Search Results

Search found 16903 results on 677 pages for 'single responsibility'.

Page 117/677 | < Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >

  • problem in html, table class text stretching out.

    - by Andy
    Hey people, I've got a slight problem after weeks of html programming. I've got a large table which I use to construct tabs with, details don't really matter. On every tab there is a tab title (which is defined as one single cell in a table with a class from a .css) and under it there are other rows and columns for the table. sample code for the single table with the single cell in it: <table class='tabcontainer_title'><tr><td class='tabcontainer_title'>TEXT</td></tr></table> This table is again positioned in one cell of the table outside it, which has a different class 'tabcontainer_content' This is in the CSS: .tabcontainer_title{ background-color : #58af34; background-image : url(); text-align : right; vertical-align : top; margin-top : 0px; margin-right : 0px; margin-bottom : 0px; margin-left : 0px; padding-top : 5px; padding-right : 10px; padding-bottom : 5px; padding-left : 0px; font-size : 14px; font-style : normal; color : #000000; } .tabcontainer_content{ width : 100%; font-weight : bolder; background-color : #58af34; color : #000000; padding : 0px; border-collapse : collapse; } The problem I'm experiencing right now is that if there are like 3 rows in the table, which means there's a lot of emtpy space instead of those rows, the text in the tab title has a large margin from the top: but I haven't configured any margin to be present. When the table is full of rows though, hence the table is full, then the tab title holds no unnecessary empty space above the text. What am I missing here?

    Read the article

  • Design Philosophy Question - When to create new functions

    - by Eclyps19
    This is a general design question not relating to any language. I'm a bit torn between going for minimum code or optimum organization. I'll use my current project as an example. I have a bunch of tabs on a form that perform different functions. Lets say Tab 1 reads in a file with a specific layout, tab 2 exports a file to a specific location, etc. The problem I'm running into now is that I need these tabs to do something slightly different based on the contents of a variable. If it contains a 1 I may need to use Layout A and perform some extra concatenation, if it contains a 2 I may need to use Layout B and do no concatenation but add two integer fields, etc. There could be 10+ codes that I will be looking at. Is it more preferable to create an individual path for each code early on, or attempt to create a single path that branches out only when absolutely required. Creating an individual path for each code would allow my code to be extremely easy to follow at a glance, which in turn will help me out later on down the road when debugging or making changes. The downside to this is that I will increase the amount of code written by calling some of the same functions in multiple places (for example, steps 3, 5, and 9 for every single code may be exactly the same. Creating a single path that would branch out only when required will be a bit messier and more difficult to follow at a glance, but I would create less code by placing conditionals only at steps that are unique. I realize that this may be a case-by-case decision, but in general, if you were handed a previously built program to work on, which would you prefer?

    Read the article

  • Trait, FunctionN, or trait-inheriting-FunctionN in Scala?

    - by Willis Blackburn
    I have a trait in Scala that has a single method. Call it Computable and the single method is compute(input: Int): Int. I can't figure out whether I should Leave it as a standalone trait with a single method. Inherit from (Int = Int) and rename "compute" to "apply." Just get rid of Computable and use (Int = Int). A factor in favor of it being a trait is that I could usefully add some additional methods. But of course if they were all implemented in terms of the compute method then I could just break them out into a separate object. A factor in favor of just using the function type is simplicity and the fact that the syntax for an anonymous function is more concise than that for an anonymous Computable instance. But then I've no way to distinguish objects that are actually Computable instances from other functions that map Int to Int but aren't meant to be used in the same context as Computable. How do other people approach this type of problem? No right or wrong answers here; I'm just looking for advice.

    Read the article

  • LINQ to SQL: Reusable expression for property?

    - by coenvdwel
    Pardon me for being unable to phrase the title more exact. Basically, I have three LINQ objects linked to tables. One is Product, the other is Company and the last is a mapping table Mapping to store what Company sells which products and by which ID this Company refers to this Product. I am now retrieving a list of products as follows: var options = new DataLoadOptions(); options.LoadWith<Product>(p => p.Mappings); context.LoadOptions = options; var products = ( from p in context.Products select new { ProductID = p.ProductID, //BackendProductID = p.BackendProductID, BackendProductID = (p.Mappings.Count == 0) ? "None" : (p.Mappings.Count > 1) ? "Multiple" : p.Mappings.First().BackendProductID, Description = p.Description } ).ToList(); This does a single query retrieving the information I want. But I want to be able to move the logic behind the BackendProductID into the LINQ object so I can use the commented line instead of the annoyingly nested ternary operator statements for neatness and re-usability. So I added the following property to the Product object: public string BackendProductID { get { if (Mappings.Count == 0) return "None"; if (Mappings.Count > 1) return "Multiple"; return Mappings.First().BackendProductID; } } The list is still the same, but it now does a query for every single Product to get it's BackendProductID. The code is neater and re-usable, but the performance now is terrible. What I need is some kind of Expression or Delegate but I couldn't get my head around writing one. It always ended up querying for every single product, still. Any help would be appreciated!

    Read the article

  • Parallel Tasking Concurrency with Dependencies on Python like GNU Make

    - by Brian Bruggeman
    I'm looking for a method or possibly a philosophical approach for how to do something like GNU Make within python. Currently, we utilize makefiles to execute processing because the makefiles are extremely good at parallel runs with changing single option: -j x. In addition, gnu make already has the dependency stacks built into it, so adding a secondary processor or the ability to process more threads just means updating that single option. I want that same power and flexibility in python, but I don't see it. As an example: all: dependency_a dependency_b dependency_c dependency_a: dependency_d stuff dependency_b: dependency_d stuff dependency_c: dependency_e stuff dependency_d: dependency_f stuff dependency_e: stuff dependency_f: stuff If we do a standard single thread operation (-j 1), the order of operation might be: dependency_f -> dependency_d -> dependency_a -> dependency_b -> dependency_e \ -> dependency_c For two threads (-j 2), we might see: 1: dependency_f -> dependency_d -> dependency_a -> dependency_b 2: dependency_e -> dependency_c Does anyone have any suggestions on either a package already built or an approach? I'm totally open, provided it's a pythonic solution/approach. Please and Thanks in advance!

    Read the article

  • What should go in each MVVM triad?

    - by Harry
    OK, let's say I am creating a program that will list users contacts in a ListBox on the left side of the screen. When a user clicks on the contact, a bunch of messages or whatever appears in the main part of the window. Now my question is: how should the MVVM triads look? I have two models: Contact, and Message. The Contact model contains a list of Message models. Each ViewModel object will contain a single corresponding Model, right? And what about the Views? I have a "MainView" that is the main window, that will have things like the menu, toolbar etc. Do I put the ListBox in the MainView? My confusion is with what to put where; for example, what should the ContactView contain? Just a single instance of a contact? So the DataTemplate, ControlTemplate, context menus, styles etc for that single contact, and then just have a ListBox of them in the MainView...? Thanks.

    Read the article

  • How to add a WHERE clause on the second table of a 1-to-1 join in Fluent NHibernate?

    - by daddywoodland
    I'm using a legacy database that was 'future proofed' to keep track of historical changes. It turns out this feature is never used so I want to map the tables into a single entity. My tables are: CodesHistory (CodesHistoryID (pk), CodeID (fk), Text) Codes (CodeID (pk), CodeName) To add an additional level of complexity, these tables hold the content for the drop down lists throughout the application. So, I'm trying to map a Title entity (Mr, Mrs etc.) as follows: Title ClassMap - Public Sub New() Table("CodesHistory") Id(Function(x) x.TitleID, "CodesHistoryID") Map(Function(x) x.Text) 'Call into the other half of the 1-2-1 join in order to merge them in 'this single domain object Join("Codes", AddressOf AddTitleDetailData) Where("CodeName like 'C.Title.%'") End Sub ' Method to merge two tables with a 1-2-1 join into a single entity in VB.Net Public Sub AddTitleDetailData(ByVal m As JoinPart(Of Title)) m.KeyColumn("CodeID") m.Map(Function(x) x.CodeName) End Sub From the above, you can see that my 'CodeName' field represents the select list in question (C.Title, C.Age etc). The problem is that the WHERE clause only applies to the 'CodesHistory' table but the 'CodeName' field is in the 'Codes' table. As I'm sure you can guess there's no scope to change the database. Is it possible to apply the WHERE clause to the Codes table?

    Read the article

  • SQLAlchemy Custom Type Which Contains Multiple Columns

    - by Kekoa
    I would like to represent a datatype as a single column in my model, but really the data will be stored in multiple columns in the database. I cannot find any good resources on how to do this in SQLAlchemy. I would like my model to look like this(this is a simplified example using geometry instead of my real problem which is harder to explain): class 3DLine(DeclarativeBase): start_point = Column(my.custom.3DPoint) end_point = Column(my.custom.3DPoint) This way I could assign an object with the (x, y, z) components of the point at once without setting them individually. If I had to separate each component, this could get ugly, especially if each class has several of these composite objects. I would combine the values into one encoded field except that I need to query each value separately at times. I was able to find out how to make custom types using a single column in the documentation. But there's no indication that I can map a single type to multiple columns. I suppose I could accomplish this by using a separate table, and each column would be a foreign key, but in my case I don't think it makes sense to have a one to one mapping for each point to a separate table, and this still does not give the ability to set the related values all at once.

    Read the article

  • PageableListView Not rendering my data as required

    - by Robin
    i am working on wicket, where i am supposed to show my data's under <tr> <td>Name</td> <td>Single Player Score</td> <td>Double Player Score</td> <td>Total Score</td> </tr> <tr wicket:id="data"> <td wicket:id="name"></td> <td wicket:id="singlePlayerScore"></td> <td wicket:id="doublePlayerScore"></td> <td wicket:id="totalScore"></td> </tr> My Player model class is as: Player class with attributes singlePlayerScore, doublePlayerScore(), name with getter and setter and also a list data obtained from database. Data from SQLQuery is as; name score gamemode A 200 singlePlayerMode A 100 doublePLayerMode B 400 singlePlayerMode B 300 doublePLayerMode dataList == player.getScoreList(); My PageableListView is as: final PageableListView listView = new PageableListView("data",dataList,10){ @Override protected void populateItem(Item item){ player = (Player)item.getModelObject(); item.add(Label("name",player.getName())); item.add(Label("singlePlayerScore",player.getName())); item.add(Label("doublePlayerScore",player.getName())); item.add(Label("totalScore",String.valueOf(player.getSinglePlayerScore()+player.getDoublePlayerScore()))); } } My Problem is as: What view i get is as: Name single Player Score Double Player Score Total Score A 0 100 100 A 200 0 200 B 0 300 300 B 400 0 400 How do i achieve below view on my webpage? Name single Player Score Double Player Score Total Score A 200 100 300 B 400 300 700 Please help me as to why is this happening? I guess my list has size four that's one reason why as to it is rendering the view? So what can i do to get as require rendering view?

    Read the article

  • How do you unit-test a method with complex input-output

    - by Dan
    When you have a simple method, like for example sum(int x, int y), it is easy to write unit tests. You can check that method will sum correctly two sample integers, for example 2 + 3 should return 5, then you will check the same for some "extraordinary" numbers, for example negative values and zero. Each of these should be separate unit test, as a single unit test should contain single assert. What do you do when you have a complex input-output? Take a Xml parser for example. You can have a single method parse(String xml) that receives the String and returns a Dom object. You can write separate tests that will check that certain text node is parsed correctly, that attributes are parsed OK, that child node belongs to parent etc. For all these I can write a simple input, for example <root><child/></root> that will be used to check parent-child relationships between nodes and so on for the rest of expectations. Now, take a look at follwing Xml: <root> <child1 attribute11="attribute 11 value" attribute12="attribute 12 value">Text 1</child1> <child2 attribute21="attribute 21 value" attribute22="attribute 22 value">Text 2</child2> </root> In order to check that method worked correctly, I need to check many complex conditions, like that attribute11 and attribute12 belong to element1, that Text 1 belongs to child1 etc. I do not want to put more than one assert in my unit-test. How can I accomplish that?

    Read the article

  • Ruby on Rails controller and architecture with cells

    - by dt
    I decided to try to use the cells plugin from rails: http://cells.rubyforge.org/community.html given that I'm new to Ruby and very used to thinking in terms of components. Since I'm developing the app piecemeal and then putting it together piece by piece, it makes sense to think in terms of components. So, I've been able to get cells working properly inside a single view, which calls a partial. Now, what I would like to be able to do (however, maybe my instincts need to be redirected to be more "Rails-y"), is call a single cell controller and use the parameters to render one output vs. another. Basically, if there were a controller like: def index params[:responsetype] end def processListResponse end def processSearchResponse end And I have two different controller methods that I want to respond to based on the params response type, where I have a single template on the front end and want the inner "component" to render differently depending on what type of request is made. That allows me to reuse the same front-end code. I suppose I could do this with an ajax call instead and just have it rerender the component on the front end, but it would be nice to have the option to do it either way and to understand how to architect Rails a bit better in the process. It seems like there should be a "render" option from within the cells framework to render to a certain controller or view, but it's not working like I expect and I don't know if I'm even in the ballpark. Thanks!

    Read the article

  • Why is Log4Net not creating log file in production?

    - by uriDium
    I am using VS2005, a website project, a web deployment project and Log4Net. I can use logging when I am developing locally. I can see the log files and everything is fine. When I build my website, (using the web deployment project), I use the deploy as a single DLL option. When I then check the locations of where my log files should be I cannot see any files. Is there a way to troubleshoot this. I don't think adding the debug value to the App Settings will help because I don't have a console because it is a website. EDIT I don't want the 150 rep to go to waste so one last time. I compared the internal trace from my dev environment to the trace from the production. My dev environment trace shows the call the Xml Configurator where the production one does not. I have code in the global.asax on application_start() method. I put debug code in there and it is getting called in dev but not in production. I think this is where the web deployment project is causing some issues. Does the global.asax get compiled into the single DLL? When I do a build in the deployment directory I see a global.compiled file. Must this go into the bin folder in production? Or is the global.asax code in the single DLL? Having both in the bin folder or the just the DLL didn't change anything.

    Read the article

  • Entity Framework one-to-one relationship mapping flattened in code

    - by Josh Close
    I have a table structure like so. Address: AddressId int not null primary key identity ...more columns AddressContinental: AddressId int not null primary key identity foreign key to pk of Address County State AddressInternational: AddressId int not null primary key identity foreign key to pk of Address ProvinceRegion I don't have control over schema, this is just the way it is. Now, what I want to do is have a single Address object. public class Address { public int AddressId { get; set; } public County County { get; set; } public State State { get; set } public ProvinceRegion { get; set; } } I want to have EF pull it out of the database as a single entity. When saving, I want to save the single entity and have EF know to split it into the three tables. How would I map this in EF 4.1 Code First? I've been searching around and haven't found anything that meets my case yet. UPDATE An address record will have a record in Address and one in either AddressContinental or AddressInternational, but not both.

    Read the article

  • How do I make a function in SQL Server that accepts a column of data?

    - by brandon k
    I made the following function in SQL Server 2008 earlier this week that takes two parameters and uses them to select a column of "detail" records and returns them as a single varchar list of comma separated values. Now that I get to thinking about it, I would like to take this table and application-specific function and make it more generic. I am not well-versed in defining SQL functions, as this is my first. How can I change this function to accept a single "column" worth of data, so that I can use it in a more generic way? Instead of calling: SELECT ejc_concatFormDetails(formuid, categoryName) I would like to make it work like: SELECT concatColumnValues(SELECT someColumn FROM SomeTable) Here is my function definition: FUNCTION [DNet].[ejc_concatFormDetails](@formuid AS int, @category as VARCHAR(75)) RETURNS VARCHAR(1000) AS BEGIN DECLARE @returnData VARCHAR(1000) DECLARE @currentData VARCHAR(75) DECLARE dataCursor CURSOR FAST_FORWARD FOR SELECT data FROM DNet.ejc_FormDetails WHERE formuid = @formuid AND category = @category SET @returnData = '' OPEN dataCursor FETCH NEXT FROM dataCursor INTO @currentData WHILE (@@FETCH_STATUS = 0) BEGIN SET @returnData = @returnData + ', ' + @currentData FETCH NEXT FROM dataCursor INTO @currentData END CLOSE dataCursor DEALLOCATE dataCursor RETURN SUBSTRING(@returnData,3,1000) END As you can see, I am selecting the column data within my function and then looping over the results with a cursor to build my comma separated varchar. How can I alter this to accept a single parameter that is a result set and then access that result set with a cursor?

    Read the article

  • .NET 4 ... Parallel.ForEach() question

    - by CirrusFlyer
    I understand that the new TPL (Task Parallel Library) has implemented the Parallel.ForEach() such that it works with "expressed parallelism." Meaning, it does not guarantee that your delegates will run in multiple threads, but rather it checks to see if the host platform has multiple cores, and if true, only then does it distribute the work across the cores (essentially 1 thread per core). If the host system does not have multiple cores (getting harder and harder to find such a computer) then it will run your code sequenceally like a "regular" foreach loop would. Pretty cool stuff, frankly. Normally I would do something like the following to place my long running operation on a background thread from the ThreadPool: ThreadPool.QueueUserWorkItem( new WaitCallback(targetMethod), new Object2PassIn() ); In a situation whereby the host computer only has a single core does the TPL's Parallel.ForEach() automatically place the invocation on a background thread? Or, should I manaully invoke any TPL calls from a background thead so that if I am executing from a single core computer at least that logic will be off of the GUI's dispatching thread? My concern is if I leave the TPL in charge of all this I want to ensure if it determines it's a single core box that it still marshalls the code that's inside of the Parallel.ForEach() loop on to a background thread like I would have done, so as to not block my GUI. Thanks for any thoughts or advice you may have ...

    Read the article

  • How to do a partial database backup and restore?

    - by Workshop Alex
    Simple problem. I'm working on a single SQL Server database which is shared between several offices. Each office has their own schema inside this database, thus dividing the database in logical pieces. (Plus one schema that is shared between multiple offices.) The database is stored on a dedicated server and we use a single database to keep the backup/restore procedure easier. The problem, however, is that the Accounting Office might be modifying a lot of data and then the Secretary Office makes a mistake which requires restoration of a backup. Unfortunately, restoring the backup means that Accounting will lose their recently added data. So, the alternative solution is by restoring the backup into a new database, remove the data from the old accounting schema and move the data for accounting only from the backup top the original database. This is the current solution and it's time-consuming and error-prone. So, is there a way to make backups of a single schema, possibly through code? And then to restore just that schema, probably through code too?

    Read the article

  • Need help with transferring data between MySQL db's using PHP

    - by JM4
    In one of the sites I manage, the client has decided to take on ACH/Bank Account administration where it was previously outsourced. As a result, the information submitted in our online form which used to simply store in a single database for processing now must sit in 'limbo' until the funds used for payment have been verified. My original plan is as follows: At the end of an enrollment, all form data is collected and stored in a single MySQL database. Our internal administrator will receive an email notification reminding him enrollments have taken place. He will process the ACH information collected and wait the 3-4 business days needed for payment to clear. Once the payment information has been returned as Good (haven't considered what I will do with the 'bad' yet), the administrator can log into a secure portal which allows him to click a button to 'process' the full information once compared and verified. the process is simplified as: Enrollment complete: data stored in DB 'A' Funds verified and link clicked: data from 'A' is copied to DB 'B' and 'A' is deleted. I have run similar processes with CSV output before and simply used //transfers old data to archive $transfer = mysql_query('INSERT INTO '.$archive.' SELECT * FROM '.$table) or die(mysql_error()); //empties existing table $query = mysql_query('TRUNCATE TABLE '.$table) or die(mysql_error()); but in those cases, ALL data returned was copied and deleted. I only want to copy and delete a single record. Any idea how to accomplish this?

    Read the article

  • In sync query calls, one query causing other query to run slower. Why?

    - by Irchi
    Sorry for the long question, but I think this is an interesting situation and I couldn't find any explanations for it: I was involved in optimization of an application that performed a large number of sequential SELECT and INSERT statements on a single dedicated SQL Server database. The process needs to INSERT a large number of records into a table, but for each of them there should be some value mappings, which performed using SELECT statements on another table in the same database. For a specific execution, it took 90 minutes to run. I used a profiler (JProfiler - the application is Java-based) to determine how much time does each part of the application take. It yields that 60% of the time was spent on INSERT method calls, and almost 20% on SELECT calls (the rest distributed in other parts). After some trials, I came to this situation: I commented out the INSERT query that took 60% of the time. I was expecting for the total run time to be around 35 minutes, as I have removed 60% of the 90 minutes. But the whole process took the same 90 minutes (doing only SELECTs and nothing else), but each SELECT took longer this time! Everything was running sync, there were no async calls. And there was only one single thread of execution. SELECT and INSERT queries are very simple, and don't have anything special, and they are on different tables, but on the same DB. I tested with both the DB on the application machine, and on a remote network machine. I can't think of any explanation for this, as the Profiler (Application profiler, not SQL Profiler) reported the changes in the method call times, and by removing INSERT statements SELECT statements took longer to run. Can anyone give me some kind of explanation of what could have happened? (there can't be cache / query optimization stuff, because the queries were run in sync, and in a single thread, and it was far from affecting the cache this much) I should note that the bottleneck of the speed was in SQL server, using most of the CPU time.

    Read the article

  • What's a good way to organize a large collection of personal scripts using git?

    - by spooky note
    I have a large collection of my personal scripts that I would like to start versioning using Git. I've previously organized my code as follows: ~/code/python/projects/ (for large stuff, each project contained in an individual folder) ~/code/python/scripts/ (single file scripts all contained in this directory) ~/code/python/sandbox/ (my testing area) ~/code/python/docs/ (downloaded documentation) ~/code/java/... (as above) Now i'm going to start versioning my code using git, so that I can have history and backup all my code to a remote server. I know if I were using SVN I would just keep my entire "~/code/" directory in a large repository, but I understand this is not a good way to do things with Git. Most info I've seen online suggests keeping all my project folders in a single place (as in, no separate directories for python or java) with each project containing it's own git repository, and simply having a "snippets" directory containing all single-file scripts/experiments that can be converted into projects at a later date. But I'm not sure how I feel about consolidating all of my code directories into one area. Is there a good way to keep my separate code directories intact, or is it not worth the effort? Maybe I'm just attached to the separate code directories because I've never known anything else... Also (as a side note), I'd like to quickly be able to see a chronological history of all my projects and scripts. So I can see which projects I created most recently. I used to do this by keeping a number at the beginning of all my projects, 002project, 003project. Is there automatic or easy way to do this in git without having to add a number to all of the project names? I'm open to any practical or philosophical code organizing advice you have. Thanks!!!

    Read the article

  • .net remoting - Better solution to wait for a service to initialize ?

    - by CitizenInsane
    Context I have a client application (which i cannot modify, i.e. i only have the binary) that needs to run from time to time external commands that depends on a resource which is very long to initialize (about 20s). I thus decided to initialize this resource once for all in a "CommandServer.exe" application (single instance in the system tray) and let my client application call an intermediate "ExecuteCommand.exe" program that uses .net remoting to perform the operation on the server. The "ExecuteCommand.exe" is in charge for starting the server on first call and then leave it alive to speed up further commands. The service: public interface IMyService { void ExecuteCommand(string[] args); } The "CommandServer.exe" (using WindowsFormsApplicationBase for single instance management + user friendly splash screen during resource initializations): private void onStartupFirstInstance(object sender, StartupEventArgs e) { // Register communication channel channel = new TcpServerChannel("CommandServerChannel", 8234); ChannelServices.RegisterChannel(channel, false); // Register service var resource = veryLongToInitialize(); service = new MyServiceImpl(resource); RemotingServices.Marshal(service, "CommandServer"); // Create icon in system tray notifyIcon = new NotifyIcon(); ... } The intermediate "ExecuteCommand.exe": static void Main(string[] args) { startCommandServerIfRequired(); var channel = new TcpClientChannel(); ChannelServices.RegisterChannel(channel, false); var service = (IMyService)Activator.GetObject(typeof(IMyService), "tcp://localhost:8234/CommandServer"); service.RunCommand(args); } Problem As the server is very long to start (about 20s to initialize the required resources), the "ExecuteCommand.exe" fails on service.RunCommand(args) line because the server is yet not available. Question Is there a elegant way I can tune the delay before to receive "service not available" when calling service.RunCommand ? NB1: Currently I'm working around the issue by adding a mutex in server to indicate for complete initiliazation and have "ExecuteCommand.exe" to wait for this mutex before to call service.RunCommand. NB2: I have no background with .net remoting, nor WCF which is recommended replacer. (I chose .net remoting because this looked easier to set-up for this single shot issue in running external commands).

    Read the article

  • Tips on refactoring an Android prototype

    - by Brad
    I have an Android project I've inherited from another developer. The original code was hacked together using a single View and a single Activity. The view class has a State variable that is switched on during input and rendering. Each "screen" is a single bitmap rendered directly onto the screen. There are no layouts used at all. To make things even worse each variable in both the View and Activity classes were all declared public static and would access each other frequently. I've reworked the code so it is now somewhat manageable, but it's still in those original two classes. This is my first decently sized Android app so I'm not completely sure where to go next. From the looks of things, each "screen" should have its own View and Activity. Is this the general practice? If so I need some way to share data between the separate Activities. I've read suggestions to use a Singleton class that holds generic data. Is there any other ways that are more built into the Android framework? Thanks in advance.

    Read the article

  • understanding and implementing Boids

    - by alphablender
    So I'm working on porting Boids to Brightscript, based on the pseudocode here: http://www.kfish.org/boids/pseudocode.html I'm trying to understand the data structures involved, for example is Velocity a single value, or is it a 3D value, ie velocity={x,y,z} It seems as if the pseudocode seems to mix this up where sometimes it has an equation that incudes both vectors and single-value items: v1 = rule1(b) v2 = rule2(b) v3 = rule3(b) b.velocity = b.velocity + v1 + v2 + v3 If Velocity is a tripartite value then this would make sense, but I'm not sure. So my first question here is, is this the correct datastructure for a single boid based on the Pseudocode on that page: boid={position:{px:0,py:0,pz:0},velocity:{x:0,y:0,z:0},vector:{x:0,y:0,z:0},pc:{x:0,y:0,z:0},pv:{x:0,y:0,z:0}) where pc=perceived center, pv= perceived velocity I"ve implemented a vector_add, vector_sub, vector_div, and vector boolean functions. The reason I'm starting from this pseudocode is I've not been able to find anything else that is as readable, but it still leaves me with lots of questions as the data structures are not explicitly defined for each variable. (edit) here's a good example of what i'm talking about: IF |b.position - bJ.position| < 100 THEN if b.position - b[j].position are both 3D coordinates, how can they be considered "less than 100" unless they are < {100,100,100} ? Maybe that is what I need to do here, use a vector comparison function?

    Read the article

  • Parallel features in .Net 4.0

    - by Jonathan.Peppers
    I have been going over the practicality of some of the new parallel features in .Net 4.0. Say I have code like so: foreach (var item in myEnumerable) myDatabase.Insert(item.ConvertToDatabase()); Imagine myDatabase.Insert is performing some work to insert to a SQL database. Theoretically you could write: Parallel.ForEach(myEnumerable, item => myDatabase.Insert(item.ConvertToDatabase())); And automatically you get code that takes advantage of multiple cores. But what if myEnumerable can only be interacted with by a single thread? Will the Parallel class enumerate by a single thread and only dispatch the result to worker threads in the loop? What if myDatabase can only be interacted with by a single thread? It would certainly not be better to make a database connection per iteration of the loop. Finally, what if my "var item" happens to be a UserControl or something that must be interacted with on the UI thread? What design pattern should I follow to solve these problems? It's looking to me that switching over to Parallel/PLinq/etc is not exactly easy when you are dealing with real-world applications.

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

< Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >