ve experienced – if any. Of course, we’ll compensate you for your time with a $50 Amazon voucher (or equivalent in other currencies), and our development team’s undying gratitude. If you’d like to participate, please just drop me a line on [email protected].

    Read the article

  • Finding bugs is difficult, right?

    - by Laila
    Something I hear developers tell us all the time is that they take pride in being a developer.and that bugs are a dent in that pride. Someone once told me "I know I have found bugs years later, and it's the worst feeling in the world." So how can you avoid that sinking feeling when you find out a bug has been in production months before someone lets you know about it? Besides, let's face it: hearing about a bug often means a world of pain, because it can take hours to track down where the problem is and more hours (if not days) to fix it. And during that time, you're not working on something new, and that, my friends, is really frustrating! So to cheer you up, we've created a Bug Hunt game, where you battle against the clock to spot bugs. We've really enjoyed putting this together and hope you enjoy playing it too. Once you're done with the bug hunt, we explain how easy it can be to find and fix bugs in real life, using a neat mechanism that we call Automated Error Reporting. Play the game now.

    Read the article

  • SQL Server Optimizer Malfunction?

    - by Tony Davis
    There was a sharp intake of breath from the audience when Adam Machanic declared the SQL Server optimizer to be essentially "stuck in 1997". It was during his fascinating "Query Tuning Mastery: Manhandling Parallelism" session at the recent PASS SQL Summit. Paraphrasing somewhat, Adam (blog | @AdamMachanic) offered a convincing argument that the optimizer often delivers flawed plans based on assumptions that are no longer valid with today’s hardware. In 1997, when Microsoft engineers re-designed the database engine for SQL Server 7.0, SQL Server got its initial implementation of a cost-based optimizer. Up to SQL Server 2000, the developer often had to deploy a steady stream of hints in SQL statements to combat the occasionally wilful plan choices made by the optimizer. However, with each successive release, the optimizer has evolved and improved in its decision-making. It is still prone to the occasional stumble when we tackle difficult problems, join large numbers of tables, perform complex aggregations, and so on, but for most of us, most of the time, the optimizer purrs along efficiently in the background. Adam, however, challenged further any assumption that the current optimizer is competent at providing the most efficient plans for our more complex analytical queries, and in particular of offering up correctly parallelized plans. He painted a picture of a present where complex analytical queries have become ever more prevalent; where disk IO is ever faster so that reads from disk come into buffer cache faster than ever; where the improving RAM-to-data ratio means that we have a better chance of finding our data in cache. Most importantly, we have more CPUs at our disposal than ever before. To get these queries to perform, we not only need to have the right indexes, but also to be able to split the data up into subsets and spread its processing evenly across all these available CPUs. Improvements such as support for ColumnStore indexes are taking things in the right direction, but, unfortunately, deficiencies in the current Optimizer mean that SQL Server is yet to be able to exploit properly all those extra CPUs. Adam’s contention was that the current optimizer uses essentially the same costing model for many of its core operations as it did back in the days of SQL Server 7, based on assumptions that are no longer valid. One example he gave was a "slow disk" bias that may have been valid back in 1997 but certainly is not on modern disk systems. Essentially, the optimizer assesses the relative cost of serial versus parallel plans based on the assumption that there is no IO cost benefit from parallelization, only CPU. It assumes that a single request will saturate the IO channel, and so a query would not run any faster if we parallelized IO because the disk system simply wouldn’t be able to handle the extra pressure. As such, the optimizer often decides that a serial plan is lower cost, often in cases where a parallel plan would improve performance dramatically. It was challenging and thought provoking stuff, as were his techniques for driving parallelism through query logic based on subsets of rows that define the "grain" of the query. I highly recommend you catch the session if you missed it. I’m interested to hear though, when and how often people feel the force of the optimizer’s shortcomings. Barring mistakes, such as stale statistics, how often do you feel the Optimizer fails to find the plan you think it should, and what are the most common causes? Is it fighting to induce it toward parallelism? Combating unexpected plans, arising from table partitioning? Something altogether more prosaic? Cheers, Tony.

    Read the article

  • Defining .NET Components with Namespaces

    A .NET software component is a compiled set of classes that provide a programmable interface that is used by consumer applications for a service. As a component is no more than a logical grouping of classes, what then is the best way to define the boundaries of a component within the .NET framework? How should the classes inter-operate? Patrick Smacchia, the lead developer of NDepend, discusses the issues and comes up with a solution.

    Read the article

  • Backing up Exchange 2010 For Free

    It's hardly surprising that many SysAdmins are willing to pay over the odds for sophisticated backup solutions which they don't necessarily need, just to make sure their data is safe ASAP. Thankfully, Antoine Khater is here to give you a short and sweet walkthrough on how to keep your Exchange 2010 Server backed up for free. And the best news? You've already got everything you need.

    Read the article

  • TortoiseSVN and Subversion Cookbook Part 3: In, Out, and Around

    Subversion doesn't have to be difficult, especially if you have Michael Sorens's guide at hand. After dealing in previous articles with checkouts and commits in Subversion, and covering the various file-manipulation operations that are required for Subversion, Michael now deals in this article with file macro-management, the operations such as putting things in, and taking things out, that deal with repositories and projects.

    Read the article

  • A TDD Journey: 3- Mocks vs. Stubs; Test Frameworks; Assertions; ReSharper Accelerators

    Test-Driven Development (TDD) involves the repetition of a very short development cycle that begins with an initially-failing test that defines the required functionality, and ends with producing the minimum amount of code to pass that test, and finally refactoring the new code. Michael Sorens continues his introduction to TDD that is more of a journey in six parts, by implementing the first tests and introducing the topics of Test doubles; Test Runners, Constraints and assertions

    Read the article

  • SQLIO Writes

    - by Grant Fritchey
    SQLIO is a fantastic utility for testing the abilities of the disks in your system. It has a very unfortunate name though, since it's not really a SQL Server testing utility at all. It really is a disk utility. They ought to call it DiskIO because they'd get more people using I think. Anyway, branding is not the point of this blog post. Writes are the point of this blog post. SQLIO works by slamming your disk. It performs as mean reads as it can or it performs as many writes as it can depending on how you've configured your tests. There are much smarter people than me who will get into all the various types of tests you should run. I'd suggest reading a bit of what Jonathan Kehayias (blog|twitter) has to say or wade into Denny Cherry's (blog|twitter) work. They're going to do a better job than I can describing all the benefits and mechanisms around using this excellent piece of software. My concerns are very focused. I needed to set up a series of tests to see how well our product SQL Storage Compress worked. I wanted to know the effects it would have on a system, the disk for sure, but also memory and CPU. How to stress the system? SQLIO of course. But when I set it up and ran it, following the documentation that comes with it, I was seeing better than 99% compression on the files. Don't get me wrong. Our product is magnificent, wonderful, all things great and beautiful, gets you coffee in the morning and is made mostly from bacon. But 99% compression. No, it's not that good. So what's up? Well, it's the configuration. The default mechanism is to load up a file, something large that will overwhelm your disk cache. You're instructed to load the file with a character 0x0. I never got a computer science degree. I went to film school. Because of this, I didn't memorize ASCII tables so when I saw this, I thought it was zero's or something. Nope. It's NULL. That's right, you're making a very large file, but you're filling it with NULL values. That's actually ok when all you're testing is the disk sub-system. But, when you want to test a compression and decompression, that can be an issue. I got around this fairly quickly. Instead of generating a file filled with NULL values, I just copied a database file for my tests. And to test it with SQL Storage Compress, I used a database file that had already been run through compression (about 40% compression on that file if you're interested). Now the reads were taken care of. I am seeing very realistic performance from decompressing the information for reads through SQLIO. But what about writes? Well, the issue is, what does SQLIO write? I don't have access to the code. But I do have access to the results. I did two different tests, just to be sure of what I was seeing. First test, use the .DAT file as described in the documentation. I opened the .DAT file after I was done with SQLIO, using WordPad. Guess what? It's a giant file full of air. SQLIO writes NULL values. What does that do to compression? I did the test again on a copy of an uncompressed database file. Then I ran the original and the SQLIO modified copy through ZIP to see what happened. I got better than 99% compression out of the SQLIO modified file (original file of 624,896kb went to 275,871kb compressed, after SQLIO it went to 608kb compressed). So, what does SQLIO write? It writes air. If you're trying to test it with compression or maybe some other type of file storage mechanism like dedupe, you need to know this because your tests really won't be valid. Should I find some other mechanism for testing? Yeah, if all I'm interested in is establishing performance to my own satisfaction, yes. But, I want to be able to compare my results with other people's results and we all need to be using the same tool in order for that to happen. SQLIO is the common mechanism that most people I know use to establish disk performance behavior. It'd be better if we could get SQLIO to do writes in some other fashion. Oh, and before I go, I get to brag a bit. Measuring IOPS, SQL Storage Compress outperforms my disk alone by about 30%.

    Read the article

  • Social Networking at Professional Events

    Dr. Masha Petrova compresses, into a small space, much good advice on networking with other professional people. She draws from her own experience as a technical expert to provide a detailed checklist of things you should and shouldn't do at conferences or tradeshows to be a successful 'networker'. As usual, she delivers sage advice with a dash of humour.

    Read the article

  • A new tool in beta: Conflict Alert

    - by Alex Davies
    You know that manual merges are a real pain? Well, I’ve just released a Visual Studio extension that makes manual merges a thing of the past. No source control system can automatically merge two edits to the same line of code. Conflict Alert solves this by warning you that you are heading down a path that will cause a manual merge later down the line. You choose whether you want to carry on, or talk to your teammate and find out what they are doing. Have you ever warned your teammates that you are doing a big refactor, and that they should ‘keep out of class X’? Conflict Alert tells them for you automatically by highlighting the sections of code that you have edited.   It doesn’t need to connect to your source control system, so it works no matter which you use. Its a first release, and I hope it is useful. Any feedback would be gratefully received. Grab a teammate and try it now.

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • Microsoft Access as a Weapon of War

    - by Damon Armstrong
    A while ago (probably a decade ago, actually) I saw a report on a tracking system maintained by a U.S. Army artillery control unit.  This system was capable of maintaining a bearing on various units in the field to help avoid friendly fire.  I consider the U.S. Army to be the most technologically advanced fighting force on Earth, but to my terror I saw something on the title bar of an application displayed on a laptop behind one of the soldiers they were interviewing: Tracking.mdb Oh yes.  Microsoft Office Suite had made it onto the battlefield.  My hope is that it was just running as a front-end for a more proficient database (no offense Access people), or that the soldier was tracking something else like KP duty or fantasy football scores.  But I could also see the corporate equivalent of a pointy-haired boss walking into a cube and asking someone who had piddled with Access to build a database for HR forms.  Except this pointy-haired boss would have been a general, the cube would have been a tank, and the HR forms would have been targets that, if something went amiss, would have been hit by a 500lb artillery round. Hope that solider could write a good query

    Read the article

  • Microsoft Access as a Weapon of War

    - by Damon
    A while ago (probably a decade ago, actually) I saw a report on a tracking system maintained by a U.S. Army artillery control unit.  This system was capable of maintaining a bearing on various units in the field to help avoid friendly fire.  I consider the U.S. Army to be the most technologically advanced fighting force on Earth, but to my terror I saw something on the title bar of an application displayed on a laptop behind one of the soldiers they were interviewing: Tracking.mdb Oh yes.  Microsoft Office Suite had made it onto the battlefield.  My hope is that it was just running as a front-end for a more proficient database (no offense Access people), or that the soldier was tracking something else like KP duty or fantasy football scores.  But I could also see the corporate equivalent of a pointy-haired boss walking into a cube and asking someone who had piddled with Access to build a database for HR forms.  Except this pointy-haired boss would have been a general, the cube would have been a tank, and the HR forms would have been targets that, if something went amiss, would have been hit by a 500lb artillery round. Hope that solider could write a good query :)

    Read the article

  • Resolving an App-Relative URL without a Page Object Reference

    - by Damon
    If you've worked with ASP.NET before then you've almost certainly seen an application-relative URL like ~/SomeFolder/SomePage.aspx.  The tilde at the beginning is a stand in for the application path, and it can easily be resolved using the Page object's ResolveUrl method: string url = Page.ResolveUrl("~/SomeFolder/SomePage.aspx"); There are times, however, when you don't have a page object available and you need to resolve an application relative URL.  Assuming you have an HttpContext object available, the following method will accomplish just that: public static string ResolveAppRelativeUrl(string url) {      return url.Replace("~", System.Web.HttpContext.Current.Request.ApplicationPath); } It just replaces the tilde with the application path, which is essentially all the ResolveUrl method does.

    Read the article

  • Creating WPF Prototypes with SketchFlow

    Prototyping with Sketchflow transforms what was once a frustrating and time-consuming chore. With SketchFlow, WPF prototypes can be created and changed with amazing ease. SketchFlow is WPF's secret weapon. Well, it was secret until Michael Sorens produced this article.

    Read the article

  • Windows 8 and the future of Silverlight

    - by Laila
    After Steve Ballmer's indiscrete 'MisSpeak' about Windows 8, there has been a lot of speculation about the new operating system. We've now had a few glimpses, such as the demonstration of 'Mosh' at the D9 2011 conference, and the Youtube video, which showed a touch-centric new interface for apps built using HTML5 and JavaScript. This has caused acute anxiety to the programmers who have followed the recommended route of WPF, Silverlight and .NET, but it need not have caused quite so much panic since it was, in fact, just a thin layer to make Windows into an apparently mobile-friendly OS. More worryingly, the press-release from Microsoft was at pains to say that 'Windows 8 apps use the power of HTML5, tapping into the native capabilities of Windows using standard JavaScript and HTML', as if all thought of Silverlight, dominant in WP7, had been jettisoned. Ironically, this brave new 'happening' platform can all be done now in Windows 7 and an iPad, using Adobe Air, so it is hardly cutting-edge; in fact the tile interface had a sort of Retro-Zune Metro UI feel first seen in Media Centre, followed by Windows Phone 7, with any originality leached out of it by the corporate decision-making process. It was kinda weird seeing old Excel running alongside stodgily away amongst all the extreme paragliding videos. The ability to snap and resize concurrent apps might be a novelty on a tablet, but it is hardly so on a PC. It was at that moment that it struck me that here was a spreadsheet application that hadn't even made the leap to the .NET platform. Windows was once again trying to be all things to all men, whereas Apple had carefully separated Mac OS X development from iOS. The acrobatic feat of straddling all mobile and desktop devices with one OS is looking increasingly implausible. There is a world of difference between an operating system that facilitates business procedures and a one that drives a device for playing pop videos and your holiday photos. So where does this leave Silverlight? Pretty much where it was. Windows 8 will support it, and it will continue to be developed, but if these press-releases reflect the thinking within Microsoft, it is no longer seen as the strategic direction. However, Silverlight is still there and there will be a whole new set of developer APIs for building touch-centric apps. Jupiter, for example, is rumoured to involve an App store that provides new, Silverlight based "immersive" applications that are deployed as AppX packages. When the smoke clears, one suspects that the Javascript/HTML5 is merely an alternative development environment for Windows 8 to attract the legions of independent developers outside the .NET culture who are unlikely to ever take a shine to a more serious development environment such as WPF or Silverlight. Cheers, Laila

    Read the article

  • Improving Comparison Operators and Window Functions

    It is dangerous to assume that your data is sound. SQL already has intrinsic ways to cope with missing, or unknown data in its comparison predicate operators, or Theta operators. Can SQL be more effective in the way it deals with data quality? Joe Celko describes how the SQL Standard could soon evolve to deal with data in ways that allow aggregation and windowing in cases where the data quality is less than perfect

    Read the article

< Previous Page | 112 113 114 115 116 117 118 119 120 121 122 123  | Next Page >