Search Results

Search found 11923 results on 477 pages for 'inner classes'.

Page 119/477 | < Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >

  • AS3: How to dispatch from the document class?

    - by redconservatory
    I have a pretty good handle on dispatching from classes other than the Document Class, but what happens when I want to dispatch an event from the Document class and have other classes listen to the document class broadcast? It seems like there are several ways to approach this (i.e using a Singleton, using composition, using MovieClip(root)) I was just wondering what people find is the "best practice" way to do this?

    Read the article

  • Why can't your switch statement data type be long Java?

    - by Fostah
    Here's an excerpt from Sun's Java tutorials: A switch works with the byte, short, char, and int primitive data types. It also works with enumerated types (discussed in Classes and Inheritance) and a few special classes that "wrap" certain primitive types: Character, Byte, Short, and Integer (discussed in Simple Data Objects ). There must be a good reason why the long primitive data type is not allowed. Anyone know what it is?

    Read the article

  • Entity Framework 4 and Public Properties

    - by William
    I am working on a project and I am using Entity Framework 4 as my ORM. I am implementing POCO classes. Every example I see with EF 4 and POCOs implements all properties with public setters. Is that the only way I can use POCO classes with EF 4? Do all my setters need to be public?

    Read the article

  • MySQL: Query to obtain recipes using all given ingredients.

    - by John_A
    hi I have the following simplified tables: CREATE TABLE recipe(id int, name varchar(25)); CREATE TABLE ingredient(name varchar(25)); CREATE TABLE uses_ingredient(recipe_id int, name varchar(25)); I want to make a query that returns all id's of recipes that contain both Chicken and Cream. I have tried SELECT recipe_id FROM uses_ingredient INNER JOIN (SELECT * FROM ingredient WHERE name="Chicken" OR name="Cream") USING (name) GROUP BY recipe_id HAVING COUNT(recipe_id) >= (SELECT COUNT(*) FROM theme); which gives me :"ERROR 1248 (42000): Every derived table must have its own alias" and is probably wrong too. Next I tried SELECT recipe_id FROM (SELECT * FROM ingredient WHERE name="Chicken" OR name="Cream") AS t INNER JOIN uses_ingredient USING (name) GROUP BY recipe_id HAVING COUNT(recipe_id)>= (SELECT COUNT(*) FROM t); which gives "ERROR 1146 (42S02): Table 'recipedb.t' doesn't exist" I want to avoid creating temporary tables including using ENGINE=MEMORY.

    Read the article

  • VS 2010 SQL Update for SQL Statement

    - by Mike Tucker
    Please bear with me as I'm just beginning to learn this stuff. I have a VS 2010 Web project up and I'm trying to understand how I can make a custom UpdateCommand (Because I chose to write my own SQL statement, I do not have the option for VS 2010 to auto generate an update command for me.) Problem is: I don't know what the UpdateCommand should look like. Here is my Select: SELECT * FROM Dbo.MainAsset, dbo.Model, dbo.Hardware WHERE MainAsset.device = Hardware.DeviceID AND MainAsset.model = Model.DeviceID Which, VS 2010 turns into: SELECT MainAsset.pk, MainAsset.img, MainAsset.device, MainAsset.model, MainAsset.os, MainAsset.asset, MainAsset.serial, MainAsset.inyear, MainAsset.expyear, MainAsset.site, MainAsset.room, MainAsset.teacher, MainAsset.FirstName, MainAsset.LastName, MainAsset.Notes, MainAsset.Dept, MainAsset.AccountingCode, Model.Model AS Hardware, Model.pk AS Model, Model.DeviceID, Hardware.Computer, Hardware.pk AS Expr3, Hardware.DeviceID AS Expr4 FROM MainAsset INNER JOIN Hardware ON MainAsset.device = Hardware.DeviceID INNER JOIN Model ON MainAsset.model = Model.DeviceID How would I approach updating one column, say "MainAsset.site" if that's changed in the Gridview DDL? Any help constructive help would be appreciated. Thank you.

    Read the article

  • Beanshell equivalent for .Net

    - by Midhat
    Is there anything like Beanshell, which exposes CLR classes instead of Java classes, and lets you write scripts in C# or VB.Net (or any .Net language for that matter) Should come in handy to test one-liner code snippets

    Read the article

  • SQL Outer joins

    - by dsquaredtech
    Three tables courses,registration,students columns in students firstname,lastname,studentid,major,admitdate,graddate,gender,dob columns in registration courseid,studentid columns in courses coursenumber,coursename,credits select statement I need to modify select lastname as 'Last Name',sum(credits) as 'Credits Registered For' from students as s inner join registration as r on s.studentid = r.studentid inner join courses as c on c.coursenumber = c.courseid group by last name; the question on the lab is... Modify the previous query to show all students, even if they have not registered for a class. You should have 14 rows. Students who are not registered will show NULL in output. I know this requires outer join of some sort but I'm not fully grasping these joins i've read multiple posts on here and other sites but can't seem figure it out.

    Read the article

  • Array/List/Directory of System.Type

    - by Mike
    I have a lot of classes and want to create some kind of 'directory'. So that I can create menus automatically. Clicking a menu-item would then create an instance of the class and shows the window. What I want for this is an array of System.Type where I can stuff in all the classes without instantiating them. Though from my test and (unsuccessful) googling, this doesn't seem possible. Any ideas?

    Read the article

  • .Net Sql Client Provider

    - by sameer
    Have come across a situation where in, if a stored procedure is executed in Query Analyser its execution time is less than a second. But when same Stored Procedure is executed using .NET Sql Client Provide. it is taking 61 seconds. Therefore inorder to troubleshoot this issue we went to SQL Profiler we find the request come to SQL Server less then a second but execution completed after 60 seconds. Can anybody suggest why we have such a deviation. Query is a simple as give below SELECT distinct p1.productID, p1.description FROM Details V INNER JOIN Product P ON V.ProductID=P.ProductID INNER JOIN product p1 on p1.productID=p.parentID WHERE V.MarketID='1159' AND V.FinancialYear='1213' AND V.LEPeriodID= '75' AND p1.parentID=100024 AND p1.statusID = 1 ORDER BY description

    Read the article

  • [MySQL] Optimize Query

    - by bordeux
    Hello. I have problem with optimize this query: SET @SEARCH = "dokumentalne"; SELECT SQL_NO_CACHE `AA`.`version` AS `Version` , `AA`.`contents` AS `Contents` , `AA`.`idarticle` AS `AdressInSQL` , `AA` .`topic` AS `Topic` , MATCH (`AA`.`topic` , `AA`.`contents`) AGAINST (@SEARCH) AS `Relevance` , `IA`.`url` AS `URL` FROM `xv_article` AS `AA` INNER JOIN `xv_articleindex` AS `IA` ON ( `AA`.`idarticle` = `IA`.`adressinsql` ) INNER JOIN ( SELECT `idarticle` , MAX( `version` ) AS `version` FROM `xv_article` WHERE MATCH (`topic` , `contents`) AGAINST (@SEARCH) GROUP BY `idarticle` ) AS `MG` ON ( `AA`.`idarticle` = `MG`.`idarticle` ) WHERE `IA`.`accepted` = "yes" AND `AA`.`version` = `MG`.`version` ORDER BY `Relevance` DESC LIMIT 0 , 30 Now, this query using ^ 20 seconds. How to optimize this? EXPLAIN gives this: 1 PRIMARY AA ALL NULL NULL NULL NULL 11169 Using temporary; Using filesort 1 PRIMARY ALL NULL NULL NULL NULL 681 Using where 1 PRIMARY IA ALL accepted NULL NULL NULL 11967 Using where 2 DERIVED xv_article fulltext topic topic 0 1 Using where; Using temporary; Using filesort This is example server with my data: user: bordeux_4prog password: 4prog phpmyadmin: http://phpmyadmin.bordeux.net/ chive: http://chive.bordeux.net/

    Read the article

  • Purpose of PHP constructors

    - by Bharanikumar
    Hi, I am working with classes and object class structure, but not at a complex level – just classes and functions, then, in one place, instantiation. As to __construct and __destruct, please tell me very simply: what is the purpose of constructors and destructors? I know the school level theoretical explanation, but i am expecting something like in real world, as in which situations we have to use them. Provide also an example, please. Regards

    Read the article

  • Restrict type of method parameter with two or more class names?

    - by Kirzilla
    Hello, We can restrict type of method parameters; for example, we should say that function parameter should be an instance of object described in class with name "Some Class". function some_function(Some_Class $object) { } Is there any php native posibilities to restrict method parameter with two or more classes? For examle, "Some Class" or "Some Class2" or "Some Class3". Or maybe there is any way to restrict method parameter with classes which implements interface with name "Some_Interface"? Thank you.

    Read the article

  • String manipulation appears to be inefficient

    - by user2964780
    I think my code is too inefficient. I'm guessing it has something to do with using strings, though I'm unsure. Here is the code: genome = FASTAdata[1] genomeLength = len(genome); # Hash table holding all the k-mers we will come across kmers = dict() # We go through all the possible k-mers by index for outer in range (0, genomeLength-1): for inner in range (outer+2, outer+22): substring = genome[outer:inner] if substring in kmers: # if we already have this substring on record, increase its value (count of num of appearances) by 1 kmers[substring] += 1 else: kmers[substring] = 1 # otherwise record that it's here once This is to search through all substrings of length at most 20. Now this code seems to take pretty forever and never terminate, so something has to be wrong here. Is using [:] on strings causing the huge overhead? And if so, what can I replace it with? And for clarity the file in question is nearly 200mb, so pretty big.

    Read the article

  • Show the specific field on mysql table based on active date

    - by mrjimoy_05
    Suppose that I have 3 tables: A) Table UsrHeader ----------------- UsrID | UsrName ----------------- 1 | Abc 2 | Bcd B) Table UsrDetail ------------------------------- UsrID | UsrLoc | Date ------------------------------- 1 | LocA | 10 Aug 2012 1 | LocB | 15 Aug 2012 2 | LocA | 10 Aug 2012 C) Table Trx ----------------------------- TrxID | TrxDate | UsrID ----------------------------- 1 | 10 Aug 2012 | 1 2 | 16 Aug 2012 | 1 3 | 11 Aug 2012 | 2 What I want to do is to show the table like: --------------------------------------- TrxID | TrxDate | UsrID | UsrLoc --------------------------------------- 1 | 10 Aug 2012 | 1 | LocA 2 | 16 Aug 2012 | 1 | LocB 3 | 11 Aug 2012 | 2 | LocA Notice that there is one user but different location. That's based on the UsrDetail table that the user on a specified date has moved to another location. So, it should be show the user specific location on that date on every transaction. I have try this code but it is no luck: SELECT trx.TrxID, trx.TrxDate, trx.UsrID, User.UsrName, User.UsrLoc FROM trx INNER JOIN ( SELECT UsrHeader.UsrID, UsrHeader.UsrName, UserDetail.UsrLoc FROM UsrHeader INNER JOIN ( SELECT UsrDetail.UsrID, UsrDetail.UsrLoc, UsrDetail.Date FROM UsrDetail ) AS UserDetail ON UserDetail.UsrID = UsrHeader.UsrID ) AS User ON User.UsrID = trx.UsrID AND trx.TrxDate >= User.Date How to do that? Thanks..

    Read the article

  • Delete rows out of table that is innerjoined and unioned with 2 others

    - by jonathan
    We have 3 tables (table1, table2, table3), and I need to delete all the rows from table1 that have the same ID in table2 OR table3. To see a list of all of these rows I have this code: ( select table2.ID, table2.name_first, table2.name_last, table2.Collected from table2 inner join table1 on table1.ID = table2.ID where table2.Collected = 'Y' ) union ( select table3.ID, table3.name_first, table3.name_last, table3.Collected from table3 inner join table1 on table1.ID = table3.ID where table3.Collected = 'Y' ) I get back about 200 rows. How do I delete them from table1? I don't have a way to test if my query will work, so I'm nervous about modifying something I found online and potentially deleting data (we do have backups, but I'd rather not test out their integrity). TIA!

    Read the article

  • complex data requirement.

    - by Abulalia
    Here is my query: select Table1.a, Table1.b, Table1.c, Table1.d, Table2.e, Table3.f, Table4.g, Table5.h from Table1 left join Table6 on Table1.b=Table6.b left join Table3 on Table6.j=Table3.j left join Table7 on Table1.b=Table7.b left join Table5 on Table7.h=Table5.h inner join Table4 on Table1.k=Table4.k inner join Table2 on Table1.m=Table2.m where Table2.e <= x and Table2.n = y and Table3.f in (‘r’, ‘s’) and Table1.d = z group by Table1.a, Table1.b, Table1.c, Table1.d, Table2.e, Table3.f, Table4.g, Table5.h order by Table1.a, Table1.b, Table1.c I am looking for records (a,b,c,d,e,f,g,h) for every a when the very first record b (there are multiple records b for each a) is either 'r' or 's'. Can someone help?

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • SBS2003 to SBS2011 Migration - Installation Error

    - by Shawn Gradwell
    Microsoft Small Business Server 2003 to 2011 Migration. I followed the Migration Guide from Microsoft and the source server had no errors when running the various tests prior to the migration. I have completed the destination server setup using the Answer File and the server is up and running. It all looks good, I can access Exchange and AD and the only problem is the error message when you log in stating that the setup did not complete and to check the logs. Because all looks good I am continuing the migration to the destination server. I also have to state that this client does not use Sharepoint at all. Do I have to redo everything? Herewith the logs: [4992] 121016.225454.5905: Task: Starting Add User or Group access VSS registry. [4992] 121016.225454.7645: TaskManagement: In TaskScheduler.RunTasks(): The "ConfigureSharePointVSSRegistryTask" Task threw an Exception during the Run() call:System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) [4992] 121016.225454.7655: Setup: An error was encountered on the TME thread: System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) [4956] 121016.225455.0685: Setup: _UnhandledExceptionHandler: Setup encountered an error: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.Reflection.TargetInvocationException: The TME thread failed (see the inner exception). ---> System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter.TasksCompleted(Object sender, RunWorkerCompletedEventArgs e) --- End of inner exception stack trace --- at System.RuntimeMethodHandle._InvokeMethodFast(IRuntimeMethodInfo method, Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeType typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(IntPtr dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardChainEngine.Launch() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass._LaunchWizard() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.RealMain(String[] args) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.Main(String[] args) [4956] 121016.225455.0865: Setup: Removed the password. [4956] 121016.225455.0905: Setup: Deleting scheduled task at path Microsoft\Windows\Windows Small Business Server 2011 Standard with name Setup [4956] 121016.225455.8055: Setup: Removed SBSSetup from the RunOnce.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • CodePlex Daily Summary for Friday, November 19, 2010

    CodePlex Daily Summary for Friday, November 19, 2010Popular ReleasesSQL Server CLR Function for Address Correction and Geocoding: Release 2.0: Release 2.0. New User Defined Function fields added.MiniTwitter: 1.58: MiniTwitter 1.58 ???? ?? ??????????????????、????????????????????????LateBindingApi.Excel: LateBindingApi.Excel Release 0.7d: Release+Samples V0.7: - Enthält Laufzeit DLL und Beispielprojekte Beispielprojekte: COMAddinExample - Demonstriert ein versionslos angebundenes COMAddin Example01 - Background Colors und Borders für Cells Example02 - Font Attributes undAlignment für Cells Example03 - Numberformats Example04 - Shapes, WordArts, Pictures, 3D-Effects Example05 - Charts Example06 - Dialoge in Excel Example07 - Einem Workbook VBA Code hinzufügen Example08 - Events Example09 - Eigene Gui Elemente erstellen und Ere...Free Silverlight & WPF Chart Control - Visifire: Visifire SL and WPF Charts v3.6.4 Released: Hi, Today we are releasing Visifire 3.6.4 with few bug fixes: * Multi-line Labels were getting clipped while exploding last DataPoint in Funnel and Pyramid chart. * ClosestPlotDistance property in Axis was not behaving as expected. * In DateTime Axis, Chart threw exception on mouse click over PlotArea if there were no DataPoints present in Chart. * ToolTip was not disappearing while changing the DataSource property of the DataSeries at real-time. * Chart threw exception ...Opalis Community Releases: Opalis Architecture and Workflow Deployment Docs: Opalis Architecture & Workflow Deployment Process Documentation The Opalis Architecture & Workflow Deployment Process Documentation includes two documents (for presentation purposes only, one is a DOCX with and embedded Visio diagram and the other is a PDF). The documentation is here as a "Best Practice Guide". The phrase "Best Practice Guide" is in quotes because this is an UNOFFICIAL example of an Opalis Architecture as well as an UNOFFICIAL example of a Workflow Deployment Process. The int...Sexy Select: sexyselect.0.2: Review index.html inside the source code for a working demoMicrosoft SQL Server Product Samples: Database: AdventureWorks 2008R2 SR1: Sample Databases for Microsoft SQL Server 2008R2 (SR1)This release is dedicated to the sample databases that ship for Microsoft SQL Server 2008R2. See Database Prerequisites for SQL Server 2008R2 for feature configurations required for installing the sample databases. See Installing SQL Server 2008R2 Databases for step by step installation instructions. The SR1 release contains minor bug fixes to the installer used to create the sample databases. There are no changes to the databases them...VidCoder: 0.7.2: Fixed duplicated subtitles when running multiple encodes off of the same title.Razor Templating Engine: Razor Template Engine v1.1: Release 1.1 Changes: ADDED: Signed assemblies with strong name to allow assemblies to be referenced by other strongly-named assemblies. FIX: Filter out dynamic assemblies which causes failures in template compilation. FIX: Changed ASCII to UTF8 encoding to support UTF-8 encoded string templates. FIX: Corrected implementation of TemplateBase adding ITemplate interface.Prism Training Kit: Prism Training Kit - 1.1: This is an updated version of the Prism training Kit that targets Prism 4.0 and fixes the bugs reported in the version 1.0. This release consists of a Training Kit with Labs on the following topics Modularity Dependency Injection Bootstrapper UI Composition Communication Note: Take into account that this is a Beta version. If you find any bugs please report them in the Issue Tracker PrerequisitesVisual Studio 2010 Microsoft Word 2007/2010 Microsoft Silverlight 4 Microsoft S...Craig's Utility Library: Craig's Utility Library Code 2.0: This update contains a number of changes, added functionality, and bug fixes: Added transaction support to SQLHelper. Added linked/embedded resource ability to EmailSender. Updated List to take into account new functions. Added better support for MAC address in WMI classes. Fixed Parsing in Reflection class when dealing with sub classes. Fixed bug in SQLHelper when replacing the Command that is a select after doing a select. Fixed issue in SQL Server helper with regard to generati...MFCMAPI: November 2010 Release: Build: 6.0.0.1023 Full release notes at SGriffin's blog. If you just want to run the tool, get the executable. If you want to debug it, get the symbol file and the source. The 64 bit build will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit build, regardless of the operating system. Facebook BadgeDotNetNuke® Community Edition: 05.06.00: Major HighlightsAdded automatic portal alias creation for single portal installs Updated the file manager upload page to allow user to upload multiple files without returning to the file manager page. Fixed issue with Event Log Email Notifications. Fixed issue where Telerik HTML Editor was unable to upload files to secure or database folder. Fixed issue where registration page is not set correctly during an upgrade. Fixed issue where Sendmail stripped HTML and Links from emails...mVu Mobile Viewer: mVu Mobile Viewer 0.7.10.0: Tube8 fix.EPPlus-Create advanced Excel 2007 spreadsheets on the server: EPPlus 2.8.0.1: EPPlus-Create advanced Excel 2007 spreadsheets on the serverNew Features Improved chart support Different chart-types series on the same chart Support for secondary axis and a lot of new properties Better styling Encryption and Workbook protection Table support Import csv files Array formulas ...and a lot of bugfixesAutoLoL: AutoLoL v1.4.2: Added support for more clients (French and Russian) Settings are now stored sepperatly for each user on a computer Auto Login is much faster now Auto Login detects and handles caps lock state properly nowTailspinSpyworks - WebForms Sample Application: TailspinSpyworks-v0.9: Contains a number of bug fixes and additional tutorial steps as well as complete database implementation details.ASP.NET MVC Project Awesome (rich jQuery AJAX helpers): 1.3 and demos: a library with mvc helpers and a demo project that demonstrates an awesome way of doing asp.net mvc. tested on mozilla, safari, chrome, opera, ie 9b/8/7/6 new stuff in 1.3 Autocomplete helper Autocomplete and AjaxDropdown can have parentId and be filled with data depending on the value of the parent PopupForm besides Content("ok") on success can also return Json(data) and use 'data' in a client side function Awesome demo improved (cruder, builder, added service layer)UltimateJB: UltimateJB 2.01 PL3 KakaRoto + PSNYes by EvilSperm: Voici une version attendu avec impatience pour beaucoup : - La Version PSNYes pour pouvoir jouer sur le PSN avec une PS3 Jailbreaker. - Pour l'instant le PSNYes n'est disponible qu'avec les PS3 en firmwares 3.41 !!! - La version PL3 KAKAROTO intégre ses dernières modification et prépare a l'intégration du Firmware 3.30 !!! Conclusion : - UltimateJB PSNYes => Valide l'utilisation du PSN : Uniquement compatible avec les 3.41 - ultimateJB DEFAULT => Pas de PSN mais disponible pour les PS3 sui...Fluent Ribbon Control Suite: Fluent Ribbon Control Suite 2.0: Fluent Ribbon Control Suite 2.0(supports .NET 4.0 RTM and .NET 3.5) Includes: Fluent.dll (with .pdb and .xml) Showcase Application Samples (only for .NET 4.0) Foundation (Tabs, Groups, Contextual Tabs, Quick Access Toolbar, Backstage) Resizing (ribbon reducing & enlarging principles) Galleries (Gallery in ContextMenu, InRibbonGallery) MVVM (shows how to use this library with Model-View-ViewModel pattern) KeyTips ScreenTips Toolbars ColorGallery NEW! *Walkthrough (documenta...New ProjectsALARM - ALert Application for Resource Managers: ALert Application for Resource ManagersAmino: Amino coming soon. A very dynamic MVVM application environment. More details to follow.ASDF-CRM: A Cleanly Designed CRM system based on .Net4 technologies with Silverlight GUI.Auto Slideshow with description: Auto Slideshow with image description targeted for webpage banners or website introduction. This is developed in XAML and C# using stroryboard and defining the timelines. This is a Silverlight 4 application. Can be resized depending on your requirements. Base De Datos: proyecto de base de datosBesteam Developments Safe Driving: School project developed with Visual Studio 2010, C# 4.0 and .NET 4.0BizTalk Mapper Extensions UtilityPack: BizTalk Mapper Extensions UtilityPack is a set of libraries with several useful functoids to include and use it in a map, which will provide an extension of BizTalk Mapper capabilities.BlogEngine Additions (Widgets,Extensions,Custom Code): Additions and custom code for BlogEngine. Widgets Extensions Custom code that can't be use in Widgets or Extenstions Equals Verifier .Net: Equals Verifier .Net is a small library to verify if classes implement Equals according to msdn guidelines.ERPSia: Proyecto de SIA TecFalafel Solution Rename Script: The Falafel Software Solution Rename PowerShell Script makes it easy to reuse an existing solution/project by performing a global rename. If you have a solution named ExampleSolution and want to reuse it as WidgetSolution, this script will rename everything for you.fOrganiz: This application allows you to automatically organize by date in specific subdirectories your picturesGEChecker: GEChecker makes it easier for you to view your RuneScape Grand Exchange offers whilst offline. It's developed in VB.NetHBUIMIS: HBUIMISHospital Management: 3 -tier architectinterpool: proyecto interpool - pis 2010 loud tweets: loud tweetsLuminous: Luminous library consists of various .NET components, controls and classes which make programming easier: WPF and Windows Forms TaskDialog (previously VDialog), Simple Popup Control, Glass Button, Linq to CSS, Linq to XHTML and various useful classes and extension methods.MailMonitr: MailMonitr helps improve email push notifications to your iPhone by using Prowl to deliver notifications, instead of the default "ding." Prowl has the ability to set "quiet hours." Also, a summery of unread messages is displayed on the lock screen for each push notification.MemoryGames: TODOMiko Ling's Open Source Projects: Open SourceMSCRM - Duplicate Checker - Plugin: Plugin to handle real-time Duplicate Checking and Constraining on any Int attribute specified. I use this to prevent service calls that are creating entities from creating duplicates. The external systems making the service calls use int as the primary key.MyTestProject: Test net projectNellen.dk: Det kan blive meget vildere....Orange Library: Orange LibraryRateIt: Rating plugin for jQuery RTL support, Progressive enhancement, Unobtrusive javascript (using HTML5 data-* attributes), supports as many stars as you'd like, and also any step size.RDPAddins .NET: With RDPAddins .NET framework you can build rdp channel addins in your favourite .NET languageREMS - Real State Management System based on ASP.NET 4.0: real state management system based on ASP.NET 4.0Repository of pan: My source code repository. record my idea and test code here. SharePoint Log Investigation Tool (SPLIT): SPLIT makes searching SharePoint logs easy. SQL Monitor: monitor sql server processes and jobs, view executing sql query, kill process / stop jobTestCodePlexForMe: TestCodePlexForMeweibo wp7 client: It's a project to create a windows phone 7 client for sina weibo, which is http://t.sina.com.cnWM2Day: WM2Day is a Windows Mobile (both Smartphone and PDA) client for Me2day.net, the Korean micro-blogging service.X10Dispatcher: Interface for automating x10 cm15a home automation powerline control unit. Requires physical cm15a control unit connected to computer running this program. Extends remote monitoring and automation of computer activities based on sensors and events.XNA 2D Particle Engine: XNA 2D Particle Engine is a flexible, extensible particle engine written in XNA Game Studio 4.0. The engine can emit texture-based particles in almost anyway you like and can easily be integrated as a (drawable) Game component in your XNA Game Studio 4.0 projects.

    Read the article

  • Change the default Icon on your jQuery UI Accordion

    - by hajan
    I've got this question in one of my previous blogs posted here (the same blog is posted on codeasp.net too), dealing with jQuery UI Accordion and I thought it's nice to recap this in a blog post so that I will have it documented for further reference. In the previous blog, I'm creating tabs content navigation using jQuery UI Accordion. So, it's quite simple code and all I do there is calling accordion() function. <script language="javascript" type="text/javascript">     $(function() {         $("#products").accordion();     }); </script> The default image icons for each item is the arrow. The accordion uses the right arrow and down arrow images. So, what we should do in order to change them? JQuery UI Accordion contains option with name icons that has header and headerSelected properties. We can override them with either the existing classes from jQuery UI themes or with our own. 1. Using existing jQuery UI Theme classes - Open the follownig link: http://jqueryui.com/themeroller/#icons You will see the icons available in the jQuery UI theme. Mouse over on each icon and you will see the class name for each icon. As you can see, each icon has class name constructed in the following way: ui-icon-<name> All icons in one image - In our example, I will use ui-icon-circle-plus  and ui-icon-circle-minus (plus and minus icons). - Lets set the icons <script language="javascript" type="text/javascript">     $(function() {         //initialize accordion                 $("#products").accordion();         //set accordion header options         $("#products").accordion("option", "icons",         { 'header': 'ui-icon-circle-plus', 'headerSelected': 'ui-icon-circle-minus' });     }); </script> From the code above, you can see that I first intialize the accordion plugin, and after I override the default icons with the ui-icon-circle-plyus for header and ui-icon-circle-minus for headerSelected. Here is the end result: So, now you see we have the plus/minus circle icons for the default header state and the selected header state.   2. Add my own icons - If you want to add your own icons, you can do that by creating your own custom css classes. - Lets create classes for both, the header default state and header selected state <style type="text/css">     .defaultIcon     {         background-image: url(images/icons/defaultIcon.png) !important;         width: 25px;         height: 25px;     }     .selectedIcon     {         background-image: url(images/icons/selectedIcon.png) !important;         width: 25px;         height: 25px;     } </style> As you can see, I use my own images placed in images/icons/ folder - default icon - selected icon One very important thing to note here is the !important key added on each background-image property. It's like that in order to give highest importancy to our image so that the default jQuery UI theme icon images will have less importancy and won't be used. And the jQuery code is: <script language="javascript" type="text/javascript">     $(function() {         //initialize accordion                 $("#products").accordion();         //set accordion header options         $("#products").accordion("option", "icons",         { 'header': 'defaultIcon', 'headerSelected': 'selectedIcon' });     }); </script> Note: For both #1 and #2 cases, we use the class names without adding . (dot) at the beginning of the name (as we do with selectors). That's because the the header and headerSelected properties accept classes only as a value, so the rest is done by the plugin itself. The complete code with my own custom images is: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head id="Head1" runat="server">     <title>jQuery Accordion</title>     <link type="text/css" href="http://ajax.microsoft.com/ajax/jquery.ui/1.8.5/themes/blitzer/jquery-ui.css"         rel="Stylesheet" />     <style type="text/css">         .defaultIcon         {             background-image: url(images/icons/defaultIcon.png) !important;             width: 25px;             height: 25px;         }         .selectedIcon         {             background-image: url(images/icons/selectedIcon.png) !important;             width: 25px;             height: 25px;         }     </style>     <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.4.4.js"></script>     <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.ui/1.8.6/jquery-ui.js"></script>     <script language="javascript" type="text/javascript">         $(function() {             //initialize accordion                         $("#products").accordion();             //set accordion header options             $("#products").accordion("option", "icons",             { 'header': 'defaultIcon', 'headerSelected': 'selectedIcon' });         });             </script> </head> <body>     <form id="form1" runat="server">     <div id="products" style="width: 500px;">         <h3>             <a href="#">                 Product 1</a></h3>         <div>             <p>                 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus in tortor metus,                 a aliquam dui. Mauris euismod lorem eget nulla semper semper. Vestibulum pretium                 rhoncus cursus. Vestibulum rhoncus, magna sit amet fermentum fringilla, nunc nisl                 pellentesque libero, nec commodo libero ipsum a tellus. Maecenas sed varius est.                 Sed vel risus at nisi imperdiet sollicitudin eget ac orci. Duis ac tristique sem.             </p>         </div>         <h3>             <a href="#">                 Product 2</a></h3>         <div>             <p>                 Aliquam pretium scelerisque nisl in malesuada. Proin dictum elementum rutrum. Etiam                 eleifend massa id dui porta tincidunt. Integer sodales nisi nec ligula lacinia tincidunt                 vel in purus. Mauris ultrices velit quis massa dignissim rhoncus. Proin posuere                 convallis euismod. Vestibulum convallis sagittis arcu id faucibus.             </p>         </div>         <h3>             <a href="#">                 Product 3</a></h3>         <div>             <p>                 Quisque quis magna id nibh laoreet condimentum a sed nisl. In hac habitasse platea                 dictumst. Proin sem eros, dignissim sed consequat sit amet, interdum id ante. Ut                 id nisi in ante fermentum accumsan vitae ut est. Morbi tellus enim, convallis ac                 rutrum a, condimentum ut turpis. Proin sit amet pretium felis.             </p>             <ul>                 <li>List item one</li>                 <li>List item two</li>                 <li>List item three</li>             </ul>         </div>     </div>     </form> </body> </html> The end result is: Hope this was helpful. Regards,Hajan

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

< Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >