Search Results

Search found 577 results on 24 pages for 'delegates'.

Page 12/24 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • why assign null value or another default value firstly?

    - by Phsika
    i try to generate some codes. i face to face delegates. Everythings is ok.(Look below) But appearing a warning: you shold assing value why? but second code below is ok. namespace Delegates { class Program { static void Main(string[] args) { HesapMak hesapla = new HesapMak(); hesapla.Calculator = new HesapMak.Hesap(hesapla.Sum); double sonuc = hesapla.Calculator(34, 2); Console.WriteLine("Toplama Sonucu:{0}",sonuc.ToString()); Console.ReadKey(); } } class HesapMak { public double Sum(double s1, double s2) { return s1 + s2; } public double Cikarma(double s1, double s2) { return s1 - s2; } public double Multiply(double s1, double s2) { return s1 * s2; } public double Divide(double s1, double s2) { return s1 / s2; } public delegate double Hesap(double s1, double s2); public Hesap Calculator; ----&#60; they want me assingn value } } namespace Delegates { class Program { static void Main(string[] args) { HesapMak hesapla = new HesapMak(); hesapla.Calculator = new HesapMak.Hesap(hesapla.Sum); double sonuc = hesapla.Calculator(34, 2); Console.WriteLine("Toplama Sonucu:{0}",sonuc.ToString()); Console.ReadKey(); } } class HesapMak { public double Sum(double s1, double s2) { return s1 + s2; } public double Cikarma(double s1, double s2) { return s1 - s2; } public double Multiply(double s1, double s2) { return s1 * s2; } public double Divide(double s1, double s2) { return s1 / s2; } public delegate double Hesap(double s1, double s2); public Hesap Calculator=null; } }

    Read the article

  • Explicitly pass context object versus injecting with IoC

    - by SonOfPirate
    I have a layered service application where the service layer delegates operations into the domain layer for execution. Many of these operations need to know the context under which they are operation. (The context included the identity of the current user, culture information, etc. received from the caller.) For example, I have an API method that returns a list of announcements. The list is based on the current user's role and each announcement is localized to their culture. The API is a thin-facade that delegates to an Application Service in my domain layer. The Application Service method obviously needs to know the context of the current request/operation as another call to the same API from another user should result in a different list. Within this method, we also have logging that uses some of the context information so we a clear understanding of the context when the operation was performed (this is especially useful if something goes wrong.) While this is a contrived example, in the real world, my Application Services will coordinate operations with many collaborative components, any number of them also needing the context information. My choice is to pass the context to the Application Service which would then pass it with any calls to collaborators or have the IoC container satisfy the dependency the Application Service and any collaborators have on the context. I am wondering if it is considered good/bad, best practices/code smell, etc. if I pass the context object as a parameter to the domain methods or if injecting the context via an IoC container is preferred. (EDIT: I should mention that the context object is instantiated per-request.)

    Read the article

  • whats the name of this pattern?

    - by Wes
    I see this a lot in frameworks. You have a master class which other classes register with. The master class then decides which of the registered classes to delegate the request to. An example based passed in class may be something this. public interface Processor { public boolean canHandle(Object objectToHandle); public void handle(Object objectToHandle); } public class EvenNumberProcessor extends Processor { public boolean canHandle(Object objectToHandle) { if (!isNumeric(objectToHandle)){ return false } return isEven(objectToHandle); } public void handle(objectToHandle) { //Optionally call canHandleAgain to ensure the calling class is fufilling its contract doSomething(); } } public class OddNumberProcessor extends Processor { public boolean canHandle(Object objectToHandle) { if (!isNumeric(objectToHandle)){ return false } return isOdd(objectToHandle); } public void handle(objectToHandle) { //Optionally call canHandleAgain to ensure the calling class is fufilling its contract doSomething(); } } //Can optionally implement processor interface public class processorDelegator { private List processors; public void addProcessor(Processor processor) { processors.add(processor); } public void process(Object objectToProcess) { //Lookup relevant processor either by keeping a list of what they can process //Or query each one to see if it can process the object. chosenProcessor=chooseProcessor(objectToProcess); chosenProcessor.handle(objectToProcess); } } Note there are a few variations I see on this. In one variation the sub classes provide a list of things they can process which the ProcessorDelegator understands. The other variation which is listed above in fake code is where each is queried in turn. This is similar to chain of command but I don't think its the same as chain of command means that the processor needs to pass to other processors. The other variation is where the ProcessorDelegator itself implements the interface which means you can get trees of ProcessorDelegators which specialise further. In the above example you could have a numeric processor delegator which delegates to an even/odd processor and a string processordelegator which delegates to different strings. My question is does this pattern have a name.

    Read the article

  • Get Func-y

    - by PhubarBaz
    I was working on a Windows form app and needed a way to call out to a service without blocking the UI. There are a lot of ways to do this but I came up with one that I thought was pretty simple. It utilizes the System.Func<> generic class, which is basically a way to create delegates using generics. It's a lot more compact and simpler than creating delegates for each method you want to call asynchronously. I wanted to get it down to one line of code, but it was a lot simpler to use three lines.In this case I have a MyServiceCall method that takes an integer parameter and returns a ServiceCallResult object.public ServiceCallResult MyServiceCall(int param1)...You start by getting a Func<> object for the method you want to call, in this case MyServiceCall. Then you call BeginInvoke() on the Func passing in the parameter. The two nulls are parameters BeginInvoke expects but can be ignored here. BeginInvoke returns an IAsyncResult object that acts like a handle to the method call. Finally to get the value you call EndInvoke on the Func passing in the IAsyncResult object you got back from BeginInvoke.Func<int, ServiceCallResult> f = MyServiceCall;IAsyncResult async = f.BeginInvoke(23, null, null);ServiceCallResult result = f.EndInvoke(async);Doing it this way fires off a new thread that calls the MyServiceCall() method. This leaves the main application thread free to update the UI while the method call is running so it doesn't become unresponsive.

    Read the article

  • How to use Ninject with XNA?

    - by Rosarch
    I'm having difficulty integrating Ninject with XNA. static class Program { /** * The main entry point for the application. */ static void Main(string[] args) { IKernel kernel = new StandardKernel(NinjectModuleManager.GetModules()); CachedContentLoader content = kernel.Get<CachedContentLoader>(); // stack overflow here MasterEngine game = kernel.Get<MasterEngine>(); game.Run(); } } // constructor for the game public MasterEngine(IKernel kernel) : base(kernel) { this.inputReader = kernel.Get<IInputReader>(); graphicsDeviceManager = kernel.Get<GraphicsDeviceManager>(); Components.Add(kernel.Get<GamerServicesComponent>()); // Tell the loader to look for all files relative to the "Content" directory. Assets = kernel.Get<CachedContentLoader>(); //Sets dimensions of the game window graphicsDeviceManager.PreferredBackBufferWidth = 800; graphicsDeviceManager.PreferredBackBufferHeight = 600; graphicsDeviceManager.ApplyChanges(); IsMouseVisible = false; } Ninject.cs: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Ninject.Modules; using HWAlphaRelease.Controller; using Microsoft.Xna.Framework; using Nuclex.DependencyInjection.Demo.Scaffolding; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; namespace HWAlphaRelease { public static class NinjectModuleManager { public static NinjectModule[] GetModules() { return new NinjectModule[1] { new GameModule() }; } /// <summary>Dependency injection rules for the main game instance</summary> public class GameModule : NinjectModule { #region class ServiceProviderAdapter /// <summary>Delegates to the game's built-in service provider</summary> /// <remarks> /// <para> /// When a class' constructor requires an IServiceProvider, the dependency /// injector cannot just construct a new one and wouldn't know that it has /// to create an instance of the Game class (or take it from the existing /// Game instance). /// </para> /// <para> /// The solution, then, is this small adapter that takes a Game instance /// and acts as if it was a freely constructable IServiceProvider implementation /// while in reality, it delegates all lookups to the Game's service container. /// </para> /// </remarks> private class ServiceProviderAdapter : IServiceProvider { /// <summary>Initializes a new service provider adapter for the game</summary> /// <param name="game">Game the service provider will be taken from</param> public ServiceProviderAdapter(Game game) { this.gameServices = game.Services; } /// <summary>Retrieves a service from the game service container</summary> /// <param name="serviceType">Type of the service that will be retrieved</param> /// <returns>The service that has been requested</returns> public object GetService(Type serviceType) { return this.gameServices; } /// <summary>Game services container of the Game instance</summary> private GameServiceContainer gameServices; } #endregion // class ServiceProviderAdapter #region class ContentManagerAdapter /// <summary>Delegates to the game's built-in ContentManager</summary> /// <remarks> /// This provides shared access to the game's ContentManager. A dependency /// injected class only needs to require the ISharedContentService in its /// constructor and the dependency injector will automatically resolve it /// to this adapter, which delegates to the Game's built-in content manager. /// </remarks> private class ContentManagerAdapter : ISharedContentService { /// <summary>Initializes a new shared content manager adapter</summary> /// <param name="game">Game the content manager will be taken from</param> public ContentManagerAdapter(Game game) { this.contentManager = game.Content; } /// <summary>Loads or accesses shared game content</summary> /// <typeparam name="AssetType">Type of the asset to be loaded or accessed</typeparam> /// <param name="assetName">Path and name of the requested asset</param> /// <returns>The requested asset from the the shared game content store</returns> public AssetType Load<AssetType>(string assetName) { return this.contentManager.Load<AssetType>(assetName); } /// <summary>The content manager this instance delegates to</summary> private ContentManager contentManager; } #endregion // class ContentManagerAdapter /// <summary>Initializes the dependency configuration</summary> public override void Load() { // Allows access to the game class for any components with a dependency // on the 'Game' or 'DependencyInjectionGame' classes. Bind<MasterEngine>().ToSelf().InSingletonScope(); Bind<NinjectGame>().To<MasterEngine>().InSingletonScope(); Bind<Game>().To<MasterEngine>().InSingletonScope(); // Let the dependency injector construct a graphics device manager for // all components depending on the IGraphicsDeviceService and // IGraphicsDeviceManager interfaces Bind<GraphicsDeviceManager>().ToSelf().InSingletonScope(); Bind<IGraphicsDeviceService>().To<GraphicsDeviceManager>().InSingletonScope(); Bind<IGraphicsDeviceManager>().To<GraphicsDeviceManager>().InSingletonScope(); // Some clever adapters that hand out the Game's IServiceProvider and allow // access to its built-in ContentManager Bind<IServiceProvider>().To<ServiceProviderAdapter>().InSingletonScope(); Bind<ISharedContentService>().To<ContentManagerAdapter>().InSingletonScope(); Bind<IInputReader>().To<UserInputReader>().InSingletonScope().WithConstructorArgument("keyMapping", Constants.DEFAULT_KEY_MAPPING); Bind<CachedContentLoader>().ToSelf().InSingletonScope().WithConstructorArgument("rootDir", "Content"); } } } } NinjectGame.cs /// <summary>Base class for Games making use of Ninject</summary> public class NinjectGame : Game { /// <summary>Initializes a new Ninject game instance</summary> /// <param name="kernel">Kernel the game has been created by</param> public NinjectGame(IKernel kernel) { Type ownType = this.GetType(); if(ownType != typeof(Game)) { kernel.Bind<NinjectGame>().To<MasterEngine>().InSingletonScope(); } kernel.Bind<Game>().To<NinjectGame>().InSingletonScope(); } } } // namespace Nuclex.DependencyInjection.Demo.Scaffolding When I try to get the CachedContentLoader, I get a stack overflow exception. I'm basing this off of this tutorial, but I really have no idea what I'm doing. Help?

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics

    - by Paulo Morgado
    C# 4.0 (and .NET 4.0) introduced covariance and contravariance to generic interfaces and delegates. But what is this variance thing? According to Wikipedia, in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometrical or physical entities changes when passing from one coordinate system to another.(*) But what does this have to do with C# or .NET? In type theory, a the type T is greater (>) than type S if S is a subtype (derives from) T, which means that there is a quantitative description for types in a type hierarchy. So, how does covariance and contravariance apply to C# (and .NET) generic types? In C# (and .NET), variance applies to generic type parameters and not to the resulting generic type. A generic type parameter is: covariant if the ordering of the generic types follows the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. contravariant if the ordering of the generic types is reversed from the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. invariant if neither of the above apply. If this definition is applied to arrays, we can see that arrays have always been covariant because this is valid code: object[] objectArray = new string[] { "string 1", "string 2" }; objectArray[0] = "string 3"; objectArray[1] = new object(); However, when we try to run this code, the second assignment will throw an ArrayTypeMismatchException. Although the compiler was fooled into thinking this was valid code because an object is being assigned to an element of an array of object, at run time, there is always a type check to guarantee that the runtime type of the definition of the elements of the array is greater or equal to the instance being assigned to the element. In the above example, because the runtime type of the array is array of string, the first assignment of array elements is valid because string = string and the second is invalid because string = object. This leads to the conclusion that, although arrays have always been covariant, they are not safely covariant – code that compiles is not guaranteed to run without errors. In C#, the way to define that a generic type parameter as covariant is using the out generic modifier: public interface IEnumerable<out T> { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> { T Current { get; } bool MoveNext(); } Notice the convenient use the pre-existing out keyword. Besides the benefit of not having to remember a new hypothetic covariant keyword, out is easier to remember because it defines that the generic type parameter can only appear in output positions — read-only properties and method return values. In a similar way, the way to define a type parameter as contravariant is using the in generic modifier: public interface IComparer<in T> { int Compare(T x, T y); } Once again, the use of the pre-existing in keyword makes it easier to remember that the generic type parameter can only be used in input positions — write-only properties and method non ref and non out parameters. Because covariance and contravariance apply only to the generic type parameters, a generic type definition can have both covariant and contravariant generic type parameters in its definition: public delegate TResult Func<in T, out TResult>(T arg); A generic type parameter that is not marked covariant (out) or contravariant (in) is invariant. All the types in the .NET Framework where variance could be applied to its generic type parameters have been modified to take advantage of this new feature. In summary, the rules for variance in C# (and .NET) are: Variance in type parameters are restricted to generic interface and generic delegate types. A generic interface or generic delegate type can have both covariant and contravariant type parameters. Variance applies only to reference types; if you specify a value type for a variant type parameter, that type parameter is invariant for the resulting constructed type. Variance does not apply to delegate combination. That is, given two delegates of types Action<Derived> and Action<Base>, you cannot combine the second delegate with the first although the result would be type safe. Variance allows the second delegate to be assigned to a variable of type Action<Derived>, but delegates can combine only if their types match exactly. If you want to learn more about variance in C# (and .NET), you can always read: Covariance and Contravariance in Generics — MSDN Library Exact rules for variance validity — Eric Lippert Events get a little overhaul in C# 4, Afterward: Effective Events — Chris Burrows Note: Because variance is a feature of .NET 4.0 and not only of C# 4.0, all this also applies to Visual Basic 10.

    Read the article

  • FBConnect for iPhone: sessionDidNotLogin, sessionDidLogout, session didLogin not called the second t

    - by Irene
    My problem is very similar to this question, however I am posting a new one, as the answer to the aforementioned does not seem to solve my problem. I have a multiview application - the first view is where the user logs in to Facebook, and the second where he picks an image and uploads it there. The first time the app runs, everything works fine, however if I return to the login view and press logout, then any calls to sessionDidNotLogin, sessionDidLogout or session didLogin don't seem to work. I found out that the first time, if I NSLog(@"%@",session.delegates); I have 2; my LoginViewController and the FBLoginButton. However, apart from that first time, the same log prints only the LoginViewController and not the FBLoginButton. I guess this is connected somehow, but I don't know how to solve it. Do I have to manually add the FBLoginButton to the session delegates, or I'm doing something else wrong here? Thank you for any help/suggestion.

    Read the article

  • setDelegate:self, how does it work?

    - by fuzzygoat
    I have a query regarding how delegates work. My understanding was that delegates take responsibility for doing certain tasks on behalf of another object. locationManager = [[CLLocationManager alloc] init]; [locationManager setDelegate:self]; [locationManager setDistanceFilter:kCLDistanceFilterNone]; [locationManager setDesiredAccuracy:kCLLocationAccuracyBest]; [locationManager startUpdatingLocation]; Am I right in thinking that in the example code above that the instance of CLLocationManager is created on a new thread so that it can get on with trying to find the location information it needs. When it completes its task (or encounters an error) it calls-back using the appropriate methods located in self e.g. locationManager:didUpdateToLocation:fromLocation: Essentially locationManager sends messages to self (which conforms to the correct delegate protocol) when things happen cheers gary

    Read the article

  • Control.EndInvoke resets call stack for exception

    - by Brian Rasmussen
    I don't do a lot of Windows GUI programming, so this may all be common knowledge to people more familiar with WinForms than I am. Unfortunately I have not been able to find any resources to explain the issue, I encountered today during debugging. If we call EndInvoke on an async delegate. We will get any exception thrown during execution of the method re-thrown. The call stack will reflect the original source of the exception. However, if we do something similar on a Windows.Forms.Control, the implementation of Control.EndInvoke resets the call stack. This can be observed by a simple test or by looking at the code in Reflector. The relevant code excerpt from EndInvoke is here: if (entry.exception != null) { throw entry.exception; } I understand that Begin/EndInvoke on Control and async delegates are different, but I would have expected similar behavior on Control.EndInvoke. Is there any reason Control doesn't do whatever it is async delegates do to preserve the original call stack?

    Read the article

  • InApp Purchase on slow network

    - by Chandan Shetty SP
    My InApp purchase code works fine in normal network, but in very slow network(safari browser will take 5 min to load a webpage). I am not getting any delegates... - (void)requestDidFinish:(SKRequest *)request - (void)request:(SKRequest *)request didFailWithError:(NSError *)error - (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:(SKProductsResponse *)response So my code blocks indefinetly because i am setting setUserInteractionEnabled to FALSE initially and setting it back to TRUE in the above delegates... [[[UIApplication sharedApplication]keyWindow]setUserInteractionEnabled:FALSE]; Is it possible to check the network status before creating "SKProductsRequest" or any better way to implement inApp Purchase? Thanks in advance,

    Read the article

  • Looking for an explanation of the 'Asynchronous' word in .Net?

    - by IbrarMumtaz
    I need someone to explain the following names; Asynchronous Delegates. Asynchronous methods. Asynchronous events. I'm currently going over this for my 70-536 exam and I am covering all my bases so far. The threading chapter and online resources have been good to me on my second read through. Still though, the names used above mean absolutely nothing to me? I would really appreciate the meaning behind the word 'Asynchronous' and its relevance to Delegates, methods and events. Feel free to go into as much detail as you like. Thanks, Ibrar

    Read the article

  • Someone explain to me the meanings behind the naming conventions used in .net?

    - by IbrarMumtaz
    I need someone to explain the following names; Asynchronous Delegates. Asynchronous methods. Asynchronous events. I'm currently going over this for my 70-536 exam and I am covering all my bases so far. The threading chapter and online resources have been good to me on my second read through. Still though, the names used above mean absolutely nothing to me? I would really appreciate the meaning behind the word 'Asynchronous' and its relevance to Delegates, methods and events. Feel free to go into as much detail as you like. Thanks, Ibrar

    Read the article

  • Authorization in a more purely OOP style...

    - by noblethrasher
    I've never seen this done but I had an idea of doing authorization in a more purely OO way. For each method that requires authorization we associate a delegate. During initialization of the class we wire up the delegates so that they point to the appropriate method (based on the user's rights). For example: class User { private deleteMemberDelegate deleteMember; public StatusMessage DeleteMember(Member member) { if(deleteMember != null) { deleteMember(member); } } //other methods defined similarly... User(string name, string password) //cstor. { //wire up delegates based on user's rights. //Thus we handle authentication and authorization in the same method. } } This way the client code never has to explictly check whether or not a user is in a role, it just calls the method. Of course each method should return a status message so that we know if and why it failed. Thoughts?

    Read the article

  • Can you have too many Delegate.BeginInvoke calls at once?

    - by stewsha
    I am cleaning up some old code converting it to work asynchronously. psDelegate.GetStops decStops = psLoadRetrieve.GetLoadStopsByLoadID; var arStops = decStops.BeginInvoke(loadID, null, null); WaitHandle.WaitAll(new WaitHandle[] { arStops.AsyncWaitHandle }); var stops = decStops.EndInvoke(arStops); Above is a single example of what I am doing for asynchronous work. My plan is to have close to 20 different delegates running. All will call BeginInvoke and wait until they are all complete before calling EndInvoke. My question is will having so many delegates running cause problems? I understand that BeginInvoke uses the ThreadPool to do work and that has a limit of 25 threads. 20 is under that limit but it is very likely that other parts of the system could be using any number of threads from the ThreadPool as well. Thanks!

    Read the article

  • Loading UINavigationController subclass from a Nib

    - by Rits
    My situation is as follows: My class SettingsViewController is a subclass of UINavigationController. That class contains the logic of its rootViewController. For example, it acts as the delegate and data source for two table views in that root view controller. I have no problem setting this up programmatically. In the initializer of SettingsViewController, I can create an additional UIViewController to serve as the root view controller, position the table views in its view, and set their delegates and data sources to self. But I want to load that root view via a Nib. The problem is, I do not know how to connect that Nib with my SettingsViewController, how to set the delegates and data sources. The SettingsViewController is not accessible from within the Nib. 'File Owner' represents the root view controller, not the SettingsViewController. How do I access my UINavigationController subclass from within my root view controllers Nib? Thanks in advance.

    Read the article

  • Accessing generic lists with delegate notation

    - by n0vic3c0d3r
    I see some people write: //wordList is List<string> wordList.ForEach(delegate(string word){ Console.WriteLine(word);}); instead of: foreach(string word in wordList) { Console.WriteLine(word); } What is the advantage in doing so. Also I couldn't fathom the Action delegate syntax given above though I have used delegates in C# 2.0. Basically I am not able to relate the syntax with the concept of delegates I am familiar with. Can you please help me understand the syntax. Is it some shorthand?

    Read the article

  • Writing .NET in dynamic language?

    - by tillda
    I'm confused by the possibility of writing .NET in dynamic languages, such as (Iron)Ruby. Particularly, I've seen code in IronRuby that used generics (...foo[String]), but I'm not aware of this feature in Ruby as it seems nonsense to me in dynamic languages. So, when I write .NET app in IronRuby, how is it with type safety and compilation? I thought that it is just as dynamic as Ruby everywhere else. I thought that if the Ruby syntax is OK all the type checking would be done at the runtime. Also, as far as I know, .NET itself is type-oriented - there are classes that heavily utilize the mentioned generics. How is this handled? And what about delegates? In dynamic languages I can have almost function-spaghetti and sometimes, its just fine (like hacking UI in javascript). Or do I have to care even about generic delegates?

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • MDM 2010 Summit in San Francisco

    - by Tony Ouk
    Since 2006, the MDM Global Summit Series has brought master data expertise to more than 5,000 delegates worldwide. The Series is designed to reinforce the importance of data governance as a key factor to your MDM program's success while providing real-world experience and all-in-one access to solutions providers. Come join us June 2-3, 2010 at the Hyatt Regency in San Francisco.  For more information including registration details, visit the MDM Global Summit Series website.

    Read the article

  • Passing text message to web page from web user control

    - by Narendra Tiwari
    Here is a brief summary how we can send a text message to webpage by a web user control. Delegates is the slolution. There are many good articles on .net delegates you can refer some of them below. The scenario is we want to send a text message to the page on completion of some activity on webcontrol. 1/ Create a Base class for webcontrol (refer code below), assuming we are passing some text messages to page from web user control  - Declare a delegate  - Declare an event of type delegate using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; //Declaring delegate with message parameter public delegate void SendMessageToThePageHandler(string messageToThePage); public         } class ControlBase: System.Web.UI.UserControl { public ControlBase() { // TODO: Add constructor logic here }protected override void OnInit(EventArgs e) { base.OnInit(e); }private string strMessageToPass;/// <summary> /// MessageToPass - Property to pass text message to page /// </summary> public string MessageToPass { get { return strMessageToPass; } set { strMessageToPass = value; } }/// <summary> /// SendMessageToPage - Called from control to invoke the event /// </summary> /// <param name="strMessage">Message to pass</param> public void SendMessageToPage(string strMessage) {   if (this.sendMessageToThePage != null)       this.sendMessageToThePage(strMessage); } 2/ Register events on webpage on page Load eventthis.AddControlEventHandler((ControlBase)WebUserControl1); this.AddControlEventHandler((ControlBase)WebUserControl2); /// <summary> /// AddControlEventHandler- Hooking web user control event /// </summary> /// <param name="ctrl"></param> private void AddControlEventHandler(ControlBase ctrl) { ctrl.sendMessageToThePage += delegate(string strMessage) {   //display message   lblMessage.Text = strMessage; }; } References: http://www.akadia.com/services/dotnet_delegates_and_events.html     3/

    Read the article

  • Lambda&rsquo;s for .NET made easy&hellip;

    - by mbcrump
    The purpose of my blog is to explain things for a beginner to intermediate c# programmer. I’ve seen several blog post that use lambda expressions always assuming the audience is familiar with them. The purpose of this post is to make them simple and easily understood. Let’s begin with a definition. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. So anonymous function… delegates or expression tree types? I don’t get it??? Confused yet?   Lets break this into a few definitions and jump right into the code. anonymous function – is an "inline" statement or expression that can be used wherever a delegate type is expected. delegate - is a type that references a method. Once a delegate is assigned a method, it behaves exactly like that method. The delegate method can be used like any other method, with parameters and a return value. Expression trees - represent code in a tree-like data structure, where each node is an expression, for example, a method call or a binary operation such as x < y.   Don’t worry if this still sounds confusing, lets jump right into the code with a simple 3 line program. We are going to use a Function Delegate (all you need to remember is that this delegate returns a value.) Lambda expressions are used most commonly with the Func and Action delegates, so you will see an example of both of these. Lambda Expression 3 lines. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Func<int, int> myfunc = x => x *x;             Console.WriteLine(myfunc(6).ToString());             Console.ReadLine();         }       } } Is equivalent to Old way of doing it. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {               Console.WriteLine(myFunc(6).ToString());             Console.ReadLine();         }            static int myFunc(int x)          {              return x * x;            }       } } In the example, there is a single parameter, x, and the expression is x*x. I’m going to stop here to make sure you are still with me. A lambda expression is an unnamed method written in place of a delegate instance. In other words, the compiler converts the lambda expression to either a : A delegate instance An expression tree All lambda have the following form: (parameters) => expression or statement block Now look back to the ones we have created. It should start to sink in. Don’t get stuck on the => form, use it as an identifier of a lambda. A Lamba expression can also be written in the following form: Lambda Expression. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Func<int, int> myFunc = x =>             {                 return x * x;             };               Console.WriteLine(myFunc(6).ToString());             Console.ReadLine();         }       } } This form may be easier to read but consumes more space. Lets try an Action delegate – this delegate does not return a value. Action Delegate example. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Action<string> myAction = (string x) => { Console.WriteLine(x); };             myAction("michael has made this so easy");                                   Console.ReadLine();         }       } } Lambdas can also capture outer variables (such as the example below) A lambda expression can reference the local variables and parameters of the method in which it’s defined. Outer variables referenced by a lambda expression are called captured variables. Capturing Outer Variables using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             string mike = "Michael";             Action<string> myAction = (string x) => {                 Console.WriteLine("{0}{1}", mike, x);          };             myAction(" has made this so easy");                                   Console.ReadLine();         }       } } Lamba’s can also with a strongly typed list to loop through a collection.   Used w a strongly typed list. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             List<string> list = new List<string>() { "1", "2", "3", "4" };             list.ForEach(s => Console.WriteLine(s));             Console.ReadLine();         }       } } Outputs: 1 2 3 4 I think this will get you started with Lambda’s, as always consult the MSDN documentation for more information. Still confused? Hopefully you are not.

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • Custom Event - invokation list implementation considerations

    - by M.A. Hanin
    I'm looking for some pointers on implementing Custom Events in VB.NET (Visual Studio 2008, .NET 3.5). I know that "regular" (non-custom) Events are actually Delegates, so I was thinking of using Delegates when implementing a Custom Event. On the other hand, Andrew Troelsen's "Pro VB 2008 and the .NET 3.5 Platform" book uses Collection types in all his Custom Events examples, and Microsoft's sample codes match that line of thought. So my question is: what considerations should I have when choosing one design over the other? What are the pros and cons for each design? Which of these resembles the inner-implementation of "regular" events? Below is a sample code demonstrating the two designs. Public Class SomeClass Private _SomeEventListeners As EventHandler Public Custom Event SomeEvent As EventHandler AddHandler(ByVal value As EventHandler) _SomeEventListeners = [Delegate].Combine(_SomeEventListeners, value) End AddHandler RemoveHandler(ByVal value As EventHandler) _SomeEventListeners = [Delegate].Remove(_SomeEventListeners, value) End RemoveHandler RaiseEvent(ByVal sender As Object, ByVal e As System.EventArgs) _SomeEventListeners.Invoke(sender, e) End RaiseEvent End Event Private _OtherEventListeners As New List(Of EventHandler) Public Custom Event OtherEvent As EventHandler AddHandler(ByVal value As EventHandler) _OtherEventListeners.Add(value) End AddHandler RemoveHandler(ByVal value As EventHandler) _OtherEventListeners.Remove(value) End RemoveHandler RaiseEvent(ByVal sender As Object, ByVal e As System.EventArgs) For Each handler In _OtherEventListeners handler(sender, e) Next End RaiseEvent End Event End Class

    Read the article

  • How to update QStandartItemModel without freezing the main UI

    - by user1044002
    I'm starting to learn PyQt4 and have been stuck on something for a long time now and can't figure it out myself: Here is the concept: There is a TreeView with custom QStandartItemModel, which gets rebuild every couple of seconds, and can have a lot (hundreds at least) of entries, there also will be additional delegates for the different columns etc. It's fairly complex and the building time for even plain model, without delegates, goes up to .3 sec, which makes the TreeView to freeze. Please advice me for the best approach on solving this. I was thing of somehow building the model in different thread, and eventually sending it to the TreeView, where it would just perform setModel() with the new one, but couldn't make that work. here is some code that may illustrate the problem a bit: from PyQt4.QtCore import * from PyQt4.QtGui import * import sys, os, re, time app = QApplication(sys.argv) REFRESH = 1 class Reloader_Thread(QThread): def __init__(self, parent = None): QThread.__init__(self, parent) self.loaders = ['\\', '--', '|', '/', '--'] self.emit(SIGNAL('refresh')) def run(self): format = '|%d/%b/%Y %H:%M:%S| ' while True: self.emit(SIGNAL('refresh')) self.sleep(REFRESH) class Model(QStandardItemModel): def __init__(self, viewer=None): QStandardItemModel.__init__(self,None) self.build() def build(self): stTime = time.clock() newRows = [] for r in range(1000): row = [] for c in range(12): item = QStandardItem('%s %02d%02d' % (time.strftime('%H"%M\'%S'), r,c)) row.append(item) newRows.append(row) eTime = time.clock() - stTime outStr = 'Build %03f' % eTime format = '|%d/%b/%Y %H:%M:%S| ' stTime = time.clock() self.beginRemoveRows(QModelIndex(), 0, self.rowCount()) self.removeRows(0, self.rowCount()) self.endRemoveRows() eTime = time.clock() - stTime outStr += ', Remove %03f' % eTime stTime = time.clock() numNew = len(newRows) for r in range(numNew): self.appendRow(newRows[r]) eTime = time.clock() - stTime outStr += ', Set %03f' % eTime self.emit(SIGNAL('status'), outStr) self.reset() w = QWidget() w.setGeometry(200,200,800,600) hb = QVBoxLayout(w) tv = QTreeView() tvm = Model(tv) tv.setModel(tvm) sb = QStatusBar() reloader = Reloader_Thread() tvm.connect(tvm, SIGNAL('status'), sb.showMessage) reloader.connect(reloader, SIGNAL('refresh'), tvm.build) reloader.start() hb.addWidget(tv) hb.addWidget(sb) w.show() app.setStyle('plastique') app.processEvents(QEventLoop.AllEvents) app.aboutToQuit.connect(reloader.quit) app.exec_()

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >