Search Results

Search found 11993 results on 480 pages for 'define syntax'.

Page 117/480 | < Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • SSAS: Using fake dimension and scopes for dynamic ranges

    - by DigiMortal
    In one of my BI projects I needed to find count of objects in income range. Usual solution with range dimension was useless because range where object belongs changes in time. These ranges depend on calculation that is done over incomes measure so I had really no option to use some classic solution. Thanks to SSAS forums I got my problem solved and here is the solution. The problem – how to create dynamic ranges? I have two dimensions in SSAS cube: one for invoices related to objects rent and the other for objects. There is measure that sums invoice totals and two calculations. One of these calculations performs some computations based on object income and some other object attributes. Second calculation uses first one to define income ranges where object belongs. What I need is query that returns me how much objects there are in each group. I cannot use dimension for range because on one date object may belong to one range and two days later to another income range. By example, if object is not rented out for two days it makes no money and it’s income stays the same as before. If object is rented out after two days it makes some income and this income may move it to another income range. Solution – fake dimension and scopes Thanks to Gerhard Brueckl from pmOne I got everything work fine after some struggling with BI Studio. The original discussion he pointed out can be found from SSAS official forums thread Create a banding dimension that groups by a calculated measure. Solution was pretty simple by nature – we have to define fake dimension for our range and use scopes to assign values for object count measure. Object count measure is primitive – it just counts objects and that’s it. We will use it to find out how many objects belong to one or another range. We also need table for fake ranges and we have to fill it with ranges used in ranges calculation. After creating the table and filling it with ranges we can add fake range dimension to our cube. Let’s see now how to solve the problem step-by-step. Solving the problem Suppose you have ranges calculation defined like this: CASE WHEN [Measures].[ComplexCalc] < 0 THEN 'Below 0'WHEN [Measures].[ComplexCalc] >=0 AND  [Measures].[ComplexCalc] <=50 THEN '0 - 50'...END Let’s create now new table to our analysis database and name it as FakeIncomeRange. Here is the definition for table: CREATE TABLE [FakeIncomeRange] (     [range_id] [int] IDENTITY(1,1) NOT NULL,     [range_name] [nvarchar](50) NOT NULL,     CONSTRAINT [pk_fake_income_range] PRIMARY KEY CLUSTERED      (         [range_id] ASC     ) ) Don’t forget to fill this table with range labels you are using in ranges calculation. To use ranges from table we have to add this table to our data source view and create new dimension. We cannot bind this table to other tables but we have to leave it like it is. Our dimension has two attributes: ID and Name. The next thing to create is calculation that returns objects count. This calculation is also fake because we override it’s values for all ranges later. Objects count measure can be defined as calculation like this: COUNT([Object].[Object].[Object].members) Now comes the most crucial part of our solution – defining the scopes. Based on data used in this posting we have to define scope for each of our ranges. Here is the example for first range. SCOPE([FakeIncomeRange].[Name].&[Below 0], [Measures].[ObjectCount])     This=COUNT(            FILTER(                [Object].[Object].[Object].members,                 [Measures].[ComplexCalc] < 0          )     ) END SCOPE To get these scopes defined in cube we need MDX script blocks for each line given here. Take a look at the screenshot to get better idea what I mean. This example is given from SQL Server books online to avoid conflicts with NDA. :) From previous example the lines (MDX scripts) are: Line starting with SCOPE Block for This = Line with END SCOPE And now it is time to deploy and process our cube. Although you may see examples where there are semicolons in the end of statements you don’t need them. Visual Studio BI tools generate separate command from each script block so you don’t need to worry about it.

    Read the article

  • Invariant code contracts – using class-wide contracts

    - by DigiMortal
    It is possible to define invariant code contracts for classes. Invariant contracts should always hold true whatever member of class is called. In this posting I will show you how to use invariant code contracts so you understand how they work and how they should be tested. This is my randomizer class I am using to demonstrate code contracts. I added one method for invariant code contracts. Currently there is one contract that makes sure that random number generator is not null. public class Randomizer {     private IRandomGenerator _generator;       private Randomizer() { }       public Randomizer(IRandomGenerator generator)     {         _generator = generator;     }       public int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(             min < max,             "Min must be less than max"         );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return _generator.Next(min, max);     }       [ContractInvariantMethod]     private void ObjectInvariant()     {         Contract.Invariant(_generator != null);     } } Invariant code contracts are define in methods that have ContractInvariantMethod attribute. Some notes: It is good idea to define invariant methods as private. Don’t call invariant methods from your code because code contracts system does not allow it. Invariant methods are defined only as place where you can keep invariant contracts. Invariant methods are called only when call to some class member is made! The last note means that having invariant method and creating Randomizer object with null as argument does not automatically generate exception. We have to call at least one method from Randomizer class. Here is the test for generator. You can find more about contracted code testing from my posting Code Contracts: Unit testing contracted code. There is also explained why the exception handling in test is like it is. [TestMethod] [ExpectedException(typeof(Exception))] public void Should_fail_if_generator_is_null() {     try     {         var randomizer = new Randomizer(null);         randomizer.GetRandomFromRangeContracted(1, 4);     }     catch (Exception ex)     {         throw new Exception(ex.Message, ex);     } } Try out this code – with unit tests or with test application to see that invariant contracts are checked as soon as you call some member of Randomizer class.

    Read the article

  • A C# implementation of the CallStream pattern

    - by Bertrand Le Roy
    Dusan published this interesting post a couple of weeks ago about a novel JavaScript chaining pattern: http://dbj.org/dbj/?p=514 It’s similar to many existing patterns, but the syntax is extraordinarily terse and it provides a new form of friction-free, plugin-less extensibility mechanism. Here’s a JavaScript example from Dusan’s post: CallStream("#container") (find, "div") (attr, "A", 1) (css, "color", "#fff") (logger); The interesting thing here is that the functions that are being passed as the first argument are arbitrary, they don’t need to be declared as plug-ins. Compare that with a rough jQuery equivalent that could look something like this: $.fn.logger = function () { /* ... */ } $("selector") .find("div") .attr("A", 1) .css("color", "#fff") .logger(); There is also the “each” method in jQuery that achieves something similar, but its syntax is a little more verbose. Of course, that this pattern can be expressed so easily in JavaScript owes everything to the extraordinary way functions are treated in that language, something Douglas Crockford called “the very best part of JavaScript”. One of the first things I thought while reading Dusan’s post was how I could adapt that to C#. After all, with Lambdas and delegates, C# also has its first-class functions. And sure enough, it works really really well. After about ten minutes, I was able to write this: CallStreamFactory.CallStream (p => Console.WriteLine("Yay!")) (Dump, DateTime.Now) (DumpFooAndBar, new { Foo = 42, Bar = "the answer" }) (p => Console.ReadKey()); Where the Dump function is: public static void Dump(object options) { Console.WriteLine(options.ToString()); } And DumpFooAndBar is: public static void DumpFooAndBar(dynamic options) { Console.WriteLine("Foo is {0} and bar is {1}.", options.Foo, options.Bar); } So how does this work? Well, it really is very simple. And not. Let’s say it’s not a lot of code, but if you’re like me you might need an Advil after that. First, I defined the signature of the CallStream method as follows: public delegate CallStream CallStream (Action<object> action, object options = null); The delegate define a call stream as something that takes an action (a function of the options) and an optional options object and that returns a delegate of its own type. Tricky, but that actually works, a delegate can return its own type. Then I wrote an implementation of that delegate that calls the action and returns itself: public static CallStream CallStream (Action<object> action, object options = null) { action(options); return CallStream; } Pretty nice, eh? Well, yes and no. What we are doing here is to execute a sequence of actions using an interesting novel syntax. But for this to be actually useful, you’d need to build a more specialized call stream factory that comes with some sort of context (like Dusan did in JavaScript). For example, you could write the following alternate delegate signature that takes a string and returns itself: public delegate StringCallStream StringCallStream(string message); And then write the following call stream (notice the currying): public static StringCallStream CreateDumpCallStream(string dumpPath) { StringCallStream str = null; var dump = File.AppendText(dumpPath); dump.AutoFlush = true; str = s => { dump.WriteLine(s); return str; }; return str; } (I know, I’m not closing that stream; sure; bad, bad Bertrand) Finally, here’s how you use it: CallStreamFactory.CreateDumpCallStream(@".\dump.txt") ("Wow, this really works.") (DateTime.Now.ToLongTimeString()) ("And that is all."); Next step would be to combine this contextual implementation with the one that takes an action parameter and do some really fun stuff. I’m only scratching the surface here. This pattern could reveal itself to be nothing more than a gratuitous mind-bender or there could be applications that we hardly suspect at this point. In any case, it’s a fun new construct. Or is this nothing new? You tell me… Comments are open :)

    Read the article

  • Check Your Spelling, Grammar, and Style in Firefox and Chrome

    - by Matthew Guay
    Are you tired of making simple writing mistakes that get past your browser’s spell-check?  Here’s how you can get advanced grammar check and more in Firefox and Chrome with After the Deadline. Microsoft Word has spoiled us with grammar, syntax, and spell checking, but the default spell check in Firefox and Chrome still only does basic checks.  Even webapps like Google Docs don’t check more than basic spelling errors.  However, WordPress.com is an exception; it offers advanced spelling, grammar, and syntax checking with its After the Deadline proofing system.  This helps you keep from making embarrassing mistakes on your blog posts, and now, thanks to a couple free browser plugins, it can help you keep from making these mistakes in any website or webapp. After the Deadline in Google Chrome Add the After the Deadline extension (link below) to Chrome as usual. As soon as it’s installed, you’re ready to start improving your online writing.  To check spelling, grammar, and more, click the ABC button that you’ll now see at the bottom of most text boxes online. After a quick scan, grammar mistakes are highlighted in green, complex expressions and other syntax problems are highlighted in blue, and spelling mistakes are highlighted in red as would be expected.  Click on an underlined word to choose one of its recommended changes or ignore the suggestion. Or, if you want more explanation about what was wrong with that word or phrase, click Explain for more info. And, if you forget to run an After the Deadline scan before submitting a text entry, it will automatically check to make sure you still want to submit it.  Click Cancel to go back and check your writing first.   To change the After the Deadline settings, click its icon in the toolbar and select View Options.  Additionally, if you want to disable it on the site you’re on, you can click Disable on this site directly from the popup. From the settings page, you can choose extra things to check for such as double negatives and redundant phrases, as well as add sites and words to ignore. After the Deadline in Firefox Add the After the Deadline add-on to Firefox (link below) as normal. After the Deadline basically the same in Firefox as it does in Chrome.  Select the ABC icon in the lower right corner of textboxes to check them for problems, and After the Deadline will underline the problems as it did in Chrome.  To view a suggested change in Firefox, right-click on the underlined word and select the recommended change or ignore the suggestion. And, if you forget to check, you’ll see a friendly reminder asking if you’re sure you want to submit your text like it is. You can access the After the Deadline settings in Firefox from the menu bar.  Click Tools, then select AtD Preferences.  In Firefox, the settings are in a options dialog with three tabs, but it includes the same options as the Chrome settings page.  Here you can make After the Deadline as correction-happy as you like.   Conclusion The web has increasingly become an interactive place, and seldom does a day go by that we aren’t entering text in forms and comments that may stay online forever.  Even our insignificant tweets are being archived in the Library of Congress.  After the Deadline can help you make sure that your permanent internet record is as grammatically correct as possible.  Even though it doesn’t catch every problem, and even misses some spelling mistakes, it’s still a great help. Links Download the After the Deadline extension for Google Chrome Download the After the Deadline add-on for Firefox Similar Articles Productive Geek Tips Quick Tip: Disable Favicons in FirefoxStupid Geek Tricks: Duplicate a Tab with a Shortcut Key in Chrome or FirefoxHow to Disable the New Geolocation Feature in Google ChromeStupid Geek Tricks: Compare Your Browser’s Memory Usage with Google ChromeStop YouTube Videos from Automatically Playing in Chrome TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Easily Search Food Recipes With Recipe Chimp Tech Fanboys Field Guide Check these Awesome Chrome Add-ons iFixit Offers Gadget Repair Manuals Online Vista style sidebar for Windows 7 Create Nice Charts With These Web Based Tools

    Read the article

  • Adopt-a-JSR for Java EE 7 - Getting Started

    - by arungupta
    Adopt-a-JSR is an initiative started by JUG leaders to encourage JUG members to get involved in a JSR, in order to increase grass roots participation. This allows JUG members to provide early feedback to specifications before they are finalized in the JCP. The standards in turn become more complete and developer-friendly after getting feedback from a wide variety of audience. adoptajsr.org provide more details about the logistics and benefits for you and your JUG. A similar activity was conducted for OpenJDK as well. Markus Eisele also provide a great introduction to the program (in German). Java EE 7 (JSR 342) is scheduled to go final in Q2 2013. There are several new JSRs that are getting included in the platform (e.g. WebSocket, JSON, and Batch), a few existing ones are getting an overhaul (e.g. JAX-RS 2 and JMS 2), and several other getting minor updates (e.g. JPA 2.1 and Servlets 3.1). Each Java EE 7 JSR can leverage your expertise and would love your JUG to adopt a JSR. What does it mean to adopt a JSR ? Your JUG is going to identify a particular JSR, or multiple JSRs, that is of interest to the JUG members. This is mostly done by polling/discussing on your local JUG members list. Your JUG will download and review the specification(s) and javadocs for clarity and completeness. The complete set of Java EE 7 specifications, their download links, and EG archives are listed here. glassfish.org/adoptajsr provide specific areas where different specification leads are looking for feedback. Your JUG can then think of a sample application that can be built using the chosen specification(s). An existing use case (from work or a personal hobby project) may be chosen to be implemented instead. This is where your creativity and uniqueness comes into play. Most of the implementations are already integrated in GlassFish 4 and others will be integrated soon. You can also explore integration of multiple technologies and provide feedback on the simplicity and ease-of-use of the programming model. Especially look for integration with existing Java EE technologies and see if you find any discrepancies. Report any missing features that may be included in future release of the specification. The most important part is to provide feedback by filing bugs on the corresponding spec or RI project. Any thing that is not clear either in the spec or implementation should be filed as a bug. This is what will ensure that specification and implementation leads are getting the required feedback and improving the quality of the final deliverable of the JSR. How do I get started ? A simple way to get started can be achieved by following S.M.A.R.T. as explained below. Specific Identify who all will be involved ? What would you like to accomplish ? For example, even though building a sample app will provide real-world validity of the API but because of time constraints you may identify that reviewing the specification and javadocs only can be accomplished. Establish a time frame by which the activities need to be complete. Measurable Define a success for metrics. For example, this could be the number of bugs filed. Remember, quality of bugs is more important that quantity of bugs. Define your end goal, for example, reviewing 4 chapters of the specification or completing the sample application. Create a dashboard that will highlight your JUG's contribution to this effort. Attainable Make sure JUG members understand the time commitment required for providing feedback. This can vary based upon the level of involvement (any is good!) and the number of specifications picked. adoptajsr.org defines different categories of involvement. Once again, any level of involvement is good. Just reviewing a chapter, a section, or javadocs for your usecase is helpful. Relevant Pick JSRs that JUG members are willing and able to work. If the JUG members are not interested then they might loose motivation half-way through. The "able" part is tricky as you can always stretch yourself and learn a new skill ;-) Time-bound Define a time table of activities with clearly defined tasks. A tentative time table may look like: Dec 25: Discuss and agree upon the specifications with JUG Jan 1: Start Adopt-a-JSR for Java EE 7 Jan 15: Initial spec reading complete. Keep thinking through the application that will be implemented. Jan 22: Early design of the sample application is ready Jan 29: JUG members agree upon the application Next 4 weeks: Implement the application Of course, you'll need to alter this based upon your commitment. Maintaining an activity dashboard will help you monitor and track the progress. Make sure to keep filing bugs through out the process! 12 JUGs from around the world (SouJava, Campinas JUG, Chennai JUG, London Java Community, BeJUG, Morocco JUG, Peru JUG, Indonesia JUG, Congo JUG, Silicon Valley JUG, Madrid JUG, and Houston JUG) have already adopted one of the Java EE 7 JSRs. I'm already helping some JUGs bootstrap and would love to help your JUG too. What are you waiting for ?

    Read the article

  • Closing the gap between strategy and execution with Oracle Business Intelligence 11g

    - by manan.goel(at)oracle.com
    Wikipedia defines strategy as a plan of action designed to achieve a particular goal. An example of this is General Electric's acquisitions and divestiture strategy (plan) designed to propel GE to number 1 or 2 place (goal) in every business segment that it operated in. Execution on the other hand can be defined as the actions taken to getting things done. In GE's case execution will be steps followed for mergers/acquisitions or divestiture. Business press has written extensively about the importance of both strategy and execution in achieving desired business objectives. Perhaps the quote from Thomas Edison says it best - "vision without execution is hallucination". Conversely, it can be said that "execution without vision" is well may be "wishful thinking". Research overwhelmingly point towards the wide gap between strategy and execution. According to a published study, 49% of surveyed executives perceive a gap between their organizations' ability to develop and communicate sound strategies and their ability to implement those strategies. Further, of these respondents, 64% don't have full confidence that their companies will be able to close the gap. Having established the severity and importance of the problem let's talk about the reasons for the strategy-execution gap. The common reasons include: -        Lack of clearly defined goals -        Lack of consistent measure of success -        Lack of ownership -        Lack of alignment -        Lack of communication -        Lack of proper execution -        Lack of monitoring       There are multiple approaches to solving the problem including organizational development practices, technology enablement etc. In most cases a combination of approaches is required to achieve the desired result. For the purposes of this discussion, I'll focus on technology.  Imagine an integrated closed loop technology platform that automates the entire management cycle from defining strategy to assigning ownership to communicating goals to achieving alignment to collaboration to taking actions to monitoring progress and achieving mid course corrections. Besides, for best ROI and lowest TCO such a system should also have characteristics like:  Complete -        Full functionality -        Rich end user access Open -        Any data source -        Any business application -        Any technology stack  Integrated -        Common metadata -        Common security -        Common system management From a capabilities perspective the system should provide the following capabilities: Define -        Strategy -        Objectives -        Ownership -        KPI's Communicate -        Pervasive -        Collaborative -        Role based -        Secure Execute -        Integrated -        Intuitive -        Secure -        Ubiquitous Monitor -        Multiple styles and formats -        Exception based -        Push & Pull Having talked about the business problem and outlined the blueprint for a technology solution, let's talk about how Oracle Business Intelligence 11g can help. Oracle Business Intelligence is a comprehensive business intelligence solution for reporting, ad hoc query and analysis, OLAP, dashboards and scorecards. Oracle's best in class BI platform is based on an architecturally integrated technology foundation that provides a unified end user experience and features a Common Enterprise Information Model, with common security, query request generation and optimization, and system management. The BI platform is ·         Complete - meaning it delivers all modes and styles of BI including reporting, ad hoc query and analysis, OLAP, dashboards and scorecards with a rich end user experience that includes visualization, collaboration, alerts and notifications, search and mobile access. ·         Open - meaning the BI platform integrates with any data source, ETL tool, business application, application server, security infrastructure, portal technology as well as any ODBC compliant third party analytical tool. The suite accesses data from multiple heterogeneous sources--including popular relational and multidimensional data sources and major ERP and CRM applications from Oracle and SAP. ·         Integrated - meaning the BI platform is based on an architecturally integrated technology foundation built on an open, standards based service oriented architecture.  The platform features a common enterprise information model, common security model and a common configuration, deployment and systems management framework. To summarize, Oracle Business Intelligence is a comprehensive, integrated BI platform that lets you define strategy, identify objectives, assign ownership, define KPI's, collaborate, take action, monitor, report and do course corrections all form a single interface and a single system. The platform's integrated metadata model and task based design ensures that the entire workflow from defining strategy to execution to monitoring is completely integrated delivering end to end visibility, transparency and agility. Click here to learn more about Oracle BI 11g. 

    Read the article

  • Override an IOCTL Handler in PQOAL

    - by Kate Moss' Big Fan
    When porting or creating a BSP to a new platform, we often need to make change to OEMIoControl or HAL IOCTL handler for more specific. Since Microsoft introduced PQOAL in CE 5.0 and more and more BSP today leverages PQOAL to simplify the OAL, we no longer define the OEMIoControl directly. It is somehow analogous to migrate from pure Windows SDK to MFC; people starts to define those MFC handlers and forgot the WinMain and the big message loop. If you ever take a look at the interface between OAL and Kernel, PUBLIC\COMMON\OAK\INC\oemglobal.h, the pfnOEMIoctl is still there just as the entry point of Windows Program is WinMain since day one. (For those may argue about pfnOEMIoctl is not OEMIoControl, I will encourage you to dig into PRIVATE\WINCEOS\COREOS\NK\OEMMAIN\oemglobal.c which initialized pfnOEMIoctl to OEMIoControl. The interface is just to split OAL and Kernel which no longer linked to one executable file in CE 6, all of the function signature is still identical) So let's trace into PQOAL to realize how it implements OEMIoControl and how can we override an IOCTL handler we interest. First thing to know is the entry point (just as finding the WinMain in MFC), OEMIoControl is defined in PLATFORM\COMMON\SRC\COMMON\IOCTL\ioctl.c. Basically, it does nothing special but scan a pre-defined IOCTL table, g_oalIoCtlTable, and then execute the handler. (The highlight part) Other than that is just for error handling and the use of critical section to serialize the function. BOOL OEMIoControl(     DWORD code, VOID *pInBuffer, DWORD inSize, VOID *pOutBuffer, DWORD outSize,     DWORD *pOutSize ) {     BOOL rc = FALSE;     UINT32 i; ...     // Search the IOCTL table for the requested code.     for (i = 0; g_oalIoCtlTable[i].pfnHandler != NULL; i++) {         if (g_oalIoCtlTable[i].code == code) break;     }     // Indicate unsupported code     if (g_oalIoCtlTable[i].pfnHandler == NULL) {         NKSetLastError(ERROR_NOT_SUPPORTED);         OALMSG(OAL_IOCTL, (             L"OEMIoControl: Unsupported Code 0x%x - device 0x%04x func %d\r\n",             code, code >> 16, (code >> 2)&0x0FFF         ));         goto cleanUp;     }            // Take critical section if required (after postinit & no flag)     if (         g_ioctlState.postInit &&         (g_oalIoCtlTable[i].flags & OAL_IOCTL_FLAG_NOCS) == 0     ) {         // Take critical section                    EnterCriticalSection(&g_ioctlState.cs);     }     // Execute the handler     rc = g_oalIoCtlTable[i].pfnHandler(         code, pInBuffer, inSize, pOutBuffer, outSize, pOutSize     );     // Release critical section if it was taken above     if (         g_ioctlState.postInit &&         (g_oalIoCtlTable[i].flags & OAL_IOCTL_FLAG_NOCS) == 0     ) {         // Release critical section                    LeaveCriticalSection(&g_ioctlState.cs);     } cleanUp:     OALMSG(OAL_IOCTL&&OAL_FUNC, (L"-OEMIoControl(rc = %d)\r\n", rc ));     return rc; }   Where is the g_oalIoCtlTable? It is defined in your BSP. Let's use DeviceEmulator BSP as an example. The PLATFORM\DEVICEEMULATOR\SRC\OAL\OALLIB\ioctl.c defines the table as const OAL_IOCTL_HANDLER g_oalIoCtlTable[] = { #include "ioctl_tab.h" }; And that leads to PLATFORM\DEVICEEMULATOR\SRC\INC\ioctl_tab.h which defined some of IOCTL handler but others are defined in oal_ioctl_tab.h which is under PLATFORM\COMMON\SRC\INC\. Finally, we got the full table body! (Just like tracing MFC, always jumping back and forth). The format of table is very straight forward, IOCTL code, Flags and Handler Function // IOCTL CODE,                          Flags   Handler Function //------------------------------------------------------------------------------ { IOCTL_HAL_INITREGISTRY,                   0,  OALIoCtlHalInitRegistry     }, { IOCTL_HAL_INIT_RTC,                       0,  OALIoCtlHalInitRTC          }, { IOCTL_HAL_REBOOT,                         0,  OALIoCtlHalReboot           }, The PQOAL scans through the table until it find a matched IOCTL code, then invokes the handler function. Since it scans the table from the top which means if we define TWO handler with same IOCTL code, the first one is always invoked with no exception. Now back to the PLATFORM\DEVICEEMULATOR\SRC\INC\ioctl_tab.h, with the following table { IOCTL_HAL_INITREGISTRY,                   0,  OALIoCtlDeviceEmulatorHalInitRegistry     }, ... #include <oal_ioctl_tab.h> Note the IOCTL_HAL_INITREGISTRY handler are defined in both BSP's local ioctl_tab.h and the common oal_ioctl_tab.h, but due to BSP's local handler comes before "#include <oal_ioctl_tab.h>" so we know the OALIoCtlDeviceEmulatorHalInitRegistry always get called. In this example, the DeviceEmulator BSP overrides the IOCTL_HAL_INITREGISTRY handler from OALIoCtlHalInitRegistry to OALIoCtlDeviceEmulatorHalInitRegistry by manipulating the g_oalIoCtlTable table. (In some point of view, it is similar to message map in MFC) Please be aware, when you override an IOCTL handler in PQOAL, you may want to clone the original implementation to your BSP and change to meet your need. It is recommended and save you the redundant works but remember to rename the handler function (Just like the DeviceEmulator it changes the name of OALIoCtlHalInitRegistry to OALIoCtlDeviceEmulatorHalInitRegistry). If you don't change the name, linker may not be happy (due to name conflict) and the more important is by using different handler name, you could always redirect the handler back to original one. (It is like the concept of OOP that calling a function in base class; still not so clear? I am goinf to show you soon!) The OALIoCtlDeviceEmulatorHalInitRegistry setups DeviceEmulator specific registry settings and in the end, if everything goes well, it calls the OALIoCtlHalInitRegistry (PLATFORM\COMMON\SRC\COMMON\IOCTL\reginit.c) to do the rest.     if(fOk) {         fOk = OALIoCtlHalInitRegistry(code, pInpBuffer, inpSize, pOutBuffer,             outSize, pOutSize);     } Now you got the picture, whenever you want to override an IOCTL hadnler that is implemented in PQOAL just Clone the handler function to your BSP as a template. Simple name change for the handler function, and a name change in the IOCTL table header file that maps the IOCTL with the function Implement your IOCTL handler and whenever you need to redirect it back just calling the original handler function. It is the standard way of implementing a custom IOCTL and most Microsoft developers prefer. The mapping of IOCTL routine to IOCTL code is platform specific - you control the header file that does that mapping.

    Read the article

  • BizTalk 2009 - Custom Functoid Wizard

    - by StuartBrierley
    When creating BizTalk maps you may find that there are times when you need perform tasks that the standard functoids do not cover.  At other times you may find yourself reapeating a pattern of standard functoids over and over again, adding visual complexity to an otherwise simple process.  In these cases you may find it preferable to create your own custom functoids.  In the past I have created a number of custom functoids from scratch, but recently I decided to try out the Custom Functoid Wizard for BizTalk 2009. After downloading and installing the wizard you should start Visual Studio and select to create a new BizTalk Server Functoid Project. Following the splash screen you will be presented with the General Properties screen, where you can set the classname, namespace, assembly name and strong name key file. The next screen is the first set of properties for the functoid.  First of all is the fuctoid ID; this must be a value above 6000. You should also then set the name, tooltip and description of the functoid.  The name will appear in the visual studio toolbox and the tooltip on hover over in the toolbox.  The descrition will be shown when you configure the functoid inputs when using it in a map; as such it should provide a decent level of information to allow the functoid to be used. Next you must set the category, exception mesage, icon and implementation language.  The category will affect the positioning of the functoid within the toolbox and also some of the behaviours of the functoid. We must then define the parameters and connections for our new functoid.  Here you can define the names and types of your input parameters along with the minimum and maximum number of input connections.  You will also need to define the types of connections accepted and the output type of the functoid. Finally you can click finish and your custom functoid project will be created. The results of this process can be seen in the solution explorer, where you will see that a project, functoid class file and a resource file have been created for you. If you open the class file you will see that the following code has been created for you: The "base" function sets all the properties that you previsouly detailed in the custom functoid wizard.  public TestFunctoids():base()  {    int functoidID;    // This has to be a number greater than 6000    functoidID = System.Convert.ToInt32(resmgr.GetString("FunctoidId"));    this.ID = functoidID;    // Set Resource strings, bitmaps    SetupResourceAssembly(ResourceName, Assembly.GetExecutingAssembly());    SetName("FunctoidName");                     SetTooltip("FunctoidToolTip");    SetDescription("FunctoidDescription");    SetBitmap("FunctoidBitmap");    // Minimum and maximum parameters that the functoid accepts    this.SetMinParams(2);    this.SetMaxParams(2);    /// Function name that needs to be called when this Functoid is invoked.    /// Put this in GAC.    SetExternalFunctionName(GetType().Assembly.FullName,     "MyCompany.BizTalk.Functoids.TestFuntoids.TestFunctoids", "Execute");    // Category for this functoid.    this.Category = FunctoidCategory.String;    // Input and output Connection type    this.OutputConnectionType = ConnectionType.AllExceptRecord;    AddInputConnectionType(ConnectionType.AllExceptRecord);   } The "Execute" function provides a skeleton function that contains the code to be executed by your new functoid.  The inputs and outputs should match those you defined in the Custom Functoid Wizard.   public System.Int32 Execute(System.Int32 Cool)   {    ResourceManager resmgr = new ResourceManager(ResourceName, Assembly.GetExecutingAssembly());    try    {     // TODO: Implement Functoid Logic    }    catch (Exception e)    {     throw new Exception(resmgr.GetString("FunctoidException"), e);    }   } Opening the resource file you will see some of the various string values that you defined in the Custom Functoid Wizard - Name, Tooltip, Description and Exception. You can also select to look at the image resources.  This will display the embedded icon image for the functoid.  To change this right click the icon and select "Import from File". Once you have completed the skeleton code you can then look at trying out your functoid. To do this you will need to build the project, copy the compiled DLL to C:\Program Files\Microsoft BizTalk Server 2009\Developer Tools\Mapper Extensions and then refresh the toolbox in visual studio.

    Read the article

  • Sass interface in HTML6 for upload files.

    - by Anirudha
    Originally posted on: http://geekswithblogs.net/anirugu/archive/2013/11/04/sass-interface-in-html6-for-upload-files.aspx[This post is about experiment & imagination] From Windows XP (ever last OS I tried) I have seen a feature that is about send file to pen drive and make shortcut on Desktop. In XP, Win7 (Win8 have this too, not removed) just select the file right click > send to and you can send this file to many places. In my menu it’s show me Skype because I have installed it. this skype confirm that we can add our own app here to make it more easy for user to send file in our app. Nowadays Many people use Cloud or online site to store the file. In case of html5 drag and drop you need to have site opened and have opened that page which is about file upload. You need to select all  and drag and drop. after drag and drop file is simply uploaded to server and site show you on list (if no error happen). but this file upload is seriously not worthy since I have to open the site when I do this operation.   Through this post I want to describe a feature that can make this thing better.  This API is simply called SASS FILE UPLOAD API Through This API when you surf the site and come into file upload page then the page will tell you that we also have SASS FILE API support. Enable it for better result.   How this work This API feature are activated on 2 basis. 1. Feature are disabled by default on site (or you can change it if it’s not) 2. This API allow specific site to upload the files. Files upload may have some rule. For example (minimum or maximum size of file to uploaded, which format the site allowed you to upload). In case of resume site you will be allowed to use .doc (according to code of site)   How browser recognize that Site have SASS service. In HTML source of  the site, the code have a meta tag similar to this <meta name=”sass-upload-api” path=”/upload.json”/> Remember that upload.json is one file that has define the value of many settings {   "cookie_name": "ck_file",   "maximum_allowed_perday": 24,   "allowed_file_extensions","*.png,*.jpg,*.jpeg,*.gif",   "method": [       {           "get": "file/get",           "routing":"/file/get/{fileName}"       },       {           "post": "file/post",           "routing":"/file/post/{fileName}"       },       {           "delete": "file/delete",           "routing":"/file/delete/{fileName}"       },         {           "put": "file/put",           "routing":"/file/put/{fileName}"       },        {           "all": "file/all",           "routing":"/file/all/{fileName}"       }    ] } cookie name is simply a cookie which should be stored in browser and define in json. we define the cookie_name so we can easily share then with service in Windows system. This cookie will be accessible with the service so it’s security based safe. other cookie will not be shared.   The cookie will be post,put, get from this location. The all location will be simply about showing a whole list of file. This will gave a treeview kind of json to show the directories on sever.   for example example.com if you have activated the API with this site then you will seen a send to option in your explorer.exe when you send you will got a windows open which folder you want to use to send the file. The windows will also describe the limit and how much you can upload. This thing never required site to opened. When you upload the file this will be uploaded through FTP protocol. FTP protocol are better for performance.   How this API make thing faster. Suppose you want to ask a question and want to post image. you just do it and get it ready when you open stackoverflow.com now stackoverflow will only tell you which file you want to put on your current question that you asking for. second use is about people use cloud app.   There is no need of drag and drop anymore. we just need to do it without drag and drop it. we doesn’t need to open the site either. This thing is still in experiment level. I will update this post when I got some progress on this API.

    Read the article

  • Coherence Data Guarantees for Data Reads - Basic Terminology

    - by jpurdy
    When integrating Coherence into applications, each application has its own set of requirements with respect to data integrity guarantees. Developers often describe these requirements using expressions like "avoiding dirty reads" or "making sure that updates are transactional", but we often find that even in a small group of people, there may be a wide range of opinions as to what these terms mean. This may simply be due to a lack of familiarity, but given that Coherence sits at an intersection of several (mostly) unrelated fields, it may be a matter of conflicting vocabularies (e.g. "consistency" is similar but different in transaction processing versus multi-threaded programming). Since almost all data read consistency issues are related to the concept of concurrency, it is helpful to start with a definition of that, or rather what it means for two operations to be concurrent. Rather than implying that they occur "at the same time", concurrency is a slightly weaker statement -- it simply means that it can't be proven that one event precedes (or follows) the other. As an example, in a Coherence application, if two client members mutate two different cache entries sitting on two different cache servers at roughly the same time, it is likely that one update will precede the other by a significant amount of time (say 0.1ms). However, since there is no guarantee that all four members have their clocks perfectly synchronized, and there is no way to precisely measure the time it takes to send a given message between any two members (that have differing clocks), we consider these to be concurrent operations since we can not (easily) prove otherwise. So this leads to a question that we hear quite frequently: "Are the contents of the near cache always synchronized with the underlying distributed cache?". It's easy to see that if an update on a cache server results in a message being sent to each near cache, and then that near cache being updated that there is a window where the contents are different. However, this is irrelevant, since even if the application reads directly from the distributed cache, another thread update the cache before the read is returned to the application. Even if no other member modifies a cache entry prior to the local near cache entry being updated (and subsequently read), the purpose of reading a cache entry is to do something with the result, usually either displaying for consumption by a human, or by updating the entry based on the current state of the entry. In the former case, it's clear that if the data is updated faster than a human can perceive, then there is no problem (and in many cases this can be relaxed even further). For the latter case, the application must assume that the value might potentially be updated before it has a chance to update it. This almost aways the case with read-only caches, and the solution is the traditional optimistic transaction pattern, which requires the application to explicitly state what assumptions it made about the old value of the cache entry. If the application doesn't want to bother stating those assumptions, it is free to lock the cache entry prior to reading it, ensuring that no other threads will mutate the entry, a pessimistic approach. The optimistic approach relies on what is sometimes called a "fuzzy read". In other words, the application assumes that the read should be correct, but it also acknowledges that it might not be. (I use the qualifier "sometimes" because in some writings, "fuzzy read" indicates the situation where the application actually sees an original value and then later sees an updated value within the same transaction -- however, both definitions are roughly equivalent from an application design perspective). If the read is not correct it is called a "stale read". Going back to the definition of concurrency, it may seem difficult to precisely define a stale read, but the practical way of detecting a stale read is that is will cause the encompassing transaction to roll back if it tries to update that value. The pessimistic approach relies on a "coherent read", a guarantee that the value returned is not only the same as the primary copy of that value, but also that it will remain that way. In most cases this can be used interchangeably with "repeatable read" (though that term has additional implications when used in the context of a database system). In none of cases above is it possible for the application to perform a "dirty read". A dirty read occurs when the application reads a piece of data that was never committed. In practice the only way this can occur is with multi-phase updates such as transactions, where a value may be temporarily update but then withdrawn when a transaction is rolled back. If another thread sees that value prior to the rollback, it is a dirty read. If an application uses optimistic transactions, dirty reads will merely result in a lack of forward progress (this is actually one of the main risks of dirty reads -- they can be chained and potentially cause cascading rollbacks). The concepts of dirty reads, fuzzy reads, stale reads and coherent reads are able to describe the vast majority of requirements that we see in the field. However, the important thing is to define the terms used to define requirements. A quick web search for each of the terms in this article will show multiple meanings, so I've selected what are generally the most common variations, but it never hurts to state each definition explicitly if they are critical to the success of a project (many applications have sufficiently loose requirements that precise terminology can be avoided).

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Getting Started Building Windows 8 Store Apps with XAML/C#

    - by dwahlin
    Technology is fun isn’t it? As soon as you think you’ve figured out where things are heading a new technology comes onto the scene, changes things up, and offers new opportunities. One of the new technologies I’ve been spending quite a bit of time with lately is Windows 8 store applications. I posted my thoughts about Windows 8 during the BUILD conference in 2011 and still feel excited about the opportunity there. Time will tell how well it ends up being accepted by consumers but I’m hopeful that it’ll take off. I currently have two Windows 8 store application concepts I’m working on with one being built in XAML/C# and another in HTML/JavaScript. I really like that Microsoft supports both options since it caters to a variety of developers and makes it easy to get started regardless if you’re a desktop developer or Web developer. Here’s a quick look at how the technologies are organized in Windows 8: In this post I’ll focus on the basics of Windows 8 store XAML/C# apps by looking at features, files, and code provided by Visual Studio projects. To get started building these types of apps you’ll definitely need to have some knowledge of XAML and C#. Let’s get started by looking at the Windows 8 store project types available in Visual Studio 2012.   Windows 8 Store XAML/C# Project Types When you open Visual Studio 2012 you’ll see a new entry under C# named Windows Store. It includes 6 different project types as shown next.   The Blank App project provides initial starter code and a single page whereas the Grid App and Split App templates provide quite a bit more code as well as multiple pages for your application. The other projects available can be be used to create a class library project that runs in Windows 8 store apps, a WinRT component such as a custom control, and a unit test library project respectively. If you’re building an application that displays data in groups using the “tile” concept then the Grid App or Split App project templates are a good place to start. An example of the initial screens generated by each project is shown next: Grid App Split View App   When a user clicks a tile in a Grid App they can view details about the tile data. With a Split View app groups/categories are shown and when the user clicks on a group they can see a list of all the different items and then drill-down into them:   For the remainder of this post I’ll focus on functionality provided by the Blank App project since it provides a simple way to get started learning the fundamentals of building Windows 8 store apps.   Blank App Project Walkthrough The Blank App project is a great place to start since it’s simple and lets you focus on the basics. In this post I’ll focus on what it provides you out of the box and cover additional details in future posts. Once you have the basics down you can move to the other project types if you need the functionality they provide. The Blank App project template does exactly what it says – you get an empty project with a few starter files added to help get you going. This is a good option if you’ll be building an app that doesn’t fit into the grid layout view that you see a lot of Windows 8 store apps following (such as on the Windows 8 start screen). I ended up starting with the Blank App project template for the app I’m currently working on since I’m not displaying data/image tiles (something the Grid App project does well) or drilling down into lists of data (functionality that the Split App project provides). The Blank App project provides images for the tiles and splash screen (you’ll definitely want to change these), a StandardStyles.xaml resource dictionary that includes a lot of helpful styles such as buttons for the AppBar (a special type of menu in Windows 8 store apps), an App.xaml file, and the app’s main page which is named MainPage.xaml. It also adds a Package.appxmanifest that is used to define functionality that your app requires, app information used in the store, plus more. The App.xaml, App.xaml.cs and StandardStyles.xaml Files The App.xaml file handles loading a resource dictionary named StandardStyles.xaml which has several key styles used throughout the application: <Application x:Class="BlankApp.App" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="using:BlankApp"> <Application.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <!-- Styles that define common aspects of the platform look and feel Required by Visual Studio project and item templates --> <ResourceDictionary Source="Common/StandardStyles.xaml"/> </ResourceDictionary.MergedDictionaries> </ResourceDictionary> </Application.Resources> </Application>   StandardStyles.xaml has style definitions for different text styles and AppBar buttons. If you scroll down toward the middle of the file you’ll see that many AppBar button styles are included such as one for an edit icon. Button styles like this can be used to quickly and easily add icons/buttons into your application without having to be an expert in design. <Style x:Key="EditAppBarButtonStyle" TargetType="ButtonBase" BasedOn="{StaticResource AppBarButtonStyle}"> <Setter Property="AutomationProperties.AutomationId" Value="EditAppBarButton"/> <Setter Property="AutomationProperties.Name" Value="Edit"/> <Setter Property="Content" Value="&#xE104;"/> </Style> Switching over to App.xaml.cs, it includes some code to help get you started. An OnLaunched() method is added to handle creating a Frame that child pages such as MainPage.xaml can be loaded into. The Frame has the same overall purpose as the one found in WPF and Silverlight applications - it’s used to navigate between pages in an application. /// <summary> /// Invoked when the application is launched normally by the end user. Other entry points /// will be used when the application is launched to open a specific file, to display /// search results, and so forth. /// </summary> /// <param name="args">Details about the launch request and process.</param> protected override void OnLaunched(LaunchActivatedEventArgs args) { Frame rootFrame = Window.Current.Content as Frame; // Do not repeat app initialization when the Window already has content, // just ensure that the window is active if (rootFrame == null) { // Create a Frame to act as the navigation context and navigate to the first page rootFrame = new Frame(); if (args.PreviousExecutionState == ApplicationExecutionState.Terminated) { //TODO: Load state from previously suspended application } // Place the frame in the current Window Window.Current.Content = rootFrame; } if (rootFrame.Content == null) { // When the navigation stack isn't restored navigate to the first page, // configuring the new page by passing required information as a navigation // parameter if (!rootFrame.Navigate(typeof(MainPage), args.Arguments)) { throw new Exception("Failed to create initial page"); } } // Ensure the current window is active Window.Current.Activate(); }   Notice that in addition to creating a Frame the code also checks to see if the app was previously terminated so that you can load any state/data that the user may need when the app is launched again. If you’re new to the lifecycle of Windows 8 store apps the following image shows how an app can be running, suspended, and terminated.   If the user switches from an app they’re running the app will be suspended in memory. The app may stay suspended or may be terminated depending on how much memory the OS thinks it needs so it’s important to save state in case the application is ultimately terminated and has to be started fresh. Although I won’t cover saving application state here, additional information can be found at http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh465099.aspx. Another method in App.xaml.cs named OnSuspending() is also included in App.xaml.cs that can be used to store state as the user switches to another application:   /// <summary> /// Invoked when application execution is being suspended. Application state is saved /// without knowing whether the application will be terminated or resumed with the contents /// of memory still intact. /// </summary> /// <param name="sender">The source of the suspend request.</param> /// <param name="e">Details about the suspend request.</param> private void OnSuspending(object sender, SuspendingEventArgs e) { var deferral = e.SuspendingOperation.GetDeferral(); //TODO: Save application state and stop any background activity deferral.Complete(); } The MainPage.xaml and MainPage.xaml.cs Files The Blank App project adds a file named MainPage.xaml that acts as the initial screen for the application. It doesn’t include anything aside from an empty <Grid> XAML element in it. The code-behind class named MainPage.xaml.cs includes a constructor as well as a method named OnNavigatedTo() that is called once the page is displayed in the frame.   /// <summary> /// An empty page that can be used on its own or navigated to within a Frame. /// </summary> public sealed partial class MainPage : Page { public MainPage() { this.InitializeComponent(); } /// <summary> /// Invoked when this page is about to be displayed in a Frame. /// </summary> /// <param name="e">Event data that describes how this page was reached. The Parameter /// property is typically used to configure the page.</param> protected override void OnNavigatedTo(NavigationEventArgs e) { } }   If you’re experienced with XAML you can switch to Design mode and start dragging and dropping XAML controls from the ToolBox in Visual Studio. If you prefer to type XAML you can do that as well in the XAML editor or while in split mode. Many of the controls available in WPF and Silverlight are included such as Canvas, Grid, StackPanel, and Border for layout. Standard input controls are also included such as TextBox, CheckBox, PasswordBox, RadioButton, ComboBox, ListBox, and more. MediaElement is available for rendering video or playing audio files. Some of the “common” XAML controls included out of the box are shown next:   Although XAML/C# Windows 8 store apps don’t include all of the functionality available in Silverlight 5, the core functionality required to build store apps is there with additional functionality available in open source projects such as Callisto (started by Microsoft’s Tim Heuer), Q42.WinRT, and others. Standard XAML data binding can be used to bind C# objects to controls, converters can be used to manipulate data during the data binding process, and custom styles and templates can be applied to controls to modify them. Although Visual Studio 2012 doesn’t support visually creating styles or templates, Expression Blend 5 handles that very well. To get started building the initial screen of a Windows 8 app you can start adding controls as mentioned earlier. Simply place them inside of the <Grid> element that’s included. You can arrange controls in a stacked manner using the StackPanel control, add a border around controls using the Border control, arrange controls in columns and rows using the Grid control, or absolutely position controls using the Canvas control. One of the controls that may be new to you is the AppBar. It can be used to add menu/toolbar functionality into a store app and keep the app clean and focused. You can place an AppBar at the top or bottom of the screen. A user on a touch device can swipe up to display the bottom AppBar or right-click when using a mouse. An example of defining an AppBar that contains an Edit button is shown next. The EditAppBarButtonStyle is available in the StandardStyles.xaml file mentioned earlier. <Page.BottomAppBar> <AppBar x:Name="ApplicationAppBar" Padding="10,0,10,0" AutomationProperties.Name="Bottom App Bar"> <Grid> <StackPanel x:Name="RightPanel" Orientation="Horizontal" Grid.Column="1" HorizontalAlignment="Right"> <Button x:Name="Edit" Style="{StaticResource EditAppBarButtonStyle}" Tag="Edit" /> </StackPanel> </Grid> </AppBar> </Page.BottomAppBar> Like standard XAML controls, the <Button> control in the AppBar can be wired to an event handler method in the MainPage.Xaml.cs file or even bound to a ViewModel object using “commanding” if your app follows the Model-View-ViewModel (MVVM) pattern (check out the MVVM Light package available through NuGet if you’re using MVVM with Windows 8 store apps). The AppBar can be used to navigate to different screens, show and hide controls, display dialogs, show settings screens, and more.   The Package.appxmanifest File The Package.appxmanifest file contains configuration details about your Windows 8 store app. By double-clicking it in Visual Studio you can define the splash screen image, small and wide logo images used for tiles on the start screen, orientation information, and more. You can also define what capabilities the app has such as if it uses the Internet, supports geolocation functionality, requires a microphone or webcam, etc. App declarations such as background processes, file picker functionality, and sharing can also be defined Finally, information about how the app is packaged for deployment to the store can also be defined. Summary If you already have some experience working with XAML technologies you’ll find that getting started building Windows 8 applications is pretty straightforward. Many of the controls available in Silverlight and WPF are available making it easy to get started without having to relearn a lot of new technologies. In the next post in this series I’ll discuss additional features that can be used in your Windows 8 store apps.

    Read the article

  • OIM 11g notification framework

    - by Rajesh G Kumar
    OIM 11g has introduced an improved and template based Notifications framework. New release has removed the limitation of sending text based emails (out-of-the-box emails) and enhanced to support html features. New release provides in-built out-of-the-box templates for events like 'Reset Password', 'Create User Self Service' , ‘User Deleted' etc. Also provides new APIs to support custom templates to send notifications out of OIM. OIM notification framework supports notification mechanism based on events, notification templates and template resolver. They are defined as follows: Ø Events are defined as XML file and imported as part of MDS database in order to make notification event available for use. Ø Notification templates are created using OIM advance administration console. The template contains the text and the substitution 'variables' which will be replaced with the data provided by the template resolver. Templates support internationalization and can be defined as HTML or in form of simple text. Ø Template resolver is a Java class that is responsible to provide attributes and data to be used at runtime and design time. It must be deployed following the OIM plug-in framework. Resolver data provided at design time is to be used by end user to design notification template with available entity variables and it also provides data at runtime to replace the designed variable with value to be displayed to recipients. Steps to define custom notifications in OIM 11g are: Steps# Steps 1. Define the Notification Event 2. Create the Custom Template Resolver class 3. Create Template with notification contents to be sent to recipients 4. Create Event triggering spots in OIM 1. Notification Event metadata The Notification Event is defined as XML file which need to be imported into MDS database. An event file must be compliant with the schema defined by the notification engine, which is NotificationEvent.xsd. The event file contains basic information about the event.XSD location in MDS database: “/metadata/iam-features-notification/NotificationEvent.xsd”Schema file can be viewed by exporting file from MDS using weblogicExportMetadata.sh script.Sample Notification event metadata definition: 1: <?xml version="1.0" encoding="UTF-8"?> 2: <Events xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance xsi:noNamespaceSchemaLocation="../../../metadata/NotificationEvent.xsd"> 3: <EventType name="Sample Notification"> 4: <StaticData> 5: <Attribute DataType="X2-Entity" EntityName="User" Name="Granted User"/> 6: </StaticData> 7: <Resolver class="com.iam.oim.demo.notification.DemoNotificationResolver"> 8: <Param DataType="91-Entity" EntityName="Resource" Name="ResourceInfo"/> 9: </Resolver> 10: </EventType> 11: </Events> Line# Description 1. XML file notation tag 2. Events is root tag 3. EventType tag is to declare a unique event name which will be available for template designing 4. The StaticData element lists a set of parameters which allow user to add parameters that are not data dependent. In other words, this element defines the static data to be displayed when notification is to be configured. An example of static data is the User entity, which is not dependent on any other data and has the same set of attributes for all event instances and notification templates. Available attributes are used to be defined as substitution tokens in the template. 5. Attribute tag is child tag for StaticData to declare the entity and its data type with unique reference name. User entity is most commonly used Entity as StaticData. 6. StaticData closing tag 7. Resolver tag defines the resolver class. The Resolver class must be defined for each notification. It defines what parameters are available in the notification creation screen and how those parameters are replaced when the notification is to be sent. Resolver class resolves the data dynamically at run time and displays the attributes in the UI. 8. The Param DataType element lists a set of parameters which allow user to add parameters that are data dependent. An example of the data dependent or a dynamic entity is a resource object which user can select at run time. A notification template is to be configured for the resource object. Corresponding to the resource object field, a lookup is displayed on the UI. When a user selects the event the call goes to the Resolver class provided to fetch the fields that are displayed in the Available Data list, from which user can select the attribute to be used on the template. Param tag is child tag to declare the entity and its data type with unique reference name. 9. Resolver closing tag 10 EventType closing tag 11. Events closing tag Note: - DataType needs to be declared as “X2-Entity” for User entity and “91-Entity” for Resource or Organization entities. The dynamic entities supported for lookup are user, resource, and organization. Once notification event metadata is defined, need to be imported into MDS database. Fully qualified resolver class name need to be define for XML but do not need to load the class in OIM yet (it can be loaded later). 2. Coding the notification resolver All event owners have to provide a resolver class which would resolve the data dynamically at run time. Custom resolver class must implement the interface oracle.iam.notification.impl.NotificationEventResolver and override the implemented methods with actual implementation. It has 2 methods: S# Methods Descriptions 1. public List<NotificationAttribute> getAvailableData(String eventType, Map<String, Object> params); This API will return the list of available data variables. These variables will be available on the UI while creating/modifying the Templates and would let user select the variables so that they can be embedded as a token as part of the Messages on the template. These tokens are replaced by the value passed by the resolver class at run time. Available data is displayed in a list. The parameter "eventType" specifies the event Name for which template is to be read.The parameter "params" is the map which has the entity name and the corresponding value for which available data is to be fetched. Sample code snippet: List<NotificationAttribute> list = new ArrayList<NotificationAttribute>(); long objKey = (Long) params.get("resource"); //Form Field details based on Resource object key HashMap<String, Object> formFieldDetail = getObjectFormName(objKey); for (Iterator<?> itrd = formFieldDetail.entrySet().iterator(); itrd.hasNext(); ) { NotificationAttribute availableData = new NotificationAttribute(); Map.Entry formDetailEntrySet = (Entry<?, ?>)itrd.next(); String fieldLabel = (String)formDetailEntrySet.getValue(); availableData.setName(fieldLabel); list.add(availableData); } return list; 2. Public HashMap<String, Object> getReplacedData(String eventType, Map<String, Object> params); This API would return the resolved value of the variables present on the template at the runtime when notification is being sent. The parameter "eventType" specifies the event Name for which template is to be read.The parameter "params" is the map which has the base values such as usr_key, obj_key etc required by the resolver implementation to resolve the rest of the variables in the template. Sample code snippet: HashMap<String, Object> resolvedData = new HashMap<String, Object>();String firstName = getUserFirstname(params.get("usr_key"));resolvedData.put("fname", firstName); String lastName = getUserLastName(params.get("usr_key"));resolvedData.put("lname", lastname);resolvedData.put("count", "1 million");return resolvedData; This code must be deployed as per OIM 11g plug-in framework. The XML file defining the plug-in is as below: <?xml version="1.0" encoding="UTF-8"?> <oimplugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <plugins pluginpoint="oracle.iam.notification.impl.NotificationEventResolver"> <plugin pluginclass= " com.iam.oim.demo.notification.DemoNotificationResolver" version="1.0" name="Sample Notification Resolver"/> </plugins> </oimplugins> 3. Defining the template To create a notification template: Log in to the Oracle Identity Administration Click the System Management tab and then click the Notification tab From the Actions list on the left pane, select Create On the Create page, enter values for the following fields under the Template Information section: Template Name: Demo template Description Text: Demo template Under the Event Details section, perform the following: From the Available Event list, select the event for which the notification template is to be created from a list of available events. Depending on your selection, other fields are displayed in the Event Details section. Note that the template Sample Notification Event created in the previous step being used as the notification event. The contents of the Available Data drop down are based on the event XML StaticData tag, the drop down basically lists all the attributes of the entities defined in that tag. Once you select an element in the drop down, it will show up in the Selected Data text field and then you can just copy it and paste it into either the message subject or the message body fields prefixing $ symbol. Example if list has attribute like First_Name then message body will contains this as $First_Name which resolver will parse and replace it with actual value at runtime. In the Resource field, select a resource from the lookup. This is the dynamic data defined by the Param DataType element in the XML definition. Based on selected resource getAvailableData method of resolver will be called to fetch the resource object attribute detail, if method is overridden with required implementation. For current scenario, Map<String, Object> params will get populated with object key as value and key as “resource” in the map. This is the only input will be provided to resolver at design time. You need to implement the further logic to fetch the object attributes detail to populate the available Data list. List string should not have space in between, if object attributes has space for attribute name then implement logic to replace the space with ‘_’ before populating the list. Example if attribute name is “First Name” then make it “First_Name” and populate the list. Space is not supported while you try to parse and replace the token at run time with real value. Make a note that the Available Data and Selected Data are used in the substitution tokens definition only, they do not define the final data that will be sent in the notification. OIM will invoke the resolver class to get the data and make the substitutions. Under the Locale Information section, enter values in the following fields: To specify a form of encoding, select either UTF-8 or ASCII. In the Message Subject field, enter a subject for the notification. From the Type options, select the data type in which you want to send the message. You can choose between HTML and Text/Plain. In the Short Message field, enter a gist of the message in very few words. In the Long Message field, enter the message that will be sent as the notification with Available data token which need to be replaced by resolver at runtime. After you have entered the required values in all the fields, click Save. A message is displayed confirming the creation of the notification template. Click OK 4. Triggering the event A notification event can be triggered from different places in OIM. The logic behind the triggering must be coded and plugged into OIM. Examples of triggering points for notifications: Event handlers: post process notifications for specific data updates in OIM users Process tasks: to notify the users that a provisioning task was executed by OIM Scheduled tasks: to notify something related to the task The scheduled job has two parameters: Template Name: defines the notification template to be sent User Login: defines the user record that will provide the data to be sent in the notification Sample Code Snippet: public void execute(String templateName , String userId) { try { NotificationService notService = Platform.getService(NotificationService.class); NotificationEvent eventToSend=this.createNotificationEvent(templateName,userId); notService.notify(eventToSend); } catch (Exception e) { e.printStackTrace(); } } private NotificationEvent createNotificationEvent(String poTemplateName, String poUserId) { NotificationEvent event = new NotificationEvent(); String[] receiverUserIds= { poUserId }; event.setUserIds(receiverUserIds); event.setTemplateName(poTemplateName); event.setSender(null); HashMap<String, Object> templateParams = new HashMap<String, Object>(); templateParams.put("USER_LOGIN",poUserId); event.setParams(templateParams); return event; } public HashMap getAttributes() { return null; } public void setAttributes() {} }

    Read the article

  • JMS Step 7 - How to Write to an AQ JMS (Advanced Queueing JMS) Queue from a BPEL Process

    - by John-Brown.Evans
    JMS Step 7 - How to Write to an AQ JMS (Advanced Queueing JMS) Queue from a BPEL Process ol{margin:0;padding:0} .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} .c4_7{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c3_7{vertical-align:top;width:234pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c6_7{vertical-align:top;width:156pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c16_7{background-color:#ffffff;padding:0pt 0pt 0pt 0pt} .c0_7{height:11pt;direction:ltr} .c9_7{color:#1155cc;text-decoration:underline} .c17_7{color:inherit;text-decoration:inherit} .c5_7{direction:ltr} .c18_7{background-color:#ffff00} .c2_7{background-color:#f3f3f3} .c14_7{height:0pt} .c8_7{text-indent:36pt} .c11_7{text-align:center} .c7_7{font-style:italic} .c1_7{font-family:"Courier New"} .c13_7{line-height:1.0} .c15_7{border-collapse:collapse} .c12_7{font-weight:bold} .c10_7{font-size:8pt} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue JMS Step 6 - How to Set Up an AQ JMS (Advanced Queueing JMS) for SOA Purposes This example demonstrates how to write a simple message to an Oracle AQ via the the WebLogic AQ JMS functionality from a BPEL process and a JMS adapter. If you have not yet reviewed the previous posts, please do so first, especially the JMS Step 6 post, as this one references objects created there. 1. Recap and Prerequisites In the previous example, we created an Oracle Advanced Queue (AQ) and some related JMS objects in WebLogic Server to be able to access it via JMS. Here are the objects which were created and their names and JNDI names: Database Objects Name Type AQJMSUSER Database User MyQueueTable Advanced Queue (AQ) Table UserQueue Advanced Queue WebLogic Server Objects Object Name Type JNDI Name aqjmsuserDataSource Data Source jdbc/aqjmsuserDataSource AqJmsModule JMS System Module AqJmsForeignServer JMS Foreign Server AqJmsForeignServerConnectionFactory JMS Foreign Server Connection Factory AqJmsForeignServerConnectionFactory AqJmsForeignDestination AQ JMS Foreign Destination queue/USERQUEUE eis/aqjms/UserQueue Connection Pool eis/aqjms/UserQueue 2 . Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will write a simple XML message to the AQ JMS queue via the JMS adapter, based on the following XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                xmlns="http://www.example.org"                targetNamespace="http://www.example.org"                elementFormDefault="qualified">  <xsd:element name="exampleElement" type="xsd:string">  </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project   JmsAdapterWriteAqJms  and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and select SOA Tier > SOA Project as its type. Name it JmsAdapterWriteAqJms . When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteAqJms too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd  and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the XSD item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Advanced Queueing AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the connection factory created earlier is located. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Produce Operation Parameters Destination Name: Wait for the list to populate. (Only foreign servers are listed here, because Oracle Advanced Queuing was selected earlier, in step 3) .         Select the foreign server destination created earlier, AqJmsForeignDestination (queue) . This will automatically populate the Destination Name field with the name of the foreign destination, queue/USERQUEUE . JNDI Name: The JNDI name to use for the JMS connection. This is the JNDI name of the connection pool created in the WebLogic Server.JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime. In our example, this is the value eis/aqjms/UserQueue Messages URL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement : string . Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow.   This completes the steps at the composite level. 3. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 4. Compile and Deploy the Composite Compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ----  Deployment finished.  ---- in the Deployment frame, if the deployment was successful. 5. Test the Composite Execute a Test Instance In a browser, log in to the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation. Navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite) and click on  JmsAdapterWriteAqJms [1.0] , then press the Test button. Enter any string into the text input field, for example “Test message from JmsAdapterWriteAqJms” then press Test Web Service. If the instance is successful, you should see the same text you entered in the Response payload frame. Monitor the Advanced Queue The test message will be written to the advanced queue created at the top of this sample. To confirm it, log in to the database as AQJMSUSER and query the MYQUEUETABLE database table. For example, from a shell window with SQL*Plus sqlplus aqjmsuser/aqjmsuser SQL> SELECT user_data FROM myqueuetable; which will display the message contents, for example Similarly, you can use the JDeveloper Database Navigator to view the contents. Use a database connection to the AQJMSUSER and in the navigator, expand Queues Tables and select MYQUEUETABLE. Select the Data tab and scroll to the USER_DATA column to view its contents. This concludes this example. The following post will be the last one in this series. In it, we will learn how to read the message we just wrote using a BPEL process and AQ JMS. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • Using Oracle Proxy Authentication with JPA (eclipselink-Style)

    - by olaf.heimburger
    Security is a very intriguing topic. You will find it everywhere and you need to implement it everywhere. Yes, you need. Unfortunately, one can easily forget it while implementing the last mile. The Last Mile In a multi-tier application it is a common practice to use connection pools between the business layer and the database layer. Connection pools are quite useful to speed database connection creation and to split the load. Another very common practice is to use a specific, often called technical, user to connect to the database. This user has authentication and authorization rules that apply to all application users. Imagine you've put every effort to define roles for different types of users that use your application. These roles are necessary to differentiate between normal users, premium users, and administrators (I bet you will find or already have more roles in your application). While these user roles are pretty well used within your application, once the flow of execution enters the database everything is gone. Each and every user just has one role and is the same database user. Issues? What Issues? As long as things go well, this is not a real issue. However, things do not go well all the time. Once your application becomes famous performance decreases in certain situations or, more importantly, current and upcoming regulations and laws require that your application must be able to apply different security measures on a per user role basis at every stage of your application. If you only have a bunch of users with the same name and role you are not able to find the application usage profile that causes the performance issue, or which user has accessed data that he/she is not allowed to. Another thread to your role concept is that databases tend to be used by different applications and tools. These tools can be developer tools like SQL*Plus, SQL Developer, etc. or end user applications like BI Publisher, Oracle Forms and so on. These tools have no idea of your applications role concept and access the database the way they think is appropriate. A big oversight for your perfect role model and a big nightmare for your Chief Security Officer. Speaking of the CSO, brings up another issue: Password management. Once your technical user account is compromised, every user is able to do things that he/she is not expected to do from the design of your application. Counter Measures In the Oracle world a common counter measure is to use Virtual Private Database (VPD). This restricts the values a database user can see to the allowed minimum. However, it doesn't help in regard of a connection pool user, because this one is still not the real user. Oracle Proxy Authentication Another feature of the Oracle database is Proxy Authentication. First introduced with version 9i it is a quite useful feature for nearly every situation. The main idea behind Proxy Authentication is, to create a crippled database user who has only connect rights. Even if this user is compromised the risks are well understood and fairly limited. This user can be used in every situation in which you need to connect to the database, no matter which tool or application (see above) you use.The proxy user is perfect for multi-tier connection pools. CREATE USER app_user IDENTIFIED BY abcd1234; GRANT CREATE SESSION TO app_user; But what if you need to access real data? Well, this is the primary use case, isn't it? Now is the time to bring the application's role concept into play. You define database roles that define the grants for your identified user groups. Once you have these groups you grant access through the proxy user with the application role to the specific user. CREATE ROLE app_role_a; GRANT app_role_a TO scott; ALTER USER scott GRANT CONNECT THROUGH app_user WITH ROLE app_role_a; Now, hr has permission to connect to the database through the proxy user. Through the role you can restrict the hr's rights the are needed for the application only. If hr connects to the database directly all assigned role and permissions apply. Testing the Setup To test the setup you can use SQL*Plus and connect to your database: $ sqlplus app_user[hr]/abcd1234 Java Persistence API The Java Persistence API (JPA) is a fairly easy means to build applications that retrieve data from the database and put it into Java objects. You use plain old Java objects (POJOs) and mixin some Java annotations that define how the attributes of the object are used for storing data from the database into the Java object. Here is a sample for objects from the HR sample schema EMPLOYEES table. When using Java annotations you only specify what can not be deduced from the code. If your Java class name is Employee but the table name is EMPLOYEES, you need to specify the table name, otherwise it will fail. package demo.proxy.ejb; import java.io.Serializable; import java.sql.Timestamp; import java.util.List; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.Id; import javax.persistence.JoinColumn; import javax.persistence.ManyToOne; import javax.persistence.NamedQueries; import javax.persistence.NamedQuery; import javax.persistence.OneToMany; import javax.persistence.Table; @Entity @NamedQueries({ @NamedQuery(name = "Employee.findAll", query = "select o from Employee o") }) @Table(name = "EMPLOYEES") public class Employee implements Serializable { @Column(name="COMMISSION_PCT") private Double commissionPct; @Column(name="DEPARTMENT_ID") private Long departmentId; @Column(nullable = false, unique = true, length = 25) private String email; @Id @Column(name="EMPLOYEE_ID", nullable = false) private Long employeeId; @Column(name="FIRST_NAME", length = 20) private String firstName; @Column(name="HIRE_DATE", nullable = false) private Timestamp hireDate; @Column(name="JOB_ID", nullable = false, length = 10) private String jobId; @Column(name="LAST_NAME", nullable = false, length = 25) private String lastName; @Column(name="PHONE_NUMBER", length = 20) private String phoneNumber; private Double salary; @ManyToOne @JoinColumn(name = "MANAGER_ID") private Employee employee; @OneToMany(mappedBy = "employee") private List employeeList; public Employee() { } public Employee(Double commissionPct, Long departmentId, String email, Long employeeId, String firstName, Timestamp hireDate, String jobId, String lastName, Employee employee, String phoneNumber, Double salary) { this.commissionPct = commissionPct; this.departmentId = departmentId; this.email = email; this.employeeId = employeeId; this.firstName = firstName; this.hireDate = hireDate; this.jobId = jobId; this.lastName = lastName; this.employee = employee; this.phoneNumber = phoneNumber; this.salary = salary; } public Double getCommissionPct() { return commissionPct; } public void setCommissionPct(Double commissionPct) { this.commissionPct = commissionPct; } public Long getDepartmentId() { return departmentId; } public void setDepartmentId(Long departmentId) { this.departmentId = departmentId; } public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } public Long getEmployeeId() { return employeeId; } public void setEmployeeId(Long employeeId) { this.employeeId = employeeId; } public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public Timestamp getHireDate() { return hireDate; } public void setHireDate(Timestamp hireDate) { this.hireDate = hireDate; } public String getJobId() { return jobId; } public void setJobId(String jobId) { this.jobId = jobId; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getPhoneNumber() { return phoneNumber; } public void setPhoneNumber(String phoneNumber) { this.phoneNumber = phoneNumber; } public Double getSalary() { return salary; } public void setSalary(Double salary) { this.salary = salary; } public Employee getEmployee() { return employee; } public void setEmployee(Employee employee) { this.employee = employee; } public List getEmployeeList() { return employeeList; } public void setEmployeeList(List employeeList) { this.employeeList = employeeList; } public Employee addEmployee(Employee employee) { getEmployeeList().add(employee); employee.setEmployee(this); return employee; } public Employee removeEmployee(Employee employee) { getEmployeeList().remove(employee); employee.setEmployee(null); return employee; } } JPA could be used in standalone applications and Java EE containers. In both worlds you normally create a Facade to retrieve or store the values of the Entities to or from the database. The Facade does this via an EntityManager which will be injected by the Java EE container. Here is sample Facade Session Bean for a Java EE container. package demo.proxy.ejb; import java.util.HashMap; import java.util.List; import javax.ejb.Local; import javax.ejb.Remote; import javax.ejb.Stateless; import javax.persistence.EntityManager; import javax.persistence.PersistenceContext; import javax.persistence.Query; import javax.interceptor.AroundInvoke; import javax.interceptor.InvocationContext; import oracle.jdbc.driver.OracleConnection; import org.eclipse.persistence.config.EntityManagerProperties; import org.eclipse.persistence.internal.jpa.EntityManagerImpl; @Stateless(name = "DataFacade", mappedName = "ProxyUser-TestEJB-DataFacade") @Remote @Local public class DataFacadeBean implements DataFacade, DataFacadeLocal { @PersistenceContext(unitName = "TestEJB") private EntityManager em; private String username; public Object queryByRange(String jpqlStmt, int firstResult, int maxResults) { // setSessionUser(); Query query = em.createQuery(jpqlStmt); if (firstResult 0) { query = query.setFirstResult(firstResult); } if (maxResults 0) { query = query.setMaxResults(maxResults); } return query.getResultList(); } public Employee persistEmployee(Employee employee) { // setSessionUser(); em.persist(employee); return employee; } public Employee mergeEmployee(Employee employee) { // setSessionUser(); return em.merge(employee); } public void removeEmployee(Employee employee) { // setSessionUser(); employee = em.find(Employee.class, employee.getEmployeeId()); em.remove(employee); } /** select o from Employee o */ public List getEmployeeFindAll() { Query q = em.createNamedQuery("Employee.findAll"); return q.getResultList(); } Putting Both Together To use Proxy Authentication with JPA and within a Java EE container you have to take care of the additional requirements: Use an OCI JDBC driver Provide the user name that connects through the proxy user Use an OCI JDBC driver To use the OCI JDBC driver you need to set up your JDBC data source file to use the correct JDBC URL. hr jdbc:oracle:oci8:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost)(PORT=1521))(CONNECT_DATA=(SID=XE))) oracle.jdbc.OracleDriver user app_user 62C32F70E98297522AD97E15439FAC0E SQL SELECT 1 FROM DUAL jdbc/hrDS Application Additionally you need to make sure that the version of the shared libraries of the OCI driver match the version of the JDBC driver in your Java EE container or Java application and are within your PATH (on Windows) or LD_LIBRARY_PATH (on most Unix-based systems). Installing the Oracle Database Instance Client software works perfectly. Provide the user name that connects through the proxy user This part needs some modification of your application software and session facade. Session Facade Changes In the Session Facade we must ensure that every call that goes through the EntityManager must be prepared correctly and uniquely assigned to this session. The second is really important, as the EntityManager works with a connection pool and can not guarantee that we set the proxy user on the connection that will be used for the database activities. To avoid changing every method call of the Session Facade we provide a method to set the username of the user that connects through the proxy user. This method needs to be called by the Facade client bfore doing anything else. public void setUsername(String name) { username = name; } Next we provide a means to instruct the TopLink EntityManager Delegate to use Oracle Proxy Authentication. (I love small helper methods to hide the nitty-gritty details and avoid repeating myself.) private void setSessionUser() { setSessionUser(username); } private void setSessionUser(String user) { if (user != null && !user.isEmpty()) { EntityManagerImpl emDelegate = ((EntityManagerImpl)em.getDelegate()); emDelegate.setProperty(EntityManagerProperties.ORACLE_PROXY_TYPE, OracleConnection.PROXYTYPE_USER_NAME); emDelegate.setProperty(OracleConnection.PROXY_USER_NAME, user); emDelegate.setProperty(EntityManagerProperties.EXCLUSIVE_CONNECTION_MODE, "Always"); } } The final step is use the EJB 3.0 AroundInvoke interceptor. This interceptor will be called around every method invocation. We therefore check whether the Facade methods will be called or not. If so, we set the user for proxy authentication and the normal method flow continues. @AroundInvoke public Object proxyInterceptor(InvocationContext invocationCtx) throws Exception { if (invocationCtx.getTarget() instanceof DataFacadeBean) { setSessionUser(); } return invocationCtx.proceed(); } Benefits Using Oracle Proxy Authentification has a number of additional benefits appart from implementing the role model of your application: Fine grained access control for temporary users of the account, without compromising the original password. Enabling database auditing and logging. Better identification of performance bottlenecks. References Effective Oracle Database 10g Security by Design, David Knox TopLink Developer's Guide, Chapter 98

    Read the article

  • Issues with signal handling [closed]

    - by user34790
    I am trying to actually study the signal handling behavior in multiprocess system. I have a system where there are three signal generating processes generating signals of type SIGUSR1 and SIGUSR1. I have two handler processes that handle a particular type of signal. I have another monitoring process that also receives the signals and then does its work. I have a certain issue. Whenever my signal handling processes generate a signal of a particular type, it is sent to the process group so it is received by the signal handling processes as well as the monitoring processes. Whenever the signal handlers of monitoring and signal handling processes are called, I have printed to indicate the signal handling. I was expecting a uniform series of calls for the signal handlers of the monitoring and handling processes. However, looking at the output I could see like at the beginning the monitoring and signal handling processes's signal handlers are called uniformly. However, after I could see like signal handler processes handlers being called in a burst followed by the signal handler of monitoring process being called in a burst. Here is my code and output #include <iostream> #include <sys/types.h> #include <sys/wait.h> #include <sys/time.h> #include <signal.h> #include <cstdio> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define NUM_SENDER_PROCESSES 3 #define NUM_HANDLER_PROCESSES 4 #define NUM_SIGNAL_REPORT 10 #define MAX_SIGNAL_COUNT 100000 using namespace std; volatile int *usrsig1_handler_count; volatile int *usrsig2_handler_count; volatile int *usrsig1_sender_count; volatile int *usrsig2_sender_count; volatile int *lock_1; volatile int *lock_2; volatile int *lock_3; volatile int *lock_4; volatile int *lock_5; volatile int *lock_6; //Used only by the monitoring process volatile int monitor_count; volatile int usrsig1_monitor_count; volatile int usrsig2_monitor_count; double time_1[NUM_SIGNAL_REPORT]; double time_2[NUM_SIGNAL_REPORT]; //Used only by the main process int total_signal_count; //For shared memory int shmid; const int shareSize = sizeof(int) * (10); double timestamp() { struct timeval tp; gettimeofday(&tp, NULL); return (double)tp.tv_sec + tp.tv_usec / 1000000.; } pid_t senders[NUM_SENDER_PROCESSES]; pid_t handlers[NUM_HANDLER_PROCESSES]; pid_t reporter; void signal_catcher_1(int); void signal_catcher_2(int); void signal_catcher_int(int); void signal_catcher_monitor(int); void signal_catcher_main(int); void terminate_processes() { //Kill the child processes int status; cout << "Time up terminating the child processes" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); //Wait for the child processes to finish for(int i=0; i<NUM_SENDER_PROCESSES; i++) { waitpid(senders[i], &status, 0); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { waitpid(handlers[i], &status, 0); } waitpid(reporter, &status, 0); } int main(int argc, char *argv[]) { if(argc != 2) { cout << "Required parameters missing. " << endl; cout << "Option 1 = 1 which means run for 30 seconds" << endl; cout << "Option 2 = 2 which means run until 100000 signals" << endl; exit(0); } int option = atoi(argv[1]); pid_t pid; if(option == 2) { if(signal(SIGUSR1, signal_catcher_main) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, signal_catcher_main) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } if(signal(SIGINT, signal_catcher_int) == SIG_ERR) { perror("3"); exit(1); } /////////////////////////////////////////////////////////////////////////////////////// ////////////////////// Initializing the shared memory ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////// cout << "Initializing the shared memory" << endl; if ((shmid=shmget(IPC_PRIVATE,shareSize,IPC_CREAT|0660))< 0) { perror("shmget fail"); exit(1); } usrsig1_handler_count = (int *) shmat(shmid, NULL, 0); usrsig2_handler_count = usrsig1_handler_count + 1; usrsig1_sender_count = usrsig2_handler_count + 1; usrsig2_sender_count = usrsig1_sender_count + 1; lock_1 = usrsig2_sender_count + 1; lock_2 = lock_1 + 1; lock_3 = lock_2 + 1; lock_4 = lock_3 + 1; lock_5 = lock_4 + 1; lock_6 = lock_5 + 1; //Initialize them to be zero *usrsig1_handler_count = 0; *usrsig2_handler_count = 0; *usrsig1_sender_count = 0; *usrsig2_sender_count = 0; *lock_1 = 0; *lock_2 = 0; *lock_3 = 0; *lock_4 = 0; *lock_5 = 0; *lock_6 = 0; cout << "End of initializing the shared memory" << endl; ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////// End of initializing the shared memory /////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////Registering the signal handlers/////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal handlers" << endl; for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { if((pid = fork()) == 0) { if(i%2 == 0) { struct sigaction action; action.sa_handler = signal_catcher_1; sigset_t block_mask; action.sa_flags = 0; sigaction(SIGUSR1,&action,NULL); if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } } else { if(signal(SIGUSR1 ,SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } struct sigaction action; action.sa_handler = signal_catcher_2; action.sa_flags = 0; sigaction(SIGUSR2,&action,NULL); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { //cout << "Registerd the handler " << pid << endl; handlers[i] = pid; } } cout << "End of registering the signal handlers" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////End of registering the signal handlers ////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////Registering the monitoring process ////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the monitoring process" << endl; if((pid = fork()) == 0) { struct sigaction action; action.sa_handler = signal_catcher_monitor; sigemptyset(&action.sa_mask); sigset_t block_mask; sigemptyset(&block_mask); sigaddset(&block_mask,SIGUSR1); sigaddset(&block_mask,SIGUSR2); action.sa_flags = 0; action.sa_mask = block_mask; sigaction(SIGUSR1,&action,NULL); sigaction(SIGUSR2,&action,NULL); if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } while(true) { pause(); } exit(0); } else { cout << "Monitor's pid is " << pid << endl; reporter = pid; } cout << "End of registering the monitoring process" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////End of registering the monitoring process//////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Sleep to make sure that the monitor and handler processes are well initialized and ready to handle signals sleep(5); ////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////Registering the signal generators/////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// cout << "Registering the signal generators" << endl; for(int i=0; i<NUM_SENDER_PROCESSES; i++) { if((pid = fork()) == 0) { if(signal(SIGUSR1, SIG_IGN) == SIG_ERR) { perror("1"); exit(1); } if(signal(SIGUSR2, SIG_IGN) == SIG_ERR) { perror("2"); exit(1); } if(signal(SIGINT, SIG_DFL) == SIG_ERR) { perror("2"); exit(1); } srand(i); while(true) { int signal_id = rand()%2 + 1; if(signal_id == 1) { killpg(getpgid(getpid()), SIGUSR1); while(__sync_lock_test_and_set(lock_4,1) != 0) { } (*usrsig1_sender_count)++; *lock_4 = 0; } else { killpg(getpgid(getpid()), SIGUSR2); while(__sync_lock_test_and_set(lock_5,1) != 0) { } (*usrsig2_sender_count)++; *lock_5=0; } int r = rand()%10 + 1; double s = (double)r/100; sleep(s); } exit(0); } else { //cout << "Registered the sender " << pid << endl; senders[i] = pid; } } //cout << "End of registering the signal generators" << endl; ///////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////End of registering the signal generators/////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////// //Either sleep for 30 seconds and terminate the program or if the number of signals generated reaches 10000, terminate the program if(option = 1) { sleep(90); terminate_processes(); } else { while(true) { if(total_signal_count >= MAX_SIGNAL_COUNT) { terminate_processes(); } else { sleep(0.001); } } } } void signal_catcher_1(int the_sig) { while(__sync_lock_test_and_set(lock_1,1) != 0) { } (*usrsig1_handler_count) = (*usrsig1_handler_count) + 1; cout << "Signal Handler 1 " << *usrsig1_handler_count << endl; __sync_lock_release(lock_1); } void signal_catcher_2(int the_sig) { while(__sync_lock_test_and_set(lock_2,1) != 0) { } (*usrsig2_handler_count) = (*usrsig2_handler_count) + 1; __sync_lock_release(lock_2); } void signal_catcher_main(int the_sig) { while(__sync_lock_test_and_set(lock_6,1) != 0) { } total_signal_count++; *lock_6 = 0; } void signal_catcher_int(int the_sig) { for(int i=0; i<NUM_SENDER_PROCESSES; i++) { kill(senders[i],SIGKILL); } for(int i=0; i<NUM_HANDLER_PROCESSES; i++) { kill(handlers[i],SIGKILL); } kill(reporter,SIGKILL); exit(3); } void signal_catcher_monitor(int the_sig) { cout << "Monitoring process " << *usrsig1_handler_count << endl; } Here is the initial segment of output Monitoring process 0 Monitoring process 0 Monitoring process 0 Monitoring process 0 Signal Handler 1 1 Monitoring process 2 Signal Handler 1 2 Signal Handler 1 3 Signal Handler 1 4 Monitoring process 4 Monitoring process Signal Handler 1 6 Signal Handler 1 7 Monitoring process 7 Monitoring process 8 Monitoring process 8 Signal Handler 1 9 Monitoring process 9 Monitoring process 9 Monitoring process 10 Signal Handler 1 11 Monitoring process 11 Monitoring process 12 Signal Handler 1 13 Signal Handler 1 14 Signal Handler 1 15 Signal Handler 1 16 Signal Handler 1 17 Signal Handler 1 18 Monitoring process 19 Signal Handler 1 20 Monitoring process 20 Signal Handler 1 21 Monitoring process 21 Monitoring process 21 Monitoring process 22 Monitoring process 22 Monitoring process 23 Signal Handler 1 24 Signal Handler 1 25 Monitoring process 25 Signal Handler 1 27 Signal Handler 1 28 Signal Handler 1 29 Here is the segment when the signal handler processes signal handlers are called in a burst Signal Handler 1 456 Signal Handler 1 457 Signal Handler 1 458 Signal Handler 1 459 Signal Handler 1 460 Signal Handler 1 461 Signal Handler 1 462 Signal Handler 1 463 Signal Handler 1 464 Signal Handler 1 465 Signal Handler 1 466 Signal Handler 1 467 Signal Handler 1 468 Signal Handler 1 469 Signal Handler 1 470 Signal Handler 1 471 Signal Handler 1 472 Signal Handler 1 473 Signal Handler 1 474 Signal Handler 1 475 Signal Handler 1 476 Signal Handler 1 477 Signal Handler 1 478 Signal Handler 1 479 Signal Handler 1 480 Signal Handler 1 481 Signal Handler 1 482 Signal Handler 1 483 Signal Handler 1 484 Signal Handler 1 485 Signal Handler 1 486 Signal Handler 1 487 Signal Handler 1 488 Signal Handler 1 489 Signal Handler 1 490 Signal Handler 1 491 Signal Handler 1 492 Signal Handler 1 493 Signal Handler 1 494 Signal Handler 1 495 Signal Handler 1 496 Signal Handler 1 497 Signal Handler 1 498 Signal Handler 1 499 Signal Handler 1 500 Signal Handler 1 501 Signal Handler 1 502 Signal Handler 1 503 Signal Handler 1 504 Signal Handler 1 505 Signal Handler 1 506 Here is the segment when the monitoring processes signal handlers are called in a burst Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Monitoring process 140 Why isn't it uniform afterwards. Why are they called in a burst?

    Read the article

  • More Animation - Self Dismissing Dialogs

    - by Duncan Mills
    In my earlier articles on animation, I discussed various slide, grow and  flip transitions for items and containers.  In this article I want to discuss a fade animation and specifically the use of fades and auto-dismissal for informational dialogs.  If you use a Mac, you may be familiar with Growl as a notification system, and the nice way that messages that are informational just fade out after a few seconds. So in this blog entry I wanted to discuss how we could make an ADF popup behave in the same way. This can be an effective way of communicating information to the user without "getting in the way" with modal alerts. This of course, has been done before, but everything I've seen previously requires something like JQuery to be in the mix when we don't really need it to be.  The solution I've put together is nice and generic and will work with either <af:panelWindow> or <af:dialog> as a the child of the popup. In terms of usage it's pretty simple to use we  just need to ensure that the popup itself has clientComponent is set to true and includes the animation JavaScript (animateFadingPopup) on a popupOpened event: <af:popup id="pop1" clientComponent="true">   <af:panelWindow title="A Fading Message...">    ...  </af:panelWindow>   <af:clientListener method="animateFadingPopup" type="popupOpened"/> </af:popup>   The popup can be invoked in the normal way using showPopupBehavior or JavaScript, no special code is required there. As a further twist you can include an additional clientAttribute called preFadeDelay to define a delay before the fade itself starts (the default is 5 seconds) . To set the delay to just 2 seconds for example: <af:popup ...>   ...   <af:clientAttribute name="preFadeDelay" value="2"/>   <af:clientListener method="animateFadingPopup" type="popupOpened"/>  </af:popup> The Animation Styles  As before, we have a couple of CSS Styles which define the animation, I've put these into the skin in my case, and, as in the other articles, I've only defined the transitions for WebKit browsers (Chrome, Safari) at the moment. In this case, the fade is timed at 5 seconds in duration. .popupFadeReset {   opacity: 1; } .popupFadeAnimate {   opacity: 0;   -webkit-transition: opacity 5s ease-in-out; } As you can see here, we are achieving the fade by simply setting the CSS opacity property. The JavaScript The final part of the puzzle is, of course, the JavaScript, there are four functions, these are generic (apart from the Style names which, if you've changed above, you'll need to reflect here): The initial function invoked from the popupOpened event,  animateFadingPopup which starts a timer and provides the initial delay before we start to fade the popup. The function that applies the fade animation to the popup - initiatePopupFade. The callback function - closeFadedPopup used to reset the style class and correctly hide the popup so that it can be invoked again and again.   A utility function - findFadeContainer, which is responsible for locating the correct child component of the popup to actually apply the style to. Function - animateFadingPopup This function, as stated is the one hooked up to the popupOpened event via a clientListener. Because of when the code is called it does not actually matter how you launch the popup, or if the popup is re-used from multiple places. All usages will get the fade behavior. /**  * Client listener which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param event  */ function animateFadingPopup(event) { var fadePopup = event.getSource();   var fadeCandidate = false;   //Ensure that the popup is initially Opaque   //This handles the situation where the user has dismissed   //the popup whilst it was in the process of fading   var fadeContainer = findFadeContainer(fadePopup);   if (fadeContainer != null) {     fadeCandidate = true;     fadeContainer.setStyleClass("popupFadeReset");   }   //Only continue if we can actually fade this popup   if (fadeCandidate) {   //See if a delay has been specified     var waitTimeSeconds = event.getSource().getProperty('preFadeDelay');     //Default to 5 seconds if not supplied     if (waitTimeSeconds == undefined) {     waitTimeSeconds = 5;     }     // Now call the fade after the specified time     var fadeFunction = function () {     initiatePopupFade(fadePopup);     };     var fadeDelayTimer = setTimeout(fadeFunction, (waitTimeSeconds * 1000));   } } The things to note about this function is the initial check that we have to do to ensure that the container is currently visible and reset it's style to ensure that it is.  This is to handle the situation where the popup has begun the fade, and yet the user has still explicitly dismissed the popup before it's complete and in doing so has prevented the callback function (described later) from executing. In this particular situation the initial display of the dialog will be (apparently) missing it's normal animation but at least it becomes visible to the user (and most users will probably not notice this difference in any case). You'll notice that the style that we apply to reset the  opacity - popupFadeReset, is not applied to the popup component itself but rather the dialog or panelWindow within it. More about that in the description of the next function findFadeContainer(). Finally, assuming that we have a suitable candidate for fading, a JavaScript  timer is started using the specified preFadeDelay wait time (or 5 seconds if that was not supplied). When this timer expires then the main animation styleclass will be applied using the initiatePopupFade() function Function - findFadeContainer As a component, the <af:popup> does not support styleClass attribute, so we can't apply the animation style directly.  Instead we have to look for the container within the popup which defines the window object that can have a style attached.  This is achieved by the following code: /**  * The thing we actually fade will be the only child  * of the popup assuming that this is a dialog or window  * @param popup  * @return the component, or null if this is not valid for fading  */ function findFadeContainer(popup) { var children = popup.getDescendantComponents();   var fadeContainer = children[0];   if (fadeContainer != undefined) {   var compType = fadeContainer.getComponentType();     if (compType == "oracle.adf.RichPanelWindow" || compType == "oracle.adf.RichDialog") {     return fadeContainer;     }   }   return null; }  So what we do here is to grab the first child component of the popup and check its type. Here I decided to limit the fade behaviour to only <af:dialog> and <af:panelWindow>. This was deliberate.  If  we apply the fade to say an <af:noteWindow> you would see the text inside the balloon fade, but the balloon itself would hang around until the fade animation was over and then hide.  It would of course be possible to make the code smarter to walk up the DOM tree to find the correct <div> to apply the style to in order to hide the whole balloon, however, that means that this JavaScript would then need to have knowledge of the generated DOM structure, something which may change from release to release, and certainly something to avoid. So, all in all, I think that this is an OK restriction and frankly it's windows and dialogs that I wanted to fade anyway, not balloons and menus. You could of course extend this technique and handle the other types should you really want to. One thing to note here is the selection of the first (children[0]) child of the popup. It does not matter if there are non-visible children such as clientListener before the <af:dialog> or <af:panelWindow> within the popup, they are not included in this array, so picking the first element in this way seems to be fine, no matter what the underlying ordering is within the JSF source.  If you wanted a super-robust version of the code you might want to iterate through the children array of the popup to check for the right type, again it's up to you.  Function -  initiatePopupFade  On to the actual fading. This is actually very simple and at it's heart, just the application of the popupFadeAnimate style to the correct component and then registering a callback to execute once the fade is done. /**  * Function which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param popup the popup we are animating  */ function initiatePopupFade(popup) { //Only continue if the popup has not already been dismissed    if (popup.isPopupVisible()) {   //The skin styles that define the animation      var fadeoutAnimationStyle = "popupFadeAnimate";     var fadeAnimationResetStyle = "popupFadeReset";     var fadeContainer = findFadeContainer(popup);     if (fadeContainer != null) {     var fadeContainerReal = AdfAgent.AGENT.getElementById(fadeContainer.getClientId());       //Define the callback this will correctly reset the popup once it's disappeared       var fadeCallbackFunction = function (event) {       closeFadedPopup(popup, fadeContainer, fadeAnimationResetStyle);         event.target.removeEventListener("webkitTransitionEnd", fadeCallbackFunction);       };       //Initiate the fade       fadeContainer.setStyleClass(fadeoutAnimationStyle);       //Register the callback to execute once fade is done       fadeContainerReal.addEventListener("webkitTransitionEnd", fadeCallbackFunction, false);     }   } } I've added some extra checks here though. First of all we only start the whole process if the popup is still visible. It may be that the user has closed the popup before the delay timer has finished so there is no need to start animating in that case. Again we use the findFadeContainer() function to locate the correct component to apply the style to, and additionally we grab the DOM id that represents that container.  This physical ID is required for the registration of the callback function. The closeFadedPopup() call is then registered on the callback so as to correctly close the now transparent (but still there) popup. Function -  closeFadedPopup The final function just cleans things up: /**  * Callback function to correctly cancel and reset the style in the popup  * @param popup id of the popup so we can close it properly  * @param contatiner the window / dialog within the popup to actually style  * @param resetStyle the syle that sets the opacity back to solid  */ function closeFadedPopup(popup, container, resetStyle) { container.setStyleClass(resetStyle);   popup.cancel(); }  First of all we reset the style to make the popup contents opaque again and then we cancel the popup.  This will ensure that any of your user code that is waiting for a popup cancelled event will actually get the event, additionally if you have done this as a modal window / dialog it will ensure that the glasspane is dismissed and you can interact with the UI again.  What's Next? There are several ways in which this technique could be used, I've been working on a popup here, but you could apply the same approach to in-line messages. As this code (in the popup case) is generic it will make s pretty nice declarative component and maybe, if I get time, I'll look at constructing a formal Growl component using a combination of this technique, and active data push. Also, I'm sure the above code can be improved a little too.  Specifically things like registering a popup cancelled listener to handle the style reset so that we don't loose the subtle animation that takes place when the popup is opened in that situation where the user has closed the in-fade dialog.

    Read the article

  • What is the differnce between DataTemplate and DataContext in WPF?

    - by Ashish Ashu
    I can set the relationship b/w View Model and view through following DataContext syntax: <UserControl.DataContext> <view_model:MainMenuModel /> </UserControl.DataContext> And I can also set the relationship b/w View Model and view through following DataTemplate syntax: <DataTemplate DataType="{x:Type viewModel:UserViewModel}"> <view:UserView /> </DataTemplate> Please let me know what is the difference between the two ? Is the second XAML does not set the data context of a view ?

    Read the article

  • Set focus on div contenteditable element

    - by sanceray3
    Hi all, I try to explain my problem, because I really need your help. I have a <div contenteditable=true> where I define by a WYSIWYG some elements. For example <p>,<h1>, etc. I would like to put directly the focus on one of this elements. For example on <p id="p_test">. But it seems that focus() function doesn't work on <div> elements, <p> elements... Is there a another means to define the focus in my case ? Thank you very much for your help !

    Read the article

  • jQuery button click refresh of jqGrid only firing once

    - by The Matt
    I have the following jQuery code which I'm using to populate a jqGrid. It works perfectly posting to my ASP.NET MVC page on the first click of the button. My problem is, any other clicks past the first it seems to run through the jquery code when clicking the button but it never makes it to the POST page. Any ideas why? <script type="text/javascript"> $(document).ready(function() { $('#btnSubmit').click(function() { /* Refreshes the grid */ $("#list").jqGrid({ /* The controller action to get the grid data from */ url: '/CRA/AddPart', data: { partNumber: "123"}, datatype: 'json', mtype: 'GET', /* Define the headers on the grid */ colNames: ['col1', 'col2', 'col3', 'col4'], /* Define what fields the row columns come from */ colModel: [ { name: 'col1', index: 'invid', width: 290 }, { name: 'col2', index: 'invdate', width: 290 }, { name: 'col3', index: 'amount', width: 290, align: 'right' }, { name: 'col4', index: 'tax', width: 290, align: 'right'}], height: 'auto', rowNum: 10, rowList: [10, 20, 30], sortname: 'id', sortorder: "desc", viewrecords: true, imgpath: '../../Scripts/jgrid/themes/steel/images', caption: 'Core Return Authorization Contents:', cellEdit: true }); }); }); </script>

    Read the article

  • "unbound identifier" errors in scheme

    - by user186909
    Hello: I'm using drscheme from: http://www.archlinux.org/packages/extra/x86_64/drscheme/ I'm trying to work with the sample code in my textbook, but I keep getting getting "unbound identifier" errors. Is it because the scheme interpreter is not configured correctly? or is the code just plain wrong? Here are a few examples: Input: #lang scheme (define (equalimp lis1 lis2) (COND ((NULL? lis1) (NULL? lis2)) ((NULL? lis2) '()) ((EQ? (CAR lis1) (CAR lis2)) (equalimp (CDR lis1) (CDR lis2))) (ELSE '()) )) Output: Welcome to DrScheme, version 4.2.5 [3m]. Language: scheme; memory limit: 128 MB. expand: unbound identifier in module in: COND Input: #lang scheme (define (quadratic_roots a b c) (LET ( (root_part_over_2a (/ (SQRT (- (* b b) (* 4 a c))) (* 2 a))) (minus_b_over_2a (/ (- 0 b) (* 2 a))) ) (DISPLAY (+ minus_b_over_2a root_part_over_2a)) (NEWLINE) (DISPLAY (- minus_b_over_2a root_part_over_2a)) )) Output: expand: unbound identifier in module in: LET Note: I tried using LET* because I read this: stackoverflow.com/ questions/946050/using-let-in-scheme but it produces the same error. Thanks !

    Read the article

  • C# Conditional Compilation and framework targets

    - by McKAMEY
    There are a few minor places where code for my project may be able to be drastically improved if the target framework were a newer version. I'd like to be able to better leverage conditional compilation in C# to switch these as needed. Something like: #if NET_40 using FooXX = Foo40; #elif NET_35 using FooXX = Foo35; #else using FooXX = Foo20; #endif Do these symbols come for free? Do I need to inject these symbols as part of the project configuration? Seems easy enough to do since I'll know which framework is being targeted from msbuild. I think I've seen that NET_40 symbol isn't defined? If so I think I could do this? #if !NET_35 && !NET_20 #define NET_40 #endif Or do I need to define it in the msbuild command: /p:DefineConstants="NET_40"

    Read the article

  • Ws-Security headers using Metro

    - by Bhushan
    I have a web service which implements WS-Security but does not define a policy in the WSDL. I am able to consume this web service successfully using Axis 2 as client. I am trying to consume the same web service using Metro 2 but the wsse:security headers are not going. It works only if the service defines the security policy which is not under my control. I tested this by creating a sample web service and unless I define the policy my metro client never sends the wsse:security headers. Is there anything I am missing using Metro?

    Read the article

< Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >