Search Results

Search found 1292 results on 52 pages for 'readonly'.

Page 12/52 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • InternalsVisibleTo attribute and security vulnerability

    - by Sergey Litvinov
    I found one issue with InternalsVisibleTo attribute usage. The idea of InternalsVisibleTo attribute to allow some other assemblies to use internal classes\methods of this assembly. To make it work you need sign your assemblies. So, if other assemblies isn't specified in main assembly and if they have incorrect public key, then they can't use Internal members. But the issue in Reflection Emit type generation. For example, we have CorpLibrary1 assembly and it has such class: public class TestApi { internal virtual void DoSomething() { Console.WriteLine("Base DoSomething"); } public void DoApiTest() { // some internal logic // ... // call internal method DoSomething(); } } This assembly is marked with such attribute to allow another CorpLibrary2 to make inheritor for that TestAPI and override behaviour of DoSomething method. [assembly: InternalsVisibleTo("CorpLibrary2, PublicKey=0024000004800000940000000602000000240000525341310004000001000100434D9C5E1F9055BF7970B0C106AAA447271ECE0F8FC56F6AF3A906353F0B848A8346DC13C42A6530B4ED2E6CB8A1E56278E664E61C0D633A6F58643A7B8448CB0B15E31218FB8FE17F63906D3BF7E20B9D1A9F7B1C8CD11877C0AF079D454C21F24D5A85A8765395E5CC5252F0BE85CFEB65896EC69FCC75201E09795AAA07D0")] The issue is that I'm able to override this internal DoSomething method and break class logic. My steps to do it: Generate new assembly in runtime via AssemblyBuilder Get AssemblyName from CorpLibrary1 and copy PublikKey to new assembly Generate new assembly that will inherit TestApi class As PublicKey and name of generated assembly is the same as in InternalsVisibleTo, then we can generate new DoSomething method that will override internal method in TestAPI assembly Then we have another assembly that isn't related to this CorpLibrary1 and can't use internal members. We have such test code in it: class Program { static void Main(string[] args) { var builder = new FakeBuilder(InjectBadCode, "DoSomething", true); TestApi fakeType = builder.CreateFake(); fakeType.DoApiTest(); // it will display: // Inject bad code // Base DoSomething Console.ReadLine(); } public static void InjectBadCode() { Console.WriteLine("Inject bad code"); } } And this FakeBuilder class has such code: /// /// Builder that will generate inheritor for specified assembly and will overload specified internal virtual method /// /// Target type public class FakeBuilder { private readonly Action _callback; private readonly Type _targetType; private readonly string _targetMethodName; private readonly string _slotName; private readonly bool _callBaseMethod; public FakeBuilder(Action callback, string targetMethodName, bool callBaseMethod) { int randomId = new Random((int)DateTime.Now.Ticks).Next(); _slotName = string.Format("FakeSlot_{0}", randomId); _callback = callback; _targetType = typeof(TFakeType); _targetMethodName = targetMethodName; _callBaseMethod = callBaseMethod; } public TFakeType CreateFake() { // as CorpLibrary1 can't use code from unreferences assemblies, we need to store this Action somewhere. // And Thread is not bad place for that. It's not the best place as it won't work in multithread application, but it's just a sample LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot(_slotName); Thread.SetData(slot, _callback); // then we generate new assembly with the same nameand public key as target assembly trusts by InternalsVisibleTo attribute var newTypeName = _targetType.Name + "Fake"; var targetAssembly = Assembly.GetAssembly(_targetType); AssemblyName an = new AssemblyName(); an.Name = GetFakeAssemblyName(targetAssembly); // copying public key to new generated assembly var assemblyName = targetAssembly.GetName(); an.SetPublicKey(assemblyName.GetPublicKey()); an.SetPublicKeyToken(assemblyName.GetPublicKeyToken()); AssemblyBuilder assemblyBuilder = Thread.GetDomain().DefineDynamicAssembly(an, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduleBuilder = assemblyBuilder.DefineDynamicModule(assemblyBuilder.GetName().Name, true); // create inheritor for specified type TypeBuilder typeBuilder = moduleBuilder.DefineType(newTypeName, TypeAttributes.Public | TypeAttributes.Class, _targetType); // LambdaExpression.CompileToMethod can be used only with static methods, so we need to create another method that will call our Inject method // we can do the same via ILGenerator, but expression trees are more easy to use MethodInfo methodInfo = CreateMethodInfo(moduleBuilder); MethodBuilder methodBuilder = typeBuilder.DefineMethod(_targetMethodName, MethodAttributes.Public | MethodAttributes.Virtual); ILGenerator ilGenerator = methodBuilder.GetILGenerator(); // call our static method that will call inject method ilGenerator.EmitCall(OpCodes.Call, methodInfo, null); // in case if we need, then we put call to base method if (_callBaseMethod) { var baseMethodInfo = _targetType.GetMethod(_targetMethodName, BindingFlags.NonPublic | BindingFlags.Instance); // place this to stack ilGenerator.Emit(OpCodes.Ldarg_0); // call the base method ilGenerator.EmitCall(OpCodes.Call, baseMethodInfo, new Type[0]); // return ilGenerator.Emit(OpCodes.Ret); } // generate type, create it and return to caller Type cheatType = typeBuilder.CreateType(); object type = Activator.CreateInstance(cheatType); return (TFakeType)type; } /// /// Get name of assembly from InternalsVisibleTo AssemblyName /// private static string GetFakeAssemblyName(Assembly assembly) { var internalsVisibleAttr = assembly.GetCustomAttributes(typeof(InternalsVisibleToAttribute), true).FirstOrDefault() as InternalsVisibleToAttribute; if (internalsVisibleAttr == null) { throw new InvalidOperationException("Assembly hasn't InternalVisibleTo attribute"); } var ind = internalsVisibleAttr.AssemblyName.IndexOf(","); var name = internalsVisibleAttr.AssemblyName.Substring(0, ind); return name; } /// /// Generate such code: /// ((Action)Thread.GetData(Thread.GetNamedDataSlot(_slotName))).Invoke(); /// private LambdaExpression MakeStaticExpressionMethod() { var allocateMethod = typeof(Thread).GetMethod("GetNamedDataSlot", BindingFlags.Static | BindingFlags.Public); var getDataMethod = typeof(Thread).GetMethod("GetData", BindingFlags.Static | BindingFlags.Public); var call = Expression.Call(allocateMethod, Expression.Constant(_slotName)); var getCall = Expression.Call(getDataMethod, call); var convCall = Expression.Convert(getCall, typeof(Action)); var invokExpr = Expression.Invoke(convCall); var lambda = Expression.Lambda(invokExpr); return lambda; } /// /// Generate static class with one static function that will execute Action from Thread NamedDataSlot /// private MethodInfo CreateMethodInfo(ModuleBuilder moduleBuilder) { var methodName = "_StaticTestMethod_" + _slotName; var className = "_StaticClass_" + _slotName; TypeBuilder typeBuilder = moduleBuilder.DefineType(className, TypeAttributes.Public | TypeAttributes.Class); MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, MethodAttributes.Static | MethodAttributes.Public); LambdaExpression expression = MakeStaticExpressionMethod(); expression.CompileToMethod(methodBuilder); var type = typeBuilder.CreateType(); return type.GetMethod(methodName, BindingFlags.Static | BindingFlags.Public); } } remarks about sample: as we need to execute code from another assembly, CorpLibrary1 hasn't access to it, so we need to store this delegate somewhere. Just for testing I stored it in Thread NamedDataSlot. It won't work in multithreaded applications, but it's just a sample. I know that we use Reflection to get private\internal members of any class, but within reflection we can't override them. But this issue is allows anyone to override internal class\method if that assembly has InternalsVisibleTo attribute. I tested it on .Net 3.5\4 and it works for both of them. How does it possible to just copy PublicKey without private key and use it in runtime? The whole sample can be found there - https://github.com/sergey-litvinov/Tests_InternalsVisibleTo UPDATE1: That test code in Program and FakeBuilder classes hasn't access to key.sn file and that library isn't signed, so it hasn't public key at all. It just copying it from CorpLibrary1 by using Reflection.Emit

    Read the article

  • Azure Diagnostics wrt Custom Logs and honoring scheduledTransferPeriod

    - by kjsteuer
    I have implemented my own TraceListener similar to http://blogs.technet.com/b/meamcs/archive/2013/05/23/diagnostics-of-cloud-services-custom-trace-listener.aspx . One thing I noticed is that that logs show up immediately in My Azure Table Storage. I wonder if this is expected with Custom Trace Listeners or because I am in a development environment. My diagnosics.wadcfg <?xml version="1.0" encoding="utf-8"?> <DiagnosticMonitorConfiguration configurationChangePollInterval="PT1M""overallQuotaInMB="4096" xmlns="http://schemas.microsoft.com/ServiceHosting/2010/10/DiagnosticsConfiguration"> <DiagnosticInfrastructureLogs scheduledTransferLogLevelFilter="Information" /> <Directories scheduledTransferPeriod="PT1M"> <IISLogs container="wad-iis-logfiles" /> <CrashDumps container="wad-crash-dumps" /> </Directories> <Logs bufferQuotaInMB="0" scheduledTransferPeriod="PT30M" scheduledTransferLogLevelFilter="Information" /> </DiagnosticMonitorConfiguration> I have changed my approach a bit. Now I am defining in the web config of my webrole. I notice when I set autoflush to true in the webconfig, every thing works but scheduledTransferPeriod is not honored because the flush method pushes to the table storage. I would like to have scheduleTransferPeriod trigger the flush or trigger flush after a certain number of log entries like the buffer is full. Then I can also flush on server shutdown. Is there any method or event on the CustomTraceListener where I can listen to the scheduleTransferPeriod? <system.diagnostics> <!--http://msdn.microsoft.com/en-us/library/sk36c28t(v=vs.110).aspx By default autoflush is false. By default useGlobalLock is true. While we try to be threadsafe, we keep this default for now. Later if we would like to increase performance we can remove this. see http://msdn.microsoft.com/en-us/library/system.diagnostics.trace.usegloballock(v=vs.110).aspx --> <trace> <listeners> <add name="TableTraceListener" type="Pos.Services.Implementation.TableTraceListener, Pos.Services.Implementation" /> <remove name="Default" /> </listeners> </trace> </system.diagnostics> I have modified the custom trace listener to the following: namespace Pos.Services.Implementation { class TableTraceListener : TraceListener { #region Fields //connection string for azure storage readonly string _connectionString; //Custom sql storage table for logs. //TODO put in config readonly string _diagnosticsTable; [ThreadStatic] static StringBuilder _messageBuffer; readonly object _initializationSection = new object(); bool _isInitialized; CloudTableClient _tableStorage; readonly object _traceLogAccess = new object(); readonly List<LogEntry> _traceLog = new List<LogEntry>(); #endregion #region Constructors public TableTraceListener() : base("TableTraceListener") { _connectionString = RoleEnvironment.GetConfigurationSettingValue("DiagConnection"); _diagnosticsTable = RoleEnvironment.GetConfigurationSettingValue("DiagTableName"); } #endregion #region Methods /// <summary> /// Flushes the entries to the storage table /// </summary> public override void Flush() { if (!_isInitialized) { lock (_initializationSection) { if (!_isInitialized) { Initialize(); } } } var context = _tableStorage.GetTableServiceContext(); context.MergeOption = MergeOption.AppendOnly; lock (_traceLogAccess) { _traceLog.ForEach(entry => context.AddObject(_diagnosticsTable, entry)); _traceLog.Clear(); } if (context.Entities.Count > 0) { context.BeginSaveChangesWithRetries(SaveChangesOptions.None, (ar) => context.EndSaveChangesWithRetries(ar), null); } } /// <summary> /// Creates the storage table object. This class does not need to be locked because the caller is locked. /// </summary> private void Initialize() { var account = CloudStorageAccount.Parse(_connectionString); _tableStorage = account.CreateCloudTableClient(); _tableStorage.GetTableReference(_diagnosticsTable).CreateIfNotExists(); _isInitialized = true; } public override bool IsThreadSafe { get { return true; } } #region Trace and Write Methods /// <summary> /// Writes the message to a string buffer /// </summary> /// <param name="message">the Message</param> public override void Write(string message) { if (_messageBuffer == null) _messageBuffer = new StringBuilder(); _messageBuffer.Append(message); } /// <summary> /// Writes the message with a line breaker to a string buffer /// </summary> /// <param name="message"></param> public override void WriteLine(string message) { if (_messageBuffer == null) _messageBuffer = new StringBuilder(); _messageBuffer.AppendLine(message); } /// <summary> /// Appends the trace information and message /// </summary> /// <param name="eventCache">the Event Cache</param> /// <param name="source">the Source</param> /// <param name="eventType">the Event Type</param> /// <param name="id">the Id</param> /// <param name="message">the Message</param> public override void TraceEvent(TraceEventCache eventCache, string source, TraceEventType eventType, int id, string message) { base.TraceEvent(eventCache, source, eventType, id, message); AppendEntry(id, eventType, eventCache); } /// <summary> /// Adds the trace information to a collection of LogEntry objects /// </summary> /// <param name="id">the Id</param> /// <param name="eventType">the Event Type</param> /// <param name="eventCache">the EventCache</param> private void AppendEntry(int id, TraceEventType eventType, TraceEventCache eventCache) { if (_messageBuffer == null) _messageBuffer = new StringBuilder(); var message = _messageBuffer.ToString(); _messageBuffer.Length = 0; if (message.EndsWith(Environment.NewLine)) message = message.Substring(0, message.Length - Environment.NewLine.Length); if (message.Length == 0) return; var entry = new LogEntry() { PartitionKey = string.Format("{0:D10}", eventCache.Timestamp >> 30), RowKey = string.Format("{0:D19}", eventCache.Timestamp), EventTickCount = eventCache.Timestamp, Level = (int)eventType, EventId = id, Pid = eventCache.ProcessId, Tid = eventCache.ThreadId, Message = message }; lock (_traceLogAccess) _traceLog.Add(entry); } #endregion #endregion } }

    Read the article

  • C# async and actors

    - by Alex.Davies
    If you read my last post about async, you might be wondering what drove me to write such odd code in the first place. The short answer is that .NET Demon is written using NAct Actors. Actors are an old idea, which I believe deserve a renaissance under C# 5. The idea is to isolate each stateful object so that only one thread has access to its state at any point in time. That much should be familiar, it's equivalent to traditional lock-based synchronization. The different part is that actors pass "messages" to each other rather than calling a method and waiting for it to return. By doing that, each thread can only ever be holding one lock. This completely eliminates deadlocks, my least favourite concurrency problem. Most people who use actors take this quite literally, and there are plenty of frameworks which help you to create message classes and loops which can receive the messages, inspect what type of message they are, and process them accordingly. But I write C# for a reason. Do I really have to choose between using actors and everything I love about object orientation in C#? Type safety Interfaces Inheritance Generics As it turns out, no. You don't need to choose between messages and method calls. A method call makes a perfectly good message, as long as you don't wait for it to return. This is where asynchonous methods come in. I have used NAct for a while to wrap my objects in a proxy layer. As long as I followed the rule that methods must always return void, NAct queued up the call for later, and immediately released my thread. When I needed to get information out of other actors, I could use EventHandlers and callbacks (continuation passing style, for any CS geeks reading), and NAct would call me back in my isolated thread without blocking the actor that raised the event. Using callbacks looks horrible though. To remind you: m_BuildControl.FilterEnabledForBuilding(    projects,    enabledProjects = m_OutOfDateProjectFinder.FilterNeedsBuilding(        enabledProjects,             newDirtyProjects =             {                 ....... Which is why I'm really happy that NAct now supports async methods. Now, methods are allowed to return Task rather than just void. I can await those methods, and C# 5 will turn the rest of my method into a continuation for me. NAct will run the other method in the other actor's context, but will make sure that when my method resumes, we're back in my context. Neither actor was ever blocked waiting for the other one. Apart from when they were actually busy doing something, they were responsive to concurrent messages from other sources. To be fair, you could use async methods with lock statements to achieve exactly the same thing, but it's ugly. Here's a realistic example of an object that has a queue of data that gets passed to another object to be processed: class QueueProcessor {    private readonly ItemProcessor m_ItemProcessor = ...     private readonly object m_Sync = new object();    private Queue<object> m_DataQueue = ...    private List<object> m_Results = ...     public async Task ProcessOne() {         object data = null;         lock (m_Sync)         {             data = m_DataQueue.Dequeue();         }         var processedData = await m_ItemProcessor.ProcessData(data); lock (m_Sync)         {             m_Results.Add(processedData);         }     } } We needed to write two lock blocks, one to get the data to process, one to store the result. The worrying part is how easily we could have forgotten one of the locks. Compare that to the version using NAct: class QueueProcessorActor : IActor { private readonly ItemProcessor m_ItemProcessor = ... private Queue<object> m_DataQueue = ... private List<object> m_Results = ... public async Task ProcessOne()     {         // We are an actor, it's always thread-safe to access our private fields         var data = m_DataQueue.Dequeue();         var processedData = await m_ItemProcessor.ProcessData(data);         m_Results.Add(processedData);     } } You don't have to explicitly lock anywhere, NAct ensures that your code will only ever run on one thread, because it's an actor. Either way, async is definitely better than traditional synchronous code. Here's a diagram of what a typical synchronous implementation might do: The left side shows what is running on the thread that has the lock required to access the QueueProcessor's data. The red section is where that lock is held, but doesn't need to be. Contrast that with the async version we wrote above: Here, the lock is released in the middle. The QueueProcessor is free to do something else. Most importantly, even if the ItemProcessor sometimes calls the QueueProcessor, they can never deadlock waiting for each other. So I thoroughly recommend you use async for all code that has to wait a while for things. And if you find yourself writing lots of lock statements, think about using actors as well. Using actors and async together really takes the misery out of concurrent programming.

    Read the article

  • Subterranean IL: Generics and array covariance

    - by Simon Cooper
    Arrays in .NET are curious beasts. They are the only built-in collection types in the CLR, and SZ-arrays (single dimension, zero-indexed) have their own commands and IL syntax. One of their stranger properties is they have a kind of built-in covariance long before generic variance was added in .NET 4. However, this causes a subtle but important problem with generics. First of all, we need to briefly recap on array covariance. SZ-array covariance To demonstrate, I'll tweak the classes I introduced in my previous posts: public class IncrementableClass { public int Value; public virtual void Increment(int incrementBy) { Value += incrementBy; } } public class IncrementableClassx2 : IncrementableClass { public override void Increment(int incrementBy) { base.Increment(incrementBy); base.Increment(incrementBy); } } In the CLR, SZ-arrays of reference types are implicitly convertible to arrays of the element's supertypes, all the way up to object (note that this does not apply to value types). That is, an instance of IncrementableClassx2[] can be used wherever a IncrementableClass[] or object[] is required. When an SZ-array could be used in this fashion, a run-time type check is performed when you try to insert an object into the array to make sure you're not trying to insert an instance of IncrementableClass into an IncrementableClassx2[]. This check means that the following code will compile fine but will fail at run-time: IncrementableClass[] array = new IncrementableClassx2[1]; array[0] = new IncrementableClass(); // throws ArrayTypeMismatchException These checks are enforced by the various stelem* and ldelem* il instructions in such a way as to ensure you can't insert a IncrementableClass into a IncrementableClassx2[]. For the rest of this post, however, I'm going to concentrate on the ldelema instruction. ldelema This instruction pops the array index (int32) and array reference (O) off the stack, and pushes a pointer (&) to the corresponding array element. However, unlike the ldelem instruction, the instruction's type argument must match the run-time array type exactly. This is because, once you've got a managed pointer, you can use that pointer to both load and store values in that array element using the ldind* and stind* (load/store indirect) instructions. As the same pointer can be used for both input and output to the array, the type argument to ldelema must be invariant. At the time, this was a perfectly reasonable restriction, and maintained array type-safety within managed code. However, along came generics, and with it the constrained callvirt instruction. So, what happens when we combine array covariance and constrained callvirt? .method public static void CallIncrementArrayValue() { // IncrementableClassx2[] arr = new IncrementableClassx2[1] ldc.i4.1 newarr IncrementableClassx2 // arr[0] = new IncrementableClassx2(); dup newobj instance void IncrementableClassx2::.ctor() ldc.i4.0 stelem.ref // IncrementArrayValue<IncrementableClass>(arr, 0) // here, we're treating an IncrementableClassx2[] as IncrementableClass[] dup ldc.i4.0 call void IncrementArrayValue<class IncrementableClass>(!!0[],int32) // ... ret } .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } And the result: Unhandled Exception: System.ArrayTypeMismatchException: Attempted to access an element as a type incompatible with the array. at IncrementArrayValue[T](T[] arr, Int32 index) at CallIncrementArrayValue() Hmm. We're instantiating the generic method as IncrementArrayValue<IncrementableClass>, but passing in an IncrementableClassx2[], hence the ldelema instruction is failing as it's expecting an IncrementableClass[]. On features and feature conflicts What we've got here is a conflict between existing behaviour (ldelema ensuring type safety on covariant arrays) and new behaviour (managed pointers to object references used for every constrained callvirt on generic type instances). And, although this is an edge case, there is no general workaround. The generic method could be hidden behind several layers of assemblies, wrappers and interfaces that make it a requirement to use array covariance when calling the generic method. Furthermore, this will only fail at runtime, whereas compile-time safety is what generics were designed for! The solution is the readonly. prefix instruction. This modifies the ldelema instruction to ignore the exact type check for arrays of reference types, and so it lets us take the address of array elements using a covariant type to the actual run-time type of the array: .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 readonly. ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } But what about type safety? In return for ignoring the type check, the resulting controlled mutability pointer can only be used in the following situations: As the object parameter to ldfld, ldflda, stfld, call and constrained callvirt instructions As the pointer parameter to ldobj or ldind* As the source parameter to cpobj In other words, the only operations allowed are those that read from the pointer; stind* and similar that alter the pointer itself are banned. This ensures that the array element we're pointing to won't be changed to anything untoward, and so type safety within the array is maintained. This is a typical example of the maxim that whenever you add a feature to a program, you have to consider how that feature interacts with every single one of the existing features. Although an edge case, the readonly. prefix instruction ensures that generics and array covariance work together and that compile-time type safety is maintained. Tune in next time for a look at the .ctor generic type constraint, and what it means.

    Read the article

  • ReSharper C# Live Template for Read-Only Dependency Property and Routed Event Boilerplate

    - by Bart Read
    Following on from my previous post, where I shared a Live Template for quickly declaring a normal read-write dependency property and its associated property change event boilerplate, here's an unsurprisingly similar template for creating a read-only dependency property.        #region $PROPNAME$ Read-Only Property and Property Change Routed Event        private static readonly DependencyPropertyKey $PROPNAME$PropertyKey =                                             DependencyProperty.RegisterReadOnly(             "$PROPNAME$", typeof ( $PROPTYPE$ ), typeof ( $DECLARING_TYPE$ ),             new PropertyMetadata( $DEF_VALUE$ , On$PROPNAME$Changed ) );       public static readonly DependencyProperty $PROPNAME$Property =                                           $PROPNAME$PropertyKey.DependencyProperty;        public $PROPTYPE$ $PROPNAME$         {             get { return ( $PROPTYPE$ ) GetValue( $PROPNAME$Property ); }             private set { SetValue( $PROPNAME$PropertyKey, value ); }         }       public static readonly RoutedEvent $PROPNAME$ChangedEvent   =                                           EventManager.RegisterRoutedEvent(           "$PROPNAME$Changed",           RoutingStrategy.$ROUTINGSTRATEGY$,           typeof( RoutedPropertyChangedEventHandler< $PROPTYPE$ > ),           typeof( $DECLARING_TYPE$ ) );       public event RoutedPropertyChangedEventHandler< $PROPTYPE$ > $PROPNAME$Changed       {           add { AddHandler( $PROPNAME$ChangedEvent, value ); }           remove { RemoveHandler( $PROPNAME$ChangedEvent, value ); }       }        private static void On$PROPNAME$Changed(           DependencyObject d, DependencyPropertyChangedEventArgs e)         {             var $DECLARING_TYPE_var$ = d as $DECLARING_TYPE$;            var args = new RoutedPropertyChangedEventArgs< $PROPTYPE$ >(               ( $PROPTYPE$ ) e.OldValue,               ( $PROPTYPE$ ) e.NewValue );           args.RoutedEvent    = $DECLARING_TYPE$.$PROPNAME$ChangedEvent;           $DECLARING_TYPE_var$.RaiseEvent( args );$END$        }        #endregion The only real difference here is the addition of the DependencyPropertyKey, which allows your implementation to set the value of the dependency property without exposing the setter code to consumers of your type. You'll probably find that you create read-only dependency properties much less often than read-write properties, but this should still save you some typing when you do need to do so. Technorati Tags: resharper,live template,c#,dependency property,read-only,routed events,property change,boilerplate,wpf

    Read the article

  • Storing non-content data in Orchard

    - by Bertrand Le Roy
    A CMS like Orchard is, by definition, designed to store content. What differentiates content from other kinds of data is rather subtle. The way I would describe it is by saying that if you would put each instance of a kind of data on its own web page, if it would make sense to add comments to it, or tags, or ratings, then it is content and you can store it in Orchard using all the convenient composition options that it offers. Otherwise, it probably isn't and you can store it using somewhat simpler means that I will now describe. In one of the modules I wrote, Vandelay.ThemePicker, there is some configuration data for the module. That data is not content by the definition I gave above. Let's look at how this data is stored and queried. The configuration data in question is a set of records, each of which has a number of properties: public class SettingsRecord { public virtual int Id { get; set;} public virtual string RuleType { get; set; } public virtual string Name { get; set; } public virtual string Criterion { get; set; } public virtual string Theme { get; set; } public virtual int Priority { get; set; } public virtual string Zone { get; set; } public virtual string Position { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Each property has to be virtual for nHibernate to handle it (it creates derived classed that are instrumented in all kinds of ways). We also have an Id property. The way these records will be stored in the database is described from a migration: public int Create() { SchemaBuilder.CreateTable("SettingsRecord", table => table .Column<int>("Id", column => column.PrimaryKey().Identity()) .Column<string>("RuleType", column => column.NotNull().WithDefault("")) .Column<string>("Name", column => column.NotNull().WithDefault("")) .Column<string>("Criterion", column => column.NotNull().WithDefault("")) .Column<string>("Theme", column => column.NotNull().WithDefault("")) .Column<int>("Priority", column => column.NotNull().WithDefault(10)) .Column<string>("Zone", column => column.NotNull().WithDefault("")) .Column<string>("Position", column => column.NotNull().WithDefault("")) ); return 1; } When we enable the feature, the migration will run, which will create the table in the database. Once we've done that, all we have to do in order to use the data is inject an IRepository<SettingsRecord>, which is what I'm doing from the set of helpers I put under the SettingsService class: private readonly IRepository<SettingsRecord> _repository; private readonly ISignals _signals; private readonly ICacheManager _cacheManager; public SettingsService( IRepository<SettingsRecord> repository, ISignals signals, ICacheManager cacheManager) { _repository = repository; _signals = signals; _cacheManager = cacheManager; } The repository has a Table property, which implements IQueryable<SettingsRecord> (enabling all kind of Linq queries) as well as methods such as Delete and Create. Here's for example how I'm getting all the records in the table: _repository.Table.ToList() And here's how I'm deleting a record: _repository.Delete(_repository.Get(r => r.Id == id)); And here's how I'm creating one: _repository.Create(new SettingsRecord { Name = name, RuleType = ruleType, Criterion = criterion, Theme = theme, Priority = priority, Zone = zone, Position = position }); In summary, you create a record class, a migration, and you're in business and can just manipulate the data through the repository that the framework is exposing. You even get ambient transactions from the work context.

    Read the article

  • From HttpRuntime.Cache to Windows Azure Caching (Preview)

    - by Jeff
    I don’t know about you, but the announcement of Windows Azure Caching (Preview) (yes, the parentheses are apparently part of the interim name) made me a lot more excited about using Azure. Why? Because one of the great performance tricks of any Web app is to cache frequently used data in memory, so it doesn’t have to hit the database, a service, or whatever. When you run your Web app on one box, HttpRuntime.Cache is a sweet and stupid-simple solution. Somewhere in the data fetching pieces of your app, you can see if an object is available in cache, and return that instead of hitting the data store. I did this quite a bit in POP Forums, and it dramatically cuts down on the database chatter. The problem is that it falls apart if you run the app on many servers, in a Web farm, where one server may initiate a change to that data, and the others will have no knowledge of the change, making it stale. Of course, if you have the infrastructure to do so, you can use something like memcached or AppFabric to do a distributed cache, and achieve the caching flavor you desire. You could do the same thing in Azure before, but it would cost more because you’d need to pay for another role or VM or something to host the cache. Now, you can use a portion of the memory from each instance of a Web role to act as that cache, with no additional cost. That’s huge. So if you’re using a percentage of memory that comes out to 100 MB, and you have three instances running, that’s 300 MB available for caching. For the uninitiated, a Web role in Azure is essentially a VM that runs a Web app (worker roles are the same idea, only without the IIS part). You can spin up many instances of the role, and traffic is load balanced to the various instances. It’s like adding or removing servers to a Web farm all willy-nilly and at your discretion, and it’s what the cloud is all about. I’d say it’s my favorite thing about Windows Azure. The slightly annoying thing about developing for a Web role in Azure is that the local emulator that’s launched by Visual Studio is a little on the slow side. If you’re used to using the built-in Web server, you’re used to building and then alt-tabbing to your browser and refreshing a page. If you’re just changing an MVC view, you’re not even doing the building part. Spinning up the simulated Azure environment is too slow for this, but ideally you want to code your app to use this fantastic distributed cache mechanism. So first off, here’s the link to the page showing how to code using the caching feature. If you’re used to using HttpRuntime.Cache, this should be pretty familiar to you. Let’s say that you want to use the Azure cache preview when you’re running in Azure, but HttpRuntime.Cache if you’re running local, or in a regular IIS server environment. Through the magic of dependency injection, we can get there pretty quickly. First, design an interface to handle the cache insertion, fetching and removal. Mine looks like this: public interface ICacheProvider {     void Add(string key, object item, int duration);     T Get<T>(string key) where T : class;     void Remove(string key); } Now we’ll create two implementations of this interface… one for Azure cache, one for HttpRuntime: public class AzureCacheProvider : ICacheProvider {     public AzureCacheProvider()     {         _cache = new DataCache("default"); // in Microsoft.ApplicationServer.Caching, see how-to      }         private readonly DataCache _cache;     public void Add(string key, object item, int duration)     {         _cache.Add(key, item, new TimeSpan(0, 0, 0, 0, duration));     }     public T Get<T>(string key) where T : class     {         return _cache.Get(key) as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } public class LocalCacheProvider : ICacheProvider {     public LocalCacheProvider()     {         _cache = HttpRuntime.Cache;     }     private readonly System.Web.Caching.Cache _cache;     public void Add(string key, object item, int duration)     {         _cache.Insert(key, item, null, DateTime.UtcNow.AddMilliseconds(duration), System.Web.Caching.Cache.NoSlidingExpiration);     }     public T Get<T>(string key) where T : class     {         return _cache[key] as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } Feel free to expand these to use whatever cache features you want. I’m not going to go over dependency injection here, but I assume that if you’re using ASP.NET MVC, you’re using it. Somewhere in your app, you set up the DI container that resolves interfaces to concrete implementations (Ninject call is a “kernel” instead of a container). For this example, I’ll show you how StructureMap does it. It uses a convention based scheme, where if you need to get an instance of IFoo, it looks for a class named Foo. You can also do this mapping explicitly. The initialization of the container looks something like this: ObjectFactory.Initialize(x =>             {                 x.Scan(scan =>                         {                             scan.AssembliesFromApplicationBaseDirectory();                             scan.WithDefaultConventions();                         });                 if (Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.IsAvailable)                     x.For<ICacheProvider>().Use<AzureCacheProvider>();                 else                     x.For<ICacheProvider>().Use<LocalCacheProvider>();             }); If you use Ninject or Windsor or something else, that’s OK. Conceptually they’re all about the same. The important part is the conditional statement that checks to see if the app is running in Azure. If it is, it maps ICacheProvider to AzureCacheProvider, otherwise it maps to LocalCacheProvider. Now when a request comes into your MVC app, and the chain of dependency resolution occurs, you can see to it that the right caching code is called. A typical design may have a call stack that goes: Controller –> BusinessLogicClass –> Repository. Let’s say your repository class looks like this: public class MyRepo : IMyRepo {     public MyRepo(ICacheProvider cacheProvider)     {         _context = new MyDataContext();         _cache = cacheProvider;     }     private readonly MyDataContext _context;     private readonly ICacheProvider _cache;     public SomeType Get(int someTypeID)     {         var key = "somename-" + someTypeID;         var cachedObject = _cache.Get<SomeType>(key);         if (cachedObject != null)         {             _context.SomeTypes.Attach(cachedObject);             return cachedObject;         }         var someType = _context.SomeTypes.SingleOrDefault(p => p.SomeTypeID == someTypeID);         _cache.Add(key, someType, 60000);         return someType;     } ... // more stuff to update, delete or whatever, being sure to remove // from cache when you do so  When the DI container gets an instance of the repo, it passes an instance of ICacheProvider to the constructor, which in this case will be whatever implementation was specified when the container was initialized. The Get method first tries to hit the cache, and of course doesn’t care what the underlying implementation is, Azure, HttpRuntime, or otherwise. If it finds the object, it returns it right then. If not, it hits the database (this example is using Entity Framework), and inserts the object into the cache before returning it. The important thing not pictured here is that other methods in the repo class will construct the key for the cached object, in this case “somename-“ plus the ID of the object, and then remove it from cache, in any method that alters or deletes the object. That way, no matter what instance of the role is processing the request, it won’t find the object if it has been made stale, that is, updated or outright deleted, forcing it to attempt to hit the database. So is this good technique? Well, sort of. It depends on how you use it, and what your testing looks like around it. Because of differences in behavior and execution of the two caching providers, for example, you could see some strange errors. For example, I immediately got an error indicating there was no parameterless constructor for an MVC controller, because the DI resolver failed to create instances for the dependencies it had. In reality, the NuGet packaged DI resolver for StructureMap was eating an exception thrown by the Azure components that said my configuration, outlined in that how-to article, was wrong. That error wouldn’t occur when using the HttpRuntime. That’s something a lot of people debate about using different components like that, and how you configure them. I kinda hate XML config files, and like the idea of the code-based approach above, but you should be darn sure that your unit and integration testing can account for the differences.

    Read the article

  • java inheritance keyword super()

    - by gucciv12
    requirement: Given the class 'ReadOnly' with the following behavior: A (protected) integer instance variable named 'val'. A constructor that accepts an integer and assigns the value of the parameter to the instance variable 'val'. A method name 'getVal' that returns the value of 'val'. Write a subclass named 'ReadWrite' with the following additional behavior: Any necessary constructors. a method named 'setVal' that accepts an integer parameter and assigns it the the 'val' instance variable. a method 'isDirty' that returns true if the setVal method was used to override the value of the 'val' variable. Code class ReadWrite extends ReadOnly { super(int val); void setVal(int val){this.val = val;} boolean isDirty() {if (setVal()(return true)) else return false;}} More Hints: ?     You should be using: modified ?     You should be using: private ?     You should be using: public

    Read the article

  • Detach an entity from a JPA persistence context (JPA 2.0 / Hibernate / EJB 3 / J2EE 6)

    - by Julien
    Hi, I wrote a stateless EJB method allowing to get an entity in "read-only" mode. The way to do this is to get the entity with the EntityManager then detach it (using the JPA 2.0 EntityManager). My code is the following: @PersistenceContext private EntityManager entityManager; public T getEntity(int entityId, Class<T> specificClass, boolean readOnly) throws Exception{ try{ T entity = (T)entityManager.find(specificClass, entityId); if (readOnly){ entityManager.detach(entity); } return entity; }catch (Exception e){ logger.error("", e); throw e; } } Getting the entity works fine, but the call to the detach method returns the following error: GRAVE: javax.ejb.EJBException at ... Caused by: java.lang.AbstractMethodError: org.hibernate.ejb.EntityManagerImpl.detach(Ljava/lang/Object;)V at com.sun.enterprise.container.common.impl.EntityManagerWrapper.detach(EntityManagerWrapper.java:973) at com.mycomp.dal.MyEJB.getEntity(MyEJB.java:37) I can't get more information and don't understand what the problem is... Could somebody help ?

    Read the article

  • C#: IEnumerable, GetEnumerator, a simple, simple example please!

    - by Andrew White
    Hi there, Trying to create an uebersimple class that implements get enumerator, but failing madly due to lack of simple / non-functioning examples out there. All I want to do is create a wrapper around a data structure (in this case a list, but I might need a dictionary later) and add some functions. public class Album { public readonly string Artist; public readonly string Title; public Album(string artist, string title) { Artist = artist; Title = title; } } public class AlbumList { private List<Album> Albums = new List<Album>; public Count { get { return Albums.Count; } } ..... //Somehow GetEnumerator here to return Album } Thanks!

    Read the article

  • Singleton by Jon Skeet clarification

    - by amutha
    public sealed class Singleton { Singleton() { } public static Singleton Instance { get { return Nested.instance; } } class Nested { // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit static Nested() { } internal static readonly Singleton instance = new Singleton(); } } I wish to implement Jon Skeet's Singleton pattern in my current application in C#. I have two doubts on the code 1) How is it possible to access the outer class inside nested class? I mean internal static readonly Singleton instance = new Singleton(); Is something called closure? 2) I did not get this comment // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit what does this comment suggest us?

    Read the article

  • Cannot convert the value in attribute '[attr]' to object of type 'System.Windows.TemplateBindingExte

    - by Krimson
    Hi, I get this error when I define my attached dependency properties in a class outside the class hierarchy and set the owner to a common parent class. Attached dependency property in WindowBase class (outside class hierarchy = generated error): public static readonly DependencyProperty AreaColorProperty = DependencyProperty.RegisterAttached("AreaColor", typeof(AreaColor), typeof(Window)); TemplateBinding that fails {TemplateBinding local:WindowBase.AreaColor} If I instead define the attached dependency property in a class within the class heirarchy and set the owner to this class, then I don't get any errors, why is this? Attached dependency property in WindowBase (within class hierarchy = no errors): public static readonly DependencyProperty AreaColorProperty = DependencyProperty.RegisterAttached("AreaColor", typeof(AreaColor), typeof(WindowBase)); Best Regards, Jesper

    Read the article

  • Problem with persisting interface collection at design time in winforms, .net

    - by Jules
    The easiest way to explain this problem is to show you some code: Public Interface IAmAnnoyed End Interface Public Class IAmAnnoyedCollection Inherits ObjectModel.Collection(Of IAmAnnoyed) End Class Public Class Anger Implements IAmAnnoyed End Class Public Class MyButton Inherits Button Private _Annoyance As IAmAnnoyedCollection <DesignerSerializationVisibility(DesignerSerializationVisibility.Content)> _ Public ReadOnly Property Annoyance() As IAmAnnoyedCollection Get Return _Annoyance End Get End Property Private _InternalAnger As Anger <DesignerSerializationVisibility(DesignerSerializationVisibility.Content)> _ Public ReadOnly Property InternalAnger() As Anger Get Return Me._InternalAnger End Get End Property Public Sub New() Me._Annoyance = New IAmAnnoyedCollection Me._InternalAnger = New Anger Me._Annoyance.Add(Me._InternalAnger) End Sub End Class And this is the code that the designer generates: Private Sub InitializeComponent() Dim Anger1 As Anger = New Anger Me.MyButton1 = New MyButton ' 'MyButton1 ' Me.MyButton1.Annoyance.Add(Anger1) // Should be: Me.MyButton1.Annoyance.Add(Me.MyButton1.InternalAnger) ' 'Form1 ' Me.Controls.Add(Me.MyButton1) End Sub I've added a comment to the above to show how the code should have been generated. Now, if I dispense with the interface and just have a collection of Anger, then it persists correctly. Any ideas?

    Read the article

  • Problem with persisting inteface collection at design time in winforms, .net

    - by Jules
    The easiest way to explain this problem is to show you some code: Public Interface IAmAnnoyed End Interface Public Class IAmAnnoyedCollection Inherits ObjectModel.Collection(Of IAmAnnoyed) End Class Public Class Anger Implements IAmAnnoyed End Class Public Class MyButton Inherits Button Private _Annoyance As IAmAnnoyedCollection <DesignerSerializationVisibility(DesignerSerializationVisibility.Content)> _ Public ReadOnly Property Annoyance() As IAmAnnoyedCollection Get Return _Annoyance End Get End Property Private _InternalAnger As Anger <DesignerSerializationVisibility(DesignerSerializationVisibility.Content)> _ Public ReadOnly Property InternalAnger() As Anger Get Return Me._InternalAnger End Get End Property Public Sub New() Me._Annoyance = New IAmAnnoyedCollection Me._InternalAnger = New Anger Me._Annoyance.Add(Me._InternalAnger) End Sub End Class And this is the code that the designer generates: Private Sub InitializeComponent() Dim Anger1 As Anger = New Anger Me.MyButton1 = New MyButton ' 'MyButton1 ' Me.MyButton1.Annoyance.Add(Anger1) // Should be: Me.MyButton1.Annoyance.Add(Me.MyButton1.InternalAnger) ' 'Form1 ' Me.Controls.Add(Me.MyButton1) End Sub I've added a comment to the above to show how the code should have been generated. Now, if I dispense with the interface and just have a collection of Anger, then it persists correctly. Any ideas?

    Read the article

  • WPF Lookless Control Events

    - by Scott
    I have the following class: public class LooklessControl : Control { public List<int> IntList { get; private set; } public int CurrentInt { get; private set; } private int _index = 0; static LooklessControl() { DefaultStyleKeyProperty.OverrideMetadata(typeof(LooklessControl), new FrameworkPropertyMetadata(typeof(LooklessControl))); } public LooklessControl() { IntList = new List<int>(); for (int i = 0; i < 10; i++) { IntList.Add(i); } CurrentInt = IntList[_index]; } public static readonly RoutedCommand NextItemCommand = new RoutedCommand("NextItemCommand", typeof(LooklessControl)); private void ExecutedNextItemCommand(object sender, ExecutedRoutedEventArgs e) { NextItemHandler(); } private void CanExecuteNextItemCommand(object sender, CanExecuteRoutedEventArgs e) { e.CanExecute = true; } public static readonly RoutedCommand PrevItemCommand = new RoutedCommand("PrevItemCommand", typeof(LooklessControl)); private void ExecutedPrevItemCommand(ExecutedRoutedEventArgs e) { PrevItemHandler(); } private void CanExecutePrevItemCommand(object sender, CanExecuteRoutedEventArgs e) { e.CanExecute = true; } public static readonly RoutedEvent NextItemEvent = EventManager.RegisterRoutedEvent("NextItemEvent", RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(LooklessControl)); public event RoutedEventHandler NextItem { add { AddHandler(NextItemEvent, value); } remove { RemoveHandler(NextItemEvent, value); } } private void RaiseNextItemEvent() { RoutedEventArgs args = new RoutedEventArgs(LooklessControl.NextItemEvent); RaiseEvent(args); } public static readonly RoutedEvent PrevItemEvent = EventManager.RegisterRoutedEvent("PrevItemEvent", RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(LooklessControl)); public event RoutedEventHandler PrevItem { add { AddHandler(PrevItemEvent, value); } remove { RemoveHandler(PrevItemEvent, value); } } private void RaisePrevItemEvent() { RoutedEventArgs args = new RoutedEventArgs(LooklessControl.PrevItemEvent); RaiseEvent(args); } private void NextItemHandler() { _index++; if (_index == IntList.Count) { _index = 0; } CurrentInt = IntList[_index]; RaiseNextItemEvent(); } private void PrevItemHandler() { _index--; if (_index == 0) { _index = IntList.Count - 1; } CurrentInt = IntList[_index]; RaisePrevItemEvent(); } } The class has a default style, in Generic.xaml, that looks like this: <Style x:Key="{x:Type local:LooklessControl}" TargetType="{x:Type local:LooklessControl}"> <Setter Property="Height" Value="200"/> <Setter Property="Width" Value="90"/> <Setter Property="Template"> <Setter.Value> <ControlTemplate TargetType="{x:Type local:LooklessControl}"> <Border BorderBrush="Black" BorderThickness="1" Padding="2"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="20"/> <RowDefinition Height="*"/> </Grid.RowDefinitions> <Rectangle Grid.Row="0" Fill="LightGray"/> <Rectangle Grid.Row="1" Fill="Gainsboro"/> <Grid Grid.Row="0"> <Grid.ColumnDefinitions> <ColumnDefinition Width="10"/> <ColumnDefinition Width="*"/> <ColumnDefinition Width="10"/> </Grid.ColumnDefinitions> <Path Grid.Column="0" x:Name="pathLeftArrow" Data="M0,0.5 L1,1 1,0Z" Width="6" Height="14" Stretch="Fill" HorizontalAlignment="Center" Fill="SlateBlue"/> <TextBlock Grid.Column="1" Name="textBlock" Text="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=CurrentInt}" HorizontalAlignment="Center" VerticalAlignment="Center" FontFamily="Junction" FontSize="13"/> <Path Grid.Column="2" x:Name="pathRightArrow" Data="M0,0 L1,0.5 0,1Z" Width="6" Height="14" Stretch="Fill" HorizontalAlignment="Center" Fill="SlateBlue"/> </Grid> <ListBox Grid.Row="1" HorizontalContentAlignment="Center" VerticalContentAlignment="Center" Background="Transparent" ItemsSource="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=IntList}"/> </Grid> </Border> </ControlTemplate> </Setter.Value> </Setter> </Style> How do I make it so that when the user clicks on pathLeftArrow it fires LooklessControl.PrevItemCommand, or or they click on pathRightArrow and it fires LooklessControl.NextItemCommand, or they click on an item in the ListBox and LooklessControl is notified of the newly selected item? In other words, without adding x:Class to the top of Generic.xaml and thus creating a code-behind file for it, which I assume you wouldn't want to do, how do you handle events for elements in your xaml that don't have a Command property (which is just about everything other than a Button)? Should LooklessControl have it's own XAML file (much like what you get when you create a new UserControl) associated with it that Generic.xaml just pulls in as a MergedDictionar as its default template? Or is there some other acknowledged way to do what I'm trying to do?

    Read the article

  • Dynamically Added CheckBox Column is Disabled in GridView

    - by Mark Maslar
    I'm dynamically adding a Boolean column to a DataSet. The DataSet's table is the DataSource for a GridView, which AutoGenerates the columns. Issue: The checkboxes for this dynamically generated column are all disabled. How can I enable them? ds.Tables["Transactions"].Columns.Add("Retry", typeof(System.Boolean)); ds.Tables["Transactions"].Columns["Retry"].ReadOnly = false; In other words, how can I control how GridView generates the CheckBoxes for a Boolean field? (And why does setting ReadOnly to False have no effect?) Thanks!

    Read the article

  • C# - How to override GetHashCode with Lists in object

    - by Christian
    Hi, I am trying to create a "KeySet" to modify UIElement behaviour. The idea is to create a special function if, eg. the user clicks on an element while holding a. Or ctrl+a. My approach so far, first lets create a container for all possible modifiers. If I would simply allow a single key, it would be no problem. I could use a simple Dictionary, with Dictionary<Keys, Action> _specialActionList If the dictionary is empty, use the default action. If there are entries, check what action to use depending on current pressed keys And if I wasn't greedy, that would be it... Now of course, I want more. I want to allow multiple keys or modifiers. So I created a wrapper class, wich can be used as Key to my dictionary. There is an obvious problem when using a more complex class. Currently two different instances would create two different key, and thereby he would never find my function (see code to understand, really obvious) Now I checked this post: http://stackoverflow.com/questions/638761/c-gethashcode-override-of-object-containing-generic-array which helped a little. But my question is, is my basic design for the class ok. Should I use a hashset to store the modifier and normal keyboardkeys (instead of Lists). And If so, how would the GetHashCode function look like? I know, its a lot of code to write (boring hash functions), some tips would be sufficient to get me started. Will post tryouts here... And here comes the code so far, the Test obviously fails... public class KeyModifierSet { private readonly List<Key> _keys = new List<Key>(); private readonly List<ModifierKeys> _modifierKeys = new List<ModifierKeys>(); private static readonly Dictionary<KeyModifierSet, Action> _testDict = new Dictionary<KeyModifierSet, Action>(); public static void Test() { _testDict.Add(new KeyModifierSet(Key.A), () => Debug.WriteLine("nothing")); if (!_testDict.ContainsKey(new KeyModifierSet(Key.A))) throw new Exception("Not done yet, help :-)"); } public KeyModifierSet(IEnumerable<Key> keys, IEnumerable<ModifierKeys> modifierKeys) { foreach (var key in keys) _keys.Add(key); foreach (var key in modifierKeys) _modifierKeys.Add(key); } public KeyModifierSet(Key key, ModifierKeys modifierKey) { _keys.Add(key); _modifierKeys.Add(modifierKey); } public KeyModifierSet(Key key) { _keys.Add(key); } }

    Read the article

  • How do I assign a value to a MailMessage ReplyTo property?

    - by Zack Peterson
    I want to set the ReplyTo value for a .NET MailMessage. MailMessage.ReplyTo Property: ReplyTo is obsoleted for this type. Please use ReplyToList instead which can accept multiple addresses. MailMessage.ReplyToList Property: Gets or sets the list of addresses to reply to for the mail message. But, ReplyToList is ReadOnly. I've tried to use the MailMessage.Headers property like this: mail.Headers.Add("Reply-To", "[email protected]"); as described here: System.Web.Mail, OH MY! But, that doesn't seem to work. How do I set the value(s) of the MailMessage's ReadOnly property ReplyToList?

    Read the article

  • Preventing the opening of a form on a add button click

    - by Jonathan
    Hey guys, Did you guys know how to prevent the open of a Form when I click on a add button? Maybe using beforeShowForm? function(formid) { if(jQuery('#gridap').getGridParam('selrow')) { idgridap=jQuery('#gridap').getGridParam('selrow'); jQuery('#FK_numerocontrato_ap',formid).val(idgridap).attr('readonly','readonly'); } else { // I want to prevent the openning of the add form here and maybe show an alert using the "alertcap" } } CHECAROW; $grid->setNavEvent('add','beforeShowForm',$checarowid); BTW, there's a way to call the alertmod of jqgrid and add a custom message to it? tks!

    Read the article

  • Spring WS & Validator interceptor

    - by mada
    I have a endpoint mapping a webservice which is used to insert in the dabatabase some keywords: @Transactional(readOnly = false,isolation= Isolation.SERIALIZABLE) public Source saveKW(...). The input is a request. I would like to add an interceptor on the method in order to validate the parameters. this one will read some values from the DB. i would like that this interceptor is EMBED in the transaction declared for the endpoint (or this opposite). In other words, i want them to be in the same transaction. Ideally im looking for something like this with annotation: @Transactional(readOnly = false,isolation= Isolation.SERIALIZABLE) @validator("KeyWordValidaor.class") public Source saveKW(...) where KeyWordValidaor will be class validating the parameters. Have you any idea or short examples to implements this like this way or in a other real way?

    Read the article

  • Visualizing read-only folders

    - by Paul-Jan
    My application displays a folder structure in a tree. The user can browse the contents in these folders, and drag content into the folders. However, some of these folders are readonly (meaning no content can be dragged into them). I'm looking for a clear way of depicting this to the user, so they are aware which folders they can drag to before actually having to try it, i.e. hover state. Something not too alarming or interrupting (no big red crosses overlayed on top of the folder icons, for instance), preferably a recognized standard. Specifically, we are talking about an Outlook add-in showing a SharePoint folder tree here, but I'd much rather get the answer from a generic viewpoint. From the top of my head, I simply don't seem to know any applications that visually mark readonly folders.

    Read the article

  • C#: Inheritance, Overriding, and Hiding

    - by Rosarch
    I'm having difficulty with an architectural decision for my C# XNA game. The basic entity in the world, such as a tree, zombie, or the player, is represented as a GameObject. Each GameObject is composed of at least a GameObjectController, GameObjectModel, and GameObjectView. These three are enough for simple entities, like inanimate trees or rocks. However, as I try to keep the functionality as factored out as possible, the inheritance begins to feel unwieldy. Syntactically, I'm not even sure how best to accomplish my goals. Here is the GameObjectController: public class GameObjectController { protected GameObjectModel model; protected GameObjectView view; public GameObjectController(GameObjectManager gameObjectManager) { this.gameObjectManager = gameObjectManager; model = new GameObjectModel(this); view = new GameObjectView(this); } public GameObjectManager GameObjectManager { get { return gameObjectManager; } } public virtual GameObjectView View { get { return view; } } public virtual GameObjectModel Model { get { return model; } } public virtual void Update(long tick) { } } I want to specify that each subclass of GameObjectController will have accessible at least a GameObjectView and GameObjectModel. If subclasses are fine using those classes, but perhaps are overriding for a more sophisticated Update() method, I don't want them to have to duplicate the code to produce those dependencies. So, the GameObjectController constructor sets those objects up. However, some objects do want to override the model and view. This is where the trouble comes in. Some objects need to fight, so they are CombatantGameObjects: public class CombatantGameObject : GameObjectController { protected new readonly CombatantGameModel model; public new virtual CombatantGameModel Model { get { return model; } } protected readonly CombatEngine combatEngine; public CombatantGameObject(GameObjectManager gameObjectManager, CombatEngine combatEngine) : base(gameObjectManager) { model = new CombatantGameModel(this); this.combatEngine = combatEngine; } public override void Update(long tick) { if (model.Health <= 0) { gameObjectManager.RemoveFromWorld(this); } base.Update(tick); } } Still pretty simple. Is my use of new to hide instance variables correct? Note that I'm assigning CombatantObjectController.model here, even though GameObjectController.Model was already set. And, combatants don't need any special view functionality, so they leave GameObjectController.View alone. Then I get down to the PlayerController, at which a bug is found. public class PlayerController : CombatantGameObject { private readonly IInputReader inputReader; private new readonly PlayerModel model; public new PlayerModel Model { get { return model; } } private float lastInventoryIndexAt; private float lastThrowAt; public PlayerController(GameObjectManager gameObjectManager, IInputReader inputReader, CombatEngine combatEngine) : base(gameObjectManager, combatEngine) { this.inputReader = inputReader; model = new PlayerModel(this); Model.Health = Constants.PLAYER_HEALTH; } public override void Update(long tick) { if (Model.Health <= 0) { gameObjectManager.RemoveFromWorld(this); for (int i = 0; i < 10; i++) { Debug.WriteLine("YOU DEAD SON!!!"); } return; } UpdateFromInput(tick); // .... } } The first time that this line is executed, I get a null reference exception: model.Body.ApplyImpulse(movementImpulse, model.Position); model.Position looks at model.Body, which is null. This is a function that initializes GameObjects before they are deployed into the world: public void Initialize(GameObjectController controller, IDictionary<string, string> data, WorldState worldState) { controller.View.read(data); controller.View.createSpriteAnimations(data, _assets); controller.Model.read(data); SetUpPhysics(controller, worldState, controller.Model.BoundingCircleRadius, Single.Parse(data["x"]), Single.Parse(data["y"]), bool.Parse(data["isBullet"])); } Every object is passed as a GameObjectController. Does that mean that if the object is really a PlayerController, controller.Model will refer to the base's GameObjectModel and not the PlayerController's overriden PlayerObjectModel? In response to rh: This means that now for a PlayerModel p, p.Model is not equivalent to ((CombatantGameObject)p).Model, and also not equivalent to ((GameObjectController)p).Model. That is exactly what I do not want. I want: PlayerController p; p.Model == ((CombatantGameObject)p).Model p.Model == ((GameObjectController)p).Model How can I do this? override?

    Read the article

  • Binding Linq To Entities query results to a datagridview

    - by Nickson
    I just started playing with Linq to entities in a windows forms application and am not understanding one behavior that looks so simple though. If i type code below, i get ReadOnly records in my dataGridView Dim x = From n in Table1 _ Select n.FirstName, n.LastName, N.Department DataGridView1.DataSource = x But if i type the following code, i get editable rows in my dataGridView Dim x = From n in Table1 _ Select n DataGridView1.DataSource = x So, basically if i specify the column names to select and databind to my DataGridView1, the rows are readonly but if i do not specify the column names and databind to the DataGridView, the rows are editable and i don't understand why.

    Read the article

  • Change text fields background colour if negative number using Jquery/CSS

    - by Dan C
    Hi, I have the following text input on a budget calculator form which displays the final balance... <tr><td align="right"><b>Balance: &pound;</b></td><td align="left"><input type="text" class="res" name="res" id="res" size="10" readonly="readonly"></td></tr> How do I go about setting the background of the input to red using css and jquery if the value is a negative number? I am sure this is very simple but I have scanned the net looking for a solution for ages. Please can someone help?, my head hurts!

    Read the article

  • PRISM View Injection/Navigation in Same Module

    - by Jeaffrey Gilbert
    This is ModuleInit.cs in Products module public class ModuleInit : IModule { private readonly IUnityContainer _container; private readonly IRegionManager _regionManager; public ModuleInit(IUnityContainer container, IRegionManager regionManager) { _container = container; _regionManager = regionManager; } #region IModule Members public void Initialize() { App app = (App)Application.Current; _regionManager.RegisterViewWithRegion(RegionNames.ModuleRegionProducts, () => _container.Resolve<Views.ProductsCycle>()); } #endregion } Below is button event handler in ProductsCycle.cs to go to another view still within same module: private void btnForward_Click(object sender, RoutedEventArgs e) { IRegion productsRegion = _regionManager.Regions["ModuleRegionProducts"]; var productsListView = _container.Resolve<Views.ProductsList>(); productsRegion.Add(productsListView, "ProductsList"); productsRegion.Activate(productsListView); } State: ProductsCycle page is successfully loaded on first load. Problem: View doesn't changed from ProductCycle page to ProductsList page when btnForward is clicked. I'm using Silverlight 4 and PRISM2. Please your advice, thank you.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >