Search Results

Search found 910 results on 37 pages for 'annotation'.

Page 12/37 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Google Collections sources don't compile

    - by Carl Rosenberger
    I just downloaded the Google Collections sources and imported them into a new Eclipse project with JDK 1.6. They don't compile for a couple of reasons: javax.annotation.Nullable can not be found javax.annotation.ParametersAreNonnullByDefault can not be found Cannot reduce the visibility of the inherited method #createCollection() from AbstractMultimap + 11 similar ones Name clash: The method forcePut(K, V) of type AbstractBiMap has the same erasure as forcePut(Object, Object) of type BiMap but does not override it + 2 similar ones What am I missing? I also wonder if unit tests for these collections are available to the public.

    Read the article

  • iPhone: Core Data save Class object

    - by Nic Hubbard
    I have an entity in core data called Location. Inside this I have a few fields, such as date. But, I would also like to save a class object in it that I created called Annotation. What type of attribute would I use for this, since it is a custom class object that I created? Location (object) |__ Date |__ Annotation (MKAnnotation protocol)

    Read the article

  • Converting JBOSS annotations to xml

    - by sixtyfootersdude
    Good Morning, I was just hoping that someone could point me to a reference that defines about what JBOSS annotations are equivalent to what xml tags. I am particularly interested in these tags: @WebContext in org.jboss.ws.annotation.WebContext and @SecurityDomain in org.jboss.annotation.security.SecurityDomain

    Read the article

  • Webservice proxy class generation

    - by kaivalya
    I include the below xsd file: <?xml version="1.0" encoding="utf-8"?> <xs:schema xmlns="http://www.xxxx.com/schemas/2005/06/messages" attributeFormDefault="unqualified" elementFormDefault="qualified" targetNamespace="http://www.xxxx.com/schemas/2005/06/messages" xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:include schemaLocation="xxxxCommonTypes.xsd" /> <xs:element name="HotelDetailRQ"> <xs:annotation> <xs:documentation>Request data to obtain detailed information for the specified hotel product.</xs:documentation> </xs:annotation> <xs:complexType> <xs:complexContent mixed="false"> <xs:extension base="CoreRequest"> <xs:sequence> <xs:element name="HotelCode"> <xs:annotation> <xs:documentation>Hotel code to obtain detailed inormation.</xs:documentation> </xs:annotation> <xs:simpleType> <xs:restriction base="xs:string"> <xs:minLength value="1" /> <xs:maxLength value="10" /> </xs:restriction> </xs:simpleType> </xs:element> </xs:sequence> </xs:extension> </xs:complexContent> </xs:complexType> </xs:element> </xs:schema> to a wsdl file via; <xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://axis.frontend.hydra.xxxx.com"> <xsd:import schemaLocation="C:\Users\xxxx\HotelDetailRQ.xsd" namespace="http://www.xxxx.com/schemas/2005/06/messages" /> </xsd:schema> The problem is when I add the wsdl file to visual studio as a web reference, it does not generate the HotelDetailRQ proxy class in reference.cs file. So I am unable to use a generated HotelDetailRQ class. I am not experienced in using xsd files or wsdl files. Can you point me to where I might be making mistake here?

    Read the article

  • Why does my Spring Controller direct me to the wrong page?

    - by kc2001
    I am writing my first Spring 3.0.5 MVC app and am confused about why my controller mappings aren't doing what I expect. I have a VerifyPasswordController that is called after a user tries to log in by entering his name and password. // Called upon clicking "submit" from /login @RequestMapping(value = "/verifyPassword", method = RequestMethod.POST) @ModelAttribute("user") public String verifyPassword(User user, BindingResult result) { String email = user.getEmail(); String nextPage = CHOOSE_OPERATION_PAGE; // success case if (result.hasErrors()) { nextPage = LOGIN_PAGE; } else if (!passwordMatches(email, user.getPassword())) { nextPage = LOGIN_FAILURE_PAGE; } else { // success } return nextPage; } I can verify in the debugger that this method is being called, but afterwards, the verifyPassword page is displayed rather than the chooseOperation page. The console output of WebLogic seems to show that my mapping are correct: INFO : org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping - Mapped URL path [/chooseOperation] onto handler 'chooseOperationController' INFO : org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping - Mapped URL path [/chooseOperation.*] onto handler 'chooseOperationController' INFO : org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping - Mapped URL path [/chooseOperation/] onto handler 'chooseOperationController' Here is the ChooseOperationController: @Controller @SessionAttributes("leaveRequestForm") public class ChooseOperationController implements PageIfc, AttributeIfc { @RequestMapping(value = "/chooseOperation") @ModelAttribute("leaveRequestForm") public LeaveRequest setUpLeaveRequestForm( @RequestParam(NAME_ATTRIBUTE) String name) { LeaveRequest form = populateFormFromDatabase(name); return form; } // helper methods omited } I welcome any advice, particularly "generic" techniques for debugging such mapping problems. BTW, I've also tried to "redirect" to the desired page, but got the same result. servlet-context.xml: <?xml version="1.0" encoding="UTF-8"?> <beans:beans xmlns="http://www.springframework.org/schema/mvc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:beans="http://www.springframework.org/schema/beans" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation=" http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd"> <!-- DispatcherServlet Context: defines this servlet's request-processing infrastructure --> <!-- Enables the Spring MVC @Controller programming model --> <annotation-driven /> <!-- Handles HTTP GET requests for /resources/** by efficiently serving up static resources in the ${webappRoot}/resources directory --> <resources mapping="/resources/**" location="/resources/" /> <!-- Resolves views selected for rendering by @Controllers to .jsp resources in the /WEB-INF/views directory --> <beans:bean class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <beans:property name="prefix" value="/WEB-INF/views/" /> <beans:property name="suffix" value=".jsp" /> </beans:bean> <context:component-scan base-package="com.engilitycorp.leavetracker" /> <beans:bean id="leaveRequestForm" class="com.engilitycorp.leavetracker.model.LeaveRequest" /> </beans:beans> The constants: String LOGIN_FAILURE_PAGE = "loginFailure"; String LOGIN_PAGE = "login"; String CHOOSE_OPERATION_PAGE = "chooseOperation";

    Read the article

  • Java xml binding with wrong xmlns attribute name

    - by Tom Brito
    When I use the annotation: @XmlRootElement(name="RootElement", namespace="namespace") class RootElement { to create xml file from java, it creates the root element as: <ns2:RootElement xmlns:ns2="namespace"> but I wanted to create without the "ns2", like: <RootElement xmlns="namespace"> Any idea how to fix it? Reletad link (example I used to create the xml): http://www.java2s.com/Code/JavaAPI/javax.xml.bind.annotation/XmlRootElementname.htm

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Blend for Visual Studio 2013 Prototyping Applications with SketchFlow

    - by T
    Originally posted on: http://geekswithblogs.net/tburger/archive/2014/08/10/blend-for-visual-studio-2013-prototyping-applications-with-sketchflow.aspxSketchFlow enables rapid creating of dynamic interface mockups very quickly. The SketchFlow workspace is the same as the standard Blend workspace with the inclusion of three panels: the SketchFlow Feedback panel, the SketchFlow Animation panel and the SketchFlow Map panel. By using SketchFlow to prototype, you can get feedback early in the process. It helps to surface possible issues, lower development iterations, and increase stakeholder buy in. SketchFlow prototypes not only provide an initial look but also provide a way to add additional ideas and input and make sure the team is on track prior to investing in complete development. When you have completed the prototyping, you can discard the prototype and just use the lessons learned to design the application from or extract individual elements from your prototype and include them in the application. I don’t recommend trying to transition the entire project into a development project. Objects that you add with the SketchFlow style have a hand-sketched look. The sketch style is used to remind stakeholders that this is a prototype. This encourages them to focus on the flow and functionality without getting distracted by design details. The sketchflow assets are under sketchflow in the asset panel and are identifiable by the postfix “–Sketch”. For example “Button-Sketch”. You can mix sketch and standard controls in your interface, if required. Be creative, if there is a missing control or your interface has a different look and feel than the out of the box one, reuse other sketch controls to mimic the functionality or look and feel. Only use standard controls if it doesn’t distract from the idea that this is a prototype and not a standard application. The SketchFlow Map panel provides information about the structure of your application. To create a new screen in your prototype: Right-click the map surface and choose “Create a Connected Screen”. Name the screens with names that are meaningful to the stakeholders. The start screen is the one that has the green arrow. To change the start screen, right click on any other screen and set to start screen. Only one screen can be the start screen at a time. Rounded screen are component screens to mimic reusable custom controls that will be built into the final application. You can change the colors of all of the boxes and should use colors to create functional groupings. The groupings can be identified in the SketchFlow Project Settings. To add connections between screens in the SketchFlow Map panel. Move the mouse over a screen in the SketchFlow and a menu will appear at the bottom of the screen node. In the menu, click Connect to an existing screen. Drag the arrow to another screen on the Map. You add navigation to your prototype by adding connections on the SketchFlow map or by adding navigation directly to items on your interface. To add navigation from objects on the artboard, right click the item then from the menu, choose “Navigate to”. This will expose a sub-menu with available screens, backward, or forward. When the map has connected screens, the SketchFlow Player displays the connected screens on the Navigate sidebar. All screens show in the SketchFlow Player Map. To see the SketchFlow Player, run your SketchFlow prototype. The Navigation sidebar is meant to show the desired user work flow. The map can be used to view the different screens regardless of suggested navigation in the navigation bar. The map is able to be hidden and shown. As mentioned, a component screen is a shared screen that is used in more than one screen and generally represents what will be a custom object in the application. To create a component screen, you can create a screen, right click on it in the SketchFlow Map and choose “Make into component screen”. You can mouse over a screen and from the menu that appears underneath, choose create and insert component screen. To use an existing screen, select if from the Asset panel under SketchFlow, Components. You can use Storyboards and Visual State animations in your SketchFlow project. However, SketchFlow also offers its own animation technique that is simpler and better suited for prototyping. The SketchFlow Animation panel is above your artboard by default. In SketchFlow animation, you create frames and then position the elements on your interface for each frame. You then specify elapsed time and any effects you want to apply to the transition. The + at the top is what creates new frames. Once you have a new Frame, select it and change the property you want to animate. In the example above, I changed the Text of the result box. You can adjust the time between frames in the lower area between the frames. The easing and effects functions are changed in the center between each frame. You edit the hold time for frames by clicking the clock icon in the lower left and the hold time will appear on each frame and can be edited. The FluidLayout icon (also located in the lower left) will create smooth transitions. Next to the FluidLayout icon is the name of that Animation. You can rename the animation by clicking on it and editing the name. The down arrow chevrons next to the name allow you to view the list of all animations in this prototype and select them for editing. To add the animation to the interface object (such as a button to start the animation), select the PlaySketchFlowAnimationAction from the SketchFlow behaviors in the Assets menu and drag it to an object on your interface. With the PlaySketchFlowAnimationAction that you just added selected in the Objects and Timeline, edit the properties to change the EventName to the event you want and choose the SketchFlowAnimation you want from the drop down list. You may want to add additional information to your screens that isn’t really part of the prototype but is relevant information or a request for clarification or feedback from the reviewer. You do this with annotations or notes. Both appear on the user interface, however, annotations can be switched on or off at design and review time. Notes cannot be switched off. To add an Annotation, chose the Create Annotation from the Tools menu. The annotation appears on the UI where you will add the notes. To display or Hide annotations, click the annotation toggle at the bottom right on the artboard . After to toggle annotations on, the identifier of the person who created them appears on the artboard and you must click that to expand the notes. To add a note to the artboard, simply select the Note-Sketch from Assets ->SketchFlow ->Styles ->Sketch Styles. Drag and drop it to the artboard and place where you want it. When you are ready for users to review the prototype, you have a few options available. Click File -> Export and choose one of the options from the list: Publish to Sharepoint, Package SketchFlowProject, Export to Microsoft Word, or Export as Images. I suggest you play with as many of the options as you can to see what they do. Both the Sharepoint and Packaged SketchFlowProject allow you to collect feedback from one or more users that you can import into the project. The user can make notes on the UI and in the Feedback area in the bottom left corner of the player. When the user is done adding feedback, it is exported from the right most folder icon in the My Feedback panel. Feeback is imported on a panel named SketchFlow Feedback. To get that panel to show up, select Window -> SketchFlow Feedback. Once you have the panel showing, click the + in the upper right of the panel and find the notes you exported. When imported, they will show up in a list and on the artboard. To document your prototype, use the Export to Microsoft Word option from the File menu. That should get you started with prototyping.

    Read the article

  • Execution plan warnings–The final chapter

    - by Dave Ballantyne
    In my previous posts (here and here), I showed examples of some of the execution plan warnings that have been added to SQL Server 2012.  There is one other warning that is of interest to me : “Unmatched Indexes”. Firstly, how do I know this is the final one ?  The plan is an XML document, right ? So that means that it can have an accompanying XSD.  As an XSD is a schema definition, we can poke around inside it to find interesting things that *could* be in the final XML file. The showplan schema is stored in the folder Microsoft SQL Server\110\Tools\Binn\schemas\sqlserver\2004\07\showplan and by comparing schemas over releases you can get a really good idea of any new functionality that has been added. Here is the section of the Sql Server 2012 showplan schema that has been interesting me so far : <xsd:complexType name="AffectingConvertWarningType"> <xsd:annotation> <xsd:documentation>Warning information for plan-affecting type conversion</xsd:documentation> </xsd:annotation> <xsd:sequence> <!-- Additional information may go here when available --> </xsd:sequence> <xsd:attribute name="ConvertIssue" use="required"> <xsd:simpleType> <xsd:restriction base="xsd:string"> <xsd:enumeration value="Cardinality Estimate" /> <xsd:enumeration value="Seek Plan" /> <!-- to be extended here --> </xsd:restriction> </xsd:simpleType> </xsd:attribute> <xsd:attribute name="Expression" type ="xsd:string" use="required" /></xsd:complexType><xsd:complexType name="WarningsType"> <xsd:annotation> <xsd:documentation>List of all possible iterator or query specific warnings (e.g. hash spilling, no join predicate)</xsd:documentation> </xsd:annotation> <xsd:choice minOccurs="1" maxOccurs="unbounded"> <xsd:element name="ColumnsWithNoStatistics" type="shp:ColumnReferenceListType" minOccurs="0" maxOccurs="1" /> <xsd:element name="SpillToTempDb" type="shp:SpillToTempDbType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="Wait" type="shp:WaitWarningType" minOccurs="0" maxOccurs="unbounded" /> <xsd:element name="PlanAffectingConvert" type="shp:AffectingConvertWarningType" minOccurs="0" maxOccurs="unbounded" /> </xsd:choice> <xsd:attribute name="NoJoinPredicate" type="xsd:boolean" use="optional" /> <xsd:attribute name="SpatialGuess" type="xsd:boolean" use="optional" /> <xsd:attribute name="UnmatchedIndexes" type="xsd:boolean" use="optional" /> <xsd:attribute name="FullUpdateForOnlineIndexBuild" type="xsd:boolean" use="optional" /></xsd:complexType> I especially like the “to be extended here” comment,  high hopes that we will see more of these in the future.   So “Unmatched Indexes” was a warning that I couldn’t get and many thanks must go to Fabiano Amorim (b|t) for showing me the way.   Filtered indexes were introduced in Sql Server 2008 and are really useful if you only need to index only a portion of the data within a table.  However,  if your SQL code uses a variable as a predicate on the filtered data that matches the filtered condition, then the filtered index cannot be used as, naturally,  the value in the variable may ( and probably will ) change and therefore will need to read data outside the index.  As an aside,  you could use option(recompile) here , in which case the optimizer will build a plan specific to the variable values and use the filtered index,  but that can bring about other problems.   To demonstrate this warning, we need to generate some test data :   DROP TABLE #TestTab1GOCREATE TABLE #TestTab1 (Col1 Int not null, Col2 Char(7500) not null, Quantity Int not null)GOINSERT INTO #TestTab1 VALUES (1,1,1),(1,2,5),(1,2,10),(1,3,20), (2,1,101),(2,2,105),(2,2,110),(2,3,120)GO and then add a filtered index CREATE INDEX ixFilter ON #TestTab1 (Col1)WHERE Quantity = 122 Now if we execute SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = 122 We will see the filtered index being scanned But if we parameterize the query DECLARE @i INT = 122SELECT COUNT(*) FROM #TestTab1 WHERE Quantity = @i The plan is very different a table scan, as the value of the variable used in the predicate can change at run time, and also we see the familiar warning triangle. If we now look at the properties pane, we will see two pieces of information “Warnings” and “UnmatchedIndexes”. So, handily, we are being told which filtered index is not being used due to parameterization.

    Read the article

  • Service injection into Controller (Spring MVC)

    - by ThaSaleni
    Hi I have a Spring web application, I have built it up to the controller stage and I could inject my Daos, into my Services fine. Now when I want to inject my Service into my controller i get an error for dependency with the Dao and further down the sessionFactory. I don't want to inject these again cause this will ultimately lead me to eventually create a data source but I have my Daos for data access and they already know about sessionFactory. Am I missing something here? here's the sample code snippets My Service: @Service("productService") @Transactional public class ProductServiceImpl implements ProductService { private ProductDao productDao; @Autowired public void setDao(ProductDao productDao) { this.productDao = productDao; } My Controller @Controller @WebServlet(name="controllerServlet", loadOnStartup= urlPatterns=...}) public class ControllerServlet extends HttpServlet { boolean isUserLogedIn =false; @Autowired private ProductService productService; public void setProductService(ProductService productService){ this.productService = productService; } Servlet-context Stack trace javax.servlet.ServletException: Servlet.init() for servlet mvcServlet threw exception org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:472) org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:98) org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:927) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:407) org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:999) org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java: 565) org.apache.tomcat.util.net.AprEndpoint$SocketProcessor.run(AprEndpoint.java:1812) java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) java.lang.Thread.run(Thread.java:662) root cause org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'controllerServlet': Injection of autowired dependencies failed; nested exception is org.springframework.beans.factory.BeanCreationException: Could not autowire field: private com.phumzile.acme.services.ProductService com.phumzile.acme.client.web.controller.ControllerServlet.productService; nested exception is org.springframework.beans.factory.NoSuchBeanDefinitionException: No matching bean of type [com.phumzile.acme.services.ProductService] found for dependency: expected at least 1 bean which qualifies as autowire candidate for this dependency. Dependency annotations: {@org.springframework.beans.factory.annotation.Autowired(required=true)} org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor.p ostProcessPropertyValues(AutowiredAnnotationBeanPostProcessor.java:287) org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:1106) org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:517) org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:294) org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:225) SERVLET-CONTEXT <context:component-scan base-package="com.phumzile.acme.client" /> <!-- Enables the Spring MVC @Controller programming model --> <mvc:annotation-driven /> </beans> APP-CONFIG <bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="locations"> <list> <value>configuration.properties</value> </list> </property> </bean> <context:annotation-config/> <context:component-scan base-package="com.phumzile.acme" /> <import resource="db-config.xml" /> </beans> DB-CONFIG <bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close"> <property name="idleConnectionTestPeriod" value="10800"/> <property name="maxIdleTime" value="21600"/> <property name="driverClass"> <value>${jdbc.driver.className}</value> </property> <property name="jdbcUrl"> <value>${jdbc.url}</value> </property> <property name="user"> <value>${jdbc.username}</value> </property> <property name="password"> <value>${jdbc.password}</value> </property> </bean> <bean id="sessionFactory" class="org.springframework.orm.hibernate3.a nnotation.AnnotationSessionFactoryBean"> <property name="dataSource"> <ref bean="dataSource" /> </property> <property name="annotatedClasses"> <list> <!-- Entities --> <value>com.phumzile.acme.model.User</value> <value>com.phumzile.acme.model.Person</value> <value>com.phumzile.acme.model.Company</value> <value>com.phumzile.acme.model.Product</value> <value>com.phumzile.acme.model.Game</value> <value>com.phumzile.acme.model.Book</value> <!-- Entities --> </list> </property> <property name="packagesToScan" value="com.phumzile.acme" /> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect">${jdbc.hibernate.dialect </prop> <prop key="hibernate.hbm2ddl.auto">validate</prop> <prop key="hibernate.show_sql">true</prop> </props> </property> </bean> <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory"> <ref bean="sessionFactory" /> </property> </bean> <tx:annotation-driven /> </beans> CONFIGURATION.PROPERTIES jdbc.driver.className=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mydb jdbc.username=root jdbc.password=root jdbc.hibernate.dialect=org.hibernate.dialect.MySQLDialect

    Read the article

  • I can't use Spring filters in servlet-context XML

    - by gotch4
    For some reason both Eclipse and Spring can't find the filter tag (there is even a red mark)... What's wrong? <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:context="http://www.springframework.org/schema/context" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:p="http://www.springframework.org/schema/p" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd"> <bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor"></bean> <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <property name="driverClassName" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost/jacciseweb" /> <property name="username" value="root" /> <property name="password" value="siussi" /> </bean> <bean id="mySessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean"> <property name="dataSource" ref="myDataSource" /> <property name="annotatedClasses"> <list> <value>it.jsoftware.jacciseweb.beans.Utente </value> <value>it.jsoftware.jacciseweb.beans.Ordine </value> </list> </property> <property name="hibernateProperties"> <props> <prop key="hibernate.dialect"> org.hibernate.dialect.MySQLDialect </prop> <prop key="hibernate.show_sql"> true </prop> <prop key="hibernate.hbm2ddl.auto"> update </prop> <prop key="hibernate.cache.provider_class">org.hibernate.cache.NoCacheProvider</prop> </props> </property> </bean> <filter> <filter-name>hibernateFilter</filter-name> <filter-class> org.springframework.orm.hibernate3.support.OpenSessionInViewFilter </filter-class> <init-param> <param-name>singleSession</param-name> <param-value>true</param-value> </init-param> <init-param> <param-name>sessionFactoryBeanName</param-name> <param-value>mySessionFactory</param-value> </init-param> </filter> <!-- <aop:config> --> <!-- <aop:pointcut id="productServiceMethods" --> <!-- expression="execution(* product.ProductService.*(..))" /> --> <!-- <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods" /> --> <!-- </aop:config> --> <bean id="acciseHibernateDao" class="it.jsoftware.jacciseweb.model.JAcciseWebManagementDaoHibernate"> <property name="sessionFactory" ref="mySessionFactory" /> </bean> <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="mySessionFactory" /> </bean> <tx:annotation-driven /> <bean id="acciseService" class="it.jsoftware.jacciseweb.model.JAcciseWebManagementServiceImpl"> <property name="dao" ref="acciseHibernateDao" /> </bean> <context:component-scan base-package="it.jsoftware.jacciseweb.controllers"></context:component-scan> <mvc:annotation-driven /> <bean class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter" p:synchronizeOnSession="true" /> <bean class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping" /> <mvc:resources mapping="/resources/**" location="/resources/" /> <!-- non serve, è annotato --> <!-- <bean name="/accise" class="it.jsoftware.jacciseweb.controllers.MainController"> </bean> --> </beans> in particular it says "filter" is invalid content

    Read the article

  • Unknown Entity namespace alias in symfony2

    - by Zoha Ali Khan
    Hey I have two bundles in my symfony2 project. one is Bundle and the other one is PatentBundle. My app/config/route.yml file is MunichInnovationGroupPatentBundle: resource: "@MunichInnovationGroupPatentBundle/Controller/" type: annotation prefix: / defaults: { _controller: "MunichInnovationGroupPatentBundle:Default:index" } MunichInnovationGroupBundle: resource: "@MunichInnovationGroupBundle/Controller/" type: annotation prefix: /v1 defaults: { _controller: "MunichInnovationGroupBundle:Patent:index" } login_check: pattern: /login_check logout: pattern: /logout inside my controller i have <?php namespace MunichInnovationGroup\PatentBundle\Controller; use Symfony\Component\HttpFoundation\Response; use Symfony\Component\HttpFoundation\Request; use JMS\SecurityExtraPatentBundle\Annotation\Secure; use Symfony\Component\Security\Core\Exception\AccessDeniedException; use Symfony\Bundle\FrameworkBundle\Controller\Controller; use Sensio\Bundle\FrameworkExtraBundle\Configuration\Method; use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route; use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template; use Symfony\Component\Security\Core\SecurityContext; use MunichInnovationGroup\PatentBundle\Entity\Log; use MunichInnovationGroup\PatentBundle\Entity\UserPatent; use MunichInnovationGroup\PatentBundle\Entity\PmPortfolios; use MunichInnovationGroup\PatentBundle\Entity\UmUsers; use MunichInnovationGroup\PatentBundle\Entity\PmPatentgroups; use MunichInnovationGroup\PatentBundle\Form\PortfolioType; use MunichInnovationGroup\PatentBundle\Util\SecurityHelper; use Exception; /** * Portfolio controller. * @Route("/portfolio") */ class PortfolioController extends Controller { /** * Index action. * * @Route("/", name="v2_pm_portfolio") * @Template("MunichInnovationGroupPatentBundle:Portfolio:index.html.twig") */ public function indexAction(Request $request) { $portfolios = $this->getDoctrine() ->getRepository('MunichInnovationGroupPatentBundle:PmPortfolios') ->findBy(array('user' => '$user_id')); // rest of the method } when i try to load localhost/web/app_dev.php/portfolio It says Unknown Entity namespace alias 'MunichInnovationGroupPatentBundle'. I am unable to figure out this error please help me if anyone has any idea I googled it a lot :( Thanks in advance 500 Internal Server Error - ORMException

    Read the article

  • Problem setText UITextView

    - by Mat
    Hi i have a problem. I have 2 viewcontroller, in the first there is a mapView that implements the function "calloutAccessoryControlTapped" to tap a button on an annotation on the mapView; in the second there is just a UITextView. I want to change the text of the UITextView (and show the SecondViewController) in the second controller once the button on annotation is clicked; here is my code (FirstViewController) Header @interface FirstViewController<MKMapViewDelegate>{ IBOutlet MKMapView *mapView; SecondViewController *secondV;} @end Implementation @implementation FirstViewController - (void)mapView:(MKMapView *)mapView annotationView:(MKAnnotationView *)view calloutAccessoryControlTapped:(UIControl *)control{ secondV = [[SecondViewController alloc] initWithNibName:@"SecondViewController" bundle:nil]; NSString *myS = @"some text here"; [secondV.myTextView setText:myS]; //Switch from this to the secondview [self presentModalViewController:secondV animated:YES]; @end (SecondViewController) Header @interface SecondViewController{ IBOutlet UITextView *myTextView; } @property(nonatomic, retain)UITextView *postitTextView; - (IBAction)backToMAp; - (void)setText:(NSString *)string; @end Implementation @implementation SecondViewController - (IBAction)backToMAp{ //Back To First View; [self dismissModalViewControllerAnimated:YES];} - (void)setText:(NSString *)string{ myTextView.text = string;} In this code when i tap on the button ([self presentModalViewController:secondV animated:YES];) on annotation the first time the second view show up but the text of UITextView don't change, when i back on the FirstView ([self dismissModalViewControllerAnimated:YES];) and then again tap the button to switch again to secondView the text of UITextView change..... Sorry for long thread and for my bad english!! Thank you stack!

    Read the article

  • Blob in Java/Hibernate/sql-server 2005

    - by Ramy
    Hi, I'm trying to insert an HTML blob into our sql-server2005 database. i've been using the data-type [text] for the field the blob will eventually live in. i've also put a '@Lob' annotation on the field in the domain model. The problem comes in when the HTML blob I'm attempting to store is larger than 65536 characters. Its seems that is the caracter-limit for a text data type when using the @Lob annotation. Ideally I'd like to keep the whole blob in tact rather than chunk it up into multiple rows in the database. I appreciate any help or insight that might be provided. Thanks! _Ramy Allow me to clarify annotation: @Lob @Column(length = Integer. MAX_VALUE) //per an answer on stackoverflow private String htmlBlob; database side (sql-server-2005): CREATE TABLE dbo.IndustrySectorTearSheetBlob( ... htmlBlob text NULL ... ) Still seeing truncation after 65536 characters... EDIT: i've printed out the contents of all possible strings (only 10 right now) that would be inserted into the Database. Each string seems to contain all cahracters, judging by the fact that the close html tag is present at the end of the string....

    Read the article

  • Android App Build system differences between Eclipse and Ant?

    - by Amy Winarske
    The Eclipse build for my 1.6 application project is succeeding and the Ant build is failing. I'm looking for help on why they aren't behaving the same way. We are developing on Mac OSX 10.5.8 with Eclipse 3.5 against SDK 1.6 + Google APIs. There are no setting changes in Eclipse, either at workspace or project level. Similarly, our ant is also a vanilla- flavored unmodified installation of 1.7.1. JDK is 1.5.0_22. The CLASSPATH environment variable is not set. JAVA_HOME is /Library/Java/ Home The application was initially created by a team member using the Eclipse plugins. The application references two jar files, one of which has a dependency on javax.xml.bind.annotation.XmlSeeAlso, which is not defined anywhere in our code or in android.jar. The other jar file has an explicit dependency on android.jar. I generated the Ant build file using android update. The Eclipse project builds an apk and runs the application in the emulator. I think this is incorrect behavior. The Android ant project fails to build. I think this is correct behavior. MyClass.java:98: cannot access javax.xml.bind.annotation.XmlSeeAlso [javac] file javax/xml/bind/annotation/XmlSeeAlso.class not found Any ideas as to why the two build methods are behaving differently? I would expect them both to fail. Thanks! -Amy

    Read the article

  • Why do I get Detached Entity exception when upgrading Spring Boot 1.1.4 to 1.1.5

    - by mmeany
    On updating Spring Boot from 1.1.4 to 1.1.5 a simple web application started generating detached entity exceptions. Specifically, a post authentication inteceptor that bumped number of visits was causing the problem. A quick check of loaded dependencies showed that Spring Data has been updated from 1.6.1 to 1.6.2 and a further check of the change log shows a couple of issues relating to optimistic locking, version fields and JPA issues that have been fixed. Well I am using a version field and it starts out as Null following recommendation to not set in the specification. I have produced a very simple test scenario where I get detached entity exceptions if the version field starts as null or zero. If I create an entity with version 1 however then I do not get these exceptions. Is this expected behaviour or is there still something amiss? Below is the test scenario I have for this condition. In the scenario the service layer that has been annotated @Transactional. Each test case makes multiple calls to the service layer - the tests are working with detached entities as this is the scenario I am working with in the full blown application. The test case comprises four tests: Test 1 - versionNullCausesAnExceptionOnUpdate() In this test the version field in the detached object is Null. This is how I would usually create the object prior to passing to the service. This test fails with a Detached Entity exception. I would have expected this test to pass. If there is a flaw in the test then the rest of the scenario is probably moot. Test 2 - versionZeroCausesExceptionOnUpdate() In this test I have set the version to value Long(0L). This is an edge case test and included because I found reference to Zero values being used for version field in the Spring Data change log. This test fails with a Detached Entity exception. Of interest simply because the following two tests pass leaving this as an anomaly. Test 3 - versionOneDoesNotCausesExceptionOnUpdate() In this test the version field is set to value Long(1L). Not something I would usually do, but considering the notes in the Spring Data change log I decided to give it a go. This test passes. Would not usually set the version field, but this looks like a work-around until I figure out why the first test is failing. Test 4 - versionOneDoesNotCausesExceptionWithMultipleUpdates() Encouraged by the result of test 3 I pushed the scenario a step further and perform multiple updates on the entity that started life with a version of Long(1L). This test passes. Reinforcement that this may be a useable work-around. The entity: package com.mvmlabs.domain; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.GenerationType; import javax.persistence.Id; import javax.persistence.Table; import javax.persistence.Version; @Entity @Table(name="user_details") public class User { @Id @GeneratedValue(strategy=GenerationType.AUTO) private Long id; @Version private Long version; @Column(nullable = false, unique = true) private String username; @Column(nullable = false) private Integer numberOfVisits; public Long getId() { return id; } public void setId(Long id) { this.id = id; } public Long getVersion() { return version; } public void setVersion(Long version) { this.version = version; } public Integer getNumberOfVisits() { return numberOfVisits == null ? 0 : numberOfVisits; } public void setNumberOfVisits(Integer numberOfVisits) { this.numberOfVisits = numberOfVisits; } public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } } The repository: package com.mvmlabs.dao; import org.springframework.data.repository.CrudRepository; import com.mvmlabs.domain.User; public interface UserDao extends CrudRepository<User, Long>{ } The service interface: package com.mvmlabs.service; import com.mvmlabs.domain.User; public interface UserService { User save(User user); User loadUser(Long id); User registerVisit(User user); } The service implementation: package com.mvmlabs.service; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Service; import org.springframework.transaction.annotation.Propagation; import org.springframework.transaction.annotation.Transactional; import org.springframework.transaction.support.TransactionSynchronizationManager; import com.mvmlabs.dao.UserDao; import com.mvmlabs.domain.User; @Service @Transactional(propagation=Propagation.REQUIRED, readOnly=false) public class UserServiceJpaImpl implements UserService { @Autowired private UserDao userDao; @Transactional(readOnly=true) @Override public User loadUser(Long id) { return userDao.findOne(id); } @Override public User registerVisit(User user) { user.setNumberOfVisits(user.getNumberOfVisits() + 1); return userDao.save(user); } @Override public User save(User user) { return userDao.save(user); } } The application class: package com.mvmlabs; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.EnableAutoConfiguration; import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Configuration; @Configuration @ComponentScan @EnableAutoConfiguration public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } } The POM: <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.mvmlabs</groupId> <artifactId>jpa-issue</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>spring-boot-jpa-issue</name> <description>JPA Issue between spring boot 1.1.4 and 1.1.5</description> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>1.1.5.RELEASE</version> <relativePath /> <!-- lookup parent from repository --> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>org.hsqldb</groupId> <artifactId>hsqldb</artifactId> <scope>runtime</scope> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <start-class>com.mvmlabs.Application</start-class> <java.version>1.7</java.version> </properties> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project> The application properties: spring.jpa.hibernate.ddl-auto: create spring.jpa.hibernate.naming_strategy: org.hibernate.cfg.ImprovedNamingStrategy spring.jpa.database: HSQL spring.jpa.show-sql: true spring.datasource.url=jdbc:hsqldb:file:./target/testdb spring.datasource.username=sa spring.datasource.password= spring.datasource.driverClassName=org.hsqldb.jdbcDriver The test case: package com.mvmlabs; import org.junit.Assert; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.SpringApplicationConfiguration; import org.springframework.test.context.junit4.SpringJUnit4ClassRunner; import com.mvmlabs.domain.User; import com.mvmlabs.service.UserService; @RunWith(SpringJUnit4ClassRunner.class) @SpringApplicationConfiguration(classes = Application.class) public class ApplicationTests { @Autowired UserService userService; @Test public void versionNullCausesAnExceptionOnUpdate() throws Exception { User user = new User(); user.setUsername("Version Null"); user.setNumberOfVisits(0); user.setVersion(null); user = userService.save(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(1), user.getNumberOfVisits()); Assert.assertEquals(new Long(1L), user.getVersion()); } @Test public void versionZeroCausesExceptionOnUpdate() throws Exception { User user = new User(); user.setUsername("Version Zero"); user.setNumberOfVisits(0); user.setVersion(0L); user = userService.save(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(1), user.getNumberOfVisits()); Assert.assertEquals(new Long(1L), user.getVersion()); } @Test public void versionOneDoesNotCausesExceptionOnUpdate() throws Exception { User user = new User(); user.setUsername("Version One"); user.setNumberOfVisits(0); user.setVersion(1L); user = userService.save(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(1), user.getNumberOfVisits()); Assert.assertEquals(new Long(2L), user.getVersion()); } @Test public void versionOneDoesNotCausesExceptionWithMultipleUpdates() throws Exception { User user = new User(); user.setUsername("Version One Multiple"); user.setNumberOfVisits(0); user.setVersion(1L); user = userService.save(user); user = userService.registerVisit(user); user = userService.registerVisit(user); user = userService.registerVisit(user); Assert.assertEquals(new Integer(3), user.getNumberOfVisits()); Assert.assertEquals(new Long(4L), user.getVersion()); } } The first two tests fail with detached entity exception. The last two tests pass as expected. Now change Spring Boot version to 1.1.4 and rerun, all tests pass. Are my expectations wrong? Edit: This code saved to GitHub at https://github.com/mmeany/spring-boot-detached-entity-issue

    Read the article

  • @Autowire strange problem

    - by Javi
    Hello, I have a strange behaviour when autowiring I have a similar code like this one, and it works @Controller public class Class1 { @Autowired private Class2 object2; ... } @Service @Transactional public class Class2{ ... } The problem is that I need that the Class2 implements an interface so I've only changed the Class2 so it's now like: @Controller public class Class1 { @Autowired private Class2 object2; ... } @Service @Transactional public class Class2 implements IServiceReference<Class3, Long>{ ... } public interface IServiceReference<T, PK extends Serializable> { public T reference(PK id); } with this code I get a org.springframework.beans.factory.NoSuchBeanDefinitionException: No matching bean of type for Class2. It seems that @ Transitional annotation is not compatible with the interface because if I remove the @Transitional annotation or the "implements IServiceReference" the problem disapears and the bean is injected (though I need to have both in this class). It also happens if I put the annotation @Transitional in the methods instead of in the Class. I use Spring 3.0.2 if this helps. Is not compatible the interface with the transactional method? May it be a Spring bug? Thanks

    Read the article

  • How to define index by several columns in hibernate entity?

    - by foobar
    Morning. I need to add indexing in hibernate entity. As I know it is possible to do using @Index annotation to specify index for separate column but I need an index for several fields of entity. I've googled and found jboss annotation @Table, that allows to do this (by specification). But (I don't know why) this functionality doesn't work. May be jboss version is lower than necessary, or maybe I don't understant how to use this annotation, but... complex index is not created. Why index may not be created? jboss version 4.2.3.GA Entity example: package somepackage; import org.hibernate.annotations.Index; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.Id; @Entity @org.hibernate.annotations.Table(appliesTo = House.TABLE_NAME, indexes = { @Index(name = "IDX_XDN_DFN", columnNames = {House.XDN, House.DFN} ) } ) public class House { public final static String TABLE_NAME = "house"; public final static String XDN = "xdn"; public final static String DFN = "dfn"; @Id @GeneratedValue private long Id; @Column(name = XDN) private long xdn; @Column(name = DFN) private long dfn; @Column private String address; public long getId() { return Id; } public void setId(long id) { this.Id = id; } public long getXdn() { return xdn; } public void setXdn(long xdn) { this.xdn = xdn; } public long getDfn() { return dfn; } public void setDfn(long dfn) { this.dfn = dfn; } public String getAddress() { return address; } public void setAddress(String address) { this.address = address; } } When jboss/hibernate tries to create table "house" it throws following exception: Reason: org.hibernate.AnnotationException: @org.hibernate.annotations.Table references an unknown table: house

    Read the article

  • java annotations - problem with calling a locator class from a Vaadin Project

    - by George
    Hello, I'm not sure how to explain this without writing several pages so I hope the actual code is more expressive. I've made a jar containing multiple annotation declaration similar to the following: @Target(ElementType.PACKAGE) @Retention(RetentionPolicy.RUNTIME) public @interface MarkedPackage { } then I have made a test jar containing several classes in several packages and marked just one package with the above annotation (with package-info.java) like below: @myPackage.MarkedPackage package package.test.jar; this jar had in its build path the jar containing the annotations. then I made a static class that has a method (LoadPlugins) that retrieves a list with all the jars of a directory. Then it searches through the jars for the 'package-info' class and checks if that classes package contains the MarkedPackage annotation. by calling this: if (checkPackageAnnotation(thisClass.getPackage())) where thisClass is the package-info class retrieved via a classloader. and: public static boolean checkPackageAnnotation(AnnotatedElement elem) { System.out.println(elem.getAnnotations().length); if (elem == null || !elem.isAnnotationPresent(MarkedPackage.class)) return false; return true; } the elem.getAnnotatios().length is there for debug purposes. And the problem appears when I call the method from the static class: if I call it from a main function: public class MyMain { public static void main(String[] args){ PluginUtils.LoadPlugins(); } } everything works perfectly it displays '1' from that System.out.println(elem.getAnnotations().length); But if I call it from a button from my Vaadin project: header.addComponent(new Button("CallThat", new Button.ClickListener() { public void buttonClick(ClickEvent event) { PluginUtils.LoadPlugins(); } })); It displays '0' from that System.out.println(elem.getAnnotations().length); Also I should mention that I created the main inside my Vaadin project so it would have the exact same build path and resources. Is there a problem with web applications and that "@Retention(RetentionPolicy.RUNTIME)" ? hope I was clear enough... Hope someone has a solution for me... If you need more information - let me know. Thank you.

    Read the article

  • Constraint Validation

    - by tanuja
    I am using javax.validation.Validator and relevant classes for annotation based validation. Configuration<?> configuration = Validation.byDefaultProvider().configure(); ValidatorFactory factory = configuration.buildValidatorFactory(); Validator validator = factory.getValidator(); Set<ConstraintViolation<ValidatableObject>> constraintViolations = validator.validate(o); for (ConstraintViolation<ValidatableObject> value : constraintViolations) { List< Class< ? extends ConstraintValidator< ? extends Annotation,?>>> list = value.getConstraintDescriptor().getConstraintValidatorClasses(); } I get a compilation error stating: Type mismatch: cannot convert from List< Class< ? extends ConstraintValidator< capture#4-of ?,? to List< Class< ? extends ConstraintValidator< ? extends Annotation,? What am I missing?

    Read the article

  • Spring can't find a lib and webapp doesn't start up in tomcat 6

    - by gotch4
    I've this problem using STS: I'm building a simple Spring app, just to try out features like MVC and persistence. Now I've created something very simple, out of a bunch of tutorials for Spring 3, that I'm using. The application fails with this, during server startup: Code: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping#0': Initialization of bean failed; nested exception is org.springframework.beans.factory.CannotLoadBeanClassException: Cannot find class [org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean] for bean with name 'mySessionFactory' defined in ServletContext resource [/WEB-INF/spring/appServlet/servlet-context.xml]; nested exception is java.lang.ClassNotFoundException: org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean but I've org.springframework.orm in web-inf/classes folder (I even tried putting it in web-inf/lib). As I copied these libs there, the came out in Web App Libraries folder. Building this project in STS works fine as this dependency is set up in build path throught project properties, but how do I transfer the libs to the web app? (I'm using Tomcat 6 as it is the server I'm going to use sometime in the future for production). Is this a config problem of my XML? Or am I just missing the right way to put this lib? (I encountered the same problem before, but adding the needed lib in classes worked it out). More than this I that if I browse inside my workspace to the folder where the working folder of tomcat should be, I can't find any work directory and any commo

    Read the article

  • Why doesn't the spring @Autowire work with java generics

    - by testing123
    Inspired by spring data awesomeness I wanted to create a abstract RESTController that I could extend for a lot of my controllers. I created the following class: @Controller public abstract class RESTController<E, PK extends Serializable, R extends PagingAndSortingRepository<E, PK>> { @Autowired private R repository; @RequestMapping(method=RequestMethod.GET, params={"id"}) @ResponseBody public E getEntity(@RequestParam PK id) { return repository.findOne(id); } ... } I was hoping that the generics would allow me to @Autowire in the repository but I get the following error: SEVERE: Allocate exception for servlet appServlet org.springframework.beans.factory.NoSuchBeanDefinitionException: No unique bean of type [org.springframework.data.repository.PagingAndSortingRepository] is defined: expected single matching bean but found 3: [groupRepository, externalCourseRepository, managedCourseRepository] at org.springframework.beans.factory.support.DefaultListableBeanFactory.doResolveDependency(DefaultListableBeanFactory.java:800) at org.springframework.beans.factory.support.DefaultListableBeanFactory.resolveDependency(DefaultListableBeanFactory.java:707) at org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor$AutowiredFieldElement.inject(AutowiredAnnotationBeanPostProcessor.java:478) at org.springframework.beans.factory.annotation.InjectionMetadata.inject(InjectionMetadata.java:87) at org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor.postProcessPropertyValues(AutowiredAnnotationBeanPostProcessor.java:284) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:1106) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:517) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:294) I understand what the error is telling me, there is more than one match for the @Autowire. I am confused because I thought by creating the following controller it would work: @Controller @RequestMapping(value="/managedCourse") public class ManagedCourseController extends RESTController<ManagedCourse, Long, ManagedCourseRepository> { ... } This is easy enough to work around by doing having a method like this in the RESTController: protected abstract R getRepository(); and then doing this in your implementing class: @Autowired private ManagedCourseRepository repository; @Override protected ManagedCourseRepository getRepository() { return repository; } I was just wondering if someone had any thoughts of how I could get this to work.

    Read the article

  • Playing/extracting audio file from PDF

    - by ravl1084
    I use Ubuntu and I have a PDF file that contains an audio annotation. It won't play on Okular, it treats it as a text annotation. Following an old blog post where the poster created a small C script to extract the audio didn't work either, I suspect the format of these audio annotations has changed. Using the information on it I managed to uncompress the PDF and with vim, I found the audio data in the file. I tried copying this into its own file and changed the extension from mp3, wav, mid, but none of them would play. Is there a way of achieving this?

    Read the article

  • How to remove the pause during JBoss 5.1.0 GA boot between ProfileServiceBootstrap and AnnotationCreator?

    - by rrc7cz
    I've managed to strip down my JBoss profile enough that it boots in 1.5 minutes. I started with the web profile and started pulling out stuff I didn't need. The bulk of my boot time can be seen here: ... 15:21:51,890 INFO [ProfileServiceBootstrap] Loading profile: ProfileKey@86d597[domain=default, server=default, name=np] 15:22:55,406 WARN [AnnotationCreator] No ClassLoader provided, using TCCL: org.jboss.managed.api.annotation.ManagementComponent 15:22:55,578 WARN [AnnotationCreator] No ClassLoader provided, using TCCL: org.jboss.managed.api.annotation.ManagementComponent ... Does anyone have any idea what JBoss is doing here for 1 minute? If so, is there any way to speed it up or skip it entirely? This is for developer instances, so boot time is quite important.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >