Search Results

Search found 8267 results on 331 pages for 'insert'.

Page 117/331 | < Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • SQL SERVER – Introduction to Rollup Clause

    - by pinaldave
    In this article we will go over basic understanding of Rollup clause in SQL Server. ROLLUP clause is used to do aggregate operation on multiple levels in hierarchy. Let us understand how it works by using an example. Consider a table with the following structure and data: CREATE TABLE tblPopulation ( Country VARCHAR(100), [State] VARCHAR(100), City VARCHAR(100), [Population (in Millions)] INT ) GO INSERT INTO tblPopulation VALUES('India', 'Delhi','East Delhi',9 [...]

    Read the article

  • Enhanced REST Support in Oracle Service Bus 11gR1

    - by jeff.x.davies
    In a previous entry on REST and Oracle Service Bus (see http://blogs.oracle.com/jeffdavies/2009/06/restful_services_with_oracle_s_1.html) I encoded the REST query string really as part of the relative URL. For example, consider the following URI: http://localhost:7001/SimpleREST/Products/id=1234 Now, technically there is nothing wrong with this approach. However, it is generally more common to encode the search parameters into the query string. Take a look at the following URI that shows this principle http://localhost:7001/SimpleREST/Products?id=1234 At first blush this appears to be a trivial change. However, this approach is more intuitive, especially if you are passing in multiple parameters. For example: http://localhost:7001/SimpleREST/Products?cat=electronics&subcat=television&mfg=sony The above URI is obviously used to retrieve a list of televisions made by Sony. In prior versions of OSB (before 11gR1PS3), parsing the query string of a URI was more difficult than in the current release. In 11gR1PS3 it is now much easier to parse the query strings, which in turn makes developing REST services in OSB even easier. In this blog entry, we will re-implement the REST-ful Products services using query strings for passing parameter information. Lets begin with the implementation of the Products REST service. This service is implemented in the Products.proxy file of the project. Lets begin with the overall structure of the service, as shown in the following screenshot. This is a common pattern for REST services in the Oracle Service Bus. You implement different flows for each of the HTTP verbs that you want your service to support. Lets take a look at how the GET verb is implemented. This is the path that is taken of you were to point your browser to: http://localhost:7001/SimpleREST/Products/id=1234 There is an Assign action in the request pipeline that shows how to extract a query parameter. Here is the expression that is used to extract the id parameter: $inbound/ctx:transport/ctx:request/http:query-parameters/http:parameter[@name="id"]/@value The Assign action that stores the value into an OSB variable named id. Using this type of XPath statement you can query for any variables by name, without regard to their order in the parameter list. The Log statement is there simply to provided some debugging info in the OSB server console. The response pipeline contains a Replace action that constructs the response document for our rest service. Most of the response data is static, but the ID field that is returned is set based upon the query-parameter that was passed into the REST proxy. Testing the REST service with a browser is very simple. Just point it to the URL I showed you earlier. However, the browser is really only good for testing simple GET services. The OSB Test Console provides a much more robust environment for testing REST services, no matter which HTTP verb is used. Lets see how to use the Test Console to test this GET service. Open the OSB we console (http://localhost:7001/sbconsole) and log in as the administrator. Click on the Test Console icon (the little "bug") next to the Products proxy service in the SimpleREST project. This will bring up the Test Console browser window. Unlike SOAP services, we don't need to do much work in the request document because all of our request information will be encoded into the URI of the service itself. Belore the Request Document section of the Test Console is the Transport section. Expand that section and modify the query-parameters and http-method fields as shown in the next screenshot. By default, the query-parameters field will have the tags already defined. You just need to add a tag for each parameter you want to pass into the service. For out purposes with this particular call, you'd set the quer-parameters field as follows: <tp:parameter name="id" value="1234" /> </tp:query-parameters> Now you are ready to push the Execute button to see the results of the call. That covers the process for parsing query parameters using OSB. However, what if you have an OSB proxy service that needs to consume a REST-ful service? How do you tell OSB to pass the query parameters to the external service? In the sample code you will see a 2nd proxy service called CallREST. It invokes the Products proxy service in exactly the same way it would invoke any REST service. Our CallREST proxy service is defined as a SOAP service. This help to demonstrate OSBs ability to mediate between service consumers and service providers, decreasing the level of coupling between them. If you examine the message flow for the CallREST proxy service, you'll see that it uses an Operational branch to isolate processing logic for each operation that is defined by the SOAP service. We will focus on the getProductDetail branch, that calls the Products REST service using the HTTP GET verb. Expand the getProduct pipeline and the stage node that it contains. There is a single Assign statement that simply extracts the productID from the SOA request and stores it in a local OSB variable. Nothing suprising here. The real work (and the real learning) occurs in the Route node below the pipeline. The first thing to learn is that you need to use a route node when calling REST services, not a Service Callout or a Publish action. That's because only the Routing action has access to the $oubound variable, especially when invoking a business service. The Routing action contains 3 Insert actions. The first Insert action shows how to specify the HTTP verb as a GET. The second insert action simply inserts the XML node into the request. This element does not exist in the request by default, so we need to add it manually. Now that we have the element defined in our outbound request, we can fill it with the parameters that we want to send to the REST service. In the following screenshot you can see how we define the id parameter based on the productID value we extracted earlier from the SOAP request document. That expression will look for the parameter that has the name id and extract its value. That's all there is to it. You now know how to take full advantage of the query parameter parsing capability of the Oracle Service Bus 11gR1PS2. Download the sample source code here: rest2_sbconfig.jar Ubuntu and the OSB Test Console You will get an error when you try to use the Test Console with the Oracle Service Bus, using Ubuntu (or likely a number of other Linux distros also). The error (shown below) will state that the Test Console service is not running. The fix for this problem is quite simple. Open up the WebLogic Server administrator console (usually running at http://localhost:7001/console). In the Domain Structure window on the left side of the console, select the Servers entry under the Environment heading. The select the Admin Server entry in the main window of the console. By default, you should be viewing the Configuration tabe and the General sub tab in the main window. Look for the Listen Address field. By default it is blank, which means it is listening on all interfaces. For some reason Ubuntu doesn't like this. So enter a value like localhost or the specific IP address or DNS name for your server (usually its just localhost in development envirionments). Save your changes and restart the server. Your Test Console will now work correctly.

    Read the article

  • Using a "white list" for extracting terms for Text Mining

    - by [email protected]
    In Part 1 of my post on "Generating cluster names from a document clustering model" (part 1, part 2, part 3), I showed how to build a clustering model from text documents using Oracle Data Miner, which automates preparing data for text mining. In this process we specified a custom stoplist and lexer and relied on Oracle Text to identify important terms.  However, there is an alternative approach, the white list, which uses a thesaurus object with the Oracle Text CTXRULE index to allow you to specify the important terms. INTRODUCTIONA stoplist is used to exclude, i.e., black list, specific words in your documents from being indexed. For example, words like a, if, and, or, and but normally add no value when text mining. Other words can also be excluded if they do not help to differentiate documents, e.g., the word Oracle is ubiquitous in the Oracle product literature. One problem with stoplists is determining which words to specify. This usually requires inspecting the terms that are extracted, manually identifying which ones you don't want, and then re-indexing the documents to determine if you missed any. Since a corpus of documents could contain thousands of words, this could be a tedious exercise. Moreover, since every word is considered as an individual token, a term excluded in one context may be needed to help identify a term in another context. For example, in our Oracle product literature example, the words "Oracle Data Mining" taken individually are not particular helpful. The term "Oracle" may be found in nearly all documents, as with the term "Data." The term "Mining" is more unique, but could also refer to the Mining industry. If we exclude "Oracle" and "Data" by specifying them in the stoplist, we lose valuable information. But it we include them, they may introduce too much noise. Still, when you have a broad vocabulary or don't have a list of specific terms of interest, you rely on the text engine to identify important terms, often by computing the term frequency - inverse document frequency metric. (This is effectively a weight associated with each term indicating its relative importance in a document within a collection of documents. We'll revisit this later.) The results using this technique is often quite valuable. As noted above, an alternative to the subtractive nature of the stoplist is to specify a white list, or a list of terms--perhaps multi-word--that we want to extract and use for data mining. The obvious downside to this approach is the need to specify the set of terms of interest. However, this may not be as daunting a task as it seems. For example, in a given domain (Oracle product literature), there is often a recognized glossary, or a list of keywords and phrases (Oracle product names, industry names, product categories, etc.). Being able to identify multi-word terms, e.g., "Oracle Data Mining" or "Customer Relationship Management" as a single token can greatly increase the quality of the data mining results. The remainder of this post and subsequent posts will focus on how to produce a dataset that contains white list terms, suitable for mining. CREATING A WHITE LIST We'll leverage the thesaurus capability of Oracle Text. Using a thesaurus, we create a set of rules that are in effect our mapping from single and multi-word terms to the tokens used to represent those terms. For example, "Oracle Data Mining" becomes "ORACLEDATAMINING." First, we'll create and populate a mapping table called my_term_token_map. All text has been converted to upper case and values in the TERM column are intended to be mapped to the token in the TOKEN column. TERM                                TOKEN DATA MINING                         DATAMINING ORACLE DATA MINING                  ORACLEDATAMINING 11G                                 ORACLE11G JAVA                                JAVA CRM                                 CRM CUSTOMER RELATIONSHIP MANAGEMENT    CRM ... Next, we'll create a thesaurus object my_thesaurus and a rules table my_thesaurus_rules: CTX_THES.CREATE_THESAURUS('my_thesaurus', FALSE); CREATE TABLE my_thesaurus_rules (main_term     VARCHAR2(100),                                  query_string  VARCHAR2(400)); We next populate the thesaurus object and rules table using the term token map. A cursor is defined over my_term_token_map. As we iterate over  the rows, we insert a synonym relationship 'SYN' into the thesaurus. We also insert into the table my_thesaurus_rules the main term, and the corresponding query string, which specifies synonyms for the token in the thesaurus. DECLARE   cursor c2 is     select token, term     from my_term_token_map; BEGIN   for r_c2 in c2 loop     CTX_THES.CREATE_RELATION('my_thesaurus',r_c2.token,'SYN',r_c2.term);     EXECUTE IMMEDIATE 'insert into my_thesaurus_rules values                        (:1,''SYN(' || r_c2.token || ', my_thesaurus)'')'     using r_c2.token;   end loop; END; We are effectively inserting the token to return and the corresponding query that will look up synonyms in our thesaurus into the my_thesaurus_rules table, for example:     'ORACLEDATAMINING'        SYN ('ORACLEDATAMINING', my_thesaurus)At this point, we create a CTXRULE index on the my_thesaurus_rules table: create index my_thesaurus_rules_idx on        my_thesaurus_rules(query_string)        indextype is ctxsys.ctxrule; In my next post, this index will be used to extract the tokens that match each of the rules specified. We'll then compute the tf-idf weights for each of the terms and create a nested table suitable for mining.

    Read the article

  • Make flash ignore transparent wmode — always display opaque background

    - by Tometzky
    How to make flash movie (an advertising banner) ignore <param name="wmode" value="transparent">? There are some CMS systems which insert flash movies automatically with transparent wmode option. Flash Player ignores banner's background color, makes it transparent and displays it on web page background. I can workaround it using additional layer at the bottom with a large rectangle of desired color, but I think it is inefficient and inelegant. How to do this better?

    Read the article

  • Triggers, Service Broker, CDC or Change Tracking?

    - by Derek D.
    When one trigger inserts into a table and that table also contains a trigger, this is a “nested trigger”. The reason that nested triggers are a concern is because the first call that performs the initial insert does not return until the last trigger in sequence is complete. In trying to circumvent this [...]

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • SQL SERVER – DMV – sys.dm_exec_query_optimizer_info – Statistics of Optimizer

    - by pinaldave
    Incredibly, SQL Server has so much information to share with us. Every single day, I am amazed with this SQL Server technology. Sometimes I find several interesting information by just querying few of the DMV. And when I present this info in front of my client during performance tuning consultancy, they are surprised with my findings. Today, I am going to share one of the hidden gems of DMV with you, the one which I frequently use to understand what’s going on under the hood of SQL Server. SQL Server keeps the record of most of the operations of the Query Optimizer. We can learn many interesting details about the optimizer which can be utilized to improve the performance of server. SELECT * FROM sys.dm_exec_query_optimizer_info WHERE counter IN ('optimizations', 'elapsed time','final cost', 'insert stmt','delete stmt','update stmt', 'merge stmt','contains subquery','tables', 'hints','order hint','join hint', 'view reference','remote query','maximum DOP', 'maximum recursion level','indexed views loaded', 'indexed views matched','indexed views used', 'indexed views updated','dynamic cursor request', 'fast forward cursor request') All occurrence values are cumulative and are set to 0 at system restart. All values for value fields are set to NULL at system restart. I have removed a few of the internal counters from the script above, and kept only documented details. Let us check the result of the above query. As you can see, there is so much vital information that is revealed in above query. I can easily say so many things about how many times Optimizer was triggered and what the average time taken by it to optimize my queries was. Additionally, I can also determine how many times update, insert or delete statements were optimized. I was able to quickly figure out that my client was overusing the Query Hints using this dynamic management view. If you have been reading my blog, I am sure you are aware of my series related to SQL Server Views SQL SERVER – The Limitations of the Views – Eleven and more…. With this, I can take a quick look and figure out how many times Views were used in various solutions within the query. Moreover, you can easily know what fraction of the optimizations has been involved in tuning server. For example, the following query would tell me, in total optimizations, what the fraction of time View was “reference“. As this View also includes system Views and DMVs, the number is a bit higher on my machine. SELECT (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'view reference') / (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'optimizations') AS ViewReferencedFraction Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Virtual Brown Bag Recap: FancyHands, CanCan, 1KB XMas Tree, YouTube Yuks

    - by Brian Schroer
    At this week's Virtual Brown Bag meeting: Claudio has some one-month Evernote premium accounts to give away Claudio & George talked about FancyHands, the 4-hour work week, and paying people to do the stuff you don't want to JB shared more Ruby gems: cancan and open and talked about insert and other Ruby Enumerable functions We looked at the winner of the 1KB JavaScript Christmas contest and some fun YouTube videos For detailed notes, links, and the video recording, go to the VBB wiki page: https://sites.google.com/site/vbbwiki/main_page/2010-12-23

    Read the article

  • Top YouTube Plugins for WordPress Blogs

    - by Matt
    Smart Youtube Smart Youtube allow you to insert video and playlists into your WordPress post and in your RSS feed. It is perfectly work son Works on iPhone, iPad and iPod etc and issues a sidebar widget for videos as well. WP YouTube WP YouTube act as a a profile editor, where you can set [...] Related posts:WordPress Plugins to Help Make Your Site Responsive 15 Useful SEO Plugins For WordPress The Top 10 WordPress RSS Plugins

    Read the article

  • Quickie Guide Getting Java Embedded Running on Raspberry Pi

    - by hinkmond
    Gary C. and I did a Bay Area Java User Group presentation of how to get Java Embedded running on a RPi. See: here. But, if you want the Quickie Guide on how to get Java up and running on the RPi, then follow these steps (which I'm doing right now as we speak, since I got my RPi in the mail on Monday. Woo-hoo!!!). So, follow along at home as I do the same steps here on my board... 1. Download the Win32DiskImager if you are on Windows, or use dd on a Linux PC: https://launchpad.net/win32-image-writer/0.6/0.6/+download/win32diskimager-binary.zip 2. Download the RPi Debian Wheezy image from here: http://files.velocix.com/c1410/images/debian/7/2012-08-08-wheezy-armel/2012-08-08-wheezy-armel.zip 3. Insert a blank 4GB SD Card into your Windows or Linux PC. 4. Use either Win32DiskImager or Linux dd to burn the unzipped image from #2 to the SD Card. 5. Insert the SD Card into your RPi. Connect an Ethernet cable to your RPi to your network. Connect the RPi Power Adapter. 6. The RPi will boot onto your network. Find its IP address using Windows Wireshark or Linux: sudo tcpdump -vv -ieth0 port 67 and port 68 7. ssh to your RPi: ssh <ip_addr_rpi> -l pi <Password: "raspberry"> 8. Download Java SE Embedded: http://www.oracle.com/technetwork/java/embedded/downloads/javase/index.html NOTE: First click accept, then choose the first bundle in the list: ARMv6/7 Linux - Headless EABI, VFP, SoftFP ABI, Little Endian - ejre-7u6-fcs-b24-linux-arm-vfp-client_headless-10_aug_2012.tar.gz 9. scp the bundle from #8 to your RPi: scp <ejre-bundle> pi@<ip_addr_rpi> 10. mkdir /usr/local, untar the bundle from #9 and rename (move) the ejre1.7.0_06 directory to /usr/local/java That's it! You are ready to roll with Java Embedded on your RPi. Hinkmond

    Read the article

  • Add Artistic Effects to Your Pictures in Office 2010

    - by DigitalGeekery
    Do you ever wish you could add cool effects to images in your Office document pictures, but don’t have access to a graphics editor? Today we take a look at the Artistic Effects featire which is a new feature in Office 2010. Note: We will show you examples in Excel, but the Artistic Effect are available in Word, Excel, and PowerPoint. To insert a picture into your Office document, click the Picture button on the Insert tab. Once you import your picture, the Picture Tools format ribbon should be active. If not, click on the image.     In the Adjust group, click on Artistic Effects. You will see a selection of effects previews images in the dropdown list. Hover your cursor over the effects to use Live Preview to see what your picture will look like if that effect is applied.   When you find an effect you like, just click to apply it to the image. There are also some additional Artistic Effect Options. Each effect will have a it’s own set of available options that can be adjusted by moving the sliders left or right. If you find you want to undo an effect after it has been applied, simply select the None option from the previews under Artistic Effects. Conclusion Artistic Effects provides a really easy way to add professional looking effects to images in Office 2010 without the need to access graphics editing software. Check out some of our other Office 2010 articles like how to use advanced font ligatures, add video from the web to PowerPoint 2010, and preview before you paste in Office 2010. Similar Articles Productive Geek Tips Add Effects To Your Pictures in Word 2007Center Pictures and Other Objects in Office 2007 & 2010Tools to Help Post Content On Your WordPress BlogAdd Classic Polaroid Look to Your Digital picturesGive Your Desktop Artistic Flair with FotoSketcher TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup The iPod Revolution Ultimate Boot CD can help when disaster strikes Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app AceStock, a Tiny Desktop Quote Monitor Gmail Button Addon (Firefox)

    Read the article

  • 5 Useful Wordpress Plugins For Google Adsense

    - by Jyoti
    Google Adsense has become the most popular online contextual advertising program and proper custom integration with Wordpress can help to increase Adsense earnings. Now on this post we have describe 5 useful wordpress plugin for google adsense. Few weeks ago we did a "10 Wordpress Plugins For Google Adsense ". Wordpress allows bloggers to easily integrate Google Adsense inside wordpress using plugins. Adsense Integrator : The Adsense Integrator plugin supports lot of programs other then adsense like AdBrite, AffiliateBOT, SHAREASALE, LinkShare, ClickBank, Oxado, Adpinion, AdGridWork, Adroll, Commission Junction, CrispAds, ShoppingAds, Yahoo!PN so this can be used when you are looking to have adsense as well as other alternatives. The rest of the features of the plugin are same where you give your adsense code into options field and it get inserted into blog posts. All In One Adsense And YPN : This is one of the most powerful adsense plugin for wordpress. Jut like other plugins, you can use this to insert your ads in the post but the plugin has some really good features like randomness which shows ad at random location in your blog which reduces ad blindness for viewers. You can also stop ads being shown on some pages using tags. Adsense Now : Other then the previous plugins , you can also give it a try to Adsense now. I haven’t used it (I have only used the first two) so its difficult to comment on it. It looks to be a lightweight plugin which insert adsense ads between posts and in posts body. Adsense Manager : Adsense Manager is one of the most popular and used plugin to manage adsense in wordpress blogs. Infact its newer version not only supports adsense, it also supports various other programs like adbrite, Commission Junction, YPN etc which makes it very powerful ad management plugin. You can inject adsense code anywhere in your blog posts as well as can put in different regions of your blog. Easy Adsense : Easy adsense is one of the new wordpress adsense plugin and that is why more feature rich. You can have different code for different themes using this plugin. It also support link units. To know all features, check out the plugin page.

    Read the article

  • Using GPU's RAM as RAMDISK

    - by user3476043
    I want to use my GPU's ram as a ramdisk, following these instructions : http://en.gentoo-wiki.com/wiki/Using_Graphics_Card_Memory_as_Swap But when I input the " modprobe phram phram=VRAM,0xd8400000,124Mi " command, I get the following error : modprobe: ERROR: could not insert 'phram': Input/output error I use Ubuntu Studio 14.04. Also, is there anyway I could use more than the 128M of prefetchable memory, my GPU has 1GB of ram, I would prefer to use "most" of it.

    Read the article

  • Sprite sheet generator

    - by Andrea Tucci
    I need to generate a sprite sheet with squared sprite for a 2D game. How can I generate a sprite sheet where each frame has x = y? The only think I have to do is to "insert" some blank space between sprites (in case y were x in the original sprite). Is there any program that I can use to trasform "irregular" sprite sheets to "squared" sprite sheets? An example of non-squared sprite sheet: http://spriters-resource.com/gameboy_advance/khcom/sheet/1138

    Read the article

  • Printer Review: HP LaserJet Pro 1606dn

    Looking for a black-and-white laser printer for your small office or workgroup? HP's $199 entry offers Ethernet, duplex printing, and fast performance -- and can install itself with no CD to insert or driver to download.

    Read the article

  • Printer Review: HP LaserJet Pro 1606dn

    Looking for a black-and-white laser printer for your small office or workgroup? HP's $199 entry offers Ethernet, duplex printing, and fast performance -- and can install itself with no CD to insert or driver to download.

    Read the article

  • SQL SERVER – Faster SQL Server Databases and Applications – Power and Control with SafePeak Caching Options

    - by Pinal Dave
    Update: This blog post is written based on the SafePeak, which is available for free download. Today, I’d like to examine more closely one of my preferred technologies for accelerating SQL Server databases, SafePeak. Safepeak’s software provides a variety of advanced data caching options, techniques and tools to accelerate the performance and scalability of SQL Server databases and applications. I’d like to look more closely at some of these options, as some of these capabilities could help you address lagging database and performance on your systems. To better understand the available options, it is best to start by understanding the difference between the usual “Basic Caching” vs. SafePeak’s “Dynamic Caching”. Basic Caching Basic Caching (or the stale and static cache) is an ability to put the results from a query into cache for a certain period of time. It is based on TTL, or Time-to-live, and is designed to stay in cache no matter what happens to the data. For example, although the actual data can be modified due to DML commands (update/insert/delete), the cache will still hold the same obsolete query data. Meaning that with the Basic Caching is really static / stale cache.  As you can tell, this approach has its limitations. Dynamic Caching Dynamic Caching (or the non-stale cache) is an ability to put the results from a query into cache while maintaining the cache transaction awareness looking for possible data modifications. The modifications can come as a result of: DML commands (update/insert/delete), indirect modifications due to triggers on other tables, executions of stored procedures with internal DML commands complex cases of stored procedures with multiple levels of internal stored procedures logic. When data modification commands arrive, the caching system identifies the related cache items and evicts them from cache immediately. In the dynamic caching option the TTL setting still exists, although its importance is reduced, since the main factor for cache invalidation (or cache eviction) become the actual data updates commands. Now that we have a basic understanding of the differences between “basic” and “dynamic” caching, let’s dive in deeper. SafePeak: A comprehensive and versatile caching platform SafePeak comes with a wide range of caching options. Some of SafePeak’s caching options are automated, while others require manual configuration. Together they provide a complete solution for IT and Data managers to reach excellent performance acceleration and application scalability for  a wide range of business cases and applications. Automated caching of SQL Queries: Fully/semi-automated caching of all “read” SQL queries, containing any types of data, including Blobs, XMLs, Texts as well as all other standard data types. SafePeak automatically analyzes the incoming queries, categorizes them into SQL Patterns, identifying directly and indirectly accessed tables, views, functions and stored procedures; Automated caching of Stored Procedures: Fully or semi-automated caching of all read” stored procedures, including procedures with complex sub-procedure logic as well as procedures with complex dynamic SQL code. All procedures are analyzed in advance by SafePeak’s  Metadata-Learning process, their SQL schemas are parsed – resulting with a full understanding of the underlying code, objects dependencies (tables, views, functions, sub-procedures) enabling automated or semi-automated (manually review and activate by a mouse-click) cache activation, with full understanding of the transaction logic for cache real-time invalidation; Transaction aware cache: Automated cache awareness for SQL transactions (SQL and in-procs); Dynamic SQL Caching: Procedures with dynamic SQL are pre-parsed, enabling easy cache configuration, eliminating SQL Server load for parsing time and delivering high response time value even in most complicated use-cases; Fully Automated Caching: SQL Patterns (including SQL queries and stored procedures) that are categorized by SafePeak as “read and deterministic” are automatically activated for caching; Semi-Automated Caching: SQL Patterns categorized as “Read and Non deterministic” are patterns of SQL queries and stored procedures that contain reference to non-deterministic functions, like getdate(). Such SQL Patterns are reviewed by the SafePeak administrator and in usually most of them are activated manually for caching (point and click activation); Fully Dynamic Caching: Automated detection of all dependent tables in each SQL Pattern, with automated real-time eviction of the relevant cache items in the event of “write” commands (a DML or a stored procedure) to one of relevant tables. A default setting; Semi Dynamic Caching: A manual cache configuration option enabling reducing the sensitivity of specific SQL Patterns to “write” commands to certain tables/views. An optimization technique relevant for cases when the query data is either known to be static (like archive order details), or when the application sensitivity to fresh data is not critical and can be stale for short period of time (gaining better performance and reduced load); Scheduled Cache Eviction: A manual cache configuration option enabling scheduling SQL Pattern cache eviction based on certain time(s) during a day. A very useful optimization technique when (for example) certain SQL Patterns can be cached but are time sensitive. Example: “select customers that today is their birthday”, an SQL with getdate() function, which can and should be cached, but the data stays relevant only until 00:00 (midnight); Parsing Exceptions Management: Stored procedures that were not fully parsed by SafePeak (due to too complex dynamic SQL or unfamiliar syntax), are signed as “Dynamic Objects” with highest transaction safety settings (such as: Full global cache eviction, DDL Check = lock cache and check for schema changes, and more). The SafePeak solution points the user to the Dynamic Objects that are important for cache effectiveness, provides easy configuration interface, allowing you to improve cache hits and reduce cache global evictions. Usually this is the first configuration in a deployment; Overriding Settings of Stored Procedures: Override the settings of stored procedures (or other object types) for cache optimization. For example, in case a stored procedure SP1 has an “insert” into table T1, it will not be allowed to be cached. However, it is possible that T1 is just a “logging or instrumentation” table left by developers. By overriding the settings a user can allow caching of the problematic stored procedure; Advanced Cache Warm-Up: Creating an XML-based list of queries and stored procedure (with lists of parameters) for periodically automated pre-fetching and caching. An advanced tool allowing you to handle more rare but very performance sensitive queries pre-fetch them into cache allowing high performance for users’ data access; Configuration Driven by Deep SQL Analytics: All SQL queries are continuously logged and analyzed, providing users with deep SQL Analytics and Performance Monitoring. Reduce troubleshooting from days to minutes with database objects and SQL Patterns heat-map. The performance driven configuration helps you to focus on the most important settings that bring you the highest performance gains. Use of SafePeak SQL Analytics allows continuous performance monitoring and analysis, easy identification of bottlenecks of both real-time and historical data; Cloud Ready: Available for instant deployment on Amazon Web Services (AWS). As you can see, there are many options to configure SafePeak’s SQL Server database and application acceleration caching technology to best fit a lot of situations. If you’re not familiar with their technology, they offer free-trial software you can download that comes with a free “help session” to help get you started. You can access the free trial here. Also, SafePeak is available to use on Amazon Cloud. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Daily tech links for .net and related technologies - Apr 1-3, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - Apr 1-3, 2010 Web Development Cleaner HTML Markup with ASP.NET 4 Web Forms - Client IDs - ScottGu Using jQuery and OData to Insert a Database Record - Stephen Walter Apple vs. Microsoft – A Website Usability Study Mastering ASP.NET MVC 2.0: Preview - TekPub Web Design UX Lessons Learned From Offline Experiences - Jon Phillips 5 Steps Toward jQuery Mastery - Dave Ward 20 jQuery Cheatsheets, Docs and References for Every Occasion - Paul Andrew 11...(read more)

    Read the article

  • SQL SERVER – Order By Numeric Values Formatted as String

    - by pinaldave
    When I was writing this blog post I had a hard time to come up with the title of the blog post so I did my best to come up with one. Here is the reason why? I wrote a blog post earlier SQL SERVER – Find First Non-Numeric Character from String. One of the questions was that how that blog can be useful in real life scenario. This blog post is the answer to that question. Let us first see a problem. We have a table which has a column containing alphanumeric data. The data always has first as an integer and later part as a string. The business need is to order the data based on the first part of the alphanumeric data which is an integer. Now the problem is that no matter how we use ORDER BY the result is not produced as expected. Let us understand this with example. Prepare a sample data: -- How to find first non numberic character USE tempdb GO CREATE TABLE MyTable (ID INT, Col1 VARCHAR(100)) GO INSERT INTO MyTable (ID, Col1) SELECT 1, '1one' UNION ALL SELECT 2, '11eleven' UNION ALL SELECT 3, '2two' UNION ALL SELECT 4, '22twentytwo' UNION ALL SELECT 5, '111oneeleven' GO -- Select Data SELECT * FROM MyTable GO The above query will give following result set. Now let us use ORDER BY COL1 and observe the result along with Original SELECT. -- Select Data SELECT * FROM MyTable GO -- Select Data SELECT * FROM MyTable ORDER BY Col1 GO The result of the table is not as per expected. We need the result in following format. Here is the good example of how we can use PATINDEX. -- Use of PATINDEX SELECT ID, LEFT(Col1,PATINDEX('%[^0-9]%',Col1)-1) 'Numeric Character', Col1 'Original Character' FROM MyTable ORDER BY LEFT(Col1,PATINDEX('%[^0-9]%',Col1)-1) GO We can use PATINDEX to identify the length of the digit part in the alphanumeric string (Remember: Our string has a first part as an int always. It will not work in any other scenario). Now you can use the LEFT function to extract the INT portion from the alphanumeric string and order the data according to it. You can easily clean up the script by dropping following table. DROP TABLE MyTable GO Here is the complete script so you can easily refer it. -- How to find first non numberic character USE tempdb GO CREATE TABLE MyTable (ID INT, Col1 VARCHAR(100)) GO INSERT INTO MyTable (ID, Col1) SELECT 1, '1one' UNION ALL SELECT 2, '11eleven' UNION ALL SELECT 3, '2two' UNION ALL SELECT 4, '22twentytwo' UNION ALL SELECT 5, '111oneeleven' GO -- Select Data SELECT * FROM MyTable GO -- Select Data SELECT * FROM MyTable ORDER BY Col1 GO -- Use of PATINDEX SELECT ID, Col1 'Original Character' FROM MyTable ORDER BY LEFT(Col1,PATINDEX('%[^0-9]%',Col1)-1) GO DROP TABLE MyTable GO Well, isn’t it an interesting solution. Any suggestion for better solution? Additionally any suggestion for changing the title of this blog post? Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL String, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Planet feed aggregator for django

    - by marcog
    We are looking for a way to integrate a feed aggregator (planet) into a Django site. Ideally, the planet should integrate as part of a page of the site as a whole, rather than a standalone page like all other plants I've seen. We could use an iframe, but then style won't match. The best way might be something that just returns a raw list of last N feed items, which we then insert into a template. Does anyone have any suggestions of how we can achieve this?

    Read the article

  • Event Processed

    - by Antony Reynolds
    Installing Oracle Event Processing 11g Earlier this month I was involved in organizing the Monument Family History Day.  It was certainly a complex event, with dozens of presenters, guides and 100s of visitors.  So with that experience of a complex event under my belt I decided to refresh my acquaintance with Oracle Event Processing (CEP). CEP has a developer side based on Eclipse and a runtime environment. Developer Install The developer install requires several steps (documentation) Download required software Eclipse  (Linux) – It is recommended to use version 3.6.2 (Helios) Install Eclipse Unzip the download into the desired directory Start Eclipse Add Oracle CEP Repository in Eclipse http://download.oracle.com/technology/software/cep-ide/11/ Install Oracle CEP Tools for Eclipse 3.6 You may need to set the proxy if behind a firewall. Modify eclipse.ini If using Windows edit with wordpad rather than notepad Point to 1.6 JVM Insert following lines before –vmargs -vm \PATH_TO_1.6_JDK\jre\bin\javaw.exe Increase PermGen Memory Insert following line at end of file -XX:MaxPermSize=256M Restart eclipse and verify that everything is installed as expected. Server install The server install is very straightforward (documentation).  It is recommended to use the JRockit JDK with CEP so the steps to set up a working CEP server environment are: Download required software JRockit – I used Oracle “JRockit 6 - R28.2.5” which includes “JRockit Mission Control 4.1” and “JRockit Real Time 4.1”. Oracle Event Processor – I used “Complex Event Processing Release 11gR1 (11.1.1.6.0)” Install JRockit Run the JRockit installer, the download is an executable binary that just needs to be marked as executable. Install CEP Unzip the downloaded file Run the CEP installer,  the unzipped file is an executable binary that may need to be marked as executable. Choose a custom install and add the examples if needed. It is not recommended to add the examples to a production environment but they can be helpful in development. Voila The Deed Is Done With CEP installed you are now ready to start a server, if you didn’t install the demoes then you will need to create a domain before starting the server. Once the server is up and running (using startwlevs.sh) you can verify that the visualizer is available on http://hostname:port/wlevs, the default port for the demo domain is 9002. With the server running you can test the IDE by creating a new “Oracle CEP Application Project” and creating a new target environment pointing at your CEP installation. Much easier than organizing a Family History Day!

    Read the article

  • Linked servers and performance impact: Direction matters!

    - by Linchi Shea
    When you have some data on a SQL Server instance (say SQL01) and you want to move the data to another SQL Server instance (say SQL02) through openquery(), you can either push the data from SQL01, or pull the data from SQL02. To push the data, you can run a SQL script like the following on SQL01, which is the source server: -- The push script -- Run this on SQL01 use testDB go insert openquery(SQL02, 'select * from testDB.dbo.target_table') select * from source_table; To pull the data, you can run...(read more)

    Read the article

  • Performance problems loading XML with SSIS, an alternative way!

    - by AtulThakor
    I recently needed to load several thousand XML files into a SQL database, I created an SSIS package which was created as followed: Using a foreach container to loop through a directory and load each file path into a variable, the “Import XML” dataflow would then load each XML file into a SQL table.       Running this, it took approximately 1 second to load each file which seemed a massive amount of time to parse the XML and load the data, speaking to my colleague Martin Croft, he suggested the use of T-SQL Bulk Insert and OpenRowset, so we adjusted the package as followed:     The same foreach container was used but instead the following SQL command was executed (this is an expression):     "INSERT INTO MyTable(FileDate) SELECT   CAST(bulkcolumn AS XML)     FROM OPENROWSET(         BULK         '" + @[User::CurrentFile]  + "',         SINGLE_BLOB ) AS x"     Using this method we managed to load approximately 20 records per second, much faster…for data loading! For what we wanted to achieve this was perfect but I’ll leave you with the following points when making your own decision on which solution you decide to choose!      Openrowset Method Much faster to get the data into SQL You’ll need to parse or create a view over the XML data to allow the data to be more usable(another post on this!) Not able to apply validation/transformation against the data when loading it The SQL Server service account will need permission to the file No schema validation when loading files SSIS Slower (in our case) Schema validation Allows you to apply transformations/joins to the data Permissions should be less of a problem Data can be loaded into the final form through the package When using a schema validation errors can fail the package (I’ll do another post on this)

    Read the article

  • DELL Inspiron 9400 SD Card Reader not working on 10.11 ubuntu

    - by Mario Martz
    Im new in linux, just installed Ubuntu 11.10 in a Dell Inspiron 9400, everything works fine with the exception of the SD card reader, everytime I insert a card the computer doesnt do anything, its like the SD card reader is not there. I did a $lspci and it shows the next drivers 03:01.0 FireWire (IEEE 1394): Ricoh Co Ltd R5C832 IEEE 1394 Controller 03:01.1 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 19) 03:01.2 System peripheral: Ricoh Co Ltd R5C592 Memory Stick Bus Host Adapter (rev 0a) 03:01.3 System peripheral: Ricoh Co Ltd xD-Picture Card Controller (rev 05) Everytime I insert a memory card, dmesg shows the next d status 0x600b00 [ 2687.227351] end_request: I/O error, dev mmcblk0, sector 64 [ 2687.229436] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.229440] end_request: I/O error, dev mmcblk0, sector 65 [ 2687.230512] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.230515] end_request: I/O error, dev mmcblk0, sector 66 [ 2687.231588] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.231592] end_request: I/O error, dev mmcblk0, sector 67 [ 2687.232674] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.232678] end_request: I/O error, dev mmcblk0, sector 68 [ 2687.234763] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.234766] end_request: I/O error, dev mmcblk0, sector 69 [ 2687.236864] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.236868] end_request: I/O error, dev mmcblk0, sector 70 [ 2687.238942] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.238946] end_request: I/O error, dev mmcblk0, sector 71 [ 2687.238949] Buffer I/O error on device mmcblk0, logical block 8 [ 2687.241028] mmcblk0: retrying using single block read [ 2687.243104] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.243108] end_request: I/O error, dev mmcblk0, sector 64 [ 2687.245212] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.245215] end_request: I/O error, dev mmcblk0, sector 65 [ 2687.247298] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.247302] end_request: I/O error, dev mmcblk0, sector 66 [ 2687.248389] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.248393] end_request: I/O error, dev mmcblk0, sector 67 [ 2687.250476] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.250480] end_request: I/O error, dev mmcblk0, sector 68 [ 2687.252617] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 [ 2687.252621] end_request: I/O error, dev mmcblk0, sector 69 [ 2687.254737] mmcblk0: error -110 sending read/write command, response 0x0, card status 0x600b00 and more of the same but with different sector number Im using Kernel 3.0.0-12-generic By the way, when I was installing it and ubuntu asks about installation (If I want to install it along with windows or delete something or change the partitions of the HDD) if I go to the window to change the partition of the disc, linux detects the SD Card (if there's one inserted course). Any help with this it would be appreciated -sorry for my english Thank you

    Read the article

< Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >