Search Results

Search found 16921 results on 677 pages for 'entity group transactions'.

Page 118/677 | < Previous Page | 114 115 116 117 118 119 120 121 122 123 124 125  | Next Page >

  • Spring @Transactional - Can I Override rollbackFor

    - by user475039
    Hi all, I am calling a service which has the following annotation: @Transactional(rollbackFor=ExceptionA.class) public void myMethodA(....) throws ExceptionA { . . } I am calling this method from an other method in another Spring Bean. @Transactional(rollbackFor=ExceptionB.class) public void mainEntryPointMethod(....) throws ExceptionB { . try { myMethodA() } catch (ExceptionA exp) { . } . } My problem is that if myMethodA throws an exception, my transaction (which is passed from mainEntryPointMethod - myMethodA by default propagation) will be marked for rollback. Is there a way in which the 'rollbackFor' for the inner method can be overriden? Thanks in advance Chris

    Read the article

  • DBTransaction Rollback throws

    - by pdiddy
    Looking into the documentation it says that the Rollback method can throw when the transaction is not in pending state (after begin transaction and before commit transaction). I can't seem to find a way to check whether the transaction can be rollback or not. There isn't a state property either.

    Read the article

  • Mysql with innodb and serializable transaction does not (always) lock rows

    - by Tobias G.
    Hello, I have a transaction with a SELECT and possible INSERT. For concurrency reasons, I added FOR UPDATE to the SELECT. To prevent phantom rows, I'm using the SERIALIZABLE transaction isolation level. This all works fine when there are any rows in the table, but not if the table is empty. When the table is empty, the SELECT FOR UPDATE does not do any (exclusive) locking and a concurrent thread/process can issue the same SELECT FOR UPDATE without being locked. CREATE TABLE t ( id INT NOT NULL AUTO_INCREMENT PRIMARY KEY, display_order INT ) ENGINE = InnoDB; SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; START TRANSACTION; SELECT COALESCE(MAX(display_order), 0) + 1 from t FOR UPDATE; .. This concept works as expected with SQL Server, but not with MySQL. Any ideas on what I'm doing wrong? EDIT Adding an index on display_order does not change the behavior.

    Read the article

  • pam auth via winbind, howto map primary group for users?

    - by dr gonzo
    I have unix users authenticating to an PDC (via winbind) and want to have the primary group of those users a local unix group (e.g. www-data). users have the group "domain users" with gid 10006 (as the gid winbind mapping) idmap uid = 10000-20000 idmap gid = 10000-20000 winbind enum groups = yes winbind enum users = yes winbind use default domain = yes winbind nested groups = yes but want that the primary group is 33 for all users (www-data) how to achieve that?

    Read the article

  • Self-reference entity in Hibernate

    - by Marco
    Hi guys, I have an Action entity, that can have other Action objects as child in a bidirectional one-to-many relationship. The problem is that Hibernate outputs the following exception: "Repeated column in mapping for collection: DbAction.childs column: actionId" Below the code of the mapping: <?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <hibernate-mapping> <class name="DbAction" table="actions"> <id name="actionId" type="short" /> <property not-null="true" name="value" type="string" /> <set name="childs" table="action_action" cascade="all-delete-orphan"> <key column="actionId" /> <many-to-many column="actionId" unique="true" class="DbAction" /> </set> <join table="action_action" inverse="true" optional="false"> <key column="actionId" /> <many-to-one name="parentAction" column="actionId" not-null="true" class="DbAction" /> </join> </class> </hibernate-mapping>

    Read the article

  • Deleting JPA entity containing @CollectionOfElements throws ConstraintViolationException

    - by Lyle
    I'm trying to delete entities which contain lists of Integer, and I'm getting ConstraintViolationExceptions because of the foreign key on the table generated to hold the integers. It appears that the delete isn't cascading to the mapped collection. I've done quite a bit of searching, but all of the examples I've seen on how to accomplish this are in reference to a mapped collection of other entities which can be annotated; here I'm just storing a list of Integer. Here is the relevant excerpt from the class I'm storing: @Entity @Table(name="CHANGE_IDS") @GenericGenerator( name = "CHANGE_ID_GEN", strategy = "org.hibernate.id.enhanced.SequenceStyleGenerator", parameters = { @Parameter(name="sequence_name", value="course_changes_seq"), @Parameter(name="increment_size", value="5000"), @Parameter(name=" optimizer", value="pooled") } ) @NamedQueries ({ @NamedQuery( name="Changes.getByStatus", query= "SELECT c " + "FROM DChanges c " + "WHERE c.status = :status "), @NamedQuery( name="Changes.deleteByStatus", query= "DELETE " + "FROM Changes c " + "WHERE c.status = :status ") }) public class Changes { @Id @GeneratedValue(generator="CHANGE_ID_GEN") @Column(name = "ID") private final long id; @Enumerated(EnumType.STRING) @Column(name = "STATUS", length = 20, nullable = false) private final Status status; @Column(name="DOC_ID") @org.hibernate.annotations.CollectionOfElements @org.hibernate.annotations.IndexColumn(name="DOC_ID_ORDER") private List<Integer> docIds; } I'm deleting the Changes objects using a @NamedQuery: final Query deleteQuery = this.entityManager.createNamedQuery("Changes.deleteByStatus"); deleteQuery.setParameter("status", Status.POST_FLIP); final int deleted = deleteQuery.executeUpdate(); this.logger.info("Deleted " + deleted + " POST_FLIP Changes");

    Read the article

  • SelectMany in Linq to entity

    - by Brazeta
    I was looking at some examples in microsoft site about linq and I see an example that I need to modify! http://msdn.microsoft.com/en-us/vcsharp/aa336758.aspx#SelectManyCompoundfrom3 public void Linq16() { List customers = GetCustomerList(); var orders = from c in customers from o in c.Orders where o.OrderDate >= new DateTime(1998, 1, 1) select new { c.CustomerID, o.OrderID, o.OrderDate }; ObjectDumper.Write(orders); } Insted of having a select that retrives the CustomerID, OrderID and OrderDate I want to select the CustomerID and a System.Collection.Generic.List that contains all the orders for that user! Essentially I want to group my orders by CustomerID, but i noticed that linq to entity does not allow a .ToList(object) inside the select. I want something like this... List customers = GetCustomerList(); var orders = from c in customers from o in c.Orders where o.OrderDate >= new DateTime(1998, 1, 1) select new xpto { TheCostumerID = c.CustomerID, CostumerOrders = o.Select(i=>i.OrderID).ToList(), }; ...but the .ToList() is a big problem, at least for me. I'm trying to find out the solution for that but so far I have acomplished nothing! Please help me.

    Read the article

  • Binding DataGridComboBoxColumn to a one to many entity framework relation

    - by Cristian
    I have two tables in the model, one table contains entries related to the other table in a one to many relations, for example: Table User ID Name Table Comments ID UserID Title Text I want to show a datagrid in a WPF window with two columns, one text column with the User name and another column with a combobox showing all the comments made by the user. The datagrid definition is like this: <DataGrid AutoGenerateColumns="False" [layout options...] Name="dataGrid1" ItemsSource="{Binding}"> <DataGrid.Columns> <DataGridTextColumn Header="Name" Binding="{Binding Path=Name}"/> <DataGridComboBoxColumn Header="Comments" SelectedValueBinding="{Binding Path=UserID}" SelectedValuePath="ID" DisplayMemberPath="Title" ItemsSource="{Binding Path=Comments}" /> </DataGrid.Columns> </DataGrid> in the code I assign the DataContext like this: dataGrid1.DataContext = entities.Users; The entity User has a property named Comments that leads to all the comments made by the user. The queries are returning data and the user names are shown but the combobox is not being filled. May be the approach is totally wrong or I'm just missing a very simple point here, I'm opened to learn better methods to do this. Thanks

    Read the article

  • JPA - Setting entity class property from calculated column?

    - by growse
    I'm just getting to grips with JPA in a simple Java web app running on Glassfish 3 (Persistence provider is EclipseLink). So far, I'm really liking it (bugs in netbeans/glassfish interaction aside) but there's a thing that I want to be able to do that I'm not sure how to do. I've got an entity class (Article) that's mapped to a database table (article). I'm trying to do a query on the database that returns a calculated column, but I can't figure out how to set up a property of the Article class so that the property gets filled by the column value when I call the query. If I do a regular "select id,title,body from article" query, I get a list of Article objects fine, with the id, title and body properties filled. This works fine. However, if I do the below: Query q = em.createNativeQuery("select id,title,shorttitle,datestamp,body,true as published, ts_headline(body,q,'ShortWord=0') as headline, type from articles,to_tsquery('english',?) as q where idxfti @@ q order by ts_rank(idxfti,q) desc",Article.class); (this is a fulltext search using tsearch2 on Postgres - it's a db-specific function, so I'm using a NativeQuery) You can see I'm fetching a calculated column, called headline. How do I add a headline property to my Article class so that it gets populated by this query? So far, I've tried setting it to be @Transient, but that just ends up with it being null all the time.

    Read the article

  • Core Data - Entity Relationships Not Working as expected

    - by slimms
    I have set up my data model in xcode like so EntityA AttA1 AttA2 EntityB AttB1 AttB2 AttB3 I then set up the relationships EntityA Name: rlpToEntityB Destination: EntityB Inverse: rlpToEntityA To Many: Checked EntityB Name: rlpToEntityA Destination: EntityA Inverse: rlpToEntityB To Many: UnChecked i.e. relationship between the two where Each one of EntityA can have many EntityB's It is my understanding that if i fetch a subset of EntityB's I can then retrieve the values for the related EntityA's. I have this working so that i can retrieve the EntityB values using NSManagedObject *objMO = [fetchedResultsController objectAtIndexPath:indexPath]; strValueFromEntityB = [objMO valueForKey:@"AttB1"]; However, if I try to retrieve a related value from EntityA by doing the following strValueFromEntityA = [objMO valueForKey:@"AttA1"]; I get the error "The entity EntityB is not Key value coding-compliant for the key Atta1" Not surprisingly i suppose if i switch things around to fetch from EntityA i cannot access attributes of EntityB So it appears the defined relationshipare being ignored. Can anyone spot what i am doing wrong? I confess im very new to iPhone programming and especially to Core Data so please go easy on me and provide verbose explanations or point me in the direction a specific resource. I have downloaded the apple sample apps (Core Data Books, Top Songs and recipes) but I still can't work this out. Thanks in advance, Nev.

    Read the article

  • How to associate static entity instances in a Session without database retrieval

    - by Michael Hedgpeth
    I have a simple Result class that used to be an Enum but has evolved into being its own class with its own table. public class Result { public static readonly Result Passed = new Result(StatusType.Passed) { Id = [Predefined] }; public static readonly Result NotRun = new Result(StatusType.NotRun) { Id = [Predefined] }; public static readonly Result Running = new Result(StatusType.Running) { Id = [Predefined] }; } Each of these predefined values has a row in the database at their predefined Guid Id. There is then a failed result that has an instance per failure: public class FailedResult : Result { public FailedResult(string description) : base(StatusType.Failed) { . . . } } I then have an entity that has a Result: public class Task { public Result Result { get; set; } } When I save a Task, if the Result is a predefined one, I want NHibernate to know that it doesn't need to save that to the database, nor does it need to fetch it from the database; I just want it to save by Id. The way I get around this is when I am setting up the session, I call a method to load the static entities: protected override void OnSessionOpened(ISession session) { LockStaticResults(session, Result.Passed, Result.NotRun, Result.Running); } private static void LockStaticResults(ISession session, params Result[] results) { foreach (var result in results) { session.Load(result, result.Id); } } The problem with the session.Load method call is it appears to be fetching to the database (something I don't want to do). How could I make this so it does not fetch the database, but trusts that my static (immutable) Result instances are both up to date and a part of the session?

    Read the article

  • SQL, MVC, Entity Framework

    - by Anthony
    Hi Im using the above technologies and have ran into what I presume is a design issue I have made. I have an Artwork table in my DB and have been able to add art (I now think of these as Digital Products) to a shopping cart + CartLine table fine. The system I have that adds art to galleries and user accounts etc works fine. Now the client wants to sell T-shirts, Mugs and Pens etc, 'HardwareProducts' so I have created a 'HardwareProducts' table. Now I have two different product types in two tables. I use GUID's as the PK's in both the HardwareProducts table and Artwork table. When a customer adds an item to their cart I store the GUID in the ProductID column in the CartItems table. The issue is the database will not know which table to reference when I bring the LineItem object up through my ORM to the front end. In OOP I can see how you would have a base class of Product, and then a DigitalProduct class and HardwareProduct class drived from it, but how do you model this in SQL Server and the Entity Framework please, or is there another way?

    Read the article

  • Migrating from a single entity to an abstract parent entity with child entities, NSEntityMigrationPolicy not called.

    - by Jimmy Selgen Nielsen
    Hi. I'm trying to upgrade my current application to use an abstract parent entity, with specialized sub entities. I've created a custom NSEntityMigrationPolicy, and in the mapping model I've set the Custom Policy to the name of my class. I'm initializing my persistent store like this, which should be fairly standard : NSError *error=nil; persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] initWithManagedObjectModel: [self managedObjectModel]]; NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys: [NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption, nil]; if (![persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType configuration:nil URL:storeUrl options:options error:&error]) { NSLog(@"Error adding persistent store : %@",[error description]); NSAssert(error==nil,[error localizedDescription]); } When i run the app i get the following error : Terminating app due to uncaught exception 'NSInternalInconsistencyException', reason: 'The operation couldn’t be completed. (Cocoa error 134140.)' [error userInfo] contains "reason=Can't find mapping model for migration" I've verified that version 1 of the data model will open, and if i set NSInferMappingModelAutomaticallyOption i get a migration, although my entities are not migrated correctly (as expected). I've verified that the mapping model (cdm) is in the application bundle, but somehow it refuses to find it. I've also set breakpoints and NSLog() statements in the custom migration policy, and none of it runs, with or without NSInferMappingModelAutomaticallyOption Any hints as to why it seems unable to find the mapping model ?

    Read the article

  • DDD and Entity Base, Model using multiple identity types

    - by Thomas
    I have a model that looks like this: public interface IEntity { int Id { get; set; } } Then the idea is to have my entities inherit from this interface: public class User : IEntity { public int Id { get; set; } } However, one of my entities actually has a Guid as an identifier. public class UserSession { public Guid Id { get; set; } } I really would like all my entities inheriting from the same interface but that would force me to add an integer based identity column to the UserSession which is unnecessary since Guid is the identity, but it would keep the domain model nice since all entities would inherit from the same base. What options do I have in this scenario? Can I have two base interfaces, one for int and one for Guid? Should I add an identity column into the UserSession entity although it is unnecessary? I need the Guid so I can't just get rid of it and replace it with and integer. Any thoughts on best practices?

    Read the article

  • Treating differential operator as algebraic entity

    - by chappar
    I know that this question is offtopic and don't belong here. But i didn't know somewhere else to ask. So here is the question. I was reading e:the story of a number by Eli Maor, where he treats differential operator as just like any algebraic entity. For example if we have a differential equation like y’’ + 5y’ - 6y = 0. This can be treaed as (D^2 + 5D – 6)y = 0. So, either y = 0 (trivial solution) or (D^2 + 5D – 6) = 0. Factoring out above equation we get (D-1)(D+6)= 0 with solutions as D = 1 and D = -6. Since D does not have any meaning on its own, multiplying by y on both the sides we get Dy = y and Dy = -6y for which the solutions are Ae^x and Be^-6x. Combining these 2 solutions we get Ae^x + Be^-6x. Now my doubt is this approach break when we have an equation like D^2y = 0. Which means y = 0 (again trivial) or D^2 = 0 which means D = 0. Now Dy = y*0 = 0. That means y = C ( a constant). The actual answer should be Cx. I know that it is stupidity to treat D^2 = 0 as D = 0, it led me to doubt the entire process of treating differential equation as algebraic equation. Can someone throw light on this? Or any other site where i might get answer?

    Read the article

  • Protecting sensitive entity data

    - by Andreas
    Hi, I'm looking for some advice on architecture for a client/server solution with some peculiarities. The client is a fairly thick one, leaving the server mostly to peristence, concurrency and infrastructure concerns. The server contains a number of entities which contain both sensitive and public information. Think for example that the entities are persons, assume that social security number and name are sensitive and age is publicly viewable. When starting the client, the user is presented with a number of entities, not disclosing any sensitive information. At any time the user can choose to log in and authenticate against the server, given the authentication is successful the user is granted access to the sensitive information. The client is hosting a domain model and I was thinking of implementing this as some kind of "lazy loading", making the first request instantiating the entities and later refreshing them with sensitive data. The entity getters would throw exceptions on sensitive information when they've not been disclosed, f.e.: class PersonImpl : PersonEntity { private bool undisclosed; public override string SocialSecurityNumber { get { if (undisclosed) throw new UndisclosedDataException(); return base.SocialSecurityNumber; } } } Another more friendly approach could be to have a value object indicating that the value is undisclosed. get { if (undisclosed) return undisclosedValue; return base.SocialSecurityNumber; } Some concerns: What if the user logs in and then out, the sensitive data has been loaded but must be disclosed once again. One could argue that this type of functionality belongs within the domain and not some infrastructural implementation(i.e. repository implementations). As always when dealing with a larger number of properties there's a risk that this type of functionality clutters the code Any insights or discussion is appreciated!

    Read the article

  • user interface pattern for associating single or many objects to an entity

    - by Samuel
    Need suggestions on implementing associating single or many objects to an entity. All soccer team players are registered individually (e.g. they are part of 'players' table) A soccer team has many players. The click sequence is like this:- a] Soccer team owner provides a name and brief description of the soccer team. b] Now it wants to add players to this team. c] You have the following button 'Add players to team' which lets you navigate to the 'View Players' page and lets you multi select users from there. Assuming this is a paginated list of players, how do you handle the following:- Do you provide a check box against each player and let the manager do a multi selection. If you need to add more players, it doesn't make sense to show the players who have been already added to the team. Do you mark those entries as not selectable or you would adding showing these entries. If you need to filter, do you provide search filters at the top of this page. Am looking for ideas on how to implement this or sites which have already done something similar.

    Read the article

  • how to query an embedded entity by using a query builder

    - by user577719
    I've searched quite a time for an answer to this question. Following Codesmell: @Entity public class Person { @Id @GeneratedValue(strategy = GenerationType.IDENTITY) protected Integer id; @Column(nullable = true, length = 50) @Size(max = 50) private String name; @Embedded @Valid protected Adress adress; public void setId(Integer id) { this.id = id; } public Integer getId() { return this.id; } public void setName(String name) { this.name = name; } public void getName() { return this.name; } public void setAdress(Adress adress) { this.adress = adress; } public void getAdress() { return this.adress; } } @Embeddable public class Adress { @Column(nullable = false, length = 50) @Size(max = 50) @NotNull private String place; public void setPlace(String place) { this.place = place; } public void getPlace() { return this.place; } } public class PersonDaoJpa { public List<Ort> findByPerson(final Person person) { CriteriaBuilder builder = this.entityManager.getCriteriaBuilder(); CriteriaQuery<Person> query = builder.createQuery(Person.class); Root<Person> rootPerson = query.from(Person.class); List<Predicate> wherePredicates = new ArrayList<Predicate>(); if (person.getName() != null) { wherePredicates.add( builder.like(builder.lower(rootPerson.<String>get("name")), ort.getName().toLowerCase()) ); } Adresse adresse = ort.getAdresse(); if (adresse != null) { if(adresse.getPlace() != null) { // this won't work wherePredicates.add( builder.like(builder.lower(rootPerson.<String>get("person.adress.place")), adresse.getPlace().toLowerCase()) ); } } Predicate whereClause = builder.and(wherePredicates.toArray(new Predicate[0])); query.where(whereClause); return this.entityManager.createQuery(query).getResultList(); } } How can I access the Adress.place through rootPerson? rootPerson.get("place"), or rootPerson.get("adress.place") won't work...

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • would a composite design pattern be useful for group membership?

    - by changokun
    I'm trying to think about the best way to handle group memberships on a website. People sign up and select checkboxes in a list of interests. Every week we send out interest-themed emails to those members that indicated that interest. however i store the information in the database, while i am working with the lists and generating lists of email addresses or manipulating group memberships, the composite design pattern looked interesting. it would be easy to populate the group, then do some aggregating functions that say... generate the list of email addresses based on the interests. but i'm not sure i'm seeing any other advantages. i do need something scalable, and flexible. thoughts?

    Read the article

  • Mapping and metadata information could not be found for EntityType Exception

    - by dcompiled
    I am trying out ASP.NET MVC Framework 2 with the Microsoft Entity Framework and when I try and save new records I get this error: Mapping and metadata information could not be found for EntityType 'WebUI.Controllers.PersonViewModel' My Entity Framework container stores records of type Person and my view is strongly typed with class PersonViewModel which derives from Person. Records would save properly until I tried to use the derived view model class. Can anyone explain why the metadata class doesnt work when I derive my view model? I want to be able to use a strongly typed model and also use data annotations (metadata) without resorting to mixing my storage logic (EF classes) and presentation logic (views). // Rest of the Person class is autogenerated by the EF [MetadataType(typeof(Person.Metadata))] public partial class Person { public sealed class Metadata { [DisplayName("First Name")] [Required(ErrorMessage = "Field [First Name] is required")] public object FirstName { get; set; } [DisplayName("Middle Name")] public object MiddleName { get; set; } [DisplayName("Last Name")] [Required(ErrorMessage = "Field [Last Name] is required")] public object LastName { get; set; } } } // From the View (PersonCreate.aspx) <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<WebUI.Controllers.PersonViewModel>" %> // From PersonController.cs public class PersonViewModel : Person { public List<SelectListItem> TitleList { get; set; } } // end class PersonViewModel

    Read the article

  • How can I resolve Hibernate 3's ConstraintViolationException when updating a Persistent Entity's Col

    - by Tim Visher
    I'm trying to discover why two nearly identical class sets are behaving different from Hibernate 3's perspective. I'm fairly new to Hibernate in general and I'm hoping I'm missing something fairly obvious about the mappings or timing issues or something along those lines but I spent the whole day yesterday staring at the two sets and any differences that would lead to one being able to be persisted and the other not completely escaped me. I appologize in advance for the length of this question but it all hinges around some pretty specific implementation details. I have the following class mapped with Annotations and managed by Hibernate 3.? (if the specific specific version turns out to be pertinent, I'll figure out what it is). Java version is 1.6. ... @Embeddable public class JobStateChange implements Comparable<JobStateChange> { @Temporal(TemporalType.TIMESTAMP) @Column(nullable = false) private Date date; @Enumerated(EnumType.STRING) @Column(nullable = false, length = JobState.FIELD_LENGTH) private JobState state; @ManyToOne(fetch = FetchType.LAZY) @JoinColumn(name = "acting_user_id", nullable = false) private User actingUser; public JobStateChange() { } @Override public int compareTo(final JobStateChange o) { return this.date.compareTo(o.date); } @Override public boolean equals(final Object obj) { if (this == obj) { return true; } else if (!(obj instanceof JobStateChange)) { return false; } JobStateChange candidate = (JobStateChange) obj; return this.state == candidate.state && this.actingUser.equals(candidate.getUser()) && this.date.equals(candidate.getDate()); } @Override public int hashCode() { return this.state.hashCode() + this.actingUser.hashCode() + this.date.hashCode(); } } It is mapped as a Hibernate CollectionOfElements in the class Job as follows: ... @Entity @Table( name = "job", uniqueConstraints = { @UniqueConstraint( columnNames = { "agency", //Job Name "payment_type", //Job Name "payment_file", //Job Name "date_of_payment", "payment_control_number", "truck_number" }) }) public class Job implements Serializable { private static final long serialVersionUID = -1131729422634638834L; ... @org.hibernate.annotations.CollectionOfElements @JoinTable(name = "job_state", joinColumns = @JoinColumn(name = "job_id")) @Sort(type = SortType.NATURAL) private final SortedSet<JobStateChange> stateChanges = new TreeSet<JobStateChange>(); ... public void advanceState( final User actor, final Date date) { JobState nextState; LOGGER.debug("Current state of {} is {}.", this, this.getCurrentState()); if (null == this.currentState) { nextState = JobState.BEGINNING; } else { if (!this.isAdvanceable()) { throw new IllegalAdvancementException(this.currentState.illegalAdvancementStateMessage); } if (this.currentState.isDivergent()) { nextState = this.currentState.getNextState(this); } else { nextState = this.currentState.getNextState(); } } JobStateChange stateChange = new JobStateChange(nextState, actor, date); this.setCurrentState(stateChange.getState()); this.stateChanges.add(stateChange); LOGGER.debug("Advanced {} to {}", this, this.getCurrentState()); } private void setCurrentState(final JobState jobState) { this.currentState = jobState; } boolean isAdvanceable() { return this.getCurrentState().isAdvanceable(this); } ... @Override public boolean equals(final Object obj) { if (obj == this) { return true; } else if (!(obj instanceof Job)) { return false; } Job otherJob = (Job) obj; return this.getName().equals(otherJob.getName()) && this.getDateOfPayment().equals(otherJob.getDateOfPayment()) && this.getPaymentControlNumber().equals(otherJob.getPaymentControlNumber()) && this.getTruckNumber().equals(otherJob.getTruckNumber()); } @Override public int hashCode() { return this.getName().hashCode() + this.getDateOfPayment().hashCode() + this.getPaymentControlNumber().hashCode() + this.getTruckNumber().hashCode(); } ... } The purpose of JobStateChange is to record when the Job moves through a series of State Changes that are outline in JobState as enums which know about advancement and decrement rules. The interface used to advance Jobs through a series of states is to call Job.advanceState() with a Date and a User. If the Job is advanceable according to rules coded in the enum, then a new StateChange is added to the SortedSet and everyone's happy. If not, an IllegalAdvancementException is thrown. The DDL this generates is as follows: ... drop table job; drop table job_state; ... create table job ( id bigint generated by default as identity, current_state varchar(25), date_of_payment date not null, beginningCheckNumber varchar(8) not null, item_count integer, agency varchar(10) not null, payment_file varchar(25) not null, payment_type varchar(25) not null, endingCheckNumber varchar(8) not null, payment_control_number varchar(4) not null, truck_number varchar(255) not null, wrapping_system_type varchar(15) not null, printer_id bigint, primary key (id), unique (agency, payment_type, payment_file, date_of_payment, payment_control_number, truck_number) ); create table job_state ( job_id bigint not null, acting_user_id bigint not null, date timestamp not null, state varchar(25) not null, primary key (job_id, acting_user_id, date, state) ); ... alter table job add constraint FK19BBD12FB9D70 foreign key (printer_id) references printer; alter table job_state add constraint FK57C2418FED1F0D21 foreign key (acting_user_id) references app_user; alter table job_state add constraint FK57C2418FABE090B3 foreign key (job_id) references job; ... The database is seeded with the following data prior to running tests ... insert into job (id, agency, payment_type, payment_file, payment_control_number, date_of_payment, beginningCheckNumber, endingCheckNumber, item_count, current_state, printer_id, wrapping_system_type, truck_number) values (-3, 'RRB', 'Monthly', 'Monthly','4501','1998-12-01 08:31:16' , '00000001','00040000', 40000, 'UNASSIGNED', null, 'KERN', '02'); insert into job_state (job_id, acting_user_id, date, state) values (-3, -1, '1998-11-30 08:31:17', 'UNASSIGNED'); ... After the database schema is automatically generated and rebuilt by the Hibernate tool. The following test runs fine up until the call to Session.flush() ... @ContextConfiguration(locations = { "/applicationContext-data.xml", "/applicationContext-service.xml" }) public class JobDaoIntegrationTest extends AbstractTransactionalJUnit4SpringContextTests { @Autowired private JobDao jobDao; @Autowired private SessionFactory sessionFactory; @Autowired private UserService userService; @Autowired private PrinterService printerService; ... @Test public void saveJob_JobAdvancedToAssigned_AllExpectedStateChanges() { //Get an unassigned Job Job job = this.jobDao.getJob(-3L); assertEquals(JobState.UNASSIGNED, job.getCurrentState()); Date advancedToUnassigned = new GregorianCalendar(1998, 10, 30, 8, 31, 17).getTime(); assertEquals(advancedToUnassigned, job.getStateChange(JobState.UNASSIGNED).getDate()); //Satisfy advancement constraints and advance job.setPrinter(this.printerService.getPrinter(-1L)); Date advancedToAssigned = new Date(); job.advanceState( this.userService.getUserByUsername("admin"), advancedToAssigned); assertEquals(JobState.ASSIGNED, job.getCurrentState()); assertEquals(advancedToUnassigned, job.getStateChange(JobState.UNASSIGNED).getDate()); assertEquals(advancedToAssigned, job.getStateChange(JobState.ASSIGNED).getDate()); //Persist to DB this.sessionFactory.getCurrentSession().flush(); ... } ... } The error thrown is SQLCODE=-803, SQLSTATE=23505: could not insert collection rows: [jaci.model.job.Job.stateChanges#-3] org.hibernate.exception.ConstraintViolationException: could not insert collection rows: [jaci.model.job.Job.stateChanges#-3] at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java:94) at org.hibernate.exception.JDBCExceptionHelper.convert(JDBCExceptionHelper.java:66) at org.hibernate.persister.collection.AbstractCollectionPersister.insertRows(AbstractCollectionPersister.java:1416) at org.hibernate.action.CollectionUpdateAction.execute(CollectionUpdateAction.java:86) at org.hibernate.engine.ActionQueue.execute(ActionQueue.java:279) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:263) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:170) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:50) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1027) at jaci.dao.JobDaoIntegrationTest.saveJob_JobAdvancedToAssigned_AllExpectedStateChanges(JobDaoIntegrationTest.java:98) at org.springframework.test.context.junit4.SpringTestMethod.invoke(SpringTestMethod.java:160) at org.springframework.test.context.junit4.SpringMethodRoadie.runTestMethod(SpringMethodRoadie.java:233) at org.springframework.test.context.junit4.SpringMethodRoadie$RunBeforesThenTestThenAfters.run(SpringMethodRoadie.java:333) at org.springframework.test.context.junit4.SpringMethodRoadie.runWithRepetitions(SpringMethodRoadie.java:217) at org.springframework.test.context.junit4.SpringMethodRoadie.runTest(SpringMethodRoadie.java:197) at org.springframework.test.context.junit4.SpringMethodRoadie.run(SpringMethodRoadie.java:143) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.invokeTestMethod(SpringJUnit4ClassRunner.java:160) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.run(SpringJUnit4ClassRunner.java:97) Caused by: com.ibm.db2.jcc.b.lm: DB2 SQL Error: SQLCODE=-803, SQLSTATE=23505, SQLERRMC=1;ACI_APP.JOB_STATE, DRIVER=3.50.152 at com.ibm.db2.jcc.b.wc.a(wc.java:575) at com.ibm.db2.jcc.b.wc.a(wc.java:57) at com.ibm.db2.jcc.b.wc.a(wc.java:126) at com.ibm.db2.jcc.b.tk.b(tk.java:1593) at com.ibm.db2.jcc.b.tk.c(tk.java:1576) at com.ibm.db2.jcc.t4.db.k(db.java:353) at com.ibm.db2.jcc.t4.db.a(db.java:59) at com.ibm.db2.jcc.t4.t.a(t.java:50) at com.ibm.db2.jcc.t4.tb.b(tb.java:200) at com.ibm.db2.jcc.b.uk.Gb(uk.java:2355) at com.ibm.db2.jcc.b.uk.e(uk.java:3129) at com.ibm.db2.jcc.b.uk.zb(uk.java:568) at com.ibm.db2.jcc.b.uk.executeUpdate(uk.java:551) at org.hibernate.jdbc.NonBatchingBatcher.addToBatch(NonBatchingBatcher.java:46) at org.hibernate.persister.collection.AbstractCollectionPersister.insertRows(AbstractCollectionPersister.java:1389) Therein lies my problem… A nearly identical Class set (in fact, so identical that I've been chomping at the bit to make it a single class that serves both business entities) runs absolutely fine. It is identical except for name. Instead of Job it's Web. Instead of JobStateChange it's WebStateChange. Instead of JobState it's WebState. Both Job and Web's SortedSet of StateChanges are mapped as a Hibernate CollectionOfElements. Both are @Embeddable. Both are SortType.Natural. Both are backed by an Enumeration with some advancement rules in it. And yet when a nearly identical test is run for Web, no issue is discovered and the data flushes fine. For the sake of brevity I won't include all of the Web classes here, but I will include the test and if anyone wants to see the actual sources, I'll include them (just leave a comment). The data seed: insert into web (id, stock_type, pallet, pallet_id, date_received, first_icn, last_icn, shipment_id, current_state) values (-1, 'PF', '0011', 'A', '2008-12-31 08:30:02', '000000001', '000080000', -1, 'UNSTAGED'); insert into web_state (web_id, date, state, acting_user_id) values (-1, '2008-12-31 08:30:03', 'UNSTAGED', -1); The test: ... @ContextConfiguration(locations = { "/applicationContext-data.xml", "/applicationContext-service.xml" }) public class WebDaoIntegrationTest extends AbstractTransactionalJUnit4SpringContextTests { @Autowired private WebDao webDao; @Autowired private UserService userService; @Autowired private SessionFactory sessionFactory; ... @Test public void saveWeb_WebAdvancedToNewState_AllExpectedStateChanges() { Web web = this.webDao.getWeb(-1L); Date advancedToUnstaged = new GregorianCalendar(2008, 11, 31, 8, 30, 3).getTime(); assertEquals(WebState.UNSTAGED, web.getCurrentState()); assertEquals(advancedToUnstaged, web.getState(WebState.UNSTAGED).getDate()); Date advancedToStaged = new Date(); web.advanceState( this.userService.getUserByUsername("admin"), advancedToStaged); this.sessionFactory.getCurrentSession().flush(); web = this.webDao.getWeb(web.getId()); assertEquals( "Web should have moved to STAGED State.", WebState.STAGED, web.getCurrentState()); assertEquals(advancedToUnstaged, web.getState(WebState.UNSTAGED).getDate()); assertEquals(advancedToStaged, web.getState(WebState.STAGED).getDate()); assertNotNull(web.getState(WebState.UNSTAGED)); assertNotNull(web.getState(WebState.STAGED)); } ... } As you can see, I assert that the Web was reconstituted the way I expect, I advance it, flush it to the DB, and then re-get it and verify that the states are as I expect. Everything works perfectly. Not so with Job. A possibly pertinent detail: the reconstitution code works fine if I cease to map JobStateChange.data as a TIMESTAMP and instead as a DATE, and ensure that all of the StateChanges always occur on different Dates. The problem is that this particular business entity can go through many state changes in a single day and so it needs to be sorted by time stamp rather than by date. If I don't do this then I can't sort the StateChanges correctly. That being said, WebStateChange.date is also mapped as a TIMESTAMP and so I again remain absolutely befuddled as to where this error is arising from. I tried to do a fairly thorough job of giving all of the technical details of the implementation but as this particular question is very implementation specific, if I missed anything just let me know in the comments and I'll include it. Thanks so much for your help! UPDATE: Since it turns out to be important to the solution of my problem, I have to include the pertinent bits of the WebStateChange class as well. ... @Embeddable public class WebStateChange implements Comparable<WebStateChange> { @Temporal(TemporalType.TIMESTAMP) @Column(nullable = false) private Date date; @Enumerated(EnumType.STRING) @Column(nullable = false, length = WebState.FIELD_LENGTH) private WebState state; @ManyToOne(fetch = FetchType.LAZY) @JoinColumn(name = "acting_user_id", nullable = false) private User actingUser; ... WebStateChange( final WebState state, final User actingUser, final Date date) { ExceptionUtils.illegalNullArgs(state, actingUser, date); this.state = state; this.actingUser = actingUser; this.date = new Date(date.getTime()); } @Override public int compareTo(final WebStateChange otherStateChange) { return this.date.compareTo(otherStateChange.date); } @Override public boolean equals(final Object candidate) { if (this == candidate) { return true; } else if (!(candidate instanceof WebStateChange)) { return false; } WebStateChange candidateWebState = (WebStateChange) candidate; return this.getState() == candidateWebState.getState() && this.getUser().equals(candidateWebState.getUser()) && this.getDate().equals(candidateWebState.getDate()); } @Override public int hashCode() { return this.getState().hashCode() + this.getUser().hashCode() + this.getDate().hashCode(); } ... }

    Read the article

  • Idiomatic default sort using WCF RIA, EF4, Silverlight?

    - by Duncan Bayne
    I've got two Silverlight 4.0 ComboBoxes; the second displays the children of the entity selected in the first: <ComboBox Name="cmbThings" ItemsSource="{Binding Path=Things,Mode=TwoWay}" DisplayMemberPath="Name" SelectionChanged="CmbThingsSelectionChanged" /> <ComboBox Name="cmbChildThings" ItemsSource="{Binding Path=SelectedThing.ChildThings,Mode=TwoWay}" DisplayMemberPath="Name" /> The code behind the view provides a (simple, hacky) way to databind those ComboBoxes, by loading Entity Framework 4.0 entities through a WCF RIA service: public EntitySet<Thing> Things { get; private set; } public Thing SelectedThing { get; private set; } protected override void OnNavigatedTo(NavigationEventArgs e) { var context = new SortingDomainContext(); context.Load(context.GetThingsQuery()); context.Load(context.GetChildThingsQuery()); Things = context.Things; DataContext = this; } private void CmbThingsSelectionChanged(object sender, SelectionChangedEventArgs e) { SelectedThing = (Thing) cmbThings.SelectedItem; if (PropertyChanged != null) { PropertyChanged.Invoke(this, new PropertyChangedEventArgs("SelectedThing")); } } public event PropertyChangedEventHandler PropertyChanged; What I'd like to do is have both combo boxes sort their contents alphabetically, and I'd like to specify that behaviour in the XAML if at all possible. Could someone please tell me what is the idiomatic way of doing this with the SL4 / EF4 / WCF RIA technology stack?

    Read the article

  • Changing data in a django modelform

    - by Matt Hampel
    I get data in from POST and validate it via this standard snippet: entry_formset = EntryFormSet(request.POST, request.FILES, prefix='entries') if entry_formset.is_valid(): .... The EntryFormSet modelform overrides a foreign key field widget to present a text field. That way, the user can enter an existing key (suggested via an Ajax live search), or enter a new key, which will be seamlessly added. I use this try-except block to test if the object exists already, and if it doesn't, I add it. entity_name = request.POST['entries-0-entity'] try: entity = Entity.objects.get(name=entity_name) except Entity.DoesNotExist: entity = Entity(name=entity_name) entity.slug = slugify(entity.name) entity.save() However, I now need to get that entity back into the entry_formset. It thinks that entries-0-entity is a string (that's how it came in); how can I directly access that value of the entry_formset and get it to take the object reference instead?

    Read the article

< Previous Page | 114 115 116 117 118 119 120 121 122 123 124 125  | Next Page >