Search Results

Search found 1290 results on 52 pages for 'hierarchy'.

Page 12/52 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Master Data Management for Location Data - Oracle Site Hub

    - by david.butler(at)oracle.com
    Most MDM discussions cover key domains such as customer, supplier, product, service, and reference data. It is usually understood that these domains have complex structures and hundreds if not thousands of attributes that need governing. Location, on the other hand, strikes most people as address data. How hard can that be? But for many industries, locations are complex, and site information is critical to efficient operations and relevant analytics. Retail stores and malls, bank branches, construction sites come to mind. But one of the best industries for illustrating the power of a site mastering application is Oil & Gas.   Oracle's Master Data Management solution for location data is the Oracle Site Hub. It is a location mastering solution that enables organizations to centralize site and location specific information from heterogeneous systems, creating a single view of site information that can be leveraged across all functional departments and analytical systems.   Let's take a look at the location entities the Oracle Site Hub can manage for the Oil & Gas industry: organizations, property, land, buildings, roads, oilfield, service center, inventory site, real estate, facilities, refineries, storage tanks, vendor locations, businesses, assets; project site, area, well, basin, pipelines, critical infrastructure, offshore platform, compressor station, gas station, etc. Any site can be classified into multiple hierarchies, like organizational hierarchy, operational hierarchy, geographic hierarchy, divisional hierarchies and so on. Any site can also be associated to multiple clusters, i.e. collections of sites, and these can be used as a foundation for driving reporting, analysis, organize daily work, etc. Hierarchies can also be used to model entities which are structured or non-structured collections of nodes, like for example routes, pipelines and more. The User Defined Attribute Framework provides the needed infrastructure to add single row attributes groups like well base attributes (well IDs, well type, well structure and key characterizing measures, and more) and well geometry, and multi row attribute groups like well applications, permits, production data, activities, operations, logs, treatments, tests, drills, treatments, and KPIs. Site Hub can also model areas, lands, fields, basins, pools, platforms, eco-zones, and stratigraphic layers as specific sites, tracking their base attributes, aliases, descriptions, subcomponents and more. Midstream entities (pipelines, logistic sites, pump stations) and downstream entities (cylinders, tanks, inventories, meters, partner's sites, routes, facilities, gas stations, and competitor sites) can also be easily modeled, together with their specific attributes and relationships. Site Hub can store any type of unstructured data associated to a site. This could be stored directly or on an external content management solution, like Oracle Universal Content Management. Considering a well, for example, Site Hub can store any relevant associated multimedia file such as: CAD drawings of the well profile, structure and/or parts, engineering documents, contracts, applications, permits, logs, pictures, photos, videos and more. For any site entity, Site Hub can associate all the related assets and equipments at the site, as well as all relationships between sites, between a site and multiple parties, and between a site and any purchasable or sellable item, over time. Items can be equipment, instruments, facilities, services, products, production entities, production facilities (pipelines, batteries, compressor stations, gas plants, meters, separators, etc.), support facilities (rigs, roads, transmission or radio towers, airstrips, etc.), supplier products and services, catalogs, and more. Items can just be associated to sites using standard Site Hub features, or they can be fully mastered by implementing Oracle Product Hub. Site locations (addresses or geographical coordinates) are also managed with out-of-the-box address geo-coding capabilities coupled with Google Maps integration to deliver powerful mapping capabilities and spatial data analysis. Locations can be shared between different sites. Centered on the site location, any site can also have associated areas. Site Hub can master any site location specific information, like for example cadastral, ownership, jurisdictional, geological, seismic and more, and any site-centric area specific information, like for example economical, political, risk, weather, logistic, traffic information and more. Now if anyone ever asks you why locations need MDM, think about how all these Oil & Gas entities and attributes would translate into your business locations. To learn more about Oracle's full MDM solution for the digital oil field, here is a link to Roberto Negro's outstanding whitepaper: Oracle Site Master Data Management for mastering wells and other PPDM entities in a digital oilfield context  

    Read the article

  • Programmatically disclosing a node in af:tree and af:treeTable

    - by Frank Nimphius
    A common developer requirement when working with af:tree or af:treeTable components is to programmatically disclose (expand) a specific node in the tree. If the node to disclose is not a top level node, like a location in a LocationsView -> DepartmentsView -> EmployeesView hierarchy, you need to also disclose the node's parent node hierarchy for application users to see the fully expanded tree node structure. Working on ADF Code Corner sample #101, I wrote the following code lines that show a generic option for disclosing a tree node starting from a handle to the node to disclose. The use case in ADF Coder Corner sample #101 is a drag and drop operation from a table component to a tree to relocate employees to a new department. The tree node that receives the drop is a department node contained in a location. In theory the location could be part of a country and so on to indicate the depth the tree may have. Based on this structure, the code below provides a generic solution to parse the current node parent nodes and its child nodes. The drop event provided a rowKey for the tree node that received the drop. Like in af:table, the tree row key is not of type oracle.jbo.domain.Key but an implementation of java.util.List that contains the row keys. The JUCtrlHierBinding class in the ADF Binding layer that represents the ADF tree binding at runtime provides a method named findNodeByKeyPath that allows you to get a handle to the JUCtrlHierNodeBinding instance that represents a tree node in the binding layer. CollectionModel model = (CollectionModel) your_af_tree_reference.getValue(); JUCtrlHierBinding treeBinding = (JUCtrlHierBinding ) model.getWrappedData(); JUCtrlHierNodeBinding treeDropNode = treeBinding.findNodeByKeyPath(dropRowKey); To disclose the tree node, you need to create a RowKeySet, which you do using the RowKeySetImpl class. Because the RowKeySet replaces any existing row key set in the tree, all other nodes are automatically closed. RowKeySetImpl rksImpl = new RowKeySetImpl(); //the first key to add is the node that received the drop //operation (departments).            rksImpl.add(dropRowKey);    Similar, from the tree binding, the root node can be obtained. The root node is the end of all parent node iteration and therefore important. JUCtrlHierNodeBinding rootNode = treeBinding.getRootNodeBinding(); The following code obtains a reference to the hierarchy of parent nodes until the root node is found. JUCtrlHierNodeBinding dropNodeParent = treeDropNode.getParent(); //walk up the tree to expand all parent nodes while(dropNodeParent != null && dropNodeParent != rootNode){    //add the node's keyPath (remember its a List) to the row key set    rksImpl.add(dropNodeParent.getKeyPath());      dropNodeParent = dropNodeParent.getParent(); } Next, you disclose the drop node immediate child nodes as otherwise all you see is the department node. Its not quite exactly "dinner for one", but the procedure is very similar to the one handling the parent node keys ArrayList<JUCtrlHierNodeBinding> childList = (ArrayList<JUCtrlHierNodeBinding>) treeDropNode.getChildren();                     for(JUCtrlHierNodeBinding nb : childList){   rksImpl.add(nb.getKeyPath()); } Next, the row key set is defined as the disclosed row keys on the tree so when you refresh (PPR) the tree, the new disclosed state shows tree.setDisclosedRowKeys(rksImpl); AdfFacesContext.getCurrentInstance().addPartialTarget(tree.getParent()); The refresh in my use case is on the tree parent component (a layout container), which usually shows the best effect for refreshing the tree component. 

    Read the article

  • Adding a UINavigationController as a subview of UIView

    - by eagle
    I'm trying to display a UILabel on top of a UINavigationController. The problem is that when I add the UILabel as a subview of UIWindow it will not automatically rotate since it is not a subview of UIViewController (UIViewController automatically handles updating subviews during rotations). This is the hierarchy I was using: UIWindow UILabel UINavigationController So I was thinking I could use the following hierarchy: UIWindow UIViewController UIView UILabel UINavigationController This way the label could be displayed on top of the UINavigationController's bar while also automatically being rotated since it is a subview of UIViewController. The problem is that when I try adding a UINavigationController as a subview of a view: [myViewController.view addSubview:myNavigationController.view]; it will appear 20 pixels downwards. Which I'm guessing is because it thinks it needs to make room for the status bar. But, since the UINavigationController is being placed inside a UIView which does not overlay on top of the status bar, it is incorrectly adding an additional 20 pixels. In other words, the top of the UINavigationBar is at the screen's 40 pixel mark instead of at 20 pixels. Is there any easy way to just shift the UINavigationController and all of its elements (e.g. navigation bar, tool bar, root view controller) up 20 pixels? Or to let it know that it shouldn't compensate for a status bar? If not, I guess I would need to use my first hierarchy mentioned above and figure out how to rotate the label so it is consistent with the navigation bar's rotation. Where can I find more information on how to do this? Note: by "displaying a label on top of the navigation bar", I mean it should overlay on top of the navigation bar... it can't simply be wrapped in a bar button item and placed as one of the items of the navigation bar.

    Read the article

  • Can a masterpage reference another masterpage with the same content and contentplaceholder tags?

    - by Peach
    Current Setup I currently have three masterpages and content pages in the following hierarchy : One root-level masterpage that displays the final result. Call this "A" Two sibling pages that don't reference each other but contain all the same contentplaceholder elements, just in a different order with different <div>'s surrounding them. Both reference the root-level masterpage. Call these "B1" and "B2". Several content pages that reference one or the other sibling master pages above (not both). Call these "C1" through "C-whatever". Basically I have: Cn = B1 = A Cm = B2 = A This hierarchy works fine. Desired Setup What I want to do is add in a new level to this hierarchy (a new master page) between the content pages and the sibling masterpages. Basically so it's like this: One root-level masterpage that displays the final result. Two sibling pages plus a third sibling. Call it B3 A new middle masterpage that dynamically 'chooses' one of the sibling masterpages. The desired behaviour is to pass through the content given by C directly to Bn without modifying it. The only thing D actively does is choose which Bn. Call this new masterpage D. Several content pages that reference the new middle master page instead of the old siblings. The challenge to this is, I'm working within the confines of a rather complex product and I cannot change the original two sibling masterpages (B1 and B2) or content pages (C) in any meaningful way. I want: Cn = D = B1 = A Cm = D = B2 = A Ck = D = B3 = A Essentially, D should "pass through" all it's content to whichever B-level masterpage it chooses. I can't put this logic in the C-level pages. Additional Details All B-level pages have the same content/contentplaceholder tags, just ordered and styled differently. D can be as convoluted as it has to be, so long as it doesn't require modifying C or B. I'm using ASP.Net 2.0 Is this possible?

    Read the article

  • Setting specified flags before serializing objects

    - by Bernard
    We have a schema that we serialize and deserialize into an object hierarchy. Some elements are optional in the schema. The xsd tool creates a cs file that inserts a property for each optional element. This property ends in "Specified", i.e. nameSpecified tells the serializer and deserializer to include the optional "name" element when processing. I'm trying to write a method that rips through the object hierarchy using reflection and if a property has a value and it has a "Specified" corresponding property, I want to set the Specified property to true. I've tried to do this using reflection, ie. foreach(PropertyInfo p in MyObject.GetType().GetNestedTypes().GetType().GetProperties() { if the field name ends in Specified check if there is a field with the same name without Specied. If there is, and that field name has a value, then set the field name that ends in Specified to true; } Its the middle bit that I'm having trouble with. I preferably don't want to rip through the hierarchy and create a list of properties ending in Specified and then rip through it again to see if the corresponding name without the ending "Specified" exists and then check if it has a value. And the rip through it again to update all the Specified fields to true. Seems a bit of a long way around :( Anyone have any bright ideas?

    Read the article

  • Java method keyword "final" and its use

    - by Lukas Eder
    When I create complex type hierarchies (several levels, several types per level), I like to use the final keyword on methods implementing some interface declaration. An example: interface Garble { int zork(); } interface Gnarf extends Garble { /** * This is the same as calling {@link #zblah(0)} */ int zblah(); int zblah(int defaultZblah); } And then abstract class AbstractGarble implements Garble { @Override public final int zork() { ... } } abstract class AbstractGnarf extends AbstractGarble implements Gnarf { // Here I absolutely want to fix the default behaviour of zblah // No Gnarf shouldn't be allowed to set 1 as the default, for instance @Override public final int zblah() { return zblah(0); } // This method is not implemented here, but in a subclass @Override public abstract int zblah(int defaultZblah); } I do this for several reasons: It helps me develop the type hierarchy. When I add a class to the hierarchy, it is very clear, what methods I have to implement, and what methods I may not override (in case I forgot the details about the hierarchy) I think overriding concrete stuff is bad according to design principles and patterns, such as the template method pattern. I don't want other developers or my users do it. So the final keyword works perfectly for me. My question is: Why is it used so rarely in the wild? Can you show me some examples / reasons where final (in a similar case to mine) would be very bad?

    Read the article

  • Drill through table does not show correct count when used with a dimension having parent child hiera

    - by Arun Singhal
    Hi All, I have a dimension with parent child hierarchy as shown in code block. The issue i am facing is if i have a filter on parent child dimension then drill through table does not show filtered data instead it shows all the data for that dimension. Here is an example. <Dimension type="StandardDimension" name="page_type_d" caption="Page Type"> <Hierarchy name="page_type_h" hasAll="true" allMemberName="all_page_types" allMemberCaption="All Page Types" primaryKey="id"> <Table name="npg_page_type_view" alias="pt"> </Table> <Level name="Page Type" column="id" nameColumn="display_name" parentColumn="parent_id" nullParentValue="0" type="Integer" uniqueMembers="true" levelType="Regular" hideMemberIf="Never" caption="Page Type"> <Closure parentColumn="parent_id" childColumn="page_type_id"> <Table name="dim_page_types_closure"> </Table> </Closure> </Level> </Hierarchy> Now suppose i have 4 rows in npg_page_type_view table id display_name parent_id 19 HTML 100 20 PDF 100 21 XML 0 100 Total 0 Now suppose in my fact table i have following records id count 19 2 20 3 21 1 Following is my analysis view. Total (HTML and PDF) - 5 HTML - 2 PDF - 3 XML - 1 Now if i add filter(say Total) on this analysis view using OLAP cube. Then my analysis view shows the following. Total (HTML and PDF) - 5 Upto this point everything works fine. Now if i click on 5 (to view drill through table) It shows me data against all page type i.e. HTML, PDF, XML but as per filter it should show only HTML and PDF. Is it an exciting issue or am i doing something wrong here? Please help me.

    Read the article

  • Testing subpackage modules in Python 3

    - by Mitchell Model
    I have been experimenting with various uses of hierarchies like this and the differences between absolute and relative imports, and can't figure out how to do routine things with the package, subpackages, and modules without simply putting everything on sys.path. I have a two-level package hierarchy: MyApp __init__.py Application __init__.py Module1 Module2 ... Domain __init__.py Module1 Module2 ... UI __init__.py Module1 Module2 ... I want to be able to do the following: Run test code in a Module's "if main" when the module imports from other modules in the same directory. Have one or more test code modules in each subpackage that runs unit tests on the modules in the subpackage. Have a set of unit tests that reside in someplace reasonable, but outside the subpackages, either in a sibling package, at the top-level package, or outside the top-level package (though all these might end up doing is running the tests in each subpackage) "Enter" the structure from any of the three subpackage levels, e.g. run code that just uses Domain modules, run code that just uses Application modules, but Application uses code from both Application and Domain modules, and run code from GUI uses code from both GUI and Application; for instance, Application test code would import Application modules but not Domain modules. After developing the bulk of the code without subpackages, continue developing and testing after organizing the modules into this hierarchy. I know how to use relative imports so that external code that puts MyApp on its sys.path can import MyApp, import any subpackages it wants, and import things from their modules, while the modules in each subpackage can import other modules from the same subpackage or from sibling packages. However, the development needs listed above seem incompatible with subpackage structuring -- in other words, I can't have it both ways: a well-structured multi-level package hierarchy used from the outside and also used from within, in particular for testing but also because modules from one design level (in particular the UI) should not import modules from a design level below the next one down. Sorry for the long essay, but I think it fairly represents the struggles a lot of people have been having adopting to the new relative import mechanisms.

    Read the article

  • CompositeDataBoundControl - databound values overwritten before event is fired due to DummyDataSourc

    - by Vidar Langberget
    I have a custom servercontrol that inherits from CompositeDataBoundControl. I have three templates: one header template, one footer template and one item template. The item template can contain a checkbox that I use to decide if I should delete the item. In the footer and/or header templates I have a button with a CommandName of "DeleteItem". When that button is clicked, I handle the event in OnBubbleEvent: if (cea.CommandName == "DeleteItem") { //loop through the item list and get the selected rows List<int> itemsToDelete = new List<int>(); foreach(Control c in this.Controls){ if (c is ItemData) { ItemData oid = (ItemData)c; CheckBox chkSel = (CheckBox)oid.FindControl("chkSelected"); if (chkSel.Checked) { itemsToDelete.Add(oid.Item.Id); } } } foreach (int id in itemsToDelete) { DeleteItem(id); } } } The problem is that Item is null since the CreateChildControls method already has been run as asp.net needs to recreate the control hierarchy before the event fire. It uses the DummyDataSource and a list of null objects to recreate the control hierarchy: IEnumerator e = dataSource.GetEnumerator(); if (e != null) { while (e.MoveNext()) { ItemData container = new ItemData (e.Current as OrderItem); ITemplate itemTemplate = this.ItemTemplate; if (itemTemplate == null) { itemTemplate = new DefaultItemTemplate(); } itemTemplate.InstantiateIn(container); Controls.Add(container); if (dataBinding) { container.DataBind(); } counter++; } } The problem is this line: ItemData container = new ItemData (e.Current as OrderItem); When the control hierarchy is rebuilt before the event is fired, the e.Current is null, so when I try to find out which item was marked for deletion, I get 0 since the original value has been overwritten. Any suggestions on how to fix this?

    Read the article

  • EF/LINQ: Where() against a property of a subtype

    - by ladenedge
    I have a set of POCOs, all of which implement the following simple interface: interface IIdObject { int Id { get; set; } } A subset of these POCOs implement this additional interface: interface IDeletableObject : IIdObject { bool IsDeleted { get; set; } } I have a repository hierarchy that looks something like this: IRepository<T <: BasicRepository<T <: ValidatingRepository<T (where T is IIdObject) I'm trying to add a FilteringRepository to the hierarchy such that all of the POCOs that implement IDeletableObject have a Where(p => p.IsDeleted == false) filter applied before any other queries take place. My goal is to avoid duplicating the hierarchy solely for IDeletableObjects. My first attempt looked like this: public override IQueryable<T> Query() { return base.Query().Where(t => ((IDeletableObject)t).IsDeleted == false); } This works well with LINQ to Objects, but when I switch to an EF backend I get: "LINQ to Entities only supports casting Entity Data Model primitive types." I went on to try some fancier parameterized solutions, but they ultimately failed because I couldn't make T covariant in the following case for some reason I don't quite understand: interface IQueryFilter<out T> // error { Expression<Func<T, bool>> GetFilter(); } I'd be happy to go into more detail on my more complicated solutions if it would help, but I think I'll stop here for now in hope that someone might have an idea for me to try. Thanks very much in advance!

    Read the article

  • Type casting in C++ by detecting the current 'this' object type

    - by Elroy
    My question is related to RTTI in C++ where I'm trying to check if an object belongs to the type hierarchy of another object. The BelongsTo() method checks this. I tried using typeid, but it throws an error and I'm not sure about any other way how I can find the target type to convert to at runtime. #include <iostream> #include <typeinfo> class X { public: // Checks if the input type belongs to the type heirarchy of input object type bool BelongsTo(X* p_a) { // I'm trying to check if the current (this) type belongs to the same type // hierarchy as the input type return dynamic_cast<typeid(*p_a)*>(this) != NULL; // error C2059: syntax error 'typeid' } }; class A : public X { }; class B : public A { }; class C : public A { }; int main() { X* a = new A(); X* b = new B(); X* c = new C(); bool test1 = b->BelongsTo(a); // should return true bool test2 = b->BelongsTo(c); // should return false bool test3 = c->BelongsTo(a); // should return true } Making the method virtual and letting derived classes do it seems like a bad idea as I have a lot of classes in the same type hierarchy. Or does anybody know of any other/better way to the do the same thing? Please suggest.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Hiera + Puppet classes

    - by Amadan
    I'm trying to figure out Puppet (3.0) and how it relates to built-in Hiera. So this is what I tried, an extremely simple example (I'll make a more complex hierarchy when I manage to get the simple one working): # /etc/puppet/hiera.yaml :backends: - yaml :hierarchy: - common :yaml: :datadir: /etc/puppet/hieradata # /etc/puppet/hieradata/common.yaml test::param: value # /etc/puppet/modules/test/manifests/init.pp class test ($param) { notice($param) } # /etc/puppet/manifests/site.pp include test If I directly apply it, it's fine: $ puppet apply /etc/puppet/manifests/site.pp Scope(Class[Test]): value If I go through puppet master, it's not fine: $ puppet agent --test Could not retrieve catalog from remote server: Error 400 on SERVER: Must pass param to Class[Test] at /etc/puppet/manifests/site.pp:1 on node <nodename> What am I missing? EDIT: I just left the office but a thought struck me: I should probably restart puppet master so it can see the new hiera.conf. I'll try that on Monday; in the meantime, if anyone figures out some not-it problem, I'd appreciate it :)

    Read the article

  • All-on-one-page print view in Plone

    - by Kev
    We have a Plone 4 document that is in a hierarchy. At each node there's either a document, or a folder. Folders then have more documents and folders. We want to be able to print the entire hierarchy, which means rendering the whole thing on one page. I see a number of web sites like this one that seem to have something like this. Is it manually done or is there some add-on I can get to make this feature possible?

    Read the article

  • Which IMAP servers support both messages and subfolders in a folder?

    - by user43516
    Hi, I currently have a POP server for email, which is delivered to a Thunderbird client. This Thunderbird client stores email locally into a hierarchy of subfolders containing both emails and subfolders. I now want to access this locally stored email from other clients. My first solution was to create an IMAP mailbox and move all the messages to the IMAP server. I wasn't able to do it because my IMAP server refused to create subfolders in folders already containing email. As the original hierarchy is quite complex, I can't modify it to try to get along with this limitation. Are there any Linux IMAP server that would accept having both messages and subfolders in a folder?

    Read the article

  • Tips on combining the right Art Assets with a 2D Skeleton and making it flexible

    - by DevilWithin
    I am on my first attempt to build a skeletal animation system for 2D side-scrollers, so I don't really have experience of what may appear in later stages. So i ask advice from anyone that been there and done that! My approach: I built a Tree structure, the root node is like the center-of-mass of the skeleton, allowing to apply global transformations to the skeleton. Then, i make the hierarchy of the bones, so when moving a leg, the foot also moves. (I also make a Joint, which connects two bones, for utility). I load animations to it from a simple key frame lerp, so it does smooth movement. I map the animation hierarchy to the skeleton, or a part of it, to see if the structure is alike, otherwise the animation doesnt start. I think this is pretty much a standard implementation for such a thing, even if i want to convert it to a Rag Doll on the fly.. Now to my question: Imagine a game like prototype, there is a skeleton animation of the main character, which can animate all meshes in the game that are rigged the same way.. That way the character can transform into anything without any extra code. That is pretty much what i want to do for a side-scroller, in theory it sounds easy, but I want to know if that will work well. If the different people will be decently animated when using the same skeleton-animation pair. I can see this working well with a Stickman, but what about actual humans? Will the perspective look right, or i will need to dynamically change the sprites attached to bones? What do you recommend for such a system?

    Read the article

  • Extreme Optimization Numerical Libraries for .NET – Part 1 of n

    - by JoshReuben
    While many of my colleagues are fascinated in constructing the ultimate ViewModel or ServiceBus, I feel that this kind of plumbing code is re-invented far too many times – at some point in the near future, it will be out of the box standard infra. How many times have you been to a customer site and built a different variation of the same kind of code frameworks? How many times can you abstract Prism or reliable and discoverable WCF communication? As the bar is raised for whats bundled with the framework and more tasks become declarative, automated and configurable, Information Systems will expose a higher level of abstraction, forcing software engineers to focus on more advanced computer science and algorithmic tasks. I've spent the better half of the past decade building skills in .NET and expanding my mathematical horizons by working through the Schaums guides. In this series I am going to examine how these skillsets come together in the implementation provided by ExtremeOptimization. Download the trial version here: http://www.extremeoptimization.com/downloads.aspx Overview The library implements a set of algorithms for: linear algebra, complex numbers, numerical integration and differentiation, solving equations, optimization, random numbers, regression, ANOVA, statistical distributions, hypothesis tests. EONumLib combines three libraries in one - organized in a consistent namespace hierarchy. Mathematics Library - Extreme.Mathematics namespace Vector and Matrix Library - Extreme.Mathematics.LinearAlgebra namespace Statistics Library - Extreme.Statistics namespace System Requirements -.NET framework 4.0  Mathematics Library The classes are organized into the following namespace hierarchy: Extreme.Mathematics – common data types, exception types, and delegates. Extreme.Mathematics.Calculus - numerical integration and differentiation of functions. Extreme.Mathematics.Curves - points, lines and curves, including polynomials and Chebyshev approximations. curve fitting and interpolation. Extreme.Mathematics.Generic - generic arithmetic & linear algebra. Extreme.Mathematics.EquationSolvers - root finding algorithms. Extreme.Mathematics.LinearAlgebra - vectors , matrices , matrix decompositions, solvers for simultaneous linear equations and least squares. Extreme.Mathematics.Optimization – multi-d function optimization + linear programming. Extreme.Mathematics.SignalProcessing - one and two-dimensional discrete Fourier transforms. Extreme.Mathematics.SpecialFunctions

    Read the article

  • Using HTML5 Today part 2&ndash;Fixing Semantic tags with a Shiv

    - by Steve Albers
    Semantic elements and the Shiv! This is the second entry in the series of demos from the “Using HTML5 Today” talk. For the definitive discussion on unknown elements and the HTML5 Shiv check out Mark Pilgrim’s Dive Into HTML5 online book at http://diveintohtml5.info/semantics.html#unknown-elements Semantic tags increase the meaning and maintainability of your markup, help make your page more computer-readable, and can even provide opportunities for libraries that are written to automagically enhance content using standard tags like <nav>, <header>,  or <footer>. Legacy IE issues However, new HTML5 tags get mangled in IE browsers prior to version 9.  To see this in action, consider this bit of HTML code which includes the new <article> and <header> elements: Viewing this page using the IE9 developer tools (F12) we see that the browser correctly models the hierarchy of tags listed above: But if we switch to IE8 Browser Mode in developer tools things go bad: Did you know that a closing tag could close itself?? The browser loses the hierarchy & closes all of the new tags.  The new tags become unusable and the page structure falls apart. Additionally block-level elements lose their block status, appearing as inline.    The Fix (good) The block-level issue can be resolved by using CSS styling.  Below we set the article, header, and footer tags as block tags. article, header, footer {display:block;} You can avoid the unknown element issue by creating a version of the element in JavaScript before the actual HTML5 tag appears on the page: <script> document.createElement("article"); document.createElement("header"); document.createElement("footer"); </script> The Fix (better) Rather than adding your own JS you can take advantage of a standard JS library such as Remy Sharp’s HTML5 Shiv at http://code.google.com/p/html5shiv/.  By default the Modernizr library includes HTML5 Shiv, so you don’t need to include the shiv code separately if you are using Modernizr.

    Read the article

  • Understanding Visitor Pattern

    - by Nezreli
    I have a hierarchy of classes that represents GUI controls. Something like this: Control-ContainerControl-Form I have to implement a series of algoritms that work with objects doing various stuff and I'm thinking that Visitor pattern would be the cleanest solution. Let take for example an algorithm which creates a Xml representaion of a hierarchy of objects. Using 'classic' approach I would do this: public abstract class Control { public virtual XmlElement ToXML(XmlDocument document) { XmlElement xml = document.CreateElement(this.GetType().Name); // Create element, fill it with attributes declared with control return xml; } } public abstract class ContainerControl : Control { public override XmlElement ToXML(XmlDocument document) { XmlElement xml = base.ToXML(document); // Use forech to fill XmlElement with child XmlElements return xml; } } public class Form : ContainerControl { public override XmlElement ToXML(XmlDocument document) { XmlElement xml = base.ToXML(document); // Fill remaining elements declared in Form class return xml; } } But I'm not sure how to do this with visitor pattern. This is the basic implementation: public class ToXmlVisitor : IVisitor { public void Visit(Form form) { } } Since even the abstract classes help with implementation I'm not sure how to do that properly in ToXmlVisitor. Perhaps there is a better solution to this problem. The reason that I'm considering Visitor pattern is that some algorithms will need references not available in project where the classes are implemented and there is a number of different algorithms so I'm avoiding large classes. Any thoughts are welcome.

    Read the article

  • importing animations in Blender, weird rotations/locations

    - by user975135
    This is for the Blender 2.6 API. There are two problems: 1. When I import a single animation frame from my animation file to Blender, all bones look fine. But when I import multiple (all of the frames), just the first one looks right, seems like newer frames are affected by older ones, so you get slightly off positions/rotations. This is true when both assigning PoseBone.matrix and PoseBone.matrix_basis. bone_index = 0 # for each frame: for frame_index in range(frame_count): # for each pose bone: add a key for bone_name in bone_names: # "bone_names" - a list of bone names I got earlier pose.bones[bone_name].matrix = animation_matrices[frame_index][bone_index] # "animation_matrices" - a nested list of matrices generated from reading a file # create the 'keys' for the Action from the poses pose.bones[bone_name].keyframe_insert('location', frame = frame_index+1) pose.bones[bone_name].keyframe_insert('rotation_euler', frame = frame_index+1) pose.bones[bone_name].keyframe_insert('scale', frame = frame_index+1) bone_index += 1 bone_index = 0 Again, it seems like previous frames are affecting latter ones, because if I import a single frame from the middle of the animation, it looks fine. 2. I can't assign armature-space animation matrices read from a file to a skeleton with hierarchy (parenting). In Blender 2.4 you could just assign them to PoseBone.poseMatrix and bones would deform perfectly whether the bones had a hierarchy or none at all. In Blender 2.6, there's PoseBone.matrix_basis and PoseBone.matrix. While matrix_basis is relative to parent bone, matrix isn't, the API says it's in object space. So it should have worked, but doesn't. So I guess we need to calculate a local space matrix from our armature-space animation matrices from the files. So I tried multiplying it ( PoseBone.matrix ) with PoseBone.parent.matrix.inverted() in both possible orders with no luck, still weird deformations.

    Read the article

  • How do you encode Algebraic Data Types in a C#- or Java-like language?

    - by Jörg W Mittag
    There are some problems which are easily solved by Algebraic Data Types, for example a List type can be very succinctly expressed as: data ConsList a = Empty | ConsCell a (ConsList a) consmap f Empty = Empty consmap f (ConsCell a b) = ConsCell (f a) (consmap f b) l = ConsCell 1 (ConsCell 2 (ConsCell 3 Empty)) consmap (+1) l This particular example is in Haskell, but it would be similar in other languages with native support for Algebraic Data Types. It turns out that there is an obvious mapping to OO-style subtyping: the datatype becomes an abstract base class and every data constructor becomes a concrete subclass. Here's an example in Scala: sealed abstract class ConsList[+T] { def map[U](f: T => U): ConsList[U] } object Empty extends ConsList[Nothing] { override def map[U](f: Nothing => U) = this } final class ConsCell[T](first: T, rest: ConsList[T]) extends ConsList[T] { override def map[U](f: T => U) = new ConsCell(f(first), rest.map(f)) } val l = (new ConsCell(1, new ConsCell(2, new ConsCell(3, Empty))) l.map(1+) The only thing needed beyond naive subclassing is a way to seal classes, i.e. a way to make it impossible to add subclasses to a hierarchy. How would you approach this problem in a language like C# or Java? The two stumbling blocks I found when trying to use Algebraic Data Types in C# were: I couldn't figure out what the bottom type is called in C# (i.e. I couldn't figure out what to put into class Empty : ConsList< ??? >) I couldn't figure out a way to seal ConsList so that no subclasses can be added to the hierarchy What would be the most idiomatic way to implement Algebraic Data Types in C# and/or Java? Or, if it isn't possible, what would be the idiomatic replacement?

    Read the article

  • Is implementing an interface defined in a subpackage an anti-pattern?

    - by Michael Kjörling
    Let's say I have the following: package me.my.pkg; public interface Something { /* ... couple of methods go here ... */ } and: package me.my; import me.my.pkg.Something; public class SomeClass implements Something { /* ... implementation of Something goes here ... */ /* ... some more method implementations go here too ... */ } That is, the class implementing an interface lives closer to the package hierarchy root than does the interface it implements but they both belong in the same package hierarchy. The reason for this in the particular case I have in mind is that there is a previously-existing package that groups functionality which the Something interface logically belongs to, and the logical (as in both "the one you'd expect" and "the one where it needs to go given the current architecture") implementation class exists previously and lives one level "up" from the logical placement of the interface. The implementing class does not logically belong anywhere under me.my.pkg. In my particular case, the class in question implements several interfaces, but that feels like it doesn't make any (or at least no significant) difference here. I can't decide if this is an acceptable pattern or not. Is it or is it not, and why?

    Read the article

  • How to Modify Data Security in Fusion Applications

    - by Elie Wazen
    The reference implementation in Fusion Applications is designed with built-in data security on business objects that implement the most common business practices.  For example, the “Sales Representative” job has the following two data security rules implemented on an “Opportunity” to restrict the list of Opportunities that are visible to an Sales Representative: Can view all the Opportunities where they are a member of the Opportunity Team Can view all the Opportunities where they are a resource of a territory in the Opportunity territory team While the above conditions may represent the most common access requirements of an Opportunity, some customers may have additional access constraints. This blog post explains: How to discover the data security implemented in Fusion Applications. How to customize data security Illustrative example. a.) How to discover seeded data security definitions The Security Reference Manuals explain the Function and Data Security implemented on each job role.  Security Reference Manuals are available on Oracle Enterprise Repository for Oracle Fusion Applications. The following is a snap shot of the security documented for the “Sales Representative” Job. The two data security policies define the list of Opportunities a Sales Representative can view. Here is a sample of data security policies on an Opportunity. Business Object Policy Description Policy Store Implementation Opportunity A Sales Representative can view opportunity where they are a territory resource in the opportunity territory team Role: Opportunity Territory Resource Duty Privilege: View Opportunity (Data) Resource: Opportunity A Sales Representative can view opportunity where they are an opportunity sales team member with view, edit, or full access Role: Opportunity Sales Representative Duty Privilege: View Opportunity (Data) Resource: Opportunity Description of Columns Column Name Description Policy Description Explains the data filters that are implemented as a SQL Where Clause in a Data Security Grant Policy Store Implementation Provides the implementation details of the Data Security Grant for this policy. In this example the Opportunities listed for a “Sales Representative” job role are derived from a combination of two grants defined on two separate duty roles at are inherited by the Sales Representative job role. b.) How to customize data security Requirement 1: Opportunities should be viewed only by members of the opportunity team and not by all the members of all the territories on the opportunity. Solution: Remove the role “Opportunity Territory Resource Duty” from the hierarchy of the “Sales Representative” job role. Best Practice: Do not modify the seeded role hierarchy. Create a custom “Sales Representative” job role and build the role hierarchy with the seeded duty roles. Requirement 2: Opportunities must be more restrictive based on a custom attribute that identifies if a Opportunity is confidential or not. Confidential Opportunities must be visible only the owner of the Opportunity. Solution: Modify the (2) data security policy in the above example as follows: A Sales Representative can view opportunity where they are a territory resource in the opportunity territory team and the opportunity is not confidential. Implementation of this policy is more invasive. The seeded SQL where clause of the data security grant on “Opportunity Territory Resource Duty” has to be modified and the condition that checks for the confidential flag must be added. Best Practice: Do not modify the seeded grant. Create a new grant with the modified condition. End Date the seeded grant. c.) Illustrative Example (Implementing Requirement 2) A data security policy contains the following components: Role Object Instance Set Action Of the above four components, the Role and Instance Set are the only components that are customizable. Object and Actions for that object are seed data and cannot be modified. To customize a seeded policy, “A Sales Representative can view opportunity where they are a territory resource in the opportunity territory team”, Find the seeded policy Identify the Role, Object, Instance Set and Action components of the policy Create a new custom instance set based on the seeded instance set. End Date the seeded policies Create a new data security policy with custom instance set c-1: Find the seeded policy Step 1: 1. Find the Role 2. Open 3. Find Policies Step 2: Click on the Data Security Tab Sort by “Resource Name” Find all the policies with the “Condition” as “where they are a territory resource in the opportunity territory team” In this example, we can see there are 5 policies for “Opportunity Territory Resource Duty” on Opportunity object. Step 3: Now that we know the policy details, we need to create new instance set with the custom condition. All instance sets are linked to the object. Find the object using global search option. Open it and click on “condition” tab Sort by Display name Find the Instance set Edit the instance set and copy the “SQL Predicate” to a notepad. Create a new instance set with the modified SQL Predicate from above by clicking on the icon as shown below. Step 4: End date the seeded data security policies on the duty role and create new policies with your custom instance set. Repeat the navigation in step Edit each of the 5 policies and end date them 3. Create new custom policies with the same information as the seeded policies in the “General Information”, “Roles” and “Action” tabs. 4. In the “Rules” tab, please pick the new instance set that was created in Step 3.

    Read the article

  • org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'transactionManager

    - by BilalFromParis
    when I add the code into my spring configuration file beans-hibernate.xml <bean id="transactionManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager"> <property name="sessionFactory" ref="sessionFactory" /> </bean> It doesn't work and I don't know why, can someone help me please ? My Dao Class is : public class CourseDaoImpl implements CourseDao { private SessionFactory sessionFactory; public void setSessionFactory(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } @Transactional public void store(Course course) { sessionFactory.getCurrentSession().saveOrUpdate(course); } @Transactional public void delete(Long courseId) { Course course = (Course)sessionFactory.getCurrentSession().get(Course.class, courseId); sessionFactory.getCurrentSession().delete(course); } @Transactional(readOnly=true) public Course findById(Long courseId) { return (Course)sessionFactory.getCurrentSession().get(Course.class, courseId); } @Transactional public List<Course> findAll() { Query query = sessionFactory.getCurrentSession().createQuery("FROM Course"); return (List<Course>)query.list(); } } but : juil. 04, 2012 3:38:18 AM org.springframework.context.support.AbstractApplicationContext prepareRefresh Infos: Refreshing org.springframework.context.support.ClassPathXmlApplicationContext@6ba8fb1b: startup date [Wed Jul 04 03:38:18 CEST 2012]; root of context hierarchy juil. 04, 2012 3:38:18 AM org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions Infos: Loading XML bean definitions from class path resource [beans-hibernate.xml] juil. 04, 2012 3:38:19 AM org.springframework.beans.factory.support.DefaultListableBeanFactory preInstantiateSingletons Infos: Pre-instantiating singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@5a7fed46: defining beans [org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,sessionFactory,transactionManager,courseDao]; root of factory hierarchy juil. 04, 2012 3:38:19 AM org.hibernate.annotations.common.Version INFO: HCANN000001: Hibernate Commons Annotations {4.0.1.Final} juil. 04, 2012 3:38:19 AM org.hibernate.Version logVersion INFO: HHH000412: Hibernate Core {4.1.3.Final} juil. 04, 2012 3:38:19 AM org.hibernate.cfg.Environment INFO: HHH000206: hibernate.properties not found juil. 04, 2012 3:38:19 AM org.hibernate.cfg.Environment buildBytecodeProvider INFO: HHH000021: Bytecode provider name : javassist juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000402: Using Hibernate built-in connection pool (not for production use!) juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000115: Hibernate connection pool size: 20 juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000006: Autocommit mode: false juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000401: using driver [org.hibernate.dialect.PostgreSQLDialect] at URL [jdbc:postgresql://localhost:5432/spring] juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure INFO: HHH000046: Connection properties: {user=Bilal, password=**} juil. 04, 2012 3:38:19 AM org.hibernate.dialect.Dialect INFO: HHH000400: Using dialect: org.hibernate.dialect.PostgreSQLDialect juil. 04, 2012 3:38:19 AM org.hibernate.engine.jdbc.internal.LobCreatorBuilder useContextualLobCreation INFO: HHH000423: Disabling contextual LOB creation as JDBC driver reported JDBC version [3] less than 4 juil. 04, 2012 3:38:19 AM org.hibernate.engine.transaction.internal.TransactionFactoryInitiator initiateService INFO: HHH000399: Using default transaction strategy (direct JDBC transactions) juil. 04, 2012 3:38:19 AM org.hibernate.hql.internal.ast.ASTQueryTranslatorFactory INFO: HHH000397: Using ASTQueryTranslatorFactory juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000228: Running hbm2ddl schema update juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000102: Fetching database metadata juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000396: Updating schema juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000261: Table found: public.course juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000037: Columns: [fee, id, title, end_date, begin_date] juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000108: Foreign keys: [] juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.TableMetadata INFO: HHH000126: Indexes: [course_pkey] juil. 04, 2012 3:38:19 AM org.hibernate.tool.hbm2ddl.SchemaUpdate execute INFO: HHH000232: Schema update complete juil. 04, 2012 3:38:19 AM org.springframework.beans.factory.support.DefaultSingletonBeanRegistry destroySingletons Infos: Destroying singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@5a7fed46: defining beans [org.springframework.aop.config.internalAutoProxyCreator,org.springframework.transaction.annotation.AnnotationTransactionAttributeSource#0,org.springframework.transaction.interceptor.TransactionInterceptor#0,org.springframework.transaction.config.internalTransactionAdvisor,sessionFactory,transactionManager,courseDao]; root of factory hierarchy juil. 04, 2012 3:38:19 AM org.hibernate.service.jdbc.connections.internal.DriverManagerConnectionProviderImpl stop INFO: HHH000030: Cleaning up connection pool [jdbc:postgresql://localhost:5432/spring] Exception in thread "main" org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'transactionManager' defined in class path resource [beans-hibernate.xml]: Invocation of init method failed; nested exception is java.lang.NoClassDefFoundError: org/hibernate/engine/SessionFactoryImplementor at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1455) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:519) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:456) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:294) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:225) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:291) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:193) at org.springframework.beans.factory.support.DefaultListableBeanFactory.preInstantiateSingletons(DefaultListableBeanFactory.java:585) at org.springframework.context.support.AbstractApplicationContext.finishBeanFactoryInitialization(AbstractApplicationContext.java:913) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:464) at org.springframework.context.support.ClassPathXmlApplicationContext.(ClassPathXmlApplicationContext.java:139) at org.springframework.context.support.ClassPathXmlApplicationContext.(ClassPathXmlApplicationContext.java:83) at com.boutaya.bill.main.Main.main(Main.java:14) Caused by: java.lang.NoClassDefFoundError: org/hibernate/engine/SessionFactoryImplementor at org.springframework.orm.hibernate3.SessionFactoryUtils.getDataSource(SessionFactoryUtils.java:123) at org.springframework.orm.hibernate3.HibernateTransactionManager.afterPropertiesSet(HibernateTransactionManager.java:411) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1514) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1452) ... 12 more Caused by: java.lang.ClassNotFoundException: org.hibernate.engine.SessionFactoryImplementor at java.net.URLClassLoader$1.run(Unknown Source) at java.net.URLClassLoader$1.run(Unknown Source) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(Unknown Source) at java.lang.ClassLoader.loadClass(Unknown Source) at sun.misc.Launcher$AppClassLoader.loadClass(Unknown Source) at java.lang.ClassLoader.loadClass(Unknown Source) ... 16 more I think the problem is when I use the Class : org.springframework.orm.hibernate3.HibernateTransactionManager ???

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >