Search Results

Search found 43467 results on 1739 pages for 'member function pointers'.

Page 12/1739 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Vim: Custom Folding function done, custom highlighting required

    - by sixtyfootersdude
    I have defined a function in vim to properly indent folds. Ie so they look like this: Unfolded this is text also text indented text indented text not indented text folded with default function this is text also text +-- 2 lines: indented text ---------------------------- not indented text folded with my new function this is text also text ++- 2 lines: indented text ---------------------------- not indented text The only problem is the the highlighting is still like this: folded with my new function (highlighting shown with tag) this is text also text <hi> ++- 2 lines: indented text ----------------------------</hi> not indented text I would like the highlighting to start at the ++ and not at the beginning of the line. I have looked in the vim manual but could not find anything like that. One so-so solution I found was to make the background black. highlight Folded ctermbg=black ctermfg=white cterm=bold But this make folds less visible. I have tried several variations of: syn keyword Folded lines syn region Folded ... But I don't think that this is the way that folds are selected. Can anyone offer a suggestion? By the way this is my function to indent the folds: set foldmethod=indent function! MyFoldText() let lines = 1 + v:foldend - v:foldstart let ind = indent(v:foldstart) let spaces = '' let i = 0 while i < ind let i = i+1 let spaces = spaces . ' ' endwhile let linestxt = 'lines' if lines == 1 linestxt = 'line' endif return spaces . '+' . v:folddashes . ' '. lines . ' ' . linestxt . ': ' . getline(v:foldstaendfunction endfunction au BufWinEnter,BufRead,BufNewFile * set foldtext=MyFoldText() By the way thanks to njd for helping me get this function setup.

    Read the article

  • Passing functor and function pointers interchangeably using a templated method in C++

    - by metroxylon
    I currently have a templated class, with a templated method. Works great with functors, but having trouble compiling for functions. Foo.h template <typename T> class Foo { public: // Constructor, destructor, etc... template <typename Func> void bar(T x, Func f); }; template <typename T> template <typename Func> Foo::bar(T x, Func f) { /* some code here */ } Main.cpp #include "Foo.h" template <typename T> class Functor { public: Functor() {} void operator()(T x) { /* ... */ } private: /* some attributes here */ }; void Function(T x) { /* ... */ } int main() { Foo<int> foo; foo.bar(2, Functor); // No problem foo.bar(2, Function); // <unresolved overloaded function type> return 0; }

    Read the article

  • c++ templates: problem with member specialization

    - by ChAoS
    I am attempting to create a template "AutoClass" that create an arbitrary class with an arbitrary set of members, such as: AutoClass<int,int,double,double> a; a.set(1,1); a.set(0,2); a.set(3,99.7); std::cout << "Hello world! " << a.get(0) << " " << a.get(1) << " " << a.get(3) << std::endl; By now I have an AutoClass with a working "set" member: class nothing {}; template < typename T1 = nothing, typename T2 = nothing, typename T3 = nothing, typename T4 = nothing, typename T5 = nothing, typename T6 = nothing> class AutoClass; template <> class AutoClass<nothing, nothing, nothing, nothing, nothing, nothing> { public: template <typename U> void set(int n,U v){} }; template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> class AutoClass: AutoClass<T2,T3,T4,T5,T6> { public: T1 V; template <typename U> void set(int n,U v) { if (n <= 0) V = v; else AutoClass<T2,T3,T4,T5,T6>::set(n-1,v); } }; and I started to have problems implementing the corresponding "get". This approach doesn't compile: template < typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> class AutoClass: AutoClass<T2,T3,T4,T5,T6> { public: T1 V; template <typename U> void set(int n,U v) { if (n <= 0) V = v; else AutoClass<T2,T3,T4,T5,T6>::set(n-1,v); } template <typename W> W get(int n) { if (n <= 0) return V; else return AutoClass<T2,T3,T4,T5,T6>::get(n-1); } template <> T1 get(int n) { if (n <= 0) return V; else return AutoClass<T2,T3,T4,T5,T6>::get(n-1); } }; Besides, it seems I need to implement get for the <nothing, nothing, nothing, nothing, nothing, nothing> specialization. Any Idea on how to solve this?

    Read the article

  • C Map String to Function

    - by Scriptonaut
    So, I'm making a Unix minishell, and have come to a roadblock. I need to be able to execute built-in functions, so I made a function: int exec_if_built_in(char **args) It takes an array of strings(the first being the command, and the rest being arguments). For non built-in commands I simply use something like execvp, however I need to find a way to map the first string to a function. I was thinking of making two arrays, one of strings, and another with their corresponding function pointers. However, since many of these functions will be different(return and accept different things), this approach won't work. I also thought of making an array of structs with a name property and a function pointer property, however once again due to the varied nature of the functions I'll be using, this won't work. So, what's the best way to execute a function based on the input of a string? How do I map a string to a certain function? I'm not very familiar with function pointers so I may be missing something. Thank you guys for the help :)

    Read the article

  • Template meta-programming with member function pointers?

    - by wheaties
    Is it possible to use member function pointers with template meta-programming? Such as: class Connection{ public: string getName() const; string getAlias() const; //more stuff }; typedef string (Connection::*Con_Func)() const; template<Con_Func _Name> class Foo{ Connection m_Connect; public: void Foo(){ cout << m_Connect.(*_Name); } }; typedef Foo<&Connection::getName> NamedFoo; typedef Foo<&Connection::getAlias> AliasFoo; Granted, this is rather contrived but is it possible? (yes, there are probably much better ways but humor me.)

    Read the article

  • C# Inherited member variables behaving undexpectedly

    - by Nilbert
    If I have a class like this: class A { public string fe = "A"; } And a class that inherits from it like so: class B : A { public string fe = "B"; } Visual C++ will tell me that B.fe hides A.fe so I should use the new keyword. So I change class B to look like: class B : A { public new string fe = "B"; } And then I have a function that takes an A (but, by virtue of inheritance, will also take a B) like this: class D { public static void blah(A anAObject) { Console.Writeline(A.fe); } } Even when I pass it an instance of a B object, which it will take without question, it will print "A"! Why is this, and how can I make it work how I want without setting the variable in the constructor?

    Read the article

  • Why can operator-> be overloaded manually?

    - by FredOverflow
    Wouldn't it make sense if p->m was just syntactic sugar for (*p).m? Essentially, every operator-> that I have ever written could have been implemented as follows: Foo::Foo* operator->() { return &**this; } Is there any case where I would want p->m to mean something else than (*p).m?

    Read the article

  • Why isn't the compiler smarter in this const function overloading problem?

    - by Frank
    The following code does not compile: #include <iostream> class Foo { std::string s; public: const std::string& GetString() const { return s; } std::string* GetString() { return &s; } }; int main(int argc, char** argv){ Foo foo; const std::string& s = foo.GetString(); // error return 0; } I get the following error: const1.cc:11: error: invalid initialization of reference of type 'const std::string&' from expression of type 'std::string* It does make some sense because foo is not of type const Foo, but just Foo, so the compiler wants to use the non-const function. But still, why can't it recognize that I want to call the const GetString function, by looking at the (type of) variable I assign it to? I found this kind of surprising.

    Read the article

  • Algorithm to Sort member into groups

    - by kasmanit
    I'll have to develop an application which the final purpose is to sort all the member into groups. Each group will have the same size. And I had to put the members into the groups several times during the execution of the program. To put the member into the groups, a lot of critria are to be look at, because we do not want that two people are put again together two time in the same execution of the program, of course if it's the only way to find a correct solution, it' fine, and there is a lot of other criteria, like some people can be willing to be always with another member. So to resume, we have n members to put in groups of size 8. After the first "round" we have to do again the algorithm to sort them differently. And a lot of critria may go in the calculation of the priority of each member Do you have any idea?

    Read the article

  • How to convert a lambda to an std::function using templates

    - by retep998
    Basically, what I want to be able to do is take a lambda with any number of any type of parameters and convert it to an std::function. I've tried the following and neither method works. std::function([](){});//Complains that std::function is missing template parameters template <typename T> void foo(function<T> f){} foo([](){});//Complains that it cannot find a matching candidate The following code does work however, but it is not what I want because it requires explicitly stating the template parameters which does not work for generic code. std::function<void()>([](){}); I've been mucking around with functions and templates all evening and I just can't figure this out, so any help would be much appreciated. As mentioned in a comment, the reason I'm trying to do this is because I'm trying to implement currying in C++ using variadic templates. Unfortunately, this fails horribly when using lambdas. For example, I can pass a standard function using a function pointer. template <typename R, typename...A> void foo(R (*f)(A...)) {} void bar() {} int main() { foo(bar); } However, I can't figure out how to pass a lambda to such a variadic function. Why I'm interested in converting a generic lambda into an std::function is because I can do the following, but it ends up requiring that I explicitly state the template parameters to std::function which is what I am trying to avoid. template <typename R, typename...A> void foo(std::function<R(A...)>) {} int main() { foo(std::function<void()>([](){})); }

    Read the article

  • How to create a container that holds different types of function pointers in C++?

    - by Alex
    I'm doing a linear genetic programming project, where programs are bred and evolved by means of natural evolution mechanisms. Their "DNA" is basically a container (I've used arrays and vectors successfully) which contain function pointers to a set of functions available. Now, for simple problems, such as mathematical problems, I could use one type-defined function pointer which could point to functions that all return a double and all take as parameters two doubles. Unfortunately this is not very practical. I need to be able to have a container which can have different sorts of function pointers, say a function pointer to a function which takes no arguments, or a function which takes one argument, or a function which returns something, etc (you get the idea)... Is there any way to do this using any kind of container ? Could I do that using a container which contains polymorphic classes, which in their turn have various kinds of function pointers? I hope someone can direct me towards a solution because redesigning everything I've done so far is going to be painful.

    Read the article

  • How to get function's name from function's pointer in C?

    - by Daniel Silveira
    How to get function's name from function's pointer in C? Edit: The real case is: I'm writing a linux kernel module and I'm calling kernel functions. Some of these functions are pointers and I want to inspect the code of that function in the kernel source. But I don't know which function it is pointing to. I thought it could be done because, when the system fails (kernel panic) it prints out in the screen the current callstack with function's names. But, I guess I was wrong... am I?

    Read the article

  • Pass a function as parameter in jQuery?

    - by thedp
    Hello, I would like to pass to a jQuery function a regular function, instead of the usual anonymous function, but I'm not sure how such a thing could be done. Instead of this: function setVersion(feature) { $.post("some.php", { abc:"abc" }, function(data){ // do something here }, "json"); } I would like to do this: function foo(data){ // do something here } function setVersion(feature) { $.post("some.php", { abc:"abc" }, foo, "json"); } Thank you.

    Read the article

  • How can I assign pointer member with long string?

    - by Nano HE
    Hi, When I did the practice below to erase my pointer member and assign new value to it. (*pMyPointer).member.erase(); (*pMyPointer).member.assign("Hello"); // Successfully Than I tried more... (*pMyPointer).member.erase(); (*pMyPointer).member.assign("Long Multi Lines Format String"); // How to? If the long multi lines string can't quote by double quoter, how to handle it. Thank you.

    Read the article

  • Static Member Variables of the Same Class in C++

    - by helixed
    I'm trying to create a class which contains a static pointer to an instance of itself. Here's an example: A.h: #include <iostream> #ifndef _A_H #define _A_H class A { static A * a; }; A * a = NULL; #endif However, when I include A.h in another file, such as: #include "A.h" class B { }; I get the following error: ld: duplicate symbol _a in /Users/helixed/Desktop/Example/build/Example.build/Debug/Example.build/Objects-normal/x86_64/B.o and /Users/helixed/Desktop/Example/build/Example.build/Debug/Examplebuild/Objects-normal/x86_64/A.o I'm using the Xcode default compiler on Mac OS X Snow Leopard. Thanks, helixed

    Read the article

  • Function arguments VBA

    - by user1068249
    I have these three functions: When I run the first 2 functions, There's no problem, but when I run the last function (LMTD), It says 'Division by zero' yet when I debug some of the arguments have values, some don't. I know what I have to do, but I want to know why I have to do it, because it makes no sense to me. Tinn-function doesn't have Tut's arguments, so I have to add them to Tinn-function's arguments. Same goes for Tut, that doesn't know all of Tinn's arguments, and LMTD has to have both of Tinn and Tut's arguments. If I do that, it all runs smoothly. Why do I have to do this? Public Function Tinn(Tw, Qw, Qp, Q, deltaT) Tinn = (((Tw * Qw) + (Tut(Q, fd, mix) * Q)) / Qp) + deltaT End Function Public Function Tut(Q, fd, mix) Tut = Tinn(Tw, Qw, Qp, Q, deltaT) - (avgittEffektAiUiLMTD() / ((Q * fd * mix) / 3600)) End Function Public Function LMTD(Tsjo) LMTD = ((Tinn(Tw, Qw, Qp, Q, deltaT) - Tsjo) - (Tut(Q, fd, mix) - Tsjo)) / (WorksheetFunction.Ln ((Tinn(Tw, Qw, Qp, Q, deltaT) - Tsjo) / (Tut(Q, fd, mix) - Tsjo))) End Function

    Read the article

  • vc++ - static member is showing error

    - by prabhakaran
    I am using vc++(2010). I am trying to create a class for server side socket. Here is the header file #include<winsock.h> #include<string> #include<iostream> using namespace std; class AcceptSocket { // static SOCKET s; protected: SOCKET acceptSocket; public: AcceptSocket(){}; void setSocket(SOCKET socket); static void EstablishConnection(int portNo,string&); static void closeConnection(); static void StartAccepting(); virtual void threadDeal(); static DWORD WINAPI MyThreadFunction(LPVOID lpParam); }; SOCKET AcceptSocket::s; and the corresponding source file #include<NetWorking.h> #include<string> void AcceptSocket::setSocket(SOCKET s) { acceptSocket=s; } void AcceptSocket::EstablishConnection(int portno,string &failure) { WSAData w; int error = WSAStartup(0x0202,&w); if(error) failure=failure+"\nWSAStartupFailure"; if(w.wVersion != 0x0202) { WSACleanup(); failure=failure+"\nVersion is different"; } SOCKADDR_IN addr; addr.sin_family=AF_INET; addr.sin_port=htons(portno); addr.sin_addr.s_addr=htonl(INADDR_ANY); AcceptSocket::s=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP); if(AcceptSocket::s == INVALID_SOCKET) failure=failure+"\nsocket creating error"; if(bind(AcceptSocket::s,(LPSOCKADDR) &addr,sizeof(addr)) == SOCKET_ERROR) failure=failure+"\nbinding error"; listen(AcceptSocket::s,SOMAXCONN); } void AcceptSocket::closeConnection() { if(AcceptSocket::s) closesocket(AcceptSocket::s); WSACleanup(); } void AcceptSocket::StartAccepting() { sockaddr_in addrNew; int size=sizeof(addrNew); while(1) { SOCKET temp=accept(AcceptSocket::s,(sockaddr *)&addrNew,&size); AcceptSocket * tempAcceptSocket=new AcceptSocket(); tempAcceptSocket->setSocket(temp); DWORD threadId; HANDLE thread=CreateThread(NULL,0,MyThreadFunction,(LPVOID)tempAcceptSocket,0,&threadId); } } DWORD WINAPI AcceptSocket::MyThreadFunction(LPVOID lpParam) { AcceptSocket * acceptsocket=(AcceptSocket *) lpParam; acceptsocket->threadDeal(); return 1; } void AcceptSocket::threadDeal() { "You didn't define threadDeal in the derived class"; } Now the main.cpp is #include<Networking.h> int main() { } When I am compiling The error I got is Error 1 error LNK2005: "private: static unsigned int AcceptSocket::s" (?s@AcceptSocket@@0IA) already defined in NetWorking.obj C:\Documents and Settings\prabhakaran\Desktop\check\check\main.obj check Error 2 error LNK1169: one or more multiply defined symbols found C:\Documents and Settings\prabhakaran\Desktop\check\Debug\check.exe 1 1 check Now anybody please enlighten me about this issue

    Read the article

  • class member access specifiers

    - by pdehaan
    I understand what the typical access specifiers are, and what they mean. 'public' members are accessible anywhere, 'private' members are accessible only by the same class and friends, etc. What I'm wondering is what, if anything, this equates to in lower-level terms. Are their any post-compilation functional differences between these beyond the high-level restrictions (what can access what) imposed by the language (c++ in this case) they're used in. Another way to put it - if this were a perfect world where programmers always made good choices (like not accessing members that may change later and using only well defined members that should stay the same between implementations), would their be any reason to use these things?

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Equivalent to window.setTimeout() for C++

    - by bobobobo
    In javascript there's this sweet, sweet function window.setTimeout( func, 1000 ) ; which will asynchronously invoke func after 1000 ms. I want to do something similar in C++ (without multithreading), so I put together a sample loop like: #include <stdio.h> struct Callback { // The _time_ this function will be executed. double execTime ; // The function to execute after execTime has passed void* func ; } ; // Sample function to execute void go() { puts( "GO" ) ; } // Global program-wide sense of time double time ; int main() { // start the timer time = 0 ; // Make a sample callback Callback c1 ; c1.execTime = 10000 ; c1.func = go ; while( 1 ) { // its time to execute it if( time c1.execTime ) { c1.func ; // !! doesn't work! } time++; } } How can I make something like this work?

    Read the article

  • Function pointer arrays in Fortran

    - by Eduardo Dobay
    I can create function pointers in Fortran 90, with code like real, external :: f and then use f as an argument to another function/subroutine. But what if I want an array of function pointers? In C I would just do double (*f[])(int); to create an array of functions returning double and taking an integer argument. I tried the most obvious, real, external, dimension(3) :: f but gfortran doesn't let me mix EXTERNAL and DIMENSION. Is there any way to do what I want? (The context for this is a program for solving a system of differential equations, so I could input the equations without having a million parameters in my subroutines.)

    Read the article

  • How to store a function in a member of class? (Using function as callback)

    - by Dane
    I want to store a function as a class member and call it inside the class? Pretty much like a callback function. My class draw a document but every document must drawn differently. So I want to assign a function (written outside of the class) into one of the members of the class and then call it when I want to draw the document. This function mostly is responsible for transforming objects according to each specific document. Here is my class: class CDocument { public: CDocument(); ~CDocument(); void *TransFunc(); } void Transform() { } int main() CDocument* Doc = new CDocument(); Doc->TransFunc = Transform(); } I know that this is probably simple question, but I couldn't find the answer by googling or searching SO.

    Read the article

  • Syncronizing indices of function pointer table to table contents

    - by Thomas Matthews
    In the embedded system I'm working on, we are using a table of function pointers to support proprietary Dynamic Libraries. We have a header file that uses named constants (#define) for the function pointer indices. These values are used in calculating the location in the table of the function's address. Example: *(export_table.c)* // Assume each function in the table has an associated declaration typedef void (*Function_Ptr)(void); Function_Ptr Export_Function_Table[] = { 0, Print, Read, Write, Process, }; Here is the header file: *export_table.h* #define ID_PRINT_FUNCTION 1 #define ID_READ_FUNCTION 2 #define ID_WRITE_FUNCTION 3 #define ID_PROCESS_FUNCTION 4 I'm looking for a scheme to define the named constants in terms of their location in the array so that when the order of the functions changes, the constants will also change. (Also, I would like the compiler or preprocessor to calculate the indices to avoid human mistakes like typeo's.)

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >