Search Results

Search found 2678 results on 108 pages for 'michael b mclaughlin'.

Page 12/108 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Silverlight Cream for November 24, 2011 -- #1173

    - by Dave Campbell
    In this Thanksgiving Day Issue: Andrea Boschin, Samidip Basu, Ollie Riches, WindowsPhoneGeek, Sumit Dutta, Dhananjay Kumar, Daniel Egan, Doug Mair, Chris Woodruff, and Debal Saha.Happy Thanksgiving Everybody! Above the Fold: Silverlight: "Silverlight CommandBinding with Simple MVVM Toolkit" Debal Saha WP7: "How many pins can Bing Maps handle in a WP7 app - part 3" Ollie Riches Shoutouts: Michael Palermo's latest Desert Mountain Developers is up Michael Washington's latest Visual Studio #LightSwitch Daily is up From SilverlightCream.com:Windows Phone 7.5 - Play with musicAndrea Boschin's latest WP7 post is up on SilverlightShow... he's talking about the improvements in the music hub and also the programmability of musicOData caching in Windows PhoneSamidip Basu has an OData post up on SilverlightShow also, and he's talking about data caching strategies on WP7How many pins can Bing Maps handle in a WP7 app - part 3Ollie Riches has part 3 of his series on Bing Maps and pins... sepecifically how to deal with a large number of them... after going through discussing pins, he is suggesting using a heat map which looks pretty darn good, and renders fast... except when on a device :(Improvements in the LongListSelector Selection with Nov `11 release of WP ToolkitWindowsPhoneGeek's latest is this tutorial on the LongListSelector in the WP Toolkit... check out the previous info in his free eBook to get ready then dig into this tutorial for improvements in the control.Part 25 - Windows Phone 7 - Device StatusSumit Dutta's latest post is number 25 in his WP7 series, and time out he's digging into device status in the Microsoft.Phone.Info namespaceVideo on How to work with Picture in Windows Phone 7Dhananjay Kumar's latest video tutorial on WP7 is up, and he's talking about working with Photos.Live Tiles–Windows Phone WorkshopDaniel Egan has the video up of a Windows Phone Workshop done earlier this week on Live Tiles31 Days of Mango | Day #15: The Progress BarDoug Mair shares the show with Jeff Blankenburg in Jeff's Day 15 in his 31 Day quest of Mango, talking about the progressbar: Indeterminate and Determinate Modes abound31 Days of Mango | Day #14: Using ODataChris Woodruff has a guest spot on Jeff Blankenburg's 31 Days series with this post on OData... long detailed tutorial with all the codeSilverlight CommandBinding with Simple MVVM ToolkitDebal Saha has a nice detailed tutorial up on CommandBinding.. he's using the SimpleMVVM Toolkit and shows downloading and installing itStay in the 'Light!Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCreamJoin me @ SilverlightCream | Phoenix Silverlight User GroupTechnorati Tags:Silverlight    Silverlight 3    Silverlight 4    Windows PhoneMIX10

    Read the article

  • Behaviour Driven Maturity Model

    - by Michael Stephenson
    Originally posted on: http://geekswithblogs.net/michaelstephenson/archive/2013/07/02/153326.aspxFor anyone who is interested I have written a small paper about the theory behind the BizTalk Maturity Assessment using a generic framework I have called the "Behaviour Driven Maturity Model" and then how it could be applied to the assessment of other subjects.The paper is on the following link:http://btsmaturity.blob.core.windows.net/behaviour-driven-model/Behaviour%20Based%20Maturity%20Model%20-%20Introduction.pdfIf you would like to create a model for a different subject area based on the details of this paper then I would encourage this as much as possible, all I ask is the following:1. Let us know your doing it so we can help tell people about each others activities2. Make it free to the community3. Reference back to BizTalkMaturity.com as the source of your model

    Read the article

  • Disable messages “Login failed for user” in Event log

    - by Michael Freidgeim
    I’ve noticed multiple messages in EventLog on my machineLogin failed for user 'NT AUTHORITY\ANONYMOUS LOGON'. Reason: Token-based server access validation failed with an infrastructure error. Check for previous errors. [CLIENT: 10.222.25.129]I’ve found that there are machines of my co-workers, but they were not sure, which processes tried to access my SQL server.I’ve tried a few things and finally in SQL Server Configuration Manager disabled tcp, as it was suggested inhttp://blogs.msdn.com/b/psssql/archive/2010/03/09/what-spn-do-i-use-and-how-does-it-get-there.aspx

    Read the article

  • Visual Studio 10 crashed when tried to open one of solutions

    - by Michael Freidgeim
    Visual Studio 10 crashed when I tried to open  one of my solutions. Closing Visual Studio and rebooting the machine didn’t help.The error message that was logged(see below), didn’t give any useful ideas.Finally It was fixed after I’ve deleted MySolution.suo file, which was quite big, and also Resharper folders.Log Name:      ApplicationSource:        Application ErrorEvent ID:      1000Task Category: (100)Level:         ErrorKeywords:      ClassicUser:          N/ADescription:Faulting application name: devenv.exe, version: 10.0.40219.1, time stamp: 0x4d5f2a73Faulting module name: msenv.dll, version: 10.0.40219.1, time stamp: 0x4d5f2d48Exception code: 0xc0000005Fault offset: 0x00355770Faulting process id: 0x1dc0Faulting application start time: 0x01cd1836888599f4Faulting application path: C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\devenv.exeFaulting module path: c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\msenv.dllReport Id: 9924b2f9-844e-11e1-bc19-782bcba513eaEvent Xml:<Event >  <System>    <Provider Name="Application Error" />    <EventID Qualifiers="0">1000</EventID>    <Level>2</Level>    <Task>100</Task>    <Keywords>0x80000000000000</Keywords>    <TimeCreated SystemTime="2012-04-12T03:21:31.000000000Z" />    <EventRecordID>401998</EventRecordID>    <Channel>Application</Channel>    <Security />  </System>  <EventData>    <Data>devenv.exe</Data>    <Data>10.0.40219.1</Data>    <Data>4d5f2a73</Data>    <Data>msenv.dll</Data>    <Data>10.0.40219.1</Data>    <Data>4d5f2d48</Data>    <Data>c0000005</Data>    <Data>00355770</Data>    <Data>1dc0</Data>    <Data>01cd1836888599f4</Data>    <Data>C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\devenv.exe</Data>    <Data>c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\msenv.dll</Data>    <Data>9924b2f9-844e-11e1-bc19-782bcba513ea</Data>  </EventData></Event>v

    Read the article

  • CCNet TFS Migration - Dealing with left over folders

    - by Michael Stephenson
    Im currently in the process of migrating our many BizTalk projects from MKS source control to TFS.  While we will be using TFS for work item tracking and source control etc we will be continuing to use Cruise Control for continuous integration although im updating this to CCNet 1.5 at the same time. Ill post a few things as much as a reminder to myself about some of the problems we come across. Problem After the first build of our code the next time a build is triggered an error is encountered by the TFS source control block refreshing the source code. System.IO.IOException: The directory is not empty.    at System.IO.Directory.DeleteHelper(String fullPath, String userPath, Boolean recursive)    at System.IO.Directory.Delete(String fullPath, String userPath, Boolean recursive)    at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.deleteDirectory(String path)    at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.GetSource(IIntegrationResult result)    at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Build(IIntegrationResult result)    at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Integrate(IntegrationRequest request) System.IO.IOException: The directory is not empty. at System.IO.Directory.DeleteHelper(String fullPath, String userPath, Boolean recursive) at System.IO.Directory.Delete(String fullPath, String userPath, Boolean recursive) at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.deleteDirectory(String path) at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.GetSource(IIntegrationResult result) at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Build(IIntegrationResult result) at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Integrate(IntegrationRequest request) Project: Bupa.BPI.Documents Date of build: 2011-01-28 14:54:21 Running time: 00:00:05 Integration Request: Build (ForceBuild) triggered from VMOPBZDEV11 Solution The problem seems to be with a folder called TestLocations which is created by the build process and used along with the file adapter as a way to get messages into BizTalk.  For some reason the source control block when it does a full refresh of the code does not get rid of this folder and then complains thats a problem and fails the build. Interestingly there are other folders created by the build which are deleted fine.  My assumption is that this if something to do with the file adapter polling the directory.  However note that we have not had this problem with other source control blocks in the past. To workaround this I have added a prebuild task to the ccnet.config file to delete this folder before the source control block is executed.  See below for example < prebuild> exec>executable>cmd.exe</executable>buildArgs>/c "if exist "C:\<MyCode>\TestLocations" rd /s /q "C:\<MyCode>\TestLocations""</buildArgs>exec> prebuild> < < < </ </

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

  • Segfault when iterating over a map<string, string> and drawing its contents using SDL_TTF

    - by Michael Stahre
    I'm not entirely sure this question belongs on gamedev.stackexchange, but I'm technically working on a game and working with SDL, so it might not be entirely offtopic. I've written a class called DebugText. The point of the class is to have a nice way of printing values of variables to the game screen. The idea is to call SetDebugText() with the variables in question every time they change or, as is currently the case, every time the game's Update() is called. The issue is that when iterating over the map that contains my variables and their latest updated values, I get segfaults. See the comments in DrawDebugText() below, it specifies where the error happens. I've tried splitting the calls to it-first and it-second into separate lines and found that the problem doesn't always happen when calling it-first. It alters between it-first and it-second. I can't find a pattern. It doesn't fail on every call to DrawDebugText() either. It might fail on the third time DrawDebugText() is called, or it might fail on the fourth. Class header: #ifndef CLIENT_DEBUGTEXT_H #define CLIENT_DEBUGTEXT_H #include <Map> #include <Math.h> #include <sstream> #include <SDL.h> #include <SDL_ttf.h> #include "vector2.h" using std::string; using std::stringstream; using std::map; using std::pair; using game::Vector2; namespace game { class DebugText { private: TTF_Font* debug_text_font; map<string, string>* debug_text_list; public: void SetDebugText(string var, bool value); void SetDebugText(string var, float value); void SetDebugText(string var, int value); void SetDebugText(string var, Vector2 value); void SetDebugText(string var, string value); int DrawDebugText(SDL_Surface*, SDL_Rect*); void InitDebugText(); void Clear(); }; } #endif Class source file: #include "debugtext.h" namespace game { // Copypasta function for handling the toString conversion template <class T> inline string to_string (const T& t) { stringstream ss (stringstream::in | stringstream::out); ss << t; return ss.str(); } // Initializes SDL_TTF and sets its font void DebugText::InitDebugText() { if(TTF_WasInit()) TTF_Quit(); TTF_Init(); debug_text_font = TTF_OpenFont("LiberationSans-Regular.ttf", 16); TTF_SetFontStyle(debug_text_font, TTF_STYLE_NORMAL); } // Iterates over the current debug_text_list and draws every element on the screen. // After drawing with SDL you need to get a rect specifying the area on the screen that was changed and tell SDL that this part of the screen needs to be updated. this is done in the game's Draw() function // This function sets rects_to_update to the new list of rects provided by all of the surfaces and returns the number of rects in the list. These two parameters are used in Draw() when calling on SDL_UpdateRects(), which takes an SDL_Rect* and a list length int DebugText::DrawDebugText(SDL_Surface* screen, SDL_Rect* rects_to_update) { if(debug_text_list == NULL) return 0; if(!TTF_WasInit()) InitDebugText(); rects_to_update = NULL; // Specifying the font color SDL_Color font_color = {0xff, 0x00, 0x00, 0x00}; // r, g, b, unused int row_count = 0; string line; // The iterator variable map<string, string>::iterator it; // Gets the iterator and iterates over it for(it = debug_text_list->begin(); it != debug_text_list->end(); it++) { // Takes the first value (the name of the variable) and the second value (the value of the parameter in string form) //---------THIS LINE GIVES ME SEGFAULTS----- line = it->first + ": " + it->second; //------------------------------------------ // Creates a surface with the text on it that in turn can be rendered to the screen itself later SDL_Surface* debug_surface = TTF_RenderText_Solid(debug_text_font, line.c_str(), font_color); if(debug_surface == NULL) { // A standard check for errors fprintf(stderr, "Error: %s", TTF_GetError()); return NULL; } else { // If SDL_TTF did its job right, then we now set a destination rect row_count++; SDL_Rect dstrect = {5, 5, 0, 0}; // x, y, w, h dstrect.x = 20; dstrect.y = 20*row_count; // Draws the surface with the text on it to the screen int res = SDL_BlitSurface(debug_surface,NULL,screen,&dstrect); if(res != 0) { //Just an error check fprintf(stderr, "Error: %s", SDL_GetError()); return NULL; } // Creates a new rect to specify the area that needs to be updated with SDL_Rect* new_rect_to_update = (SDL_Rect*) malloc(sizeof(SDL_Rect)); new_rect_to_update->h = debug_surface->h; new_rect_to_update->w = debug_surface->w; new_rect_to_update->x = dstrect.x; new_rect_to_update->y = dstrect.y; // Just freeing the surface since it isn't necessary anymore SDL_FreeSurface(debug_surface); // Creates a new list of rects with room for the new rect SDL_Rect* newtemp = (SDL_Rect*) malloc(row_count*sizeof(SDL_Rect)); // Copies the data from the old list of rects to the new one memcpy(newtemp, rects_to_update, (row_count-1)*sizeof(SDL_Rect)); // Adds the new rect to the new list newtemp[row_count-1] = *new_rect_to_update; // Frees the memory used by the old list free(rects_to_update); // And finally redirects the pointer to the old list to the new list rects_to_update = newtemp; newtemp = NULL; } } // When the entire map has been iterated over, return the number of lines that were drawn, ie. the number of rects in the returned rect list return row_count; } // The SetDebugText used by all the SetDebugText overloads // Takes two strings, inserts them into the map as a pair void DebugText::SetDebugText(string var, string value) { if (debug_text_list == NULL) { debug_text_list = new map<string, string>(); } debug_text_list->erase(var); debug_text_list->insert(pair<string, string>(var, value)); } // Writes the bool to a string and calls SetDebugText(string, string) void DebugText::SetDebugText(string var, bool value) { string result; if (value) result = "True"; else result = "False"; SetDebugText(var, result); } // Does the same thing, but uses to_string() to convert the float void DebugText::SetDebugText(string var, float value) { SetDebugText(var, to_string(value)); } // Same as above, but int void DebugText::SetDebugText(string var, int value) { SetDebugText(var, to_string(value)); } // Vector2 is a struct of my own making. It contains the two float vars x and y void DebugText::SetDebugText(string var, Vector2 value) { SetDebugText(var + ".x", to_string(value.x)); SetDebugText(var + ".y", to_string(value.y)); } // Empties the list. I don't actually use this in my code. Shame on me for writing something I don't use. void DebugText::Clear() { if(debug_text_list != NULL) debug_text_list->clear(); } }

    Read the article

  • Translate jQuery UI Datepicker format to .Net Date format

    - by Michael Freidgeim
    I needed to use the same date format in client jQuery UI Datepicker and server ASP.NET code. The actual format can be different for different localization cultures.I decided to translate Datepicker format to .Net Date format similar as it was asked to do opposite operation in http://stackoverflow.com/questions/8531247/jquery-datepickers-dateformat-how-to-integrate-with-net-current-culture-date Note that replace command need to replace whole words and order of calls is importantFunction that does opposite operation (translate  .Net Date format toDatepicker format) is described in http://www.codeproject.com/Articles/62031/JQueryUI-Datepicker-in-ASP-NET-MVC /// <summary> /// Uses regex '\b' as suggested in //http://stackoverflow.com/questions/6143642/way-to-have-string-replace-only-hit-whole-words /// </summary> /// <param name="original"></param> /// <param name="wordToFind"></param> /// <param name="replacement"></param> /// <param name="regexOptions"></param> /// <returns></returns> static public string ReplaceWholeWord(this string original, string wordToFind, string replacement, RegexOptions regexOptions = RegexOptions.None) { string pattern = String.Format(@"\b{0}\b", wordToFind); string ret=Regex.Replace(original, pattern, replacement, regexOptions); return ret; } /// <summary> /// E.g "DD, d MM, yy" to ,"dddd, d MMMM, yyyy" /// </summary> /// <param name="datePickerFormat"></param> /// <returns></returns> /// <remarks> /// Idea to replace from http://stackoverflow.com/questions/8531247/jquery-datepickers-dateformat-how-to-integrate-with-net-current-culture-date ///From http://docs.jquery.com/UI/Datepicker/$.datepicker.formatDate to http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx ///Format a date into a string value with a specified format. ///d - day of month (no leading zero) ---.Net the same ///dd - day of month (two digit) ---.Net the same ///D - day name short ---.Net "ddd" ///DD - day name long ---.Net "dddd" ///m - month of year (no leading zero) ---.Net "M" ///mm - month of year (two digit) ---.Net "MM" ///M - month name short ---.Net "MMM" ///MM - month name long ---.Net "MMMM" ///y - year (two digit) ---.Net "yy" ///yy - year (four digit) ---.Net "yyyy" /// </remarks> public static string JQueryDatePickerFormatToDotNetDateFormat(string datePickerFormat) { string sRet = datePickerFormat.ReplaceWholeWord("DD", "dddd").ReplaceWholeWord("D", "ddd"); sRet = sRet.ReplaceWholeWord("M", "MMM").ReplaceWholeWord("MM", "MMMM").ReplaceWholeWord("m", "M").ReplaceWholeWord("mm", "MM");//order is important sRet = sRet.ReplaceWholeWord("yy", "yyyy").ReplaceWholeWord("y", "yy");//order is important return sRet; }

    Read the article

  • C#/.NET &ndash; Finding an Item&rsquo;s Index in IEnumerable&lt;T&gt;

    - by James Michael Hare
    Sorry for the long blogging hiatus.  First it was, of course, the holidays hustle and bustle, then my brother and his wife gave birth to their son, so I’ve been away from my blogging for two weeks. Background: Finding an item’s index in List<T> is easy… Many times in our day to day programming activities, we want to find the index of an item in a collection.  Now, if we have a List<T> and we’re looking for the item itself this is trivial: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // can find the exact item using IndexOf() 5: var pos = list.IndexOf(64); This will return the position of the item if it’s found, or –1 if not.  It’s easy to see how this works for primitive types where equality is well defined.  For complex types, however, it will attempt to compare them using EqualityComparer<T>.Default which, in a nutshell, relies on the object’s Equals() method. So what if we want to search for a condition instead of equality?  That’s also easy in a List<T> with the FindIndex() method: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // finds index of first even number or -1 if not found. 5: var pos = list.FindIndex(i => i % 2 == 0);   Problem: Finding an item’s index in IEnumerable<T> is not so easy... This is all well and good for lists, but what if we want to do the same thing for IEnumerable<T>?  A collection of IEnumerable<T> has no indexing, so there’s no direct method to find an item’s index.  LINQ, as powerful as it is, gives us many tools to get us this information, but not in one step.  As with almost any problem involving collections, there are several ways to accomplish the same goal.  And once again as with almost any problem involving collections, the choice of the solution somewhat depends on the situation. So let’s look at a few possible alternatives.  I’m going to express each of these as extension methods for simplicity and consistency. Solution: The TakeWhile() and Count() combo One of the things you can do is to perform a TakeWhile() on the list as long as your find condition is not true, and then do a Count() of the items it took.  The only downside to this method is that if the item is not in the list, the index will be the full Count() of items, and not –1.  So if you don’t know the size of the list beforehand, this can be confusing. 1: // a collection of extra extension methods off IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item in the collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // note if item not found, result is length and not -1! 8: return list.TakeWhile(i => !finder(i)).Count(); 9: } 10: } Personally, I don’t like switching the paradigm of not found away from –1, so this is one of my least favorites.  Solution: Select with index Many people don’t realize that there is an alternative form of the LINQ Select() method that will provide you an index of the item being selected: 1: list.Select( (item,index) => do something here with the item and/or index... ) This can come in handy, but must be treated with care.  This is because the index provided is only as pertains to the result of previous operations (if any).  For example: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // you'd hope this would give you the indexes of the even numbers 5: // which would be 2, 3, 8, but in reality it gives you 0, 1, 2 6: list.Where(item => item % 2 == 0).Select((item,index) => index); The reason the example gives you the collection { 0, 1, 2 } is because the where clause passes over any items that are odd, and therefore only the even items are given to the select and only they are given indexes. Conversely, we can’t select the index and then test the item in a Where() clause, because then the Where() clause would be operating on the index and not the item! So, what we have to do is to select the item and index and put them together in an anonymous type.  It looks ugly, but it works: 1: // extensions defined on IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // finds an item in a collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // if you don't name the anonymous properties they are the variable names 8: return list.Select((item, index) => new { item, index }) 9: .Where(p => finder(p.item)) 10: .Select(p => p.index + 1) 11: .FirstOrDefault() - 1; 12: } 13: }     So let’s look at this, because i know it’s convoluted: First Select() joins the items and their indexes into an anonymous type. Where() filters that list to only the ones matching the predicate. Second Select() picks the index of the matches and adds 1 – this is to distinguish between not found and first item. FirstOrDefault() returns the first item found from the previous clauses or default (zero) if not found. Subtract one so that not found (zero) will be –1, and first item (one) will be zero. The bad thing is, this is ugly as hell and creates anonymous objects for each item tested until it finds the match.  This concerns me a bit but we’ll defer judgment until compare the relative performances below. Solution: Convert ToList() and use FindIndex() This solution is easy enough.  We know any IEnumerable<T> can be converted to List<T> using the LINQ extension method ToList(), so we can easily convert the collection to a list and then just use the FindIndex() method baked into List<T>. 1: // a collection of extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // find the index of an item in the collection similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: return list.ToList().FindIndex(finder); 8: } 9: } This solution is simplicity itself!  It is very concise and elegant and you need not worry about anyone misinterpreting what it’s trying to do (as opposed to the more convoluted LINQ methods above). But the main thing I’m concerned about here is the performance hit to allocate the List<T> in the ToList() call, but once again we’ll explore that in a second. Solution: Roll your own FindIndex() for IEnumerable<T> Of course, you can always roll your own FindIndex() method for IEnumerable<T>.  It would be a very simple for loop which scans for the item and counts as it goes.  There’s many ways to do this, but one such way might look like: 1: // extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item matching a predicate in the enumeration, much like List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: int index = 0; 8: foreach (var item in list) 9: { 10: if (finder(item)) 11: { 12: return index; 13: } 14:  15: index++; 16: } 17:  18: return -1; 19: } 20: } Well, it’s not quite simplicity, and those less familiar with LINQ may prefer it since it doesn’t include all of the lambdas and behind the scenes iterators that come with deferred execution.  But does having this long, blown out method really gain us much in performance? Comparison of Proposed Solutions So we’ve now seen four solutions, let’s analyze their collective performance.  I took each of the four methods described above and run them over 100,000 iterations of lists of size 10, 100, 1000, and 10000 and here’s the performance results.  Then I looked for targets at the begining of the list (best case), middle of the list (the average case) and not in the list (worst case as must scan all of the list). Each of the times below is the average time in milliseconds for one execution as computer over the 100,000 iterations: Searches Matching First Item (Best Case)   10 100 1000 10000 TakeWhile 0.0003 0.0003 0.0003 0.0003 Select 0.0005 0.0005 0.0005 0.0005 ToList 0.0002 0.0003 0.0013 0.0121 Manual 0.0001 0.0001 0.0001 0.0001   Searches Matching Middle Item (Average Case)   10 100 1000 10000 TakeWhile 0.0004 0.0020 0.0191 0.1889 Select 0.0008 0.0042 0.0387 0.3802 ToList 0.0002 0.0007 0.0057 0.0562 Manual 0.0002 0.0013 0.0129 0.1255   Searches Where Not Found (Worst Case)   10 100 1000 10000 TakeWhile 0.0006 0.0039 0.0381 0.3770 Select 0.0012 0.0081 0.0758 0.7583 ToList 0.0002 0.0012 0.0100 0.0996 Manual 0.0003 0.0026 0.0253 0.2514   Notice something interesting here, you’d think the “roll your own” loop would be the most efficient, but it only wins when the item is first (or very close to it) regardless of list size.  In almost all other cases though and in particular the average case and worst case, the ToList()/FindIndex() combo wins for performance, even though it is creating some temporary memory to hold the List<T>.  If you examine the algorithm, the reason why is most likely because once it’s in a ToList() form, internally FindIndex() scans the internal array which is much more efficient to iterate over.  Thus, it takes a one time performance hit (not including any GC impact) to create the List<T> but after that the performance is much better. Summary If you’re concerned about too many throw-away objects, you can always roll your own FindIndex() method, but for sheer simplicity and overall performance, using the ToList()/FindIndex() combo performs best on nearly all list sizes in the average and worst cases.    Technorati Tags: C#,.NET,Litte Wonders,BlackRabbitCoder,Software,LINQ,List

    Read the article

  • Review: A Quick Look at Reflector

    - by James Michael Hare
    I, like many, was disappointed when I heard that Reflector 7 was not free, and perhaps that’s why I waited so long to try it and just kept using my version 6 (which continues to be free).  But though I resisted for so long, I longed for the better features that were being developed, and began to wonder if I should upgrade.  Thus, I began to look into the features being offered in Reflector 7.5 to see what was new. Multiple Editions Reflector 7.5 comes in three flavors, each building on the features of the previous version: Standard – Contains just the Standalone application ($70) VS – Same as Standard but adds Reflector Object Browser for Visual Studio ($130) VSPro – Same as VS but adds ability to set breakpoints and step into decompiled code ($190) So let’s examine each of these features. The Standalone Application (Standard, VS, VSPro editions) Popping open Reflector 7.5 and looking at the GUI, we see much of the same familiar features, with a few new ones as well: Most notably, the disassembler window now has a tabbed window with navigation buttons.  This makes it much easier to back out of a deep-dive into many layers of decompiled code back to a previous point. Also, there is now an analyzer which can be used to determine dependencies for a given method, property, type, etc. For example, if we select System.Net.Sockets.TcpClient and hit the Analyze button, we’d see a window with the following nodes we could expand: This gives us the ability to see what a given type uses, what uses it, who exposes it, and who instantiates it. Now obviously, for low-level types (like DateTime) this list would be enormous, but this can give a lot of information on how a given type is connected to the larger code ecosystem. One of the other things I like about using Reflector 7.5 is that it does a much better job of displaying iterator blocks than Reflector 6 did. For example, if you were to take a look at the Enumerable.Cast() extension method in System.Linq, and dive into the CastIterator in Reflector 6, you’d see this: But now, in Reflector 7.5, we see the iterator logic much more clearly: This is a big improvement in the quality of their code disassembler and for me was one of the main reasons I decided to take the plunge and get version 7.5. The Reflector Object Browser (VS, VSPro editions) If you have the .NET Reflector VS or VSPro editions, you’ll find you have in Visual Studio a Reflector Object Browser window available where you can select and decompile any assembly right in Visual Studio. For example, if you want to take a peek at how System.Collections.Generic.List<T> works, you can either select List<T> in the Reflector Object Browser, or even simpler just select a usage of it in your code and CTRL + Click to dive in. – And it takes you right to a source window with the decompiled source: Setting Breakpoints and Stepping Into Decompiled Code (VSPro) If you have the VSPro edition, in addition to all the things said above, you also get the additional ability to set breakpoints in this decompiled code and step through it as if it were your own code: This can be a handy feature when you need to see why your code’s use of a BCL or other third-party library isn’t working as you expect. Summary Yes, Reflector is no longer free, and yes, that’s a bit of a bummer. But it always was and still is a very fine tool. If you still have Reflector 6, you aren’t forced to upgrade any longer, but getting the nicer disassembler (especially for iterator blocks) and the handy VS integration is worth at least considering upgrading for.  So I leave it up to you, these are some of the features of Reflector 7.5, what’s your thoughts? Technorati Tags: .NET,Reflector

    Read the article

  • C#/.NET Little Wonders: The Timeout static class

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. When I started the “Little Wonders” series, I really wanted to pay homage to parts of the .NET Framework that are often small but can help in big ways.  The item I have to discuss today really is a very small item in the .NET BCL, but once again I feel it can help make the intention of code much clearer and thus is worthy of note. The Problem - Magic numbers aren’t very readable or maintainable In my first Little Wonders Post (Five Little Wonders That Make Code Better) I mention the TimeSpan factory methods which, I feel, really help the readability of constructed TimeSpan instances. Just to quickly recap that discussion, ask yourself what the TimeSpan specified in each case below is 1: // Five minutes? Five Seconds? 2: var fiveWhat1 = new TimeSpan(0, 0, 5); 3: var fiveWhat2 = new TimeSpan(0, 0, 5, 0); 4: var fiveWhat3 = new TimeSpan(0, 0, 5, 0, 0); You’d think they’d all be the same unit of time, right?  After all, most overloads tend to tack additional arguments on the end.  But this is not the case with TimeSpan, where the constructor forms are:     TimeSpan(int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds);     TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds); Notice how in the 4 and 5 parameter version we suddenly have the parameter days slipping in front of hours?  This can make reading constructors like those above much harder.  Fortunately, there are TimeSpan factory methods to help make your intention crystal clear: 1: // Ah! Much clearer! 2: var fiveSeconds = TimeSpan.FromSeconds(5); These are great because they remove all ambiguity from the reader!  So in short, magic numbers in constructors and methods can be ambiguous, and anything we can do to clean up the intention of the developer will make the code much easier to read and maintain. Timeout – Readable identifiers for infinite timeout values In a similar way to TimeSpan, let’s consider specifying timeouts for some of .NET’s (or our own) many methods that allow you to specify timeout periods. For example, in the TPL Task class, there is a family of Wait() methods that can take TimeSpan or int for timeouts.  Typically, if you want to specify an infinite timeout, you’d just call the version that doesn’t take a timeout parameter at all: 1: myTask.Wait(); // infinite wait But there are versions that take the int or TimeSpan for timeout as well: 1: // Wait for 100 ms 2: myTask.Wait(100); 3:  4: // Wait for 5 seconds 5: myTask.Wait(TimeSpan.FromSeconds(5); Now, if we want to specify an infinite timeout to wait on the Task, we could pass –1 (or a TimeSpan set to –1 ms), which what the .NET BCL methods with timeouts use to represent an infinite timeout: 1: // Also infinite timeouts, but harder to read/maintain 2: myTask.Wait(-1); 3: myTask.Wait(TimeSpan.FromMilliseconds(-1)); However, these are not as readable or maintainable.  If you were writing this code, you might make the mistake of thinking 0 or int.MaxValue was an infinite timeout, and you’d be incorrect.  Also, reading the code above it isn’t as clear that –1 is infinite unless you happen to know that is the specified behavior. To make the code like this easier to read and maintain, there is a static class called Timeout in the System.Threading namespace which contains definition for infinite timeouts specified as both int and TimeSpan forms: Timeout.Infinite An integer constant with a value of –1 Timeout.InfiniteTimeSpan A static readonly TimeSpan which represents –1 ms (only available in .NET 4.5+) This makes our calls to Task.Wait() (or any other calls with timeouts) much more clear: 1: // intention to wait indefinitely is quite clear now 2: myTask.Wait(Timeout.Infinite); 3: myTask.Wait(Timeout.InfiniteTimeSpan); But wait, you may say, why would we care at all?  Why not use the version of Wait() that takes no arguments?  Good question!  When you’re directly calling the method with an infinite timeout that’s what you’d most likely do, but what if you are just passing along a timeout specified by a caller from higher up?  Or perhaps storing a timeout value from a configuration file, and want to default it to infinite? For example, perhaps you are designing a communications module and want to be able to shutdown gracefully, but if you can’t gracefully finish in a specified amount of time you want to force the connection closed.  You could create a Shutdown() method in your class, and take a TimeSpan or an int for the amount of time to wait for a clean shutdown – perhaps waiting for client to acknowledge – before terminating the connection.  So, assume we had a pub/sub system with a class to broadcast messages: 1: // Some class to broadcast messages to connected clients 2: public class Broadcaster 3: { 4: // ... 5:  6: // Shutdown connection to clients, wait for ack back from clients 7: // until all acks received or timeout, whichever happens first 8: public void Shutdown(int timeout) 9: { 10: // Kick off a task here to send shutdown request to clients and wait 11: // for the task to finish below for the specified time... 12:  13: if (!shutdownTask.Wait(timeout)) 14: { 15: // If Wait() returns false, we timed out and task 16: // did not join in time. 17: } 18: } 19: } We could even add an overload to allow us to use TimeSpan instead of int, to give our callers the flexibility to specify timeouts either way: 1: // overload to allow them to specify Timeout in TimeSpan, would 2: // just call the int version passing in the TotalMilliseconds... 3: public void Shutdown(TimeSpan timeout) 4: { 5: Shutdown(timeout.TotalMilliseconds); 6: } Notice in case of this class, we don’t assume the caller wants infinite timeouts, we choose to rely on them to tell us how long to wait.  So now, if they choose an infinite timeout, they could use the –1, which is more cryptic, or use Timeout class to make the intention clear: 1: // shutdown the broadcaster, waiting until all clients ack back 2: // without timing out. 3: myBroadcaster.Shutdown(Timeout.Infinite); We could even add a default argument using the int parameter version so that specifying no arguments to Shutdown() assumes an infinite timeout: 1: // Modified original Shutdown() method to add a default of 2: // Timeout.Infinite, works because Timeout.Infinite is a compile 3: // time constant. 4: public void Shutdown(int timeout = Timeout.Infinite) 5: { 6: // same code as before 7: } Note that you can’t default the ShutDown(TimeSpan) overload with Timeout.InfiniteTimeSpan since it is not a compile-time constant.  The only acceptable default for a TimeSpan parameter would be default(TimeSpan) which is zero milliseconds, which specified no wait, not infinite wait. Summary While Timeout.Infinite and Timeout.InfiniteTimeSpan are not earth-shattering classes in terms of functionality, they do give you very handy and readable constant values that you can use in your programs to help increase readability and maintainability when specifying infinite timeouts for various timeouts in the BCL and your own applications. Technorati Tags: C#,CSharp,.NET,Little Wonders,Timeout,Task

    Read the article

  • rails bundler error installing nokigiri (1.5.5), and Bundler cannot continue

    - by Michael Durrant
    An error occurred while installing nokogiri (1.5.5), and Bundler cannot continue How to fix and get past the error? Installing nokogiri (1.5.5) with native extensions Gem::Installer::ExtensionBuildError: ERROR: Failed to build gem native extension. /usr/bin/ruby1.8 extconf.rb checking for libxml/parser.h... yes checking for libxslt/xslt.h... no ----- libxslt is missing. please visit http://nokogiri.org/tutorials/installing_nokogiri.html for help with installing dependencies.

    Read the article

  • Silverlight Cream for April 19, 2010 -- #841

    - by Dave Campbell
    In this Issue: Michael Washington, Jeremy Likness, Giorgetti Alessandro, Antoni Dol, Mike Taulty, and Braulio Diez. Shoutout: Bart Czernicki lists compelling reasons to use Silverlight 4 for LOB apps: Silverlight 4 - What is New for Business Intelligence Scenarios From SilverlightCream.com: Silverlight Advanced MVVM Video Player After the initial posting on his Simple MVVM Video player, Michael Washington got some feedback and decided to do a part 2 demonstrating exactly how easy it is to customize... great tutorial and all the code. Model-View-ViewModel (MVVM) Explained Jeremy Likness has a post up that begins "The purpose of this post is to provide an introduction to the Model-View-ViewModel (MVVM) pattern." -- 'nuff said... If you're not there yet, get there now :) Castle Windsor – Silverlight 4 binaries Giorgetti Alessandro has produced workable Castle Windsor binaries for Silverlight 4. No Unit Tests at this point, but read the post for that information. Silverlight Togglebutton Push Pin Style with IsoStore Antoni Dol has a very nice ToggleButton redone as a pushpin for pinning an app, plus it saves the pinned information to Isolated Storage ... all with source! Silverlight and Xml Binding Mike Taulty fleshes out a sketchy idea he has surrounding databinding Silverlight to XML data by using the ability to databind to string indexers and XPath support. WinToolbar Silverlight widget available on Codeplex Braulio Diez announced a Toolbar library that he and Sebastian Stehlehave posted on CodePlex that looks awesome... you may as well just go get it now, you're going to want to! Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Of C# Iterators and Performance

    - by James Michael Hare
    Some of you reading this will be wondering, "what is an iterator" and think I'm locked in the world of C++.  Nope, I'm talking C# iterators.  No, not enumerators, iterators.   So, for those of you who do not know what iterators are in C#, I will explain it in summary, and for those of you who know what iterators are but are curious of the performance impacts, I will explore that as well.   Iterators have been around for a bit now, and there are still a bunch of people who don't know what they are or what they do.  I don't know how many times at work I've had a code review on my code and have someone ask me, "what's that yield word do?"   Basically, this post came to me as I was writing some extension methods to extend IEnumerable<T> -- I'll post some of the fun ones in a later post.  Since I was filtering the resulting list down, I was using the standard C# iterator concept; but that got me wondering: what are the performance implications of using an iterator versus returning a new enumeration?   So, to begin, let's look at a couple of methods.  This is a new (albeit contrived) method called Every(...).  The goal of this method is to access and enumeration and return every nth item in the enumeration (including the first).  So Every(2) would return items 0, 2, 4, 6, etc.   Now, if you wanted to write this in the traditional way, you may come up with something like this:       public static IEnumerable<T> Every<T>(this IEnumerable<T> list, int interval)     {         List<T> newList = new List<T>();         int count = 0;           foreach (var i in list)         {             if ((count++ % interval) == 0)             {                 newList.Add(i);             }         }           return newList;     }     So basically this method takes any IEnumerable<T> and returns a new IEnumerable<T> that contains every nth item.  Pretty straight forward.   The problem?  Well, Every<T>(...) will construct a list containing every nth item whether or not you care.  What happens if you were searching this result for a certain item and find that item after five tries?  You would have generated the rest of the list for nothing.   Enter iterators.  This C# construct uses the yield keyword to effectively defer evaluation of the next item until it is asked for.  This can be very handy if the evaluation itself is expensive or if there's a fair chance you'll never want to fully evaluate a list.   We see this all the time in Linq, where many expressions are chained together to do complex processing on a list.  This would be very expensive if each of these expressions evaluated their entire possible result set on call.    Let's look at the same example function, this time using an iterator:       public static IEnumerable<T> Every<T>(this IEnumerable<T> list, int interval)     {         int count = 0;         foreach (var i in list)         {             if ((count++ % interval) == 0)             {                 yield return i;             }         }     }   Notice it does not create a new return value explicitly, the only evidence of a return is the "yield return" statement.  What this means is that when an item is requested from the enumeration, it will enter this method and evaluate until it either hits a yield return (in which case that item is returned) or until it exits the method or hits a yield break (in which case the iteration ends.   Behind the scenes, this is all done with a class that the CLR creates behind the scenes that keeps track of the state of the iteration, so that every time the next item is asked for, it finds that item and then updates the current position so it knows where to start at next time.   It doesn't seem like a big deal, does it?  But keep in mind the key point here: it only returns items as they are requested. Thus if there's a good chance you will only process a portion of the return list and/or if the evaluation of each item is expensive, an iterator may be of benefit.   This is especially true if you intend your methods to be chainable similar to the way Linq methods can be chained.    For example, perhaps you have a List<int> and you want to take every tenth one until you find one greater than 10.  We could write that as:       List<int> someList = new List<int>();         // fill list here         someList.Every(10).TakeWhile(i => i <= 10);     Now is the difference more apparent?  If we use the first form of Every that makes a copy of the list.  It's going to copy the entire list whether we will need those items or not, that can be costly!    With the iterator version, however, it will only take items from the list until it finds one that is > 10, at which point no further items in the list are evaluated.   So, sounds neat eh?  But what's the cost is what you're probably wondering.  So I ran some tests using the two forms of Every above on lists varying from 5 to 500,000 integers and tried various things.    Now, iteration isn't free.  If you are more likely than not to iterate the entire collection every time, iterator has some very slight overhead:   Copy vs Iterator on 100% of Collection (10,000 iterations) Collection Size Num Iterated Type Total ms 5 5 Copy 5 5 5 Iterator 5 50 50 Copy 28 50 50 Iterator 27 500 500 Copy 227 500 500 Iterator 247 5000 5000 Copy 2266 5000 5000 Iterator 2444 50,000 50,000 Copy 24,443 50,000 50,000 Iterator 24,719 500,000 500,000 Copy 250,024 500,000 500,000 Iterator 251,521   Notice that when iterating over the entire produced list, the times for the iterator are a little better for smaller lists, then getting just a slight bit worse for larger lists.  In reality, given the number of items and iterations, the result is near negligible, but just to show that iterators come at a price.  However, it should also be noted that the form of Every that returns a copy will have a left-over collection to garbage collect.   However, if we only partially evaluate less and less through the list, the savings start to show and make it well worth the overhead.  Let's look at what happens if you stop looking after 80% of the list:   Copy vs Iterator on 80% of Collection (10,000 iterations) Collection Size Num Iterated Type Total ms 5 4 Copy 5 5 4 Iterator 5 50 40 Copy 27 50 40 Iterator 23 500 400 Copy 215 500 400 Iterator 200 5000 4000 Copy 2099 5000 4000 Iterator 1962 50,000 40,000 Copy 22,385 50,000 40,000 Iterator 19,599 500,000 400,000 Copy 236,427 500,000 400,000 Iterator 196,010       Notice that the iterator form is now operating quite a bit faster.  But the savings really add up if you stop on average at 50% (which most searches would typically do):     Copy vs Iterator on 50% of Collection (10,000 iterations) Collection Size Num Iterated Type Total ms 5 2 Copy 5 5 2 Iterator 4 50 25 Copy 25 50 25 Iterator 16 500 250 Copy 188 500 250 Iterator 126 5000 2500 Copy 1854 5000 2500 Iterator 1226 50,000 25,000 Copy 19,839 50,000 25,000 Iterator 12,233 500,000 250,000 Copy 208,667 500,000 250,000 Iterator 122,336   Now we see that if we only expect to go on average 50% into the results, we tend to shave off around 40% of the time.  And this is only for one level deep.  If we are using this in a chain of query expressions it only adds to the savings.   So my recommendation?  If you have a resonable expectation that someone may only want to partially consume your enumerable result, I would always tend to favor an iterator.  The cost if they iterate the whole thing does not add much at all -- and if they consume only partially, you reap some really good performance gains.   Next time I'll discuss some of my favorite extensions I've created to make development life a little easier and maintainability a little better.

    Read the article

  • OutOfMemoryException in Microsoft WSE 3.0 Diagnostics.TraceInputFilter

    - by Michael Freidgeim
    We are still using Microsoft WSE 3.0 and on test server started to get   Event Type:        Error Event Source:    Microsoft WSE 3.0 WSE054: An error occurred during the operation of the TraceInputFilter: System.OutOfMemoryException: Exception of type 'System.OutOfMemoryException' was thrown.    at System.String.GetStringForStringBuilder(String value, Int32 startIndex, Int32 length, Int32 capacity)    at System.Text.StringBuilder.GetThreadSafeString(IntPtr& tid)    at System.Text.StringBuilder.set_Length(Int32 value)    at System.Xml.BufferBuilder.Clear()    at System.Xml.BufferBuilder.set_Length(Int32 value)    at System.Xml.XmlTextReaderImpl.ParseText()    at System.Xml.XmlTextReaderImpl.ParseElementContent()    at System.Xml.XmlTextReaderImpl.Read()    at System.Xml.XmlLoader.LoadNode(Boolean skipOverWhitespace)    at System.Xml.XmlLoader.LoadDocSequence(XmlDocument parentDoc)    at System.Xml.XmlLoader.Load(XmlDocument doc, XmlReader reader, Boolean preserveWhitespace)    at System.Xml.XmlDocument.Load(XmlReader reader)    at System.Xml.XmlDocument.Load(Stream inStream)    at Microsoft.Web.Services3.Diagnostics.TraceInputFilter.OpenLoadExistingFile(String path)    at Microsoft.Web.Services3.Diagnostics.TraceInputFilter.Load(String path)    at Microsoft.Web.Services3.Diagnostics.TraceInputFilter.TraceMessage(String messageId, Collection`1 traceEntries).   After investigation it was found, that the problem related to trace files, that become too big. When they were deleted and new files were created, error gone.

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Digital Darwinism: How Brands Can Survive the Rapid Evolution of Society and Technology

    - by Michael Hylton
    Do you want to learn how to thrive in an era of connected consumerism and digital disruptions? Come attend this free webinar on December 13th at 10:00 am PST / 1:00 pm EST as Brian Solis, Altimeter Group analyst, shares his thoughts on how our changing society and technology shifts are impacting brands today. Click here to register for this webcast, part of Oracle’s Social Business Thought Leaders Series.

    Read the article

  • UK Connected Systems User Group - Udi Dahan Event Topic change

    - by Michael Stephenson
    Hi Just wanted to get the word out about a change to the may user group event.  Udi Dahan will present a new topic which he has not presented in the UK before.  Details below. To register for this event please refer to: http://ukconnectedsystemsusergroup.org/UpcomingEvents.aspx Title: High Availability - A Contrarian View   Abstract: Many developers are aware of the importance of high availability, critically analyzing any single points of failure in the infrastructure. Those same developers rarely give a second thought to the periods of time when a system is being upgraded. Even if all the servers are running, most systems cannot function in-between versions. Yet with the increased pace of business, users are demanding ever more frequent releases. The poor maintenance programmers and system administrators are left holding the bag long after the architecture that sealed their fate was formulated. Join Udi for some different perspectives on high availability - architecture and methodology for the real world.

    Read the article

  • C#/.NET Little Wonders: Using &lsquo;default&rsquo; to Get Default Values

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today’s little wonder is another of those small items that can help a lot in certain situations, especially when writing generics.  In particular, it is useful in determining what the default value of a given type would be. The Problem: what’s the default value for a generic type? There comes a time when you’re writing generic code where you may want to set an item of a given generic type.  Seems simple enough, right?  We’ll let’s see! Let’s say we want to query a Dictionary<TKey, TValue> for a given key and get back the value, but if the key doesn’t exist, we’d like a default value instead of throwing an exception. So, for example, we might have a the following dictionary defined: 1: var lookup = new Dictionary<int, string> 2: { 3: { 1, "Apple" }, 4: { 2, "Orange" }, 5: { 3, "Banana" }, 6: { 4, "Pear" }, 7: { 9, "Peach" } 8: }; And using those definitions, perhaps we want to do something like this: 1: // assume a default 2: string value = "Unknown"; 3:  4: // if the item exists in dictionary, get its value 5: if (lookup.ContainsKey(5)) 6: { 7: value = lookup[5]; 8: } But that’s inefficient, because then we’re double-hashing (once for ContainsKey() and once for the indexer).  Well, to avoid the double-hashing, we could use TryGetValue() instead: 1: string value; 2:  3: // if key exists, value will be put in value, if not default it 4: if (!lookup.TryGetValue(5, out value)) 5: { 6: value = "Unknown"; 7: } But the “flow” of using of TryGetValue() can get clunky at times when you just want to assign either the value or a default to a variable.  Essentially it’s 3-ish lines (depending on formatting) for 1 assignment.  So perhaps instead we’d like to write an extension method to support a cleaner interface that will return a default if the item isn’t found: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } 17:  So this creates an extension method on Dictionary<TKey, TValue> that will attempt to get a value using the given key, and will return the defaultIfNotFound as a stand-in if the key does not exist. This code compiles, fine, but what if we would like to go one step further and allow them to specify a default if not found, or accept the default for the type?  Obviously, we could overload the method to take the default or not, but that would be duplicated code and a bit heavy for just specifying a default.  It seems reasonable that we could set the not found value to be either the default for the type, or the specified value. So what if we defaulted the type to null? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = null) // ... No, this won’t work, because only reference types (and Nullable<T> wrapped types due to syntactical sugar) can be assigned to null.  So what about a calling parameterless constructor? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = new TValue()) // ... No, this won’t work either for several reasons.  First, we’d expect a reference type to return null, not an “empty” instance.  Secondly, not all reference types have a parameter-less constructor (string for example does not).  And finally, a constructor cannot be determined at compile-time, while default values can. The Solution: default(T) – returns the default value for type T Many of us know the default keyword for its uses in switch statements as the default case.  But it has another use as well: it can return us the default value for a given type.  And since it generates the same defaults that default field initialization uses, it can be determined at compile-time as well. For example: 1: var x = default(int); // x is 0 2:  3: var y = default(bool); // y is false 4:  5: var z = default(string); // z is null 6:  7: var t = default(TimeSpan); // t is a TimeSpan with Ticks == 0 8:  9: var n = default(int?); // n is a Nullable<int> with HasValue == false Notice that for numeric types the default is 0, and for reference types the default is null.  In addition, for struct types, the value is a default-constructed struct – which simply means a struct where every field has their default value (hence 0 Ticks for TimeSpan, etc.). So using this, we could modify our code to this: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound = default(TValue)) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } Now, if defaultIfNotFound is unspecified, it will use default(TValue) which will be the default value for whatever value type the dictionary holds.  So let’s consider how we could use this: 1: lookup.GetValueOrDefault(1); // returns “Apple” 2:  3: lookup.GetValueOrDefault(5); // returns null 4:  5: lookup.GetValueOrDefault(5, “Unknown”); // returns “Unknown” 6:  Again, do not confuse a parameter-less constructor with the default value for a type.  Remember that the default value for any type is the compile-time default for any instance of that type (0 for numeric, false for bool, null for reference types, and struct will all default fields for struct).  Consider the difference: 1: // both zero 2: int i1 = default(int); 3: int i2 = new int(); 4:  5: // both “zeroed” structs 6: var dt1 = default(DateTime); 7: var dt2 = new DateTime(); 8:  9: // sb1 is null, sb2 is an “empty” string builder 10: var sb1 = default(StringBuilder()); 11: var sb2 = new StringBuilder(); So in the above code, notice that the value types all resolve the same whether using default or parameter-less construction.  This is because a value type is never null (even Nullable<T> wrapped types are never “null” in a reference sense), they will just by default contain fields with all default values. However, for reference types, the default is null and not a constructed instance.  Also it should be noted that not all classes have parameter-less constructors (string, for instance, doesn’t have one – and doesn’t need one). Summary Whenever you need to get the default value for a type, especially a generic type, consider using the default keyword.  This handy word will give you the default value for the given type at compile-time, which can then be used for initialization, optional parameters, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,default

    Read the article

  • Silverlight Cream for April 12, 2010 -- #837

    - by Dave Campbell
    In this Issue: Michael Washington, Joe McBride, Kirupa, Maurice de Beijer, Brad Abrams, Phil Middlemiss, and CorrinaB. Shoutout: Charlie Kindel has a post up about the incompatibility between VS2010RTM and what we currently have for WP7: Visual Studio 2010 RTM and the Windows Phone Developer Tools CTP and if you want to be notified when that changes, submit your email here. Erik Mork and Co. have their latest This Week in Silverlight 4.9.2010 posted. From SilverlightCream.com: Simplified MVVM: Silverlight Video Player Michael Washington created a 'designable' video player using MVVM that allows any set of controls to implement the player. Great tutorial and all the code. Windows Phone 7 Panorama Behaviors Joe McBride posted a link to a couple WP7 gesture behaviors and a link out to some more by smartyP. Event Bubbling and Tunneling Kirupa has a great article up on Event Bubbling and Tunneling... showing the route that events take through your WPF or Silverlight app. Using dynamic objects in Silverlight 4 Maurice de Beijer has a blog up about binding to indexed properties in Silverlight 4... in other words, you don't have to know what you're binging to at design time. Silverlight 4 + RIA Services - Ready for Business: Ajax Endpoint Brad Abrams is still continuing his RIA series. His latest is on exposing your RIA Services in JSON. Changing Data-Templates at run-time from the VM Looks like I missed Phil Middlemiss' latest post on Changing DataTemplates at run-time. He has a visual of why you might need this right up-front, and is a very common issue. Check out the solution he provides us. Windows System Color Theme for Silverlight - Part Three CorrinaB blogged screenshots and discussion of 3 new themes that are going to be coming up, and what they've done to the controls in general. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • ReplaceBetweenTags function with delegate to describe transformation

    - by Michael Freidgeim
    I've created a function that allow to replace content between XML tags with data, that depend on original content within tag, in particular to MAsk credit card number.The function uses MidBetween extension from My StringHelper class /// <summary> /// /// </summary> /// <param name="thisString"></param> /// <param name="openTag"></param> /// <param name="closeTag"></param> /// <param name="transform"></param> /// <returns></returns> /// <example> /// // mask <AccountNumber>XXXXX4488</AccountNumber> ///requestAsString  = requestAsString.ReplaceBetweenTags("<AccountNumber>", "</AccountNumber>", CreditCard.MaskedCardNumber); ///mask cvv ///requestAsString = requestAsString.ReplaceBetweenTags("<FieldName>CC::VerificationCode</FieldName><FieldValue>", "</FieldValue>", cvv=>"XXX"); /// </example> public static string ReplaceBetweenTags(this string thisString, string openTag, string closeTag, Func<string, string> transform) { //See also http://stackoverflow.com/questions/1359412/c-sharp-remove-text-in-between-delimiters-in-a-string-regex string sRet = thisString; string between = thisString.MidBetween(openTag, closeTag, true); if (!String.IsNullOrEmpty(between)) sRet=thisString.Replace(openTag + between + closeTag, openTag + transform(between) + closeTag); return sRet; } public static string ReplaceBetweenTags(this string thisString, string openTag, string closeTag, string newValue) { //See also http://stackoverflow.com/questions/1359412/c-sharp-remove-text-in-between-delimiters-in-a-string-regex string sRet = thisString; string between = thisString.MidBetween(openTag, closeTag, true); if (!String.IsNullOrEmpty(between)) sRet = thisString.Replace(openTag + between + closeTag, openTag + newValue + closeTag); return sRet; }

    Read the article

  • Oracle @ E20 Conference Boston - Building Social Business

    - by Michael Snow
    12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle WebCenter is The Engagement Platform Powering Exceptional Experiences for Employees, Partners and Customers &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;span id=&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;XinhaEditingPostion&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/span&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;lt;p&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/p&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; The way we work is changing rapidly, offering an enormous competitive advantage to those who embrace the new tools that enable contextual, agile and simplified information exchange and collaboration to distributed workforces and  networks of partners and customers. As many of you are aware, Enterprise 2.0 is the term for the technologies and business practices that liberate the workforce from the constraints of legacy communication and productivity tools like email. It provides business managers with access to the right information at the right time through a web of inter-connected applications, services and devices. Enterprise 2.0 makes accessible the collective intelligence of many, translating to a huge  competitive advantage in the form of increased innovation, productivity and agility.The Enterprise 2.0 Conference takes a strategic perspective, emphasizing the bigger picture implications of the technology and the exploration of what is at stake for organizations trying to change not only tools, but also culture and process. Beyond discussion of the "why", there will also be in-depth opportunities for learning the "how" that will help you bring Enterprise 2.0 to your business. You won't want to miss this opportunity to learn and hear from leading experts in the fields of technology for business, collaboration, culture change and collective intelligence.Oracle was a proud Gold sponsor of the Enterprise 2.0 Conference, taking place this past week in Boston. For those of you that weren't able to make it - we've made the Oracle Social Network Presentation session available here and have posted the slides below. 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • C#: LINQ vs foreach - Round 1.

    - by James Michael Hare
    So I was reading Peter Kellner's blog entry on Resharper 5.0 and its LINQ refactoring and thought that was very cool.  But that raised a point I had always been curious about in my head -- which is a better choice: manual foreach loops or LINQ?    The answer is not really clear-cut.  There are two sides to any code cost arguments: performance and maintainability.  The first of these is obvious and quantifiable.  Given any two pieces of code that perform the same function, you can run them side-by-side and see which piece of code performs better.   Unfortunately, this is not always a good measure.  Well written assembly language outperforms well written C++ code, but you lose a lot in maintainability which creates a big techncial debt load that is hard to offset as the application ages.  In contrast, higher level constructs make the code more brief and easier to understand, hence reducing technical cost.   Now, obviously in this case we're not talking two separate languages, we're comparing doing something manually in the language versus using a higher-order set of IEnumerable extensions that are in the System.Linq library.   Well, before we discuss any further, let's look at some sample code and the numbers.  First, let's take a look at the for loop and the LINQ expression.  This is just a simple find comparison:       // find implemented via LINQ     public static bool FindViaLinq(IEnumerable<int> list, int target)     {         return list.Any(item => item == target);     }         // find implemented via standard iteration     public static bool FindViaIteration(IEnumerable<int> list, int target)     {         foreach (var i in list)         {             if (i == target)             {                 return true;             }         }           return false;     }   Okay, looking at this from a maintainability point of view, the Linq expression is definitely more concise (8 lines down to 1) and is very readable in intention.  You don't have to actually analyze the behavior of the loop to determine what it's doing.   So let's take a look at performance metrics from 100,000 iterations of these methods on a List<int> of varying sizes filled with random data.  For this test, we fill a target array with 100,000 random integers and then run the exact same pseudo-random targets through both searches.                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     Any         10       26          0.00046             30.00%     Iteration   10       20          0.00023             -     Any         100      116         0.00201             18.37%     Iteration   100      98          0.00118             -     Any         1000     1058        0.01853             16.78%     Iteration   1000     906         0.01155             -     Any         10,000   10,383      0.18189             17.41%     Iteration   10,000   8843        0.11362             -     Any         100,000  104,004     1.8297              18.27%     Iteration   100,000  87,941      1.13163             -   The LINQ expression is running about 17% slower for average size collections and worse for smaller collections.  Presumably, this is due to the overhead of the state machine used to track the iterators for the yield returns in the LINQ expressions, which seems about right in a tight loop such as this.   So what about other LINQ expressions?  After all, Any() is one of the more trivial ones.  I decided to try the TakeWhile() algorithm using a Count() to get the position stopped like the sample Pete was using in his blog that Resharper refactored for him into LINQ:       // Linq form     public static int GetTargetPosition1(IEnumerable<int> list, int target)     {         return list.TakeWhile(item => item != target).Count();     }       // traditionally iterative form     public static int GetTargetPosition2(IEnumerable<int> list, int target)     {         int count = 0;           foreach (var i in list)         {             if(i == target)             {                 break;             }               ++count;         }           return count;     }   Once again, the LINQ expression is much shorter, easier to read, and should be easier to maintain over time, reducing the cost of technical debt.  So I ran these through the same test data:                       List<T> On 100,000 Iterations     Method      Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile   10       41          0.00041             128%     Iteration   10       18          0.00018             -     TakeWhile   100      171         0.00171             88%     Iteration   100      91          0.00091             -     TakeWhile   1000     1604        0.01604             94%     Iteration   1000     825         0.00825             -     TakeWhile   10,000   15765       0.15765             92%     Iteration   10,000   8204        0.08204             -     TakeWhile   100,000  156950      1.5695              92%     Iteration   100,000  81635       0.81635             -     Wow!  I expected some overhead due to the state machines iterators produce, but 90% slower?  That seems a little heavy to me.  So then I thought, well, what if TakeWhile() is not the right tool for the job?  The problem is TakeWhile returns each item for processing using yield return, whereas our for-loop really doesn't care about the item beyond using it as a stop condition to evaluate. So what if that back and forth with the iterator state machine is the problem?  Well, we can quickly create an (albeit ugly) lambda that uses the Any() along with a count in a closure (if a LINQ guru knows a better way PLEASE let me know!), after all , this is more consistent with what we're trying to do, we're trying to find the first occurence of an item and halt once we find it, we just happen to be counting on the way.  This mostly matches Any().       // a new method that uses linq but evaluates the count in a closure.     public static int TakeWhileViaLinq2(IEnumerable<int> list, int target)     {         int count = 0;         list.Any(item =>             {                 if(item == target)                 {                     return true;                 }                   ++count;                 return false;             });         return count;     }     Now how does this one compare?                         List<T> On 100,000 Iterations     Method         Size     Total (ms)  Per Iteration (ms)  % Slower     TakeWhile      10       41          0.00041             128%     Any w/Closure  10       23          0.00023             28%     Iteration      10       18          0.00018             -     TakeWhile      100      171         0.00171             88%     Any w/Closure  100      116         0.00116             27%     Iteration      100      91          0.00091             -     TakeWhile      1000     1604        0.01604             94%     Any w/Closure  1000     1101        0.01101             33%     Iteration      1000     825         0.00825             -     TakeWhile      10,000   15765       0.15765             92%     Any w/Closure  10,000   10802       0.10802             32%     Iteration      10,000   8204        0.08204             -     TakeWhile      100,000  156950      1.5695              92%     Any w/Closure  100,000  108378      1.08378             33%     Iteration      100,000  81635       0.81635             -     Much better!  It seems that the overhead of TakeAny() returning each item and updating the state in the state machine is drastically reduced by using Any() since Any() iterates forward until it finds the value we're looking for -- for the task we're attempting to do.   So the lesson there is, make sure when you use a LINQ expression you're choosing the best expression for the job, because if you're doing more work than you really need, you'll have a slower algorithm.  But this is true of any choice of algorithm or collection in general.     Even with the Any() with the count in the closure it is still about 30% slower, but let's consider that angle carefully.  For a list of 100,000 items, it was the difference between 1.01 ms and 0.82 ms roughly in a List<T>.  That's really not that bad at all in the grand scheme of things.  Even running at 90% slower with TakeWhile(), for the vast majority of my projects, an extra millisecond to save potential errors in the long term and improve maintainability is a small price to pay.  And if your typical list is 1000 items or less we're talking only microseconds worth of difference.   It's like they say: 90% of your performance bottlenecks are in 2% of your code, so over-optimizing almost never pays off.  So personally, I'll take the LINQ expression wherever I can because they will be easier to read and maintain (thus reducing technical debt) and I can rely on Microsoft's development to have coded and unit tested those algorithm fully for me instead of relying on a developer to code the loop logic correctly.   If something's 90% slower, yes, it's worth keeping in mind, but it's really not until you start get magnitudes-of-order slower (10x, 100x, 1000x) that alarm bells should really go off.  And if I ever do need that last millisecond of performance?  Well then I'll optimize JUST THAT problem spot.  To me it's worth it for the readability, speed-to-market, and maintainability.

    Read the article

  • C#: Does an IDisposable in a Halted Iterator Dispose?

    - by James Michael Hare
    If that sounds confusing, let me give you an example. Let's say you expose a method to read a database of products, and instead of returning a List<Product> you return an IEnumerable<Product> in iterator form (yield return). This accomplishes several good things: The IDataReader is not passed out of the Data Access Layer which prevents abstraction leak and resource leak potentials. You don't need to construct a full List<Product> in memory (which could be very big) if you just want to forward iterate once. If you only want to consume up to a certain point in the list, you won't incur the database cost of looking up the other items. This could give us an example like: 1: // a sample data access object class to do standard CRUD operations. 2: public class ProductDao 3: { 4: private DbProviderFactory _factory = SqlClientFactory.Instance 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: // must create the connection 10: using (var con = _factory.CreateConnection()) 11: { 12: con.ConnectionString = _productsConnectionString; 13: con.Open(); 14:  15: // create the command 16: using (var cmd = _factory.CreateCommand()) 17: { 18: cmd.Connection = con; 19: cmd.CommandText = _getAllProductsStoredProc; 20: cmd.CommandType = CommandType.StoredProcedure; 21:  22: // get a reader and pass back all results 23: using (var reader = cmd.ExecuteReader()) 24: { 25: while(reader.Read()) 26: { 27: yield return new Product 28: { 29: Name = reader["product_name"].ToString(), 30: ... 31: }; 32: } 33: } 34: } 35: } 36: } 37: } The database details themselves are irrelevant. I will say, though, that I'm a big fan of using the System.Data.Common classes instead of your provider specific counterparts directly (SqlCommand, OracleCommand, etc). This lets you mock your data sources easily in unit testing and also allows you to swap out your provider in one line of code. In fact, one of the shared components I'm most proud of implementing was our group's DatabaseUtility library that simplifies all the database access above into one line of code in a thread-safe and provider-neutral way. I went with my own flavor instead of the EL due to the fact I didn't want to force internal company consumers to use the EL if they didn't want to, and it made it easy to allow them to mock their database for unit testing by providing a MockCommand, MockConnection, etc that followed the System.Data.Common model. One of these days I'll blog on that if anyone's interested. Regardless, you often have situations like the above where you are consuming and iterating through a resource that must be closed once you are finished iterating. For the reasons stated above, I didn't want to return IDataReader (that would force them to remember to Dispose it), and I didn't want to return List<Product> (that would force them to hold all products in memory) -- but the first time I wrote this, I was worried. What if you never consume the last item and exit the loop? Are the reader, command, and connection all disposed correctly? Of course, I was 99.999999% sure the creators of C# had already thought of this and taken care of it, but inspection in Reflector was difficult due to the nature of the state machines yield return generates, so I decided to try a quick example program to verify whether or not Dispose() will be called when an iterator is broken from outside the iterator itself -- i.e. before the iterator reports there are no more items. So I wrote a quick Sequencer class with a Dispose() method and an iterator for it. Yes, it is COMPLETELY contrived: 1: // A disposable sequence of int -- yes this is completely contrived... 2: internal class Sequencer : IDisposable 3: { 4: private int _i = 0; 5: private readonly object _mutex = new object(); 6:  7: // Constructs an int sequence. 8: public Sequencer(int start) 9: { 10: _i = start; 11: } 12:  13: // Gets the next integer 14: public int GetNext() 15: { 16: lock (_mutex) 17: { 18: return _i++; 19: } 20: } 21:  22: // Dispose the sequence of integers. 23: public void Dispose() 24: { 25: // force output immediately (flush the buffer) 26: Console.WriteLine("Disposed with last sequence number of {0}!", _i); 27: Console.Out.Flush(); 28: } 29: } And then I created a generator (infinite-loop iterator) that did the using block for auto-Disposal: 1: // simply defines an extension method off of an int to start a sequence 2: public static class SequencerExtensions 3: { 4: // generates an infinite sequence starting at the specified number 5: public static IEnumerable<int> GetSequence(this int starter) 6: { 7: // note the using here, will call Dispose() when block terminated. 8: using (var seq = new Sequencer(starter)) 9: { 10: // infinite loop on this generator, means must be bounded by caller! 11: while(true) 12: { 13: yield return seq.GetNext(); 14: } 15: } 16: } 17: } This is really the same conundrum as the database problem originally posed. Here we are using iteration (yield return) over a large collection (infinite sequence of integers). If we cut the sequence short by breaking iteration, will that using block exit and hence, Dispose be called? Well, let's see: 1: // The test program class 2: public class IteratorTest 3: { 4: // The main test method. 5: public static void Main() 6: { 7: Console.WriteLine("Going to consume 10 of infinite items"); 8: Console.Out.Flush(); 9:  10: foreach(var i in 0.GetSequence()) 11: { 12: // could use TakeWhile, but wanted to output right at break... 13: if(i >= 10) 14: { 15: Console.WriteLine("Breaking now!"); 16: Console.Out.Flush(); 17: break; 18: } 19:  20: Console.WriteLine(i); 21: Console.Out.Flush(); 22: } 23:  24: Console.WriteLine("Done with loop."); 25: Console.Out.Flush(); 26: } 27: } So, what do we see? Do we see the "Disposed" message from our dispose, or did the Dispose get skipped because from an "eyeball" perspective we should be locked in that infinite generator loop? Here's the results: 1: Going to consume 10 of infinite items 2: 0 3: 1 4: 2 5: 3 6: 4 7: 5 8: 6 9: 7 10: 8 11: 9 12: Breaking now! 13: Disposed with last sequence number of 11! 14: Done with loop. Yes indeed, when we break the loop, the state machine that C# generates for yield iterate exits the iteration through the using blocks and auto-disposes the IDisposable correctly. I must admit, though, the first time I wrote one, I began to wonder and that led to this test. If you've never seen iterators before (I wrote a previous entry here) the infinite loop may throw you, but you have to keep in mind it is not a linear piece of code, that every time you hit a "yield return" it cedes control back to the state machine generated for the iterator. And this state machine, I'm happy to say, is smart enough to clean up the using blocks correctly. I suspected those wily guys and gals at Microsoft engineered it well, and I wasn't disappointed. But, I've been bitten by assumptions before, so it's good to test and see. Yes, maybe you knew it would or figured it would, but isn't it nice to know? And as those campy 80s G.I. Joe cartoon public service reminders always taught us, "Knowing is half the battle...". Technorati Tags: C#,.NET

    Read the article

  • Step Away From That Computer! You’re Not Qualified to Use It!

    - by Michael Sorens
    Most things tend to come with warnings and careful instructions these days, but sadly not one of the most ubiquitous appliances of all, your computer. If a chainsaw is missing its instructions, you’re well advised not to use it, even though you probably know roughly how it’s supposed to work. I confess, there are days when I feel the same way about computers. Long ago, during the renaissance of the computer age, it was possible to know everything about computers. But today, it is challenging to be fully knowledgeable even in one small area, and most people aren’t as savvy as they like to think. And, if I may borrow from Edwin Abbott Abbott’s classic Flatland, that includes me. And you. Need an example of what I mean? Take a look at almost any recent month’s batch of Windows updates. Just two quick questions for you: Do you need all of those updates? Is it safe to install all of those updates? I do software design and development for a living on Windows and the .NET platform, but I will be quite candid: I often have little clue what the heck some of those updates are going to do or why they are needed. So, if you do not know why they are needed or what they do, how do you know if they are safe? Of course, one can sidestep both questions by accepting Microsoft’s recommended Windows Update setting of “install updates automatically”. That leads you to infer that you need all of them (which is not always the case) and, more significantly, that they are safe. Quite safe. Ah, lest reality intrude upon such a pretty picture! Sadly, there is no such thing as risk-free software installation, and payloads from Windows Update are no exception. Earlier this year, a Windows Secrets Patch Watch article touted this headline: Keep this troublesome kernel update on hold. It discusses KB 2862330, a security update originally published more than 4 months earlier, and yet the article still recommends not installing it! Most people simply do not have the time, resources, or interest, to go about figuring out which updates to install or postpone or skip for safety reasons. Windows Secrets Patch Watch is the best service I have encountered for getting advice, but it is still no panacea and using the service effectively requires a degree of computer literacy that I still think is beyond a good number of people. Which brings us full circle: Step Away From That Computer! You’re Not Qualified to Use It!

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >