Search Results

Search found 6716 results on 269 pages for 'distributed algorithm'.

Page 117/269 | < Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >

  • most efficient AABB vs Ray collision algorithms

    - by Asher Einhorn
    Is there a known 'most efficient' algorithm for AABB vs Ray collision detection? I recently stumbled accross Arvo's AABB vs Sphere collision algorithm, and I am wondering if there is a similarly noteworthy algorithm for this. One must have condition for this algorithm is that I need to have the option of querying the result for the distance from the ray's origin to the point of collision. having said this, if there is another, faster algorithm which does not return distance, then in addition to posting one that does, also posting that algorithm would be very helpful indeed. Please also state what the function's return argument is, and how you use it to return distance or a 'no-collision' case. For example, does it have an out parameter for the distance as well as a bool return value? or does it simply return a float with the distance, vs a value of -1 for no collision? (For those that don't know: AABB = Axis Aligned Bounding Box)

    Read the article

  • What are the advantages of a distributed version control for a team that is effectively never distri

    - by Luke CK
    When working remotely, our team only has access to our source code by remote desktop into our office PCs so we never really work in offline mode. Does a distributed version control system like Mercurial or Git still give us advantages over our current centralized Subversion set up? If so, what are they? Are there any drawbacks or pitfalls? I've read in numerous places that shifting to distributed version control requires a change in thinking. Can someone explain what needs to change in this regard?

    Read the article

  • Distributed version control for HUGE projects - is it feasible?

    - by Vilx-
    We're pretty happy with SVN right now, but Joel's tutorial intrigued me. So I was wondering - would it be feasible in our situation too? The thing is - our SVN repository is HUGE. The software itself has a 15 years old legacy and has survived several different source control systems already. There are over 68,000 revisions (changesets), the source itself takes up over 100MB and I cant even begin to guess how many GB the whole repository consumes. The problem then is simple - a clone of the whole repository would probably take ages to make, and would consume far more space on the drive that is remotely sane. And since the very point of distributed version control is to have a as many repositories as needed, I'm starting to get doubts. How does Mercurial (or any other distributed version control) deal with this? Or are they unusable for such huge projects?

    Read the article

  • Best Solution for Load Balancing geographically distributed NFS File Access?

    - by DairyKnight
    I'm trying to find an optimum solution for accessing the NFS file share in my company. We have a central file server in North America and has 30GB~50GB of updated data everyday. And it's very slow for our Europe and Asia branches to access directly. Therefore, I'm trying to setup two replicate servers in those continents. I'm currently using rsync, but wonder if there exists a better solution acts more like a distributed RAID, which allows the user to transparently access the file whether synced or not. And user request will be dispatched to remote server if the file is not yet synced. I'm now looking into DRBD, but it seems not to have the functionality of auto-dispatching requests. Does anyone know if there's a better solution?

    Read the article

  • How can I better implement A star algorithm with a very large set of nodes?

    - by Stephen
    I'm making a game with nodejs in which many enemies must converge on the player as the player moves around a relatively open space (right now it is an open field with few obstacles, but eventually there may be some small buildings in the field with 1 or 2 rooms). It's a multiplayer game using websockets, so the server needs to keep track of enemies and players. I found this javascript A* library which I've modified to be used on the server as a nodejs module. The library utilizes a Binary Heap to track the nodes for the algorithm, so it should be pretty fast (and indeed, with a small grid, say 100x100 it is lightning fast). The problem is that my game is not really tile-based. As the player moves around the map, he is moving on a more or less 1-to-1 per-pixel coordinate system (the player can move in 8 directions, 1 or 2 pixels at a time). In preliminary tests, on an 800x600 field, the path-finding can take anywhere from 400 to 1000 ms. Multiply that by 10 enemies and the game starts to get pretty choppy. I have already set it up so that each enemy will only do a path-finding call once per second or even as slow as once every 2 seconds (they have to keep updating their path because the players can move freely). But even with this long interval, there are noticeable lag spikes or chops every couple of seconds as the enemies update their paths. I'm willing to approach the problem of path-finding differently, if there's another option. I'm assuming that the real problem is the enormous grid (800x600). It also occurs to me that maybe the large arrays are to blame, as I've read that V8 has trouble with large arrays.

    Read the article

  • Is the way I'm implementing my genetic algorithm right?

    - by Mhjr
    In my graduation project, I am asked to use a genetic algorithm (any variation of it can be chosen) to generate valid timetables. What I did was make a simple program that generates unique sequences representing genes, the sequence is described below: (sorry if it's mathematically incorrect) The only variable in the sequence is the room element, so basically the program takes a tree that goes like this: [Course] -(contains)-> [Units] -(contains)-> [Offerings] -(contains)-> [Instructors] -(contains)-> [Rooms] Each course can have n units (duplicates). Each unit can have n offerings (lectures,lab session, excercises,...). Each offering has only 1 instructor. Each instructor (or the whole lecture composed from the four elements of the sequence) has multiple rooms. When a timetable is initialized, one of these sequences that differ in rooms will be taken into the timetable, so the difference in genes (sequences) of each timetable will be just the rooms random choice and the difference between chromosomes (timetables) will be time placements of these genes (sequences). My question is, before I proceed in implementing what I described, is it valid? Is the representation used here for chromosomes a permutation representation?

    Read the article

  • What is an appropriate language for expressing initial stages of algorithm refinement?

    - by hydroparadise
    First, this is not a homework assignment, but you can treat it as such ;). I found the following question in the published paper The Camel Has Two Humps. I was not a CS major going to college (I majored in MIS/Management), but I have a job where I find myself coding quite often. For a non-trivial programming problem, which one of the following is an appropriate language for expressing the initial stages of algorithm refinement? (a) A high-level programming language. (b) English. (c) Byte code. (d) The native machine code for the processor on which the program will run. (e) Structured English (pseudocode). What I do know is that you usually want to start your design implementation by writing down pseuducode and then moving/writing in the desired technology (because we all do that, right?) But I never thought about it in terms of refinement. I mean, if you were the original designer, then you might have access to the original pseudocode. But realisticly, when I have to maintain/refactor/refine somebody elses code, I just keep trucking with the language it currently resides in. Anybody have a definitive answer to this? As a side note, I did a quick scan of the paper as I havn't read every single detail. It presents various score statistics, can't find where the answers are with the paper.

    Read the article

  • How do I fix a permissions problem with MS Distributed File System?

    - by charlesrandall
    I have a computer that is new, Windows 7, that is supposed to have access to particular network resources on a Distributed File System. However, despite all permissions being set correctly, I have consistent trouble accessing them. For instance, I'm supposed to be able to reach \company.org\main\subdir. All the permissions have been granted, only when I try to access it by name, it tells me I don't have permission to access \main. This is where the fun starts. If I ping company.org, get the IP, replace company.org by the IP, I can then access \IP\main\subdir without any problems at all. However we have a ton of scripts and build tools that access the network resource by name. My sysadmin has found that using MS's dfsutil.exe, we can fix it temporary using this sequence of commands: C:\dfsutil.exe /pktinfo C:\dfsutil.exe /PktFlush C:\dfsutil.exe /SpcFlush C:\dfsutil.exe /PurgeMupCache C:\dfsutil.exe /pktinfo After that, everything is great... until I reboot, or until some unspecified time later where suddenly I don't have access to \main\ anymore. Hoping to find a more permanent solution than waiting for it to break and running a batch file.

    Read the article

  • Windows Azure Use Case: Hybrid Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Organizations see the need for computing infrastructures that they can “rent” or pay for only when they need them. They also understand the benefits of distributed computing, but do not want to create this infrastructure themselves. However, they may have considerations that prevent them from moving all of their current IT investment to a distributed environment: Private data (do not want to send or store sensitive data off-site) High dollar investment in current infrastructure Applications currently running well, but may need additional periodic capacity Current applications not designed in a stateless fashion In these situations, a “hybrid” approach works best. In fact, with Windows Azure, a hybrid approach is an optimal way to implement distributed computing even when the stipulations above do not apply. Keeping a majority of the computing function in an organization local while exploring and expanding that footprint into Windows and SQL Azure is a good migration or expansion strategy. A “hybrid” architecture merely means that part of a computing cycle is shared between two architectures. For instance, some level of computing might be done in a Windows Azure web-based application, while the data is stored locally at the organization. Implementation: There are multiple methods for implementing a hybrid architecture, in a spectrum from very little interaction from the local infrastructure to Windows or SQL Azure. The patterns fall into two broad schemas, and even these can be mixed. 1. Client-Centric Hybrid Patterns In this pattern, programs are coded such that the client system sends queries or compute requests to multiple systems. The “client” in this case might be a web-based codeset actually stored on another system (which acts as a client, the user’s device serving as the presentation layer) or a compiled program. In either case, the code on the client requestor carries the burden of defining the layout of the requests. While this pattern is often the easiest to code, it’s the most brittle. Any change in the architecture must be reflected on each client, but this can be mitigated by using a centralized system as the client such as in the web scenario. 2. System-Centric Hybrid Patterns Another approach is to create a distributed architecture by turning on-site systems into “services” that can be called from Windows Azure using the service Bus or the Access Control Services (ACS) capabilities. Code calls from a series of in-process client application. In this pattern you move the “client” interface into the server application logic. If you do not wish to change the application itself, you can “layer” the results of the code return using a product (such as Microsoft BizTalk) that exposes a Web Services Definition Language (WSDL) endpoint to Windows Azure using the Application Fabric. In effect, this is similar to creating a Service Oriented Architecture (SOA) environment, and has the advantage of de-coupling your computing architecture. If each system offers a “service” of the results of some software processing, the operating system or platform becomes immaterial, assuming it adheres to a service contract. There are important considerations when you federate a system, whether to Windows or SQL Azure or any other distributed architecture. While these considerations are consistent with coding any application for distributed computing, they are especially important for a hybrid application. Connection resiliency - Applications on-premise normally have low-latency and good connection properties, something you’re not always guaranteed in a distributed and hybrid application. Whether a centralized client or a distributed one, the code should be able to handle extended retry logic. Authorization and Access - In a single authorization environment like a Active Directory domain, security is handled at a user-password level. In a distributed computing environment, you have more options. You can mitigate this with  using The Windows Azure Application Fabric feature of ACS to make the Azure application aware of the App Fabric as an ADFS provider. However, a claims-based authentication structure is often a superior choice.  Consistency and Concurrency - When you have a Relational Database Management System (RDBMS), Consistency and Concurrency are part of the design. In a Service Architecture, you need to plan for sequential message handling and lifecycle. Resources: How to Build a Hybrid On-Premise/In Cloud Application: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/09/how-to-build-a-hybrid-on-premise-in-cloud-application.aspx  General Architecture guidance: http://blogs.msdn.com/b/buckwoody/archive/2010/12/21/windows-azure-learning-plan-architecture.aspx   

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

  • Internal Data Masking

    - by ACShorten
    By default, the data in the product is unmasked for authorized users. If particular data within the object is considered a candidate for data masking then the masking capabilities with the product can be used to mask the data in an appropriate fashion. The inbuilt Data Masking capabilities of the Oracle Utilities Application Framework uses a number of configuration elements: An algorithm, of type F1-MASK, is specified to configure the elements of the data masking including the masking character, number of suffix characters left unmasked, characters to ignore in the string, the application service, security type and authorization levels applicable to the mask. A Data Masking Feature Configuration is created to define where the algorithm applies. The specification of the feature allows you to define the fields to encrypt using the configured algorithm. The algorithm can be attached to a schema field, table field, characteristic, search field and even a child record (such as an identifier). The appropriate user groups are then connected to the application services with the appropriate service types and level to indicate whether the masking applies to the user group or not. For example, say there is a field called CCNBR in the product which holds the credit card details. I would create an algorithm, say CCformatCC, to mask the credit card number with the last few digits as unmasked (as the standard in most systems dictate). I would specify on the Field Mask the following: field="CCNBR", alg="CMformatCC" On the algorithm CMfomatCC, I would specify the mask, application service, security type and the authorization level which users would see the credit card unmasked. To finish the configuration off and to implemention I would connect the appropriate user groups to the application service I specified with the security type and appropriate authorization level for that group. Whenever a user accesses the CCNBR field on any of the maintenance screens, searches and other screens that use the CCNBR meta data definition would then be masked according to the user group that the user was a member of. Refer to the documentation supplied with F1-MASK algorithm type entry for more examples of what is possible.

    Read the article

  • Specified key is not a valid size for this algorithm...

    - by phenevo
    Hi, I have with this code: RijndaelManaged rijndaelCipher = new RijndaelManaged(); // Set key and IV rijndaelCipher.Key = Convert.FromBase64String("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz012345678912"); rijndaelCipher.IV = Convert.FromBase64String("1234567890123456789012345678901234567890123456789012345678901234"); I get throws : Specified key is not a valid size for this algorithm. Specified initialization vector (IV) does not match the block size for this algorithm. What's wrong with this strings ? Can I count at some examples strings from You ?

    Read the article

  • Is there an algorithm for converting quaternion rotations to Euler angle rotations?

    - by Will Baker
    Is there an existing algorithm for converting a quaternion representation of a rotation to an Euler angle representation? The rotation order for the Euler representation is known and can be any of the six permutations (i.e. xyz, xzy, yxz, yzx, zxy, zyx). I've seen algorithms for a fixed rotation order (usually the NASA heading, bank, roll convention) but not for arbitrary rotation order. Furthermore, because there are multiple Euler angle representations of a single orientation, this result is going to be ambiguous. This is acceptable (because the orientation is still valid, it just may not be the one the user is expecting to see), however it would be even better if there was an algorithm which took rotation limits (i.e. the number of degrees of freedom and the limits on each degree of freedom) into account and yielded the 'most sensible' Euler representation given those constraints. I have a feeling this problem (or something similar) may exist in the IK or rigid body dynamics domains. Solved: I just realised that it might not be clear that I solved this problem by following Ken Shoemake's algorithms from Graphics Gems. I did answer my own question at the time, but it occurs to me it may not be clear that I did so. See the answer, below, for more detail. Just to clarify - I know how to convert from a quaternion to the so-called 'Tait-Bryan' representation - what I was calling the 'NASA' convention. This is a rotation order (assuming the convention that the 'Z' axis is up) of zxy. I need an algorithm for all rotation orders. Possibly the solution, then, is to take the zxy order conversion and derive from it five other conversions for the other rotation orders. I guess I was hoping there was a more 'overarching' solution. In any case, I am surprised that I haven't been able to find existing solutions out there. In addition, and this perhaps should be a separate question altogether, any conversion (assuming a known rotation order, of course) is going to select one Euler representation, but there are in fact many. For example, given a rotation order of yxz, the two representations (0,0,180) and (180,180,0) are equivalent (and would yield the same quaternion). Is there a way to constrain the solution using limits on the degrees of freedom? Like you do in IK and rigid body dynamics? i.e. in the example above if there were only one degree of freedom about the Z axis then the second representation can be disregarded. I have tracked down one paper which could be an algorithm in this pdf but I must confess I find the logic and math a little hard to follow. Surely there are other solutions out there? Is arbitrary rotation order really so rare? Surely every major 3D package that allows skeletal animation together with quaternion interpolation (i.e. Maya, Max, Blender, etc) must have solved exactly this problem?

    Read the article

  • How do make my encryption algorithm encrypt more than 128 bits?

    - by Ranhiru
    OK, now I have coded for an implementation of AES-128 :) It is working fine. It takes in 128 bits, encrypts and returns 128 bits So how do i enhance my function so that it can handle more than 128 bits? How do i make the encryption algorithm handle larger strings? Can the same algorithm be used to encrypt files? :) The function definition is public byte[] Cipher(byte[] input) { }

    Read the article

  • Does a Distributed Version Control System really have no centralised repository?

    - by John
    It might seem a silly question, but how do you get a working drectory set up without a server to check out from? And how does a business keep a safe backed up copy of the repo? I assume then there must be a central repo... but then how exactly is it 'distributed'? I always thought of a server-client (SVN) Vs peer-2-peer (GIT) distinction, but I don't believe that can be correct unless tools like GIT are dependent on torrent-style technology?

    Read the article

  • is Microsoft LC random generator patented?

    - by user396672
    I need a very simple pseudo random generator (no any specific quality requirements) and I found Microsoft's variant of LCG algorithm used for rand() C runtime library function fit my needs (gcc's one seems too complex). I found the algorithm here: http://rosettacode.org/wiki/Linear_congruential_generator#C However, I worry the algorithm (including its "magic numbers" i.e coefficients) may by patented or restricted for use in some another way. Is it allowed to use this algorithm without any licence or patent restrictions or not? I can't use library rand() because I need my results to be exactly reproducible on different platforms

    Read the article

  • Why does adding Crossover to my Genetic Algorithm gives me worse results?

    - by MahlerFive
    I have implemented a Genetic Algorithm to solve the Traveling Salesman Problem (TSP). When I use only mutation, I find better solutions than when I add in crossover. I know that normal crossover methods do not work for TSP, so I implemented both the Ordered Crossover and the PMX Crossover methods, and both suffer from bad results. Here are the other parameters I'm using: Mutation: Single Swap Mutation or Inverted Subsequence Mutation (as described by Tiendil here) with mutation rates tested between 1% and 25%. Selection: Roulette Wheel Selection Fitness function: 1 / distance of tour Population size: Tested 100, 200, 500, I also run the GA 5 times so that I have a variety of starting populations. Stop Condition: 2500 generations With the same dataset of 26 points, I usually get results of about 500-600 distance using purely mutation with high mutation rates. When adding crossover my results are usually in the 800 distance range. The other confusing thing is that I have also implemented a very simple Hill-Climbing algorithm to solve the problem and when I run that 1000 times (faster than running the GA 5 times) I get results around 410-450 distance, and I would expect to get better results using a GA. Any ideas as to why my GA performing worse when I add crossover? And why is it performing much worse than a simple Hill-Climb algorithm which should get stuck on local maxima as it has no way of exploring once it finds a local max?

    Read the article

  • Why does adding Crossover to my Genetic Algorithm give me worse results?

    - by MahlerFive
    I have implemented a Genetic Algorithm to solve the Traveling Salesman Problem (TSP). When I use only mutation, I find better solutions than when I add in crossover. I know that normal crossover methods do not work for TSP, so I implemented both the Ordered Crossover and the PMX Crossover methods, and both suffer from bad results. Here are the other parameters I'm using: Mutation: Single Swap Mutation or Inverted Subsequence Mutation (as described by Tiendil here) with mutation rates tested between 1% and 25%. Selection: Roulette Wheel Selection Fitness function: 1 / distance of tour Population size: Tested 100, 200, 500, I also run the GA 5 times so that I have a variety of starting populations. Stop Condition: 2500 generations With the same dataset of 26 points, I usually get results of about 500-600 distance using purely mutation with high mutation rates. When adding crossover my results are usually in the 800 distance range. The other confusing thing is that I have also implemented a very simple Hill-Climbing algorithm to solve the problem and when I run that 1000 times (faster than running the GA 5 times) I get results around 410-450 distance, and I would expect to get better results using a GA. Any ideas as to why my GA performing worse when I add crossover? And why is it performing much worse than a simple Hill-Climb algorithm which should get stuck on local maxima as it has no way of exploring once it finds a local max?

    Read the article

  • Is there any algorithm that can solve ANY traditional sudoku puzzles, WITHOUT guessing (or similar techniques)?

    - by justin
    Is there any algorithm that solves ANY traditional sudoku puzzle, WITHOUT guessing? Here Guessing means trying an candidate and see how far it goes, if a contradiction is found with the guess, backtracking to the guessing step and try another candidate; when all candidates are exhausted without success, backtracking to the previous guessing step (if there is one; otherwise the puzzle proofs invalid.), etc. EDIT1: Thank you for your replies. traditional sudoku means 81-box sudoku, without any other constraints. Let us say the we know the solution is unique, is there any algorithm that can GUARANTEE to solve it without backtracking? Backtracking is a universal tool, I have nothing wrong with it but, using a universal tool to solve sudoku decreases the value and fun in deciphering (manually, or by computer) sudoku puzzles. How can a human being solve the so called "the hardest sudoku in the world", does he need to guess? I heard some researcher accidentally found that their algorithm for some data analysis can solve all sudoku. Is that true, do they have to guess too?

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Is there a distributed VCS that can manage large files?

    - by joelhardi
    Is there a distributed version control system (git, bazaar, mercurial, darcs etc.) that can handle files larger than available RAM? I need to be able to commit large binary files (i.e. datasets, source video/images, archives), but I don't need to be able to diff them, just be able to commit and then update when the file changes. I last looked at this about a year ago, and none of the obvious candidates allowed this, since they're all designed to diff in memory for speed. That left me with a VCS for managing code and something else ("asset management" software or just rsync and scripts) for large files, which is pretty ugly when the directory structures of the two overlap.

    Read the article

< Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >