Search Results

Search found 13033 results on 522 pages for '12 04'.

Page 119/522 | < Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Hyper-Threading comments

    - by jchang
    There seems to be significant confusion about Hyper-Threading. Part of the problem is that vendors like to tout every new feature as the greatest invention since the six-pack, and its follow-on the 12-pack. I used to think the 4-pack was a travesty, but now that I am older and can nolonger finish a 12-pack with each meal, suddenly the 4-pack is not such a travesty. But I digress. I do appluad innovation, and I do accept that the first generation is almost never perfect, thats why its the bleeding...(read more)

    Read the article

  • Backup options in SharePoint 2007

    - by sreejukg
    It is very important to make sure the server farm backup is taking properly, making sure that in case of any disaster, the administrator has the latest backup that can be used to restore. This articles addresses some of the options available for backup/restore in SharePoint 2007 Backup There are two options that can be utilized to take backup of SharePoint sites. Using SharePoint Central Administration website Using SharePoint central administration website, you can do backup/restore from user interface. Using central administration website you can back up the following · Server farm · Web application · Content databases Follow these steps to take backup of the server farm using central administration 1. Open Central administration website 2. Navigate to Operations -> Backup and Restore -> Perform a backup 3. Here you will have options to choose the item to back up. Select Farm (the top most item in the list) 4. Once you select the items to backup, click on “Continue to backup options” 5. Select “Full” as type of backup. 6. In the backup file location, enter the path where you need to store the backup. The path should be according to the UNC, for e.g. for c drive you may use \\server\c$\mybackupFolder 7. Click ok 8. Now you will be redirected to Backup and Restore Status page. This page shows the progress for the backup operation. You can use the refresh button to update the status of backup(this page will automatically refresh in every 30 seconds). Once completed you can find the files in the specified folder. Using STSADM website SharePoint comes with a STSADM command line tool. STSADM provides lot of administrative operations that can be performed on SharePoint 2007 sites. You can find STSADM command from the following location C:\Program Files\Common Files\Microsoft shared\web server extensions\12\bin (You may change the drive letter according to your installation) STSADM provides a method for performing the Office SharePoint Server 2007 administration tasks at the command line or by using batch files or scripts. STSADM provides access to operations not available by using the Central Administration site The general syntax for STSADM is as follows STSADM -operation Operation Name –parameter1 value1 –parameter2 value2 ……….. Using STSADM you can back up the following · Server farm · Web application · Content databases To perform any STSADM, operation you need to be a member of administrators group. Follow these steps to take backup of SharePoint server farm using STSADM tool. Note: make sure you are logged in to the computer where central administration website is installed. 1. Open the Command prompt (You should run command prompt with administrator privileges) 2. Change the working directory to C:\Program Files\Common Files\Microsoft shared\web server extensions\12\bin 3. Enter the command, then press enter Stsadm –o backup -directory <UNC path> -backupmethod full 4. You will get success / failure message once the command finishes. How to schedule the backup There is no option to schedule a backup using central administration site. Also there is no operation provided by STSADM to automate the backup. The farm administrators need to take backup in regular intervals. To achieve this, you can write a batch file that includes STSADM command to take full backup of the server. This batch file can be scheduled using windows task scheduler to execute in certain intervals. Sample of the batch file 1. Open notepad(or any other text editor) 2. Enter the following commands @echo off echo =============================================================== echo Back up the farm to <C:\backup> echo =============================================================== cd %COMMONPROGRAMFILES%\Microsoft Shared\web server extensions\12\BIN @echo off stsadm.exe -o backup -directory "<\backup>" -backupmethod full echo completed 3. Save the file with .bat extension You can schedule this batch file as you require. Other Options Using STSADM tool, you will be able to take backup for individual site collection. The syntax for this is stsadm -o backup -url <URL name for site collection> -filename <file name> [-overwrite] The explanations for the parameters are as follows. -url The url of the site collection you need to backup -filename The name of the backup file. E.g. c:\backup.bak -overwrite optional. Indicates if the filename specified exists, whether to overwrite or not. If you are creating the batch file for scheduling the backup for a site collection, you may need to specify the backup filename automatically created. It is an option that you can generate the filename with date so that you can keep backup for each day. e.g. The following commands can be utilized create a site collection backup. @echo off echo =============================================================== echo Back up the farm to <C:\backup> echo =============================================================== echo =============================================================== echo getting todays date to a variable echo =============================================================== @For /F "tokens=1,2,3 delims=/ " %%A in (‘Date /t’) do @( Set Day=%%A Set Month=%%B Set Year=%%C Set todayDate=%%C%%B%%A ) cd %COMMONPROGRAMFILES%\Microsoft Shared\web server extensions\12\BIN @echo off stsadm -o backup -url <sitecollection url> -filename \\ServerName\ShareName\Backup_%todayDate%.bak -overwrite echo completed To read more about backup STSADM operation, read this http://technet.microsoft.com/en-us/library/cc263441.aspx

    Read the article

  • String Format for DateTime in C#

    - by SAMIR BHOGAYTA
    String Format for DateTime [C#] This example shows how to format DateTime using String.Format method. All formatting can be done also using DateTime.ToString method. Custom DateTime Formatting There are following custom format specifiers y (year), M (month), d (day), h (hour 12), H (hour 24), m (minute), s (second), f (second fraction), F (second fraction, trailing zeroes are trimmed), t (P.M or A.M) and z (time zone). Following examples demonstrate how are the format specifiers rewritten to the output. [C#] // create date time 2008-03-09 16:05:07.123 DateTime dt = new DateTime(2008, 3, 9, 16, 5, 7, 123); String.Format("{0:y yy yyy yyyy}", dt); // "8 08 008 2008" year String.Format("{0:M MM MMM MMMM}", dt); // "3 03 Mar March" month String.Format("{0:d dd ddd dddd}", dt); // "9 09 Sun Sunday" day String.Format("{0:h hh H HH}", dt); // "4 04 16 16" hour 12/24 String.Format("{0:m mm}", dt); // "5 05" minute String.Format("{0:s ss}", dt); // "7 07" second String.Format("{0:f ff fff ffff}", dt); // "1 12 123 1230" sec.fraction String.Format("{0:F FF FFF FFFF}", dt); // "1 12 123 123" without zeroes String.Format("{0:t tt}", dt); // "P PM" A.M. or P.M. String.Format("{0:z zz zzz}", dt); // "-6 -06 -06:00" time zone You can use also date separator / (slash) and time sepatator : (colon). These characters will be rewritten to characters defined in the current DateTimeForma­tInfo.DateSepa­rator and DateTimeForma­tInfo.TimeSepa­rator. [C#] // date separator in german culture is "." (so "/" changes to ".") String.Format("{0:d/M/yyyy HH:mm:ss}", dt); // "9/3/2008 16:05:07" - english (en-US) String.Format("{0:d/M/yyyy HH:mm:ss}", dt); // "9.3.2008 16:05:07" - german (de-DE) Here are some examples of custom date and time formatting: [C#] // month/day numbers without/with leading zeroes String.Format("{0:M/d/yyyy}", dt); // "3/9/2008" String.Format("{0:MM/dd/yyyy}", dt); // "03/09/2008" // day/month names String.Format("{0:ddd, MMM d, yyyy}", dt); // "Sun, Mar 9, 2008" String.Format("{0:dddd, MMMM d, yyyy}", dt); // "Sunday, March 9, 2008" // two/four digit year String.Format("{0:MM/dd/yy}", dt); // "03/09/08" String.Format("{0:MM/dd/yyyy}", dt); // "03/09/2008" Standard DateTime Formatting In DateTimeForma­tInfo there are defined standard patterns for the current culture. For example property ShortTimePattern is string that contains value h:mm tt for en-US culture and value HH:mm for de-DE culture. Following table shows patterns defined in DateTimeForma­tInfo and their values for en-US culture. First column contains format specifiers for the String.Format method. Specifier DateTimeFormatInfo property Pattern value (for en-US culture) t ShortTimePattern h:mm tt d ShortDatePattern M/d/yyyy T LongTimePattern h:mm:ss tt D LongDatePattern dddd, MMMM dd, yyyy f (combination of D and t) dddd, MMMM dd, yyyy h:mm tt F FullDateTimePattern dddd, MMMM dd, yyyy h:mm:ss tt g (combination of d and t) M/d/yyyy h:mm tt G (combination of d and T) M/d/yyyy h:mm:ss tt m, M MonthDayPattern MMMM dd y, Y YearMonthPattern MMMM, yyyy r, R RFC1123Pattern ddd, dd MMM yyyy HH':'mm':'ss 'GMT' (*) s SortableDateTi­mePattern yyyy'-'MM'-'dd'T'HH':'mm':'ss (*) u UniversalSorta­bleDateTimePat­tern yyyy'-'MM'-'dd HH':'mm':'ss'Z' (*) (*) = culture independent Following examples show usage of standard format specifiers in String.Format method and the resulting output. [C#] String.Format("{0:t}", dt); // "4:05 PM" ShortTime String.Format("{0:d}", dt); // "3/9/2008" ShortDate String.Format("{0:T}", dt); // "4:05:07 PM" LongTime String.Format("{0:D}", dt); // "Sunday, March 09, 2008" LongDate String.Format("{0:f}", dt); // "Sunday, March 09, 2008 4:05 PM" LongDate+ShortTime String.Format("{0:F}", dt); // "Sunday, March 09, 2008 4:05:07 PM" FullDateTime String.Format("{0:g}", dt); // "3/9/2008 4:05 PM" ShortDate+ShortTime String.Format("{0:G}", dt); // "3/9/2008 4:05:07 PM" ShortDate+LongTime String.Format("{0:m}", dt); // "March 09" MonthDay String.Format("{0:y}", dt); // "March, 2008" YearMonth String.Format("{0:r}", dt); // "Sun, 09 Mar 2008 16:05:07 GMT" RFC1123 String.Format("{0:s}", dt); // "2008-03-09T16:05:07" SortableDateTime String.Format("{0:u}", dt); // "2008-03-09 16:05:07Z" UniversalSortableDateTime

    Read the article

  • Visual Studio 2010 Professional special launch offer!

    - by Etienne Tremblay
    Hello everyone, long time no blog… I’ll try to get back in the game soon but with 2 customer and user group and life in general let’s just say I’m busy.  In the meantime I’m passing along this great offer. Microsoft Visual Studio 2010 Professional will launch on April 12 but you can beat the rush and secure your copy today by pre-ordering at the affordable estimated retail price of $549, a saving of $250. If you use a previous version of Visual Studio or any other development tool then you are eligible for this upgrade. Along with all the great new features in Visual Studio 2010 (see www.microsoft.com/visualstudio) Visual Studio 2010 Professional includes a 12-month MSDN Essentials subscription which gives you access to core Microsoft platforms: Windows 7 Ultimate, Windows Server 2008 R2 Enterprise, and Microsoft SQL Server 2008 R2 Datacenter. So visit http://www.microsoft.com/visualstudio/en-us/pre-order-visual-studio-2010 to check out all the new features and sign up for this great offer.   Cheers, ET Technorati Tags: VS2010

    Read the article

  • NHibernate Pitfalls: Fetch and Paging

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. NHibernate allows you to force loading additional references (many to one, one to one) or collections (one to many, many to many) in a query. You must know, however, that this is incompatible with paging. It’s easy to see why. Let’s say you want to get 5 products starting on the fifth, you can issue the following LINQ query: 1: session.Query<Product>().Take(5).Skip(5).ToList(); Will product this SQL in SQL Server: 1: SELECT 2: TOP (@p0) product1_4_, 3: name4_, 4: price4_ 5: FROM 6: (select 7: product0_.product_id as product1_4_, 8: product0_.name as name4_, 9: product0_.price as price4_, 10: ROW_NUMBER() OVER( 11: ORDER BY 12: CURRENT_TIMESTAMP) as __hibernate_sort_row 13: from 14: product product0_) as query 15: WHERE 16: query.__hibernate_sort_row > @p1 17: ORDER BY If, however, you wanted to bring as well the associated order details, you might be tempted to try this: 1: session.Query<Product>().Fetch(x => x.OrderDetails).Take(5).Skip(5).ToList(); Which, in turn, will produce this SQL: 1: SELECT 2: TOP (@p0) product1_4_0_, 3: order1_3_1_, 4: name4_0_, 5: price4_0_, 6: order2_3_1_, 7: product3_3_1_, 8: quantity3_1_, 9: product3_0__, 10: order1_0__ 11: FROM 12: (select 13: product0_.product_id as product1_4_0_, 14: orderdetai1_.order_detail_id as order1_3_1_, 15: product0_.name as name4_0_, 16: product0_.price as price4_0_, 17: orderdetai1_.order_id as order2_3_1_, 18: orderdetai1_.product_id as product3_3_1_, 19: orderdetai1_.quantity as quantity3_1_, 20: orderdetai1_.product_id as product3_0__, 21: orderdetai1_.order_detail_id as order1_0__, 22: ROW_NUMBER() OVER( 23: ORDER BY 24: CURRENT_TIMESTAMP) as __hibernate_sort_row 25: from 26: product product0_ 27: left outer join 28: order_detail orderdetai1_ 29: on product0_.product_id=orderdetai1_.product_id 30: ) as query 31: WHERE 32: query.__hibernate_sort_row > @p1 33: ORDER BY 34: query.__hibernate_sort_row; However, because of the JOIN, what happens is that, if your products have more than one order details, you will get several records – one per order detail – per product, which means that pagination will be broken. There is an workaround, which forces you to write your LINQ query in another way: 1: session.Query<OrderDetail>().Where(x => session.Query<Product>().Select(y => y.ProductId).Take(5).Skip(5).Contains(x.Product.ProductId)).Select(x => x.Product).ToList() Or, using HQL: 1: session.CreateQuery("select od.Product from OrderDetail od where od.Product.ProductId in (select p.ProductId from Product p skip 5 take 5)").List<Product>(); The generated SQL will then be: 1: select 2: product1_.product_id as product1_4_, 3: product1_.name as name4_, 4: product1_.price as price4_ 5: from 6: order_detail orderdetai0_ 7: left outer join 8: product product1_ 9: on orderdetai0_.product_id=product1_.product_id 10: where 11: orderdetai0_.product_id in ( 12: SELECT 13: TOP (@p0) product_id 14: FROM 15: (select 16: product2_.product_id, 17: ROW_NUMBER() OVER( 18: ORDER BY 19: CURRENT_TIMESTAMP) as __hibernate_sort_row 20: from 21: product product2_) as query 22: WHERE 23: query.__hibernate_sort_row > @p1 24: ORDER BY 25: query.__hibernate_sort_row); Which will get you what you want: for 5 products, all of their order details.

    Read the article

  • Grandparent – Parent – Child Reports in SQL Developer

    - by thatjeffsmith
    You’ll never see one of these family stickers on my car, but I promise not to judge…much. Parent – Child reports are pretty straightforward in Oracle SQL Developer. You have a ‘parent’ report, and then one or more ‘child’ reports which are based off of a value in a selected row or value from the parent. If you need a quick tutorial to get up to speed on the subject, go ahead and take 5 minutes Shortly before I left for vacation 2 weeks agao, I got an interesting question from one of my Twitter Followers: @thatjeffsmith any luck with the #Oracle awr reports in #SQLDeveloper?This is easy with multi generation parent>child Done in #dbvisualizer — Ronald Rood (@Ik_zelf) August 26, 2012 Now that I’m back from vacation, I can tell Ronald and everyone else that the answer is ‘Yes!’ And here’s how Time to Get Out Your XML Editor Don’t have one? That’s OK, SQL Developer can edit XML files. While the Reporting interface doesn’t surface the ability to create multi-generational reports, the underlying code definitely supports it. We just need to hack away at the XML that powers a report. For this example I’m going to start simple. A query that brings back DEPARTMENTs, then EMPLOYEES, then JOBs. We can build the first two parts of the report using the report editor. A Parent-Child report in Oracle SQL Developer (Departments – Employees) Save the Report to XML Once you’ve generated the XML file, open it with your favorite XML editor. For this example I’ll be using the build-it XML editor in SQL Developer. SQL Developer Reports in their raw XML glory! Right after the PDF element in the XML document, we can start a new ‘child’ report by inserting a DISPLAY element. I just copied and pasted the existing ‘display’ down so I wouldn’t have to worry about screwing anything up. Note I also needed to change the ‘master’ name so it wouldn’t confuse SQL Developer when I try to import/open a report that has the same name. Also I needed to update the binds tags to reflect the names from the child versus the original parent report. This is pretty easy to figure out on your own actually – I mean I’m no real developer and I got it pretty quick. <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="92857fce-0139-1000-8006-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[Grandparent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.departments]]></sql> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Parent]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.employees where department_id = EPARTMENT_ID]]></sql> <binds> <bind id="DEPARTMENT_ID"> <prompt><![CDATA[DEPARTMENT_ID]]></prompt> <tooltip><![CDATA[DEPARTMENT_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Child]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[select * from hr.jobs where job_id = :JOB_ID]]></sql> <binds> <bind id="JOB_ID"> <prompt><![CDATA[JOB_ID]]></prompt> <tooltip><![CDATA[JOB_ID]]></tooltip> <value><![CDATA[NULL_VALUE]]></value> </bind> </binds> </query> <pdf version="VERSION_1_7" compression="CONTENT"> <docproperty title="" author="" subject="" keywords="" /> <cell toppadding="2" bottompadding="2" leftpadding="2" rightpadding="2" horizontalalign="LEFT" verticalalign="TOP" wrap="true" /> <column> <heading font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="FIRST_PAGE" /> <footing font="Courier" size="10" style="NORMAL" color="-16777216" rowshading="-1" labeling="NONE" /> <blob blob="NONE" zip="false" /> </column> <table font="Courier" size="10" style="NORMAL" color="-16777216" userowshading="false" oddrowshading="-1" evenrowshading="-1" showborders="true" spacingbefore="12" spacingafter="12" horizontalalign="LEFT" /> <header enable="false" generatedate="false"> <data> null </data> </header> <footer enable="false" generatedate="false"> <data value="null" /> </footer> <security enable="false" useopenpassword="false" openpassword="" encryption="EXCLUDE_METADATA"> <permission enable="false" permissionpassword="" allowcopying="true" allowprinting="true" allowupdating="false" allowaccessdevices="true" /> </security> <pagesetup papersize="LETTER" orientation="1" measurement="in" margintop="1.0" marginbottom="1.0" marginleft="1.0" marginright="1.0" /> </pdf> </display> </display> </display> </displays> Save the file and ‘Open Report…’ You’ll see your new report name in the tree. You just need to double-click it to open it. Here’s what it looks like running A 3 generation family Now Let’s Build an AWR Text Report Ronald wanted to have the ability to query AWR snapshots and generate the AWR reports. That requires a few inputs, including a START and STOP snapshot ID. That basically tells AWR what time period to use for generating the report. And here’s where it gets tricky. We’ll need to use aliases for the SNAP_ID column. Since we’re using the same column name from 2 different queries, we need to use different bind variables. Fortunately for us, SQL Developer’s clever enough to use the column alias as the BIND. Here’s what I mean: Grandparent Query SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc Parent Query SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc And here’s where it gets even trickier – you can’t reference a bind from outside the parent query. My grandchild report can’t reference a value from the grandparent report. So I just carry the selected value down to the parent. In my parent query SELECT you see the ‘:START1′ at the end? That’s making that value available to me when I use it in my grandchild query. To complicate things a bit further, I can’t have a column name with a ‘:’ in it, or SQL Developer will get confused when I try to reference the value of the variable with the ‘:’ – and ‘::Name’ doesn’t work. But that’s OK, just alias it. Grandchild Query Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1)); Ok, and the last trick – I hard-coded my report to use my database’s DB_ID and INST_ID into the AWR package call. Now a smart person could figure out a way to make that work on any database, but I got lazy and and ran out of time. But this should be far enough for you to take it from here. Here’s what my report looks like now: Caution: don’t run this if you haven’t licensed Enterprise Edition with Diagnostic Pack. The Raw XML for this AWR Report <?xml version="1.0" encoding="UTF-8" ?> <displays> <display id="927ba96c-0139-1000-8001-7f0000015340" type="" style="Table" enable="true"> <name><![CDATA[AWR Start Stop Report Final]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id start1, begin_interval_time, end_interval_time FROM dba_hist_snapshot ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[Stop SNAP_ID]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[SELECT snap_id stop1, begin_interval_time, end_interval_time, :START1 carry FROM dba_hist_snapshot WHERE snap_id > :START1 ORDER BY 1 asc]]></sql> </query> <display id="null" type="" style="Table" enable="true"> <name><![CDATA[AWR Report]]></name> <description><![CDATA[]]></description> <tooltip><![CDATA[]]></tooltip> <drillclass><![CDATA[null]]></drillclass> <CustomValues> <TYPE>horizontal</TYPE> </CustomValues> <query> <sql><![CDATA[Select Output From Table(Dbms_Workload_Repository.Awr_Report_Text(1298953802, 1,:CARRY, :STOP1 ))]]></sql> </query> </display> </display> </display> </displays> Should We Build Support for Multiple Levels of Reports into the User Interface? Let us know! A comment here or a suggestion on our SQL Developer Exchange might help your case!

    Read the article

  • Webcenter 11g Patch Set 3 (PS3) - Formação para Parceiros - 19/Jan/11

    - by Claudia Costa
    O Oracle WebCenter Suite consiste num conjunto integrado de soluções  baseadas em standards de mercado, com o objectivo de criar aplicações de negócio, portais corporativos, comunidades de interesse, grupos colaborativos, redes sociais, consolidar sistemas aplicacionais web e potenciar as funcionalidades web 2.0 dentro e fora de uma organização. Toda a solução está em conformidade com os principais Standards de mercado e baseia-se numa arquitectura totalmente orientada ao serviço (SOA). Venha conhecer nesta sessão as novas funcionalidades do Webcenter Suite 11g PS3. Agenda 09.30h Boas Vindas e Introdução 09.40h Oracle & Enterprise 2.0 - João Borrego 10.00h Introduction to Oracle WebCenter Suite as a User Experience Platform (UXP) - Monte Kluemper 10.40h Coffee Break 11.00h Building Rich UIs with Oracle WebCenter Portal - Monte Kluemper 12.00h Interactive Q&A Session - João Borrego e Monte Kluemper 12.30h Almoço 14.00h Deep-dive into WebCenter Technical Architecture - Monte Kluemper 15.30h Final da Sessão Target: - Equipas de Venda e Comerciais (manhã)- Equipas Técnicas e de pré-venda (tarde) Data e Local:19 de JaneiroLagoas Park Hotel Para este Workshop os lugares estão limitados. Por favor aguarde um email de confirmação de sua inscrição.Inscrições : Email Para mais informações, por favor contacte: Claudia Costa / 21 423 50 27

    Read the article

  • Creating Wildcard Certificates with makecert.exe

    - by Shawn Cicoria
    Be nice to be able to make wildcard certificates for use in development with makecert – turns out, it’s real easy.  Just ensure that your CN=  is the wildcard string to use. The following sequence generates a CA cert, then the public/private key pair for a wildcard certificate REM make the CA makecert -pe -n "CN=*.contosotest.com" -a sha1 -len 2048 -sky exchange -eku 1.3.6.1.5.5.7.3.1 -ic CA.cer -iv CA.pvk -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12 -sv wildcard.pvk wildcard.cer pvk2pfx -pvk wildcard.pvk -spc wildcard.cer -pfx wildcard.pfx REM now make the server wildcard cert makecert -pe -n "CN=*.contosotest.com" -a sha1 -len 2048 -sky exchange -eku 1.3.6.1.5.5.7.3.1 -ic CA.cer -iv CA.pvk -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12 -sv wildcard.pvk wildcard.cer pvk2pfx -pvk wildcard.pvk -spc wildcard.cer -pfx wildcard.pfx

    Read the article

  • How to format a USB stick

    - by VictorL
    My USB stick looks dead : victor@X301A1:~$ umount /dev/sdc1 victor@X301A1:~$ sudo mkfs -t vfat /dev/sdc1 mkfs.vfat 3.0.12 (29 Oct 2011) mkfs.vfat: unable to open /dev/sdc1: Read-only file system victor@X301A1:~$ sudo hdparm -r0 /dev/sdc1 /dev/sdc1: setting readonly to 0 (off) readonly = 0 (off) victor@X301A1:~$ sudo fsck -n /dev/sdc1 fsck de util-linux 2.20.1 dosfsck 3.0.12, 29 Oct 2011, FAT32, LFN /.Trash-1000/files/sans_titre Start does point to root directory. Deleting dir. /.Trash-1000/files/Bus CAN Start does point to root directory. Deleting dir. Reclaimed 190903 unused clusters (781938688 bytes). Free cluster summary wrong (1001897 vs. really 1383698) Auto-correcting. Leaving file system unchanged. /dev/sdc1: 8052 files, 566660/1950358 clusters Is there anyway for me to recover my USB stick ? Thank

    Read the article

  • Change the Default Font Size in Word

    - by Matthew Guay
    Are you frustrated by always having to change the font size before you create a document it Word?  Here’s how you can end that frustration and set your favorite default font size for once and for all! Microsoft changed the default font font to 11 point Calibri in Word 2007 after years of 12 point Times New Roman being the default.  Although it can be easily overlooked, there are ways in Word to change the default settings to anything you want.  Whether you want to change your default to 12 point Calibri or to 48 point Comic Sans…here’s how to change your default font settings in Word 2007 and 2010. Changing Default Fonts in Word To change the default font settings, click the small box with an arrow in the right left corner of the Font section of the Home tab in the Ribbon.   In the Font dialog box, choose the default font settings you want.  Notice in the Font box it says “+Body”; this means that the font will be chosen by the document style you choose, and you are only selecting the default font style and size.  So, if your style uses Calibri, then your font will be Calibri at the size and style you chose.  If you’d prefer to choose a specific font to be the default, just select one from the drop-down box and this selection will override the font selection in your document style. Here we left all the default settings, except we selected 12 point font in the Latin text box (this is your standard body text; users of Asian languages such as Chinese may see a box for Asian languages).  When you’ve made your selections, click the “Set as Default” button in the bottom left corner of the dialog. You will be asked to confirm that you want these settings to be made default.  In Word 2010, you will be given the option to set these settings for this document only or for all documents.  Click the bullet beside “All documents based on the Normal.dotm template?”, and then click Ok. In Word 2007, simply click Ok to save these settings as default. Now, whenever you open Word or create a new document, your default font settings should be set exactly to what you want.  And simply repeat these steps to change your default font settings again if you want. Editing your default template file Another way to change your default font settings is to edit your Normal.dotm file.  This file is what Word uses to create new documents; it basically copies the formatting in this document each time you make a new document. To edit your Normal.dotm file, enter the following in the address bar in Explorer or in the Run prompt: %appdata%\Microsoft\Templates This will open your Office Templates folder.  Right-click on the Normal.dotm file, and click Open to edit it.  Note: Do not double-click on the file, as this will only create a new document based on Normal.dotm and any edits you make will not be saved in this file.   Now, change any font settings as you normally would.  Remember: anything you change or enter in this document will appear in any new document you create using Word. If you want to revert to your default settings, simply delete your Normal.dotm file.  Word will recreate it with the standard default settings the next time you open Word. Please Note: Changing your default font size will not change the font size in existing documents, so these will still show the settings you used when these documents were created.  Also, some addins can affect your Normal.dotm template.  If Word does not seem to remember your font settings, try disabling Word addins to see if this helps. Conclusion Sometimes it’s the small things that can be the most frustrating.  Getting your default font settings the way you want is a great way to take away a frustration and make you more productive. And here’s a quick question: Do you prefer the new default 11 point Calibri, or do you prefer 12 point Times New Roman or some other combination?  Sound off in the comments, and let the world know your favorite font settings. Similar Articles Productive Geek Tips Change the Default Font in Excel 2007Add Emphasis to Paragraphs with Drop Caps in Word 2007Keep Websites From Using Tiny Fonts in SafariMake Word 2007 Always Save in Word 2003 FormatStupid Geek Tricks: Enable More Fonts for the Windows Command Prompt TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Spyware Blaster v4.3 Yes, it’s Patch Tuesday Generate Stunning Tag Clouds With Tagxedo Install, Remove and HIDE Fonts in Windows 7 Need Help with Your Home Network? Awesome Lyrics Finder for Winamp & Windows Media Player

    Read the article

  • TLS: hostname does not match CN in peer certificate

    - by borjamf
    im trying to connect LDAP over StartTLS but Im stuck with an issue. I've followed step by step this guide https://help.ubuntu.com/12.04/serverguide/openldap-server.html#openldap-tls and LDAP it's working OK as well as "ldapsearch -xZZ -h 172.25.80.144" on my Ubuntu Sever 12.04 However, in my Ubuntu Desktop 11.04 Client I get this error: ldapsearch -x -H 172.25.80.144 -ZZ ldap_start_tls: Connect error (-11) additional info: **TLS: hostname does not match CN in peer certificate** Server /etc/ldap/ldap.conf BASE dc=prueba,dc=borja URI ldap://prueba.borja SIZELIMIT 12 TIMELIMIT 15 DEREF never TLS_CACERT /etc/ssl/certs/ca-certificates.crt Client /etc/ldap.conf ssl start_tls tls_checkpeer no /etc/ldap/ldap.conf BASE dc=prueba,dc=borja URI ldap://prueba.borja SIZELIMIT 12 TIMELIMIT 15 DEREF never TLS_REQCERT allow Anybody could tell me how to fix this? I think that the hostname its ok. Thanks!

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Why is the tooltip hiding Dash Search on 12.04?

    - by Anwar Shah
    Can I disable the tooltip shown at the side of the Launcher icon when hovered by the mouse. These are nice, but I want to disable them, because when I press "Dash Home" button on the launcher, then want to write something on the dash, I can't see the letters because of the tooltip. How can I disable the Unity tooltip from hiding search string in dash? I am using Ubuntu 12.04. I have given a screenshot of the launcher. My problem is basically with this Update 1 I have given advice to follow this answer in chat discussion, but nothing has changed. Update 2 As an answer suggests, I updated unity to the latest version. It is now unity 5.12.0. as the below output indicates $ unity --version unity 5.12.0

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Built-in network card not working?

    - by Zeeshan
    Hi, I am new to Ubuntu. I have installed Ubuntu 9.04(Jaunty). After installation I found that network card is not wokring. And id doest not list in "System Preferenes Network Connections" So , i got another card from my friend and try to search on internat about my problem but still cant find solution. Some commands output is here which may be help to solve problem root@mzeeshan-desktop:/home/mzeeshan# uname -r 2.6.28-11-generic root@mzeeshan-desktop:/home/mzeeshan# ifconfig -a eth0 Link encap:Ethernet HWaddr 00:02:44:4a:45:12 inet addr:192.168.5.37 Bcast:192.168.5.255 Mask:255.255.255.0 inet6 addr: fe80::202:44ff:fe4a:4512/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:3774 errors:0 dropped:0 overruns:0 frame:0 TX packets:3611 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:4307045 (4.3 MB) TX bytes:583067 (583.0 KB) Interrupt:22 Base address:0x1000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:4 errors:0 dropped:0 overruns:0 frame:0 TX packets:4 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:240 (240.0 B) TX bytes:240 (240.0 B) pan0 Link encap:Ethernet HWaddr 5e:25:17:a1:18:ac BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) root@mzeeshan-desktop:/home/mzeeshan# lspci 00:00.0 Host bridge: Intel Corporation Device 0069 (rev 12) 00:01.0 PCI bridge: Intel Corporation Auburndale/Havendale PCI Express x16 Root Port (rev 12) 00:19.0 Ethernet controller: Intel Corporation Device 10f0 (rev 05) 00:1a.0 USB Controller: Intel Corporation Ibex Peak USB2 Enhanced Host Controller (rev 05) 00:1c.0 PCI bridge: Intel Corporation Ibex Peak PCI Express Root Port 1 (rev 05) 00:1c.4 PCI bridge: Intel Corporation Ibex Peak PCI Express Root Port 5 (rev 05) 00:1c.6 PCI bridge: Intel Corporation Ibex Peak PCI Express Root Port 7 (rev 05) 00:1c.7 PCI bridge: Intel Corporation Ibex Peak PCI Express Root Port 8 (rev 05) 00:1d.0 USB Controller: Intel Corporation Ibex Peak USB2 Enhanced Host Controller (rev 05) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev a5) 00:1f.0 ISA bridge: Intel Corporation Ibex Peak LPC Interface Controller (rev 05) 00:1f.2 IDE interface: Intel Corporation Ibex Peak 4 port SATA IDE Controller (rev 05) 00:1f.3 SMBus: Intel Corporation Ibex Peak SMBus Controller (rev 05) 00:1f.5 IDE interface: Intel Corporation Ibex Peak 2 port SATA IDE Controller (rev 05) 01:00.0 VGA compatible controller: nVidia Corporation GeForce 8400 GS (rev a1) 06:00.0 Multimedia audio controller: Creative Labs SB Live! EMU10k1 (rev 07) 06:00.1 Input device controller: Creative Labs SB Live! Game Port (rev 07) 06:01.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) 06:03.0 FireWire (IEEE 1394): Texas Instruments TSB43AB22/A IEEE-1394a-2000 Controller (PHY/Link) root@mzeeshan-desktop:/home/mzeeshan# Motherboard is Intel DP55WG. I don't know what to do next. Any help will be greatly appreciated.. Thanks

    Read the article

  • It's a Long, Long Way to Tipperary but not that Far to Yak about Apps

    - by linda.fishman.hoyle
    I wanted to let everyone know that my blog URL will be moving to http://blogs.oracle.com/lindafishman/. I will focus my future writings to be about the upgrade and adoption strategies of Oracle E-Business Suite customers. To give you a little preview, here is a link to a book of 60 customers who are live on E-Business Suite Release 12 and 12.1. We have thousands of customers live on Release 12.x and are feverishly trying to write as many stories as we can so those of you who are thinking about upgrading, putting a business case together to move from another ERP application to E-Business Suite or for small and midsize companies who want a better understanding of the benefits E-Business Suite provides organizations of your size, this will be the place to go. See you at the new site! Linda

    Read the article

  • How can fix HDMI HDTV overscan when I my TV has no aspect ratio setting?

    - by Colin Dean
    I have a 32" Vizio HDTV. It's a few years old, but running well. I just connected a new nettop to it using HDMI out. It's the Intel 3x00 graphics chipset. I'm seeing overscan, where the resolution in Ubuntu is set to 1280x720, but the TV itself is 1366x768. When I go into the Monitors control applet, I cannot change the resolution to anything other than the current or 640x480. A user had a similar overscan problem, but fixed the overscan by adjusting his TV's aspect ratio settings. I do not have that luxury. Is there a way I can do this without having to delve into xorg.conf or other command-line craziness? I'm more than comfortable doing so, but there must be a cleaner way. I'm running Ubuntu Natty, keeping up with updates and such. Here's the output of lspci: colin@bricktop:~$ lspci 00:00.0 Host bridge: Intel Corporation Core Processor DRAM Controller (rev 12) 00:02.0 VGA compatible controller: Intel Corporation Core Processor Integrated Graphics Controller (rev 12) 00:04.0 Signal processing controller: Intel Corporation Core Processor Thermal Management Controller (rev 12) 00:16.0 Communication controller: Intel Corporation 5 Series/3400 Series Chipset HECI Controller (rev 06) 00:1a.0 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1b.0 Audio device: Intel Corporation 5 Series/3400 Series Chipset High Definition Audio (rev 06) 00:1c.0 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 1 (rev 06) 00:1c.1 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 2 (rev 06) 00:1c.2 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 3 (rev 06) 00:1d.0 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev a6) 00:1f.0 ISA bridge: Intel Corporation Mobile 5 Series Chipset LPC Interface Controller (rev 06) 00:1f.2 SATA controller: Intel Corporation 5 Series/3400 Series Chipset 4 port SATA AHCI Controller (rev 06) 00:1f.3 SMBus: Intel Corporation 5 Series/3400 Series Chipset SMBus Controller (rev 06) 00:1f.6 Signal processing controller: Intel Corporation 5 Series/3400 Series Chipset Thermal Subsystem (rev 06) 01:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06) 02:00.0 USB Controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) 03:00.0 Network controller: Atheros Communications Inc. AR9287 Wireless Network Adapter (PCI-Express) (rev 01)

    Read the article

  • ArchBeat Link-o-Rama for 2012-03-28

    - by Bob Rhubart
    Beware the 'Facebook Effect' when service-orienting information technology | Joe McKenrick www.zdnet.com Experiences seen with Facebook provide a fair warning to shared-service providers in enterprises. Cookbook: SES and UCM setup | George Maggessy blogs.oracle.com WebCenter A-Team member George Maggessy guides you through setting up the integration between UCM and SES. Using Oracle VM with Amazon EC2 | Marc Fielding www.pythian.com "If you’re planning on running Oracle VM with Amazon EC2, there are some important limitations you should know about," says Pythian's Marc Fielding. Oracle Enterprise Pack for Eclipse 12.1.1 update on OTN blogs.oracle.com Oracle Enterprise Pack for Eclipse (OEPE) 12.1.1.0.1 was released to OTN last week with support for new standards and several new features. Thought for the Day "If the mind really is the finest computer, then there are a lot of people out there who need to be rebooted." — Tim Bryce

    Read the article

  • Ubuntu Server available updates

    - by Rapture
    In Ubuntu 11.04 Server when I would log in via ssh it would tell me how many packages are available for updating in the welcome message. After upgrading to 11.10 I no longer get that information. Is there a package I need to install or a config file that needs changing? 11.04 output: Welcome to Ubuntu 11.10 (GNU/Linux 3.0.0-12-generic x86_64) * Documentation: https://help.ubuntu.com/ 32 packages can be updated. 8 updates are security updates. Last login: Mon Nov 21 16:19:01 2011 from han-solo.local 11.10 output: Welcome to Ubuntu 11.10 (GNU/Linux 3.0.0-12-server x86_64) * Documentation: https://help.ubuntu.com/11.10/serverguide/C No mail. Last login: Tue Nov 22 19:07:19 2011 from han-solo.local

    Read the article

  • no volume in kubuntu 10.04

    - by neha
    hello,I am having both gnome and kde on my system.as my gnome is working perfectly but in KDE is there is no sound being generated. output of apley -l and lspci commands is as follows.. neha@neha-laptop:~$ aplay -l **** List of PLAYBACK Hardware Devices **** card 0: Intel [HDA Intel], device 0: STAC92xx Analog [STAC92xx Analog] Subdevices: 1/1 Subdevice #0: subdevice #0 card 0: Intel [HDA Intel], device 3: INTEL HDMI [INTEL HDMI] Subdevices: 1/1 Subdevice #0: subdevice #0 and output of lspci command is: neha@neha-laptop:~$ lspci 00:00.0 Host bridge: Intel Corporation Mobile PM965/GM965/GL960 Memory Controller Hub (rev 0c) 00:02.0 VGA compatible controller: Intel Corporation Mobile GM965/GL960 Integrated Graphics Controller (rev 0c) 00:02.1 Display controller: Intel Corporation Mobile GM965/GL960 Integrated Graphics Controller (rev 0c) 00:1a.0 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #4 (rev 02) 00:1a.1 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #5 (rev 02) 00:1a.7 USB Controller: Intel Corporation 82801H (ICH8 Family) USB2 EHCI Controller #2 (rev 02) 00:1b.0 Audio device: Intel Corporation 82801H (ICH8 Family) HD Audio Controller (rev 02) 00:1c.0 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 1 (rev 02) 00:1c.1 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 2 (rev 02) 00:1c.4 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 5 (rev 02) 00:1d.0 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #1 (rev 02) 00:1d.1 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #2 (rev 02) 00:1d.2 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI Controller #3 (rev 02) 00:1d.7 USB Controller: Intel Corporation 82801H (ICH8 Family) USB2 EHCI Controller #1 (rev 02) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev f2) 00:1f.0 ISA bridge: Intel Corporation 82801HEM (ICH8M) LPC Interface Controller (rev 02) 00:1f.1 IDE interface: Intel Corporation 82801HBM/HEM (ICH8M/ICH8M-E) IDE Controller (rev 02) 00:1f.2 SATA controller: Intel Corporation 82801HBM/HEM (ICH8M/ICH8M-E) SATA AHCI Controller (rev 02) 00:1f.3 SMBus: Intel Corporation 82801H (ICH8 Family) SMBus Controller (rev 02) 02:09.0 FireWire (IEEE 1394): Ricoh Co Ltd R5C832 IEEE 1394 Controller (rev 05) 02:09.1 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 22) 02:09.2 System peripheral: Ricoh Co Ltd R5C843 MMC Host Controller (rev 12) 02:09.3 System peripheral: Ricoh Co Ltd R5C592 Memory Stick Bus Host Adapter (rev 12) 02:09.4 System peripheral: Ricoh Co Ltd xD-Picture Card Controller (rev ff) 09:00.0 Ethernet controller: Marvell Technology Group Ltd. 88E8040 PCI-E Fast Ethernet Controller (rev 12) 0b:00.0 Network controller: Broadcom Corporation BCM4312 802.11a/b/g (rev 01) can anyone help me??

    Read the article

  • Les tablettes seront taxées au titre de la copie privée, avec une redevance proportionnelle au volume de mémoire des appareils

    Les tablettes seront taxées au titre de la copie privée, avec une redevance proportionnelle au volume de mémoire des appareils Mise à jour du 20.12.2010 par Katleen Si pour l'instant, la redevance télévisuelle ne s'étendra pas aux tablettes (voir news précédente), ces dernières seront en revanche bel et bien ponctionnées par un nouvel impôt : la taxe sur la copie privée. C'est la Commission copie privée qui vient de voter cette mesure, qui sera appliquée courant janvier ou février 2011, après sa publication au Journal Officiel. La redevance pour copie privée sera proportionnelle au capacités de stockage de l'appareil, en allant de 0.09 euros (128 Mo) à 12 euros (40 à 64 Go), en passant...

    Read the article

  • Talend Enterprise Data Integration overperforms on Oracle SPARC T4

    - by Amir Javanshir
    The SPARC T microprocessor, released in 2005 by Sun Microsystems, and now continued at Oracle, has a good track record in parallel execution and multi-threaded performance. However it was less suited for pure single-threaded workloads. The new SPARC T4 processor is now filling that gap by offering a 5x better single-thread performance over previous generations. Following our long-term relationship with Talend, a fast growing ISV positioned by Gartner in the “Visionaries” quadrant of the “Magic Quadrant for Data Integration Tools”, we decided to test some of their integration components with the T4 chip, more precisely on a T4-1 system, in order to verify first hand if this new processor stands up to its promises. Several tests were performed, mainly focused on: Single-thread performance of the new SPARC T4 processor compared to an older SPARC T2+ processor Overall throughput of the SPARC T4-1 server using multiple threads The tests consisted in reading large amounts of data --ten's of gigabytes--, processing and writing them back to a file or an Oracle 11gR2 database table. They are CPU, memory and IO bound tests. Given the main focus of this project --CPU performance--, bottlenecks were removed as much as possible on the memory and IO sub-systems. When possible, the data to process was put into the ZFS filesystem cache, for instance. Also, two external storage devices were directly attached to the servers under test, each one divided in two ZFS pools for read and write operations. Multi-thread: Testing throughput on the Oracle T4-1 The tests were performed with different number of simultaneous threads (1, 2, 4, 8, 12, 16, 32, 48 and 64) and using different storage devices: Flash, Fibre Channel storage, two stripped internal disks and one single internal disk. All storage devices used ZFS as filesystem and volume management. Each thread read a dedicated 1GB-large file containing 12.5M lines with the following structure: customerID;FirstName;LastName;StreetAddress;City;State;Zip;Cust_Status;Since_DT;Status_DT 1;Ronald;Reagan;South Highway;Santa Fe;Montana;98756;A;04-06-2006;09-08-2008 2;Theodore;Roosevelt;Timberlane Drive;Columbus;Louisiana;75677;A;10-05-2009;27-05-2008 3;Andrew;Madison;S Rustle St;Santa Fe;Arkansas;75677;A;29-04-2005;09-02-2008 4;Dwight;Adams;South Roosevelt Drive;Baton Rouge;Vermont;75677;A;15-02-2004;26-01-2007 […] The following graphs present the results of our tests: Unsurprisingly up to 16 threads, all files fit in the ZFS cache a.k.a L2ARC : once the cache is hot there is no performance difference depending on the underlying storage. From 16 threads upwards however, it is clear that IO becomes a bottleneck, having a good IO subsystem is thus key. Single-disk performance collapses whereas the Sun F5100 and ST6180 arrays allow the T4-1 to scale quite seamlessly. From 32 to 64 threads, the performance is almost constant with just a slow decline. For the database load tests, only the best IO configuration --using external storage devices-- were used, hosting the Oracle table spaces and redo log files. Using the Sun Storage F5100 array allows the T4-1 server to scale up to 48 parallel JVM processes before saturating the CPU. The final result is a staggering 646K lines per second insertion in an Oracle table using 48 parallel threads. Single-thread: Testing the single thread performance Seven different tests were performed on both servers. Given the fact that only one thread, thus one file was read, no IO bottleneck was involved, all data being served from the ZFS cache. Read File ? Filter ? Write File: Read file, filter data, write the filtered data in a new file. The filter is set on the “Status” column: only lines with status set to “A” are selected. This limits each output file to about 500 MB. Read File ? Load Database Table: Read file, insert into a single Oracle table. Average: Read file, compute the average of a numeric column, write the result in a new file. Division & Square Root: Read file, perform a division and square root on a numeric column, write the result data in a new file. Oracle DB Dump: Dump the content of an Oracle table (12.5M rows) into a CSV file. Transform: Read file, transform, write the result data in a new file. The transformations applied are: set the address column to upper case and add an extra column at the end, which is the concatenation of two columns. Sort: Read file, sort a numeric and alpha numeric column, write the result data in a new file. The following table and graph present the final results of the tests: Throughput unit is thousand lines per second processed (K lines/second). Improvement is the % of improvement between the T5140 and T4-1. Test T4-1 (Time s.) T5140 (Time s.) Improvement T4-1 (Throughput) T5140 (Throughput) Read/Filter/Write 125 806 645% 100 16 Read/Load Database 195 1111 570% 64 11 Average 96 557 580% 130 22 Division & Square Root 161 1054 655% 78 12 Oracle DB Dump 164 945 576% 76 13 Transform 159 1124 707% 79 11 Sort 251 1336 532% 50 9 The improvement of single-thread performance is quite dramatic: depending on the tests, the T4 is between 5.4 to 7 times faster than the T2+. It seems clear that the SPARC T4 processor has gone a long way filling the gap in single-thread performance, without sacrifying the multi-threaded capability as it still shows a very impressive scaling on heavy-duty multi-threaded jobs. Finally, as always at Oracle ISV Engineering, we are happy to help our ISV partners test their own applications on our platforms, so don't hesitate to contact us and let's see what the SPARC T4-based systems can do for your application! "As describe in this benchmark, Talend Enterprise Data Integration has overperformed on T4. I was generally happy to see that the T4 gave scaling opportunities for many scenarios like complex aggregations. Row by row insertion in Oracle DB is faster with more than 650,000 rows per seconds without using any bulk Oracle capabilities !" Cedric Carbone, Talend CTO.

    Read the article

  • Oracle VM networking under the hood and 3 new templates

    - by Chris Kawalek
    We have a few cool things to tell you about:  First up: have you ever wondered what happens behind the scenes in the network when you Live Migrate your Oracle VM server workload? Or how Oracle VM implements the network infrastructure you configure through your point & click action in the GUI? Really….how do they do this? For an in-depth view of the Oracle VM for x86 Networking model, Look ‘Under the Hood’ at Networking in Oracle VM Server for x86 with our best practices engineer in a blog post on OTN Garage. Next, making things simple in Oracle VM is what we strive every day to deliver to our user community. With that, we are pleased to bring you updates on three new Oracle Application templates: E-Business Suite 12.1.3 for Oracle ExalogicOracle VM templates for Oracle E-Business Suite 12.1.3 (x86 64-bit for Oracle Exalogic Elastic Cloud) contain all the required elements to create an Oracle E-Business Suite R12 demonstration system on an Exalogic server. You can use these templates to quickly build an EBS 12.1.3 demonstration environment, bypassing the operating system and the software install (via the EBS Rapid Install). For further details, please review the announcement.   JD Edwards EnterpriseOne 9.1 and JD Edwards EnterpriseOne Tools 9.1.2.1 for x86 servers and Oracle Exalogic The Oracle VM Templates for JD Edwards EnterpriseOne provide a method to rapidly install JD Edwards EnterpriseOne 9.1  and Tools 9.1.2.1. The complete stack includes Oracle Database 11g R2 and Oracle WebLogic Server 10.3.5 running on Oracle Linux 5. The templates can be installed to Oracle VM Server for x86 release 3.x and to the Oracle Exalogic Elastic Cloud.  PeopleSoft PeopleTools 8.5.2.10 for Oracle Exalogic This virtual deployment package delivers a "quick start" of PeopleSoft Middle-tier template on Oracle Linux for Oracle Exalogic Elastic Cloud. And last, are you wondering why we talk about “fast”, “rapid” when we refer to using Oracle VM templates to virtualize Oracle applications? Read the Evaluator Group Lab Validation report quantifying speeds of deployment up to 10x faster than with VMware vSphere. Or you can also check out our on demand webcast Quantifying the Value of Application-Driven Virtualization.

    Read the article

< Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >