Search Results

Search found 3489 results on 140 pages for 'all numeric no hash'.

Page 120/140 | < Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >

  • Difference between LASTDATE and MAX for semi-additive measures in #DAX

    - by Marco Russo (SQLBI)
    I recently wrote an article on SQLBI about the semi-additive measures in DAX. I included the formulas common calculations and there is an interesting point that worth a longer digression: the difference between LASTDATE and MAX (which is similar to FIRSTDATE and MIN – I just describe the former, for the latter just replace the correspondent names). LASTDATE is a dax function that receives an argument that has to be a date column and returns the last date active in the current filter context. Apparently, it is the same value returned by MAX, which returns the maximum value of the argument in the current filter context. Of course, MAX can receive any numeric type (including date), whereas LASTDATE only accepts a column of type date. But overall, they seems identical in the result. However, the difference is a semantic one. In fact, this expression: LASTDATE ( 'Date'[Date] ) could be also rewritten as: FILTER ( VALUES ( 'Date'[Date] ), 'Date'[Date] = MAX ( 'Date'[Date] ) ) LASTDATE is a function that returns a table with a single column and one row, whereas MAX returns a scalar value. In DAX, any expression with one row and one column can be automatically converted into the corresponding scalar value of the single cell returned. The opposite is not true. So you can use LASTDATE in any expression where a table or a scalar is required, but MAX can be used only where a scalar expression is expected. Since LASTDATE returns a table, you can use it in any expression that expects a table as an argument, such as COUNTROWS. In fact, you can write this expression: COUNTROWS ( LASTDATE ( 'Date'[Date] ) ) which will always return 1 or BLANK (if there are no dates active in the current filter context). You cannot pass MAX as an argument of COUNTROWS. You can pass to LASTDATE a reference to a column or any table expression that returns a column. The following two syntaxes are semantically identical: LASTDATE ( 'Date'[Date] ) LASTDATE ( VALUES ( 'Date'[Date] ) ) The result is the same and the use of VALUES is not required because it is implicit in the first syntax, unless you have a row context active. In that case, be careful that using in a row context the LASTDATE function with a direct column reference will produce a context transition (the row context is transformed into a filter context) that hides the external filter context, whereas using VALUES in the argument preserve the existing filter context without applying the context transition of the row context (see the columns LastDate and Values in the following query and result). You can use any other table expressions (including a FILTER) as LASTDATE argument. For example, the following expression will always return the last date available in the Date table, regardless of the current filter context: LASTDATE ( ALL ( 'Date'[Date] ) ) The following query recap the result produced by the different syntaxes described. EVALUATE     CALCULATETABLE(         ADDCOLUMNS(              VALUES ('Date'[Date] ),             "LastDate", LASTDATE( 'Date'[Date] ),             "Values", LASTDATE( VALUES ( 'Date'[Date] ) ),             "Filter", LASTDATE( FILTER ( VALUES ( 'Date'[Date] ), 'Date'[Date] = MAX ( 'Date'[Date] ) ) ),             "All", LASTDATE( ALL ( 'Date'[Date] ) ),             "Max", MAX( 'Date'[Date] )         ),         'Date'[Calendar Year] = 2008     ) ORDER BY 'Date'[Date] The LastDate columns repeat the current date, because the context transition happens within the ADDCOLUMNS. The Values column preserve the existing filter context from being replaced by the context transition, so the result corresponds to the last day in year 2008 (which is filtered in the external CALCULATETABLE). The Filter column works like the Values one, even if we use the FILTER instead of the LASTDATE approach. The All column shows the result of LASTDATE ( ALL ( ‘Date’[Date] ) ) that ignores the filter on Calendar Year (in fact the date returned is in year 2010). Finally, the Max column shows the result of the MAX formula, which is the easiest to use and only don’t return a table if you need it (like in a filter argument of CALCULATE or CALCULATETABLE, where using LASTDATE is shorter). I know that using LASTDATE in complex expressions might create some issue. In my experience, the fact that a context transition happens automatically in presence of a row context is the main reason of confusion and unexpected results in DAX formulas using this function. For a reference of DAX formulas using MAX and LASTDATE, read my article about semi-additive measures in DAX.

    Read the article

  • JavaScript Intellisense Improvements with VS 2010

    - by ScottGu
    This is the twentieth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release.  Today’s blog post covers some of the nice improvements coming with JavaScript intellisense with VS 2010 and the free Visual Web Developer 2010 Express.  You’ll find with VS 2010 that JavaScript Intellisense loads much faster for large script files and with large libraries, and that it now provides statement completion support for more advanced scenarios compared to previous versions of Visual Studio. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Improved JavaScript Intellisense Providing Intellisense for a dynamic language like JavaScript is more involved than doing so with a statically typed language like VB or C#.  Correctly inferring the shape and structure of variables, methods, etc is pretty much impossible without pseudo-executing the actual code itself – since JavaScript as a language is flexible enough to dynamically modify and morph these things at runtime.  VS 2010’s JavaScript code editor now has the smarts to perform this type of pseudo-code execution as you type – which is how its intellisense completion is kept accurate and complete.  Below is a simple walkthrough that shows off how rich and flexible it is with the final release. Scenario 1: Basic Type Inference When you declare a variable in JavaScript you do not have to declare its type.  Instead, the type of the variable is based on the value assigned to it.  Because VS 2010 pseudo-executes the code within the editor, it can dynamically infer the type of a variable, and provide the appropriate code intellisense based on the value assigned to a variable. For example, notice below how VS 2010 provides statement completion for a string (because we assigned a string to the “foo” variable): If we later assign a numeric value to “foo” the statement completion (after this assignment) automatically changes to provide intellisense for a number: Scenario 2: Intellisense When Manipulating Browser Objects It is pretty common with JavaScript to manipulate the DOM of a page, as well as work against browser objects available on the client.  Previous versions of Visual Studio would provide JavaScript statement completion against the standard browser objects – but didn’t provide much help with more advanced scenarios (like creating dynamic variables and methods).  VS 2010’s pseudo-execution of code within the editor now allows us to provide rich intellisense for a much broader set of scenarios. For example, below we are using the browser’s window object to create a global variable named “bar”.  Notice how we can now get intellisense (with correct type inference for a string) with VS 2010 when we later try and use it: When we assign the “bar” variable as a number (instead of as a string) the VS 2010 intellisense engine correctly infers its type and modifies statement completion appropriately to be that of a number instead: Scenario 3: Showing Off Because VS 2010 is psudo-executing code within the editor, it is able to handle a bunch of scenarios (both practical and wacky) that you throw at it – and is still able to provide accurate type inference and intellisense. For example, below we are using a for-loop and the browser’s window object to dynamically create and name multiple dynamic variables (bar1, bar2, bar3…bar9).  Notice how the editor’s intellisense engine identifies and provides statement completion for them: Because variables added via the browser’s window object are also global variables – they also now show up in the global variable intellisense drop-down as well: Better yet – type inference is still fully supported.  So if we assign a string to a dynamically named variable we will get type inference for a string.  If we assign a number we’ll get type inference for a number.  Just for fun (and to show off!) we could adjust our for-loop to assign a string for even numbered variables (bar2, bar4, bar6, etc) and assign a number for odd numbered variables (bar1, bar3, bar5, etc): Notice above how we get statement completion for a string for the “bar2” variable.  Notice below how for “bar1” we get statement completion for a number:   This isn’t just a cool pet trick While the above example is a bit contrived, the approach of dynamically creating variables, methods and event handlers on the fly is pretty common with many Javascript libraries.  Many of the more popular libraries use these techniques to keep the size of script library downloads as small as possible.  VS 2010’s support for parsing and pseudo-executing libraries that use these techniques ensures that you get better code Intellisense out of the box when programming against them. Summary Visual Studio 2010 (and the free Visual Web Developer 2010 Express) now provide much richer JavaScript intellisense support.  This support works with pretty much all popular JavaScript libraries.  It should help provide a much better development experience when coding client-side JavaScript and enabling AJAX scenarios within your ASP.NET applications. Hope this helps, Scott P.S. You can read my previous blog post on VS 2008’s JavaScript Intellisense to learn more about our previous JavaScript intellisense (and some of the scenarios it supported).  VS 2010 obviously supports all of the scenarios previously enabled with VS 2008.

    Read the article

  • WEB203 &ndash; Jump into Silverlight!&hellip; and Become Effective Immediately with Tim Huckaby, Fou

    - by Robert Burger
    Getting ready for the good stuff. Definitely wish there were more Silverlight and WCF RIA sessions, but this is a start.  Was lucky to get a coveted power-enabled seat.  Luckily, due to my trustily slow Verizon data card, I can get these notes out amidst a total Internet outage here.  This is the second breakout session of the day, and is by far standing-room only.  I stepped out before the session started to get a cool Diet COKE and wouldn’t have gotten back in if I didn’t already have a seat. Tim says this is an intro session and that he’s been begging for intro sessions at TechEd for years and that by looking at this audience, he thinks the demand is there.  Admittedly, I didn’t know this was an intro session, or I might have gone elsewhere.  But, it was the very first Silverlight session, so I had to be here. Tim says he will be providing a very good comprehensive reference application at the end of the presentation.  He has just demoed it, and it is a full CRUD-based Sales Manager application based on…  AdventureWorks! Session Agenda What it is / How to get started Declarative Programming Layout and Controls, Events and Commands Working with Data Adding Style to Your Application   Silverlight…  “WPF Light” Why is the download 4.2MB?  Because the direct competitor is a 4.2MB download.  There is no technical reason it is not the entire framework.  It is purely to “be competitive”.   Getting Started Get all of the following downloads from www.silverlight.net/getstarted Install VS2010 or Visual Web Developer Express 2010 Install Silverlight 4 Tools for VS2010 Install Expression Blend 4 Install the Silverlight 4 Toolkit   Reference Application Features Uses MVVM pattern – a way to move data access code that would normally be inline within the UI and placing it in nice data access libraries Images loaded dynamically from the database, converting GIF to PNG because Silverlight does not support GIF. LINQ to SQL is the data access model WCF is the data provider and is using binary message encoding   Declarative Programming XAML replaces code for UI representation Attributes control Layout and Style Event handlers wired-up in XAML Declarative Data Binding   Layout Overview Content rendering flows inside of parent Fixed positioning (Canvas) is seldom used Panels are used to house content Margins and Padding over fixed size   Panels StackPanel – Arranges child elements into a single line oriented horizontally or vertically Grid – A flexible grid are that consists of rows and columns Canvas – An are where positions are specifically fixed WrapPanel (in Toolkit) – Positions child elements in sequential position left to right and top to bottom. DockPanel (in Toolkit) – Positions child controls within a dockable area   Positioning Horizontal and Vertical Alignment Margin – Separates an element from neighboring elements Padding – Enlarges the effective size of an element by a thickness   Controls Overview Not all controls created equal Silverlight, as a subset of WPF, so many WPF controls do not exist in the core Siverlight release Silverlight Toolkit continues to add controls, but are released in different quality bands Plenty of good 3rd party controls to fill the gaps Windows Phone 7 is to have 95% of controls available in Silverlight Core and Toolkit.   Events and Commands Standard .NET Events Routed Events Commands – based on the ICommand interface – logical action that can be invoked in several ways   Adding Style to Your Application Resource Dictionaries – Contains a hash table of key/value pairs.  Silverlight can only use Static Resources whereas WPF can also use Dynamic Resources Visual State Manager Silverlight 4 supports Implicit styles ResourceDictionary.MergedDictionaries combines many different file-based resources   Downloads

    Read the article

  • SQL SERVER – Fundamentals of Columnstore Index

    - by pinaldave
    There are two kind of storage in database. Row Store and Column Store. Row store does exactly as the name suggests – stores rows of data on a page – and column store stores all the data in a column on the same page. These columns are much easier to search – instead of a query searching all the data in an entire row whether the data is relevant or not, column store queries need only to search much lesser number of the columns. This means major increases in search speed and hard drive use. Additionally, the column store indexes are heavily compressed, which translates to even greater memory and faster searches. I am sure this looks very exciting and it does not mean that you convert every single index from row store to column store index. One has to understand the proper places where to use row store or column store indexes. Let us understand in this article what is the difference in Columnstore type of index. Column store indexes are run by Microsoft’s VertiPaq technology. However, all you really need to know is that this method of storing data is columns on a single page is much faster and more efficient. Creating a column store index is very easy, and you don’t have to learn new syntax to create them. You just need to specify the keyword “COLUMNSTORE” and enter the data as you normally would. Keep in mind that once you add a column store to a table, though, you cannot delete, insert or update the data – it is READ ONLY. However, since column store will be mainly used for data warehousing, this should not be a big problem. You can always use partitioning to avoid rebuilding the index. A columnstore index stores each column in a separate set of disk pages, rather than storing multiple rows per page as data traditionally has been stored. The difference between column store and row store approaches is illustrated below: In case of the row store indexes multiple pages will contain multiple rows of the columns spanning across multiple pages. In case of column store indexes multiple pages will contain multiple single columns. This will lead only the columns needed to solve a query will be fetched from disk. Additionally there is good chance that there will be redundant data in a single column which will further help to compress the data, this will have positive effect on buffer hit rate as most of the data will be in memory and due to same it will not need to be retrieved. Let us see small example of how columnstore index improves the performance of the query on a large table. As a first step let us create databaseset which is large enough to show performance impact of columnstore index. The time taken to create sample database may vary on different computer based on the resources. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 Now let us do quick performance test. I have kept STATISTICS IO ON for measuring how much IO following queries take. In my test first I will run query which will use regular index. We will note the IO usage of the query. After that we will create columnstore index and will measure the IO of the same. -- Performance Test -- Comparing Regular Index with ColumnStore Index USE AdventureWorks GO SET STATISTICS IO ON GO -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO -- Table 'MySalesOrderDetail'. Scan count 1, logical reads 342261, physical reads 0, read-ahead reads 0. -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO -- Select Table with Columnstore Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO It is very clear from the results that query is performance extremely fast after creating ColumnStore Index. The amount of the pages it has to read to run query is drastically reduced as the column which are needed in the query are stored in the same page and query does not have to go through every single page to read those columns. If we enable execution plan and compare we can see that column store index performance way better than regular index in this case. Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO In future posts we will see cases where Columnstore index is not appropriate solution as well few other tricks and tips of the columnstore index. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • JQuery and the multiple date selector

    - by David Carter
    Overview I recently needed to build a web page that would allow a user to capture some information and most importantly select multiple dates. This functionality was core to the application and hence had to be easy and quick to do. This is a public facing website so it had to be intuitive and very responsive. On the face of it it didn't seem too hard, I know enough juery to know what it is capable of and I was pretty sure that there would be some plugins that would help speed things along the way. I'm using ASP.Net MVC for this project as I really like the control that it gives you over the generated html and javascript. After years of Web Forms development it makes me feel like a web developer again and puts a smile on my face, that can only be a good thing!   The Calendar The first item that I needed on this page was a calender and I wanted the ability to: have the calendar be always visible select/deselect multiple dates at the same time bind to the select/deselect event so that I could update a seperate listing of the selected dates allow the user to move to another month and still have the calender remember any dates in the previous month I was hoping that there was a jQuery plugin that would meet my requirements and luckily there was! The jQuery datepicker does everything I want and there is quite a bit of documentation on how to use it. It makes use of a javascript date library date.js which I had not come across before but has a number of very useful date utilities that I have used elsewhere in the project. As you can see from the image there still needs to be some styling done! But there will be plenty of time for that later. The calendar clearly shows which dates the user has selected in red and i also make use of an unordered list to show the the selected dates so the user can always clearly see what has been selected even if they move to another month on the calendar. The javascript code that is responsible for listening to events on the calendar and synchronising the list look as follows: <script type="text/javascript">     $(function () {         $('.datepicker').datePicker({ inline: true, selectMultiple: true })         .bind(             'dateSelected',             function (e, selectedDate, $td, state) {                                 var dateInMillisecs = selectedDate.valueOf();                 if (state) { //adding a date                     var newDate = new Date(selectedDate);                     //insert the new item into the correct place in the list                     var listitems = $('#dateList').children('li').get();                     var liToAdd = "<li id='" + dateInMillisecs + "' >" + newDate.toString('ddd dd MMM yyyy') + "</li>";                     var targetIndex = -1;                     for (var i = 0; i < listitems.length; i++) {                         if (dateInMillisecs <= listitems[i].id) {                             targetIndex = i;                             break;                         }                     }                     if (targetIndex < 0) {                         $('#dateList').append(liToAdd);                     }                     else {                         $($('#dateList').children("li")[targetIndex]).before(liToAdd);                     }                 }                 else {//removing a date                     $('ul #' + dateInMillisecs).remove();                 }             }         )     }); When a date is selected on the calendar a function is called with a number of parameters passed to it. The ones I am particularly interested in are selectedDate and state. State tells me whether the user has selected or deselected the date passed in the selectedDate parameter. The <ul> that I am using to show the date has an id of dateList and this is what I will be adding and removing <li> items from. To make things a little more logical for the user I decided that the date should be sorted in chronological order, this means that each time a new date is selected it need to be placed in the correct position in the list. One way to do this would be just to append a new <li> to the list and then sort the whole list. However the approach I took was to get an array of all the items in the list var listitems = ('#dateList').children('li').get(); and then check the value of each item in the array against my new date and as soon as I found the case where the new date was less than the current item remember that position in the list as this is where I would insert it later. To make this work easily I decided to store a numeric representation of each date in the list in the id attribute of each <li> element. Fortunately javascript natively stores dates as the number of milliseconds since 1 Jan 1970. var dateInMillisecs = selectedDate.valueOf(); Please note that this is the value of the date in UTC! I always like to store dates in UTC as I learnt a long time ago that it saves a lot of refactoring at a later date... When I convert the dates back to their original back on the server I will need the UTC offset that was used when calculating the dates, this and how to actually serialise the dates and get them posted back will be the subject of another post.

    Read the article

  • How do I consistently re-size my game window and elements?

    - by Milo
    In my 2D game, I have a flow layout. Inside the flow layout are tables. I have a slider that lets the user make the tables larger or smaller. This makes the background larger or smaller too. Everything should scale proportionally which means the background should stay at the same position when I make things larger, and it almost does. When the scrollbar is at 0, it does exactly this. As the scrollbar gets further down problems arise. I'll toggle the slider maybe 3 times and on the fourth time, the background jumps a little lower on the Y axis. In order to be efficient, I only start rendering the background near the parent of the flow layout. Here it is: void LobbyTableManager::renderBG( GraphicsContext* g, agui::Rectangle& absRect, agui::Rectangle& childRect ) { int cx, cy, cw, ch; g->getClippingRect(cx,cy,cw,ch); g->setClippingRect(absRect.getX(),absRect.getY(),absRect.getWidth(),absRect.getHeight()); float scale = 0.35f; int w = m_bgSprite->getWidth() * getTableScale() * scale; int h = m_bgSprite->getHeight() * getTableScale() * scale; int numX = ceil(absRect.getWidth() / (float)w) + 2; int numY = ceil(absRect.getHeight() / (float)h) + 2; float offsetX = m_activeTables[0]->getLocation().getX() - w; float offsetY = m_activeTables[0]->getLocation().getY() - h; int startY = childRect.getY(); if(moo) { std::cout << "S=" << startY << ","; } int numAttempts = 0; while(startY + h < absRect.getY() && numAttempts < 1000) { startY += h; if(moo) { std::cout << startY << ","; } numAttempts++; } if(moo) { std::cout << "\n"; moo = false; } g->holdDrawing(); for(int i = 0; i < numX; ++i) { for(int j = 0; j < numY; ++j) { g->drawScaledSprite(m_bgSprite,0,0,m_bgSprite->getWidth(),m_bgSprite->getHeight(), absRect.getX() + (i * w) + (offsetX),absRect.getY() + (j * h) + startY,w,h,0); } } g->unholdDrawing(); g->setClippingRect(cx,cy,cw,ch); } The numeric problem seems to be in the value of startY. I outputted startY figuring out its value: As you can see here, this is me only zooming in, pay attention to the final number before the next s=. You'll notice that, what should happen is, the numbers should be linear, ex: -40, -38, -36, -34, -32, -30, etc. As you'll notice, the start numbers linearly correlate ex: 62k, 64k, 66k, 68k, 70k etc.. but the end result is wrong every third or 4th time. Here is most of the resize code: void LobbyTableManager::setTableScale( float scale ) { scale += 0.3f; scale *= 2.0f; agui::Gui* gotGui = getGui(); float scrollRel = m_vScroll->getRelativeValue(); setScale(scale); rescaleTables(); resizeFlow(); if(gotGui) { gotGui->toggleWidgetLocationChanged(false); } updateScrollBars(); float newVal = scrollRel * m_vScroll->getMaxValue(); if((int)(newVal + 0.5f) > (int)newVal) { newVal++; } m_vScroll->setValue(newVal); static int x = 0; x++; moo = true; //std::cout << m_vScroll->getValue() << std::endl; if(gotGui) { gotGui->toggleWidgetLocationChanged(true); } if(gotGui) { gotGui->_widgetLocationChanged(); } } void LobbyTableManager::valueChanged( agui::VScrollBar* source,int val ) { if(getGui()) { getGui()->toggleWidgetLocationChanged(false); } m_flow->setLocation(0,-val); if(getGui()) { getGui()->toggleWidgetLocationChanged(true); getGui()->_widgetLocationChanged(); } }

    Read the article

  • MSSQL: Copying data from one database to another

    - by DigiMortal
    I have database that has data imported from another server using import and export wizard of SQL Server Management Studio. There is also empty database with same tables but it also has primary keys, foreign keys and indexes. How to get data from first database to another? Here is the description of my crusade. And believe me – it is not nice one. Bugs in import and export wizard There is some awful bugs in import and export wizard that makes data imports and exports possible only on very limited manner: wizard is not able to analyze foreign keys, wizard wants to create tables always, whatever you say in settings. The result is faulty and useless package. Now let’s go step by step and make things work in our scenario. Database There are two databases. Let’s name them like this: PLAIN – contains data imported from remote server (no indexes, no keys, no nothing, just plain dumb data) CORRECT – empty database with same structure as remote database (indexes, keys and everything else but no data) Our goal is to get data from PLAIN to CORRECT. 1. Create import and export package In this point we will create faulty SSIS package using SQL Server Management Studio. Run import and export wizard and let it create SSIS package that reads data from CORRECT and writes it to, let’s say, CORRECT-2. Make sure you enable identity insert. Make sure there are no views selected. Make sure you don’t let package to create tables (you can miss this step because it wants to create tables anyway). Save package to SSIS. 2. Modify import and export package Now let’s clean up the package and remove all faulty crap. Connect SQL Server Management Studio to SSIS instance. Select the package you just saved and export it to your hard disc. Run Business Intelligence Studio. Create new SSIS project (DON’T MISS THIS STEP). Add package from disc as existing item to project and open it. Move to Control Flow page do one of following: Remove all preparation SQL-tasks and connect Data Flow tasks. Modify all preparation SQL-tasks so the existence of tables is checked before table is created (yes, you have to do it manually). Add new Execute-SQL task as first task in control flow: Open task properties. Assign destination connection as connection to use. Insert the following SQL as command:   EXEC sp_MSForEachTable 'ALTER TABLE ? NOCHECK CONSTRAINT ALL' GO   EXEC sp_MSForEachTable 'DELETE FROM ?' GO   Save task. Add new Execute-SQL task as last task in control flow: Open task properties. Assign destination connection as connection to use. Insert the following SQL as command:   EXEC sp_MSForEachTable 'ALTER TABLE ? CHECK CONSTRAINT ALL' GO   Save task Now connect first Execute-SQL task with first Data Flow task and last Data Flow task with second Execute-SQL task. Now move to Package Explorer tab and change connections under Connection Managers folder. Make source connection to use database PLAIN. Make destination connection to use database CORRECT. Save package and rebuilt the project. Update package using SQL Server Management Studio. Some hints: Make sure you take the package from solution folder because it is saved there now. Don’t overwrite existing package. Use numeric suffix and let Management Studio to create a new version of package. Now you are done with your package. Run it to test it and clean out all the errors you find. TRUNCATE vs DELETE You can see that I used DELETE FROM instead of TRUNCATE. Why? Because TRUNCATE has some nasty limits (taken from MSDN): “You cannot use TRUNCATE TABLE on a table referenced by a FOREIGN KEY constraint; instead, use DELETE statement without a WHERE clause. Because TRUNCATE TABLE is not logged, it cannot activate a trigger. TRUNCATE TABLE may not be used on tables participating in an indexed view.” As I am not sure what tables you have and how they are used I provided here the solution that should work for all scenarios. If you need better performance then in some cases you can use TRUNCATE table instead of DELETE. Conclusion My conclusion is bitter this time although I am very positive guy. It is A.D. 2010 and still we have to write stupid hacks for simple things. Simple tools that existed before are long gone and we have to live mysterious bloatware that is our only choice when using default tools. If you take a look at the length of this posting and the count of steps I had to do for one easy thing you should treat it as a signal that something has went wrong in last years. Although I got my job done I would be still more happy if out of box tools are more intelligent one day. References T-SQL Trick for Deleting All Data in Your Database (Mauro Cardarelli) TRUNCATE TABLE (MSDN Library) Error Handling in SQL 2000 – a Background (Erland Sommarskog) Disable/Enable Foreign Key and Check constraints in SQL Server (Decipher)

    Read the article

  • New Management Console in Java SE Advanced 8u20

    - by Erik Costlow-Oracle
    Java SE 8 update 20 is a new feature release designed to provide desktop administrators with better control of their managed systems. The release notes for 8u20 are available from the public JDK release notes page. This release is not a Critical Patch Update (CPU). I would like to call attention to two noteworthy features of Oracle Java SE Advanced, the commercially supported version of Java SE for enterprises that require both support and specialized tools. The new Advanced Management Console provides a way to monitor and understand client systems at scale. It allows organizations to track usage and more easily create and manage client configuration like Deployment Rule Sets (DRS). DRS can control execution of tracked applications as well as specify compatibility of which application should use which Java SE installation. The new MSI Installer integrates into various desktop management tools, making it easier to customize and roll out different Java SE versions. Advanced Management Console The Advanced Management Console is part of Java SE Advanced designed for desktop administrators, whose users need to run many different Java applications. It provides usage tracking for those Applet & Web Start applications to help identify them for guided DRS creation. DRS can then be verified against the tracked data, to ensure that end-users can run their application against the appropriate Java version with no prompts. Usage tracking also has a different definition for Java SE than it does for most software applications. Unlike most applications where usage can be determined by a simple run-count, Java is a platform used for launching other applications. This means that usage tracking must answer both "how often is this Java SE version used" and "what applications are launched by it." Usage Tracking One piece of Java SE Advanced is a centralized usage tracker. Simply placing a properties file on the client informs systems to report information to this usage tracker, so that the desktop administrator can better understand usage. Information is sent via UDP to prevent any delay on the client. The usage tracking server resides at a central location on the intranet to collect information from those clients. The information is stored in a normalized database for performance, meaning that a single usage tracker can handle a large number of clients. Guided Deployment Rule Sets Deployment Rule Sets were introduced in Java 7 update 40 (September 2013) in order to help administrators control security prompts and guide compatibility. A previous post, Deployment Rule Sets by Example, explains how to configure a rule set so that most applications run against the most secure version but a specific applet may run against the Java version that was current several years ago. There are a different set of questions that can be asked by a desktop administrator in a large or distributed firm: Where are the Java RIAs that our users need? Which RIA needs which Java version? Which users need which Java versions? How do I verify these answers once I have them? The guided deployment rule set creation uses usage tracker data to identify applications both by certificate hash and location. After creating the rules, a comparison tool exists to verify them against the tracked data: If you intend to run an RIA, is it green? If something specific should be blocked, is it red? This makes user-testing easier. MSI Installer The Windows Installer format (MSI) provides a number of benefits for desktop administrators that customize or manage software at scale. Unlike the basic installer that most users obtain from Java.com or OTN, this installer is built around customization and integration with various desktop management products like SCCM. Desktop administrators using the MSI installer can use every feature provided by the format, such as silent installs/upgrades, low-privileged installations, or self-repair capabilities Customers looking for Java SE Advanced can download the MSI installer through their My Oracle Support (MOS) account. Java SE Advanced The new features in Java SE Advanced make it easier for desktop administrators to identify and control client installations at scale. Administrators at organizations that want either the tools or associated commercial support should consider Java SE Advanced.

    Read the article

  • Serial plans: Threshold / Parallel_degree_limit = 1

    - by jean-pierre.dijcks
    As a very short follow up on the previous post. So here is some more on getting a serial plan and why that happens Another reason - compared to the auto DOP is not on as we looked at in the earlier post - and often more prevalent to get a serial plan is if the plan simply does not take long enough to consider a parallel path. The resulting plan and note looks like this (note that this is a serial plan!): explain plan for select count(1) from sales; SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY()); PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------- Plan hash value: 672559287 -------------------------------------------------------------------------------------- | Id  | Operation            | Name  | Rows  | Cost (%CPU)| Time     | Pstart| Pstop | -------------------------------------------------------------------------------------- PLAN_TABLE_OUTPUT -------------------------------------------------------------------------------- |   0 | SELECT STATEMENT     |       |     1 |     5   (0)| 00:00:01 |       |     | |   1 |  SORT AGGREGATE      |       |     1 |            |          |       |     | |   2 |   PARTITION RANGE ALL|       |   960 |     5   (0)| 00:00:01 |     1 |  16 | |   3 |    TABLE ACCESS FULL | SALES |   960 |     5   (0)| 00:00:01 |     1 |  16 | Note -----    - automatic DOP: Computed Degree of Parallelism is 1 because of parallel threshold 14 rows selected. The parallel threshold is referring to parallel_min_time_threshold and since I did not change the default (10s) the plan is not being considered for a parallel degree computation and is therefore staying with the serial execution. Now we go into the land of crazy: Assume I do want this DOP=1 to happen, I could set the parameter in the init.ora, but to highlight it in this case I changed it on the session: alter session set parallel_degree_limit = 1; The result I get is: ERROR: ORA-02097: parameter cannot be modified because specified value is invalid ORA-00096: invalid value 1 for parameter parallel_degree_limit, must be from among CPU IO AUTO INTEGER>=2 Which of course makes perfect sense...

    Read the article

  • Surviving MATLAB and R as a Hardcore Programmer

    - by dsimcha
    I love programming in languages that seem geared towards hardcore programmers. (My favorites are Python and D.) MATLAB is geared towards engineers and R is geared towards statisticians, and it seems like these languages were designed by people who aren't hardcore programmers and don't think like hardcore programmers. I always find them somewhat awkward to use, and to some extent I can't put my finger on why. Here are some issues I have managed to identify: (Both): The extreme emphasis on vectors and matrices to the extent that there are no true primitives. (Both): The difficulty of basic string manipulation. (Both): Lack of or awkwardness in support for basic data structures like hash tables and "real", i.e. type-parametric and nestable, arrays. (Both): They're really, really slow even by interpreted language standards, unless you bend over backwards to vectorize your code. (Both): They seem to not be designed to interact with the outside world. For example, both are fairly bulky programs that take a while to launch and seem to not be designed to make simple text filter programs easy to write. Furthermore, the lack of good string processing makes file I/O in anything but very standard forms near impossible. (Both): Object orientation seems to have a very bolted-on feel. Yes, you can do it, but it doesn't feel much more idiomatic than OO in C. (Both): No obvious, simple way to get a reference type. No pointers or class references. For example, I have no idea how you roll your own linked list in either of these languages. (MATLAB): You can't put multiple top level functions in a single file, encouraging very long functions and cut-and-paste coding. (MATLAB): Integers apparently don't exist as a first class type. (R): The basic builtin data structures seem way too high level and poorly documented, and never seem to do quite what I expect given my experience with similar but lower level data structures. (R): The documentation is spread all over the place and virtually impossible to browse or search. Even D, which is often knocked for bad documentation and is still fairly alpha-ish, is substantially better as far as I can tell. (R): At least as far as I'm aware, there's no good IDE for it. Again, even D, a fairly alpha-ish language with a small community, does better. In general, I also feel like MATLAB and R could be easily replaced by plain old libraries in more general-purpose langauges, if sufficiently comprehensive libraries existed. This is especially true in newer general purpose languages that include lots of features for library writers. Why do R and MATLAB seem so weird to me? Are there any other major issues that you've noticed that may make these languages come off as strange to hardcore programmers? When their use is necessary, what are some good survival tips? Edit: I'm seeing one issue from some of the answers I've gotten. I have a strong personal preference, when I analyze data, to have one script that incorporates the whole pipeline. This implies that a general purpose language needs to be used. I hate having to write a script to "clean up" the data and spit it out, then another to read it back in a completely different environment, etc. I find the friction of using MATLAB/R for some of my work and a completely different language with a completely different address space and way of thinking for the rest to be a huge source of friction. Furthermore, I know there are glue layers that exist, but they always seem to be horribly complicated and a source of friction.

    Read the article

  • Project Euler 17: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 17.  As always, any feedback is welcome. # Euler 17 # http://projecteuler.net/index.php?section=problems&id=17 # If the numbers 1 to 5 are written out in words: # one, two, three, four, five, then there are # 3 + 3 + 5 + 4 + 4 = 19 letters used in total. # If all the numbers from 1 to 1000 (one thousand) # inclusive were written out in words, how many letters # would be used? # # NOTE: Do not count spaces or hyphens. For example, 342 # (three hundred and forty-two) contains 23 letters and # 115 (one hundred and fifteen) contains 20 letters. The # use of "and" when writing out numbers is in compliance # with British usage. import time start = time.time() def to_word(n): h = { 1 : "one", 2 : "two", 3 : "three", 4 : "four", 5 : "five", 6 : "six", 7 : "seven", 8 : "eight", 9 : "nine", 10 : "ten", 11 : "eleven", 12 : "twelve", 13 : "thirteen", 14 : "fourteen", 15 : "fifteen", 16 : "sixteen", 17 : "seventeen", 18 : "eighteen", 19 : "nineteen", 20 : "twenty", 30 : "thirty", 40 : "forty", 50 : "fifty", 60 : "sixty", 70 : "seventy", 80 : "eighty", 90 : "ninety", 100 : "hundred", 1000 : "thousand" } word = "" # Reverse the numbers so position (ones, tens, # hundreds,...) can be easily determined a = [int(x) for x in str(n)[::-1]] # Thousands position if (len(a) == 4 and a[3] != 0): # This can only be one thousand based # on the problem/method constraints word = h[a[3]] + " thousand " # Hundreds position if (len(a) >= 3 and a[2] != 0): word += h[a[2]] + " hundred" # Add "and" string if the tens or ones # position is occupied with a non-zero value. # Note: routine is broken up this way for [my] clarity. if (len(a) >= 2 and a[1] != 0): # catch 10 - 99 word += " and" elif len(a) >= 1 and a[0] != 0: # catch 1 - 9 word += " and" # Tens and ones position tens_position_value = 99 if (len(a) >= 2 and a[1] != 0): # Calculate the tens position value per the # first and second element in array # e.g. (8 * 10) + 1 = 81 tens_position_value = int(a[1]) * 10 + a[0] if tens_position_value <= 20: # If the tens position value is 20 or less # there's an entry in the hash. Use it and there's # no need to consider the ones position word += " " + h[tens_position_value] else: # Determine the tens position word by # dividing by 10 first. E.g. 8 * 10 = h[80] # We will pick up the ones position word later in # the next part of the routine word += " " + h[(a[1] * 10)] if (len(a) >= 1 and a[0] != 0 and tens_position_value > 20): # Deal with ones position where tens position is # greater than 20 or we have a single digit number word += " " + h[a[0]] # Trim the empty spaces off both ends of the string return word.replace(" ","") def to_word_length(n): return len(to_word(n)) print sum([to_word_length(i) for i in xrange(1,1001)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • C#/.NET Little Wonders: Static Char Methods

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Often times in our code we deal with the bigger classes and types in the BCL, and occasionally forgot that there are some nice methods on the primitive types as well.  Today we will discuss some of the handy static methods that exist on the char (the C# alias of System.Char) type. The Background I was examining a piece of code this week where I saw the following: 1: // need to get the 5th (offset 4) character in upper case 2: var type = symbol.Substring(4, 1).ToUpper(); 3:  4: // test to see if the type is P 5: if (type == "P") 6: { 7: // ... do something with P type... 8: } Is there really any error in this code?  No, but it still struck me wrong because it is allocating two very short-lived throw-away strings, just to store and manipulate a single char: The call to Substring() generates a new string of length 1 The call to ToUpper() generates a new upper-case version of the string from Step 1. In my mind this is similar to using ToUpper() to do a case-insensitive compare: it isn’t wrong, it’s just much heavier than it needs to be (for more info on case-insensitive compares, see #2 in 5 More Little Wonders). One of my favorite books is the C++ Coding Standards: 101 Rules, Guidelines, and Best Practices by Sutter and Alexandrescu.  True, it’s about C++ standards, but there’s also some great general programming advice in there, including two rules I love:         8. Don’t Optimize Prematurely         9. Don’t Pessimize Prematurely We all know what #8 means: don’t optimize when there is no immediate need, especially at the expense of readability and maintainability.  I firmly believe this and in the axiom: it’s easier to make correct code fast than to make fast code correct.  Optimizing code to the point that it becomes difficult to maintain often gains little and often gives you little bang for the buck. But what about #9?  Well, for that they state: “All other things being equal, notably code complexity and readability, certain efficient design patterns and coding idioms should just flow naturally from your fingertips and are no harder to write then the pessimized alternatives. This is not premature optimization; it is avoiding gratuitous pessimization.” Or, if I may paraphrase: “where it doesn’t increase the code complexity and readability, prefer the more efficient option”. The example code above was one of those times I feel where we are violating a tacit C# coding idiom: avoid creating unnecessary temporary strings.  The code creates temporary strings to hold one char, which is just unnecessary.  I think the original coder thought he had to do this because ToUpper() is an instance method on string but not on char.  What he didn’t know, however, is that ToUpper() does exist on char, it’s just a static method instead (though you could write an extension method to make it look instance-ish). This leads me (in a long-winded way) to my Little Wonders for the day… Static Methods of System.Char So let’s look at some of these handy, and often overlooked, static methods on the char type: IsDigit(), IsLetter(), IsLetterOrDigit(), IsPunctuation(), IsWhiteSpace() Methods to tell you whether a char (or position in a string) belongs to a category of characters. IsLower(), IsUpper() Methods that check if a char (or position in a string) is lower or upper case ToLower(), ToUpper() Methods that convert a single char to the lower or upper equivalent. For example, if you wanted to see if a string contained any lower case characters, you could do the following: 1: if (symbol.Any(c => char.IsLower(c))) 2: { 3: // ... 4: } Which, incidentally, we could use a method group to shorten the expression to: 1: if (symbol.Any(char.IsLower)) 2: { 3: // ... 4: } Or, if you wanted to verify that all of the characters in a string are digits: 1: if (symbol.All(char.IsDigit)) 2: { 3: // ... 4: } Also, for the IsXxx() methods, there are overloads that take either a char, or a string and an index, this means that these two calls are logically identical: 1: // check given a character 2: if (char.IsUpper(symbol[0])) { ... } 3:  4: // check given a string and index 5: if (char.IsUpper(symbol, 0)) { ... } Obviously, if you just have a char, then you’d just use the first form.  But if you have a string you can use either form equally well. As a side note, care should be taken when examining all the available static methods on the System.Char type, as some seem to be redundant but actually have very different purposes.  For example, there are IsDigit() and IsNumeric() methods, which sound the same on the surface, but give you different results. IsDigit() returns true if it is a base-10 digit character (‘0’, ‘1’, … ‘9’) where IsNumeric() returns true if it’s any numeric character including the characters for ½, ¼, etc. Summary To come full circle back to our opening example, I would have preferred the code be written like this: 1: // grab 5th char and take upper case version of it 2: var type = char.ToUpper(symbol[4]); 3:  4: if (type == 'P') 5: { 6: // ... do something with P type... 7: } Not only is it just as readable (if not more so), but it performs over 3x faster on my machine:    1,000,000 iterations of char method took: 30 ms, 0.000050 ms/item.    1,000,000 iterations of string method took: 101 ms, 0.000101 ms/item. It’s not only immediately faster because we don’t allocate temporary strings, but as an added bonus there less garbage to collect later as well.  To me this qualifies as a case where we are using a common C# performance idiom (don’t create unnecessary temporary strings) to make our code better. Technorati Tags: C#,CSharp,.NET,Little Wonders,char,string

    Read the article

  • How to Make the Gnome Panels in Ubuntu Totally Transparent

    - by The Geek
    We all love transparency, since it makes your desktop so beautiful and lovely—so today we’re going to show you how to apply transparency to the panels in your Ubuntu Gnome setup. It’s an easy process, and here’s how to do it. This article is the first part of a multi-part series on how to customize the Ubuntu desktop, written by How-To Geek reader and ubergeek, Omar Hafiz. Making the Gnome Panels Transparent Of course we all love transparency, It makes your desktop so beautiful and lovely. So you go for enabling transparency in your panels , you right click on your panel, choose properties, go to the Background tab and make your panel transparent. Easy right? But instead of getting a lovely transparent panel, you often get a cluttered, ugly panel like this: Fortunately it can be easily fixed, all we need to do is to edit the theme files. If your theme is one of those themes that came with Ubuntu like Ambiance then you’ll have to copy it from /usr/share/themes to your own .themes directory in your Home Folder. You can do so by typing the following command in the terminal cp /usr/share/themes/theme_name ~/.themes Note: don’t forget to substitute theme_name with the theme name you want to fix. But if your theme is one you downloaded then it is already in your .themes folder. Now open your file manager and navigate to your home folder then do to .themes folder. If you can’t see it then you probably have disabled the “View hidden files” option. Press Ctrl+H to enable it. Now in .themes you’ll find your previously copied theme folder there, enter it then go to gtk-2.0 folder. There you may find a file named “panel.rc”, which is a configuration file that tells your panel how it should look like. If you find it there then rename it to “panel.rc.bak”. If you don’t find don’t panic! There’s nothing wrong with your system, it’s just that your theme decided to put the panel configurations in the “gtkrc” file. Open this file with your favorite text editor and at the end of the file there is line that looks like this “include “apps/gnome-panel.rc””. Comment out this line by putting a hash mark # in front of it. Now it should look like this “# include “apps/gnome-panel.rc”” Save and exit the text editor. Now change your theme to any other one then switch back to the one you edited. Now your panel should look like this: Stay tuned for the second part in the series, where we’ll cover how to change the color and fonts on your panels. Latest Features How-To Geek ETC How To Remove People and Objects From Photographs In Photoshop Ask How-To Geek: How Can I Monitor My Bandwidth Usage? Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The Legend of Zelda – 1980s High School Style [Video] Suspended Sentence is a Free Cross-Platform Point and Click Game Build a Batman-Style Hidden Bust Switch Make Your Clock Creates a Custom Clock for your Android Homescreen Download the Anime Angels Theme for Windows 7 CyanogenMod Updates; Rolls out Android 2.3 to the Less Fortunate

    Read the article

  • The Joy Of Hex

    - by Jim Giercyk
    While working on a mainframe integration project, it occurred to me that some basic computer concepts are slipping into obscurity. For example, just about anyone can tell you that a 64-bit processor is faster than a 32-bit processer. A grade school child could tell you that a computer “speaks” in ‘1’s and ‘0’s. Some people can even tell you that there are 8 bits in a byte. However, I have found that even the most seasoned developers often can’t explain the theory behind those statements. That is not a knock on programmers; in the age of IntelliSense, what reason do we have to work with data at the bit level? Many computer theory classes treat bit-level programming as a thing of the past, no longer necessary now that storage space is plentiful. The trouble with that mindset is that the world is full of legacy systems that run programs written in the 1970’s.  Today our jobs require us to extract data from those systems, regardless of the format, and that often involves low-level programming. Because it seems knowledge of the low-level concepts is waning in recent times, I thought a review would be in order.       CHARACTER: See Spot Run HEX: 53 65 65 20 53 70 6F 74 20 52 75 6E DECIMAL: 83 101 101 32 83 112 111 116 32 82 117 110 BINARY: 01010011 01100101 01100101 00100000 01010011 01110000 01101111 01110100 00100000 01010010 01110101 01101110 In this example, I have broken down the words “See Spot Run” to a level computers can understand – machine language.     CHARACTER:  The character level is what is rendered by the computer.  A “Character Set” or “Code Page” contains 256 characters, both printable and unprintable.  Each character represents 1 BYTE of data.  For example, the character string “See Spot Run” is 12 Bytes long, exclusive of the quotation marks.  Remember, a SPACE is an unprintable character, but it still requires a byte.  In the example I have used the default Windows character set, ASCII, which you can see here:  http://www.asciitable.com/ HEX:  Hex is short for hexadecimal, or Base 16.  Humans are comfortable thinking in base ten, perhaps because they have 10 fingers and 10 toes; fingers and toes are called digits, so it’s not much of a stretch.  Computers think in Base 16, with numeric values ranging from zero to fifteen, or 0 – F.  Each decimal place has a possible 16 values as opposed to a possible 10 values in base 10.  Therefore, the number 10 in Hex is equal to the number 16 in Decimal.  DECIMAL:  The Decimal conversion is strictly for us humans to use for calculations and conversions.  It is much easier for us humans to calculate that [30 – 10 = 20] in decimal than it is for us to calculate [1E – A = 14] in Hex.  In the old days, an error in a program could be found by determining the displacement from the entry point of a module.  Since those values were dumped from the computers head, they were in hex. A programmer needed to convert them to decimal, do the equation and convert back to hex.  This gets into relative and absolute addressing, a topic for another day.  BINARY:  Binary, or machine code, is where any value can be expressed in 1s and 0s.  It is really Base 2, because each decimal place can have a possibility of only 2 characters, a 1 or a 0.  In Binary, the number 10 is equal to the number 2 in decimal. Why only 1s and 0s?  Very simply, computers are made up of lots and lots of transistors which at any given moment can be ON ( 1 ) or OFF ( 0 ).  Each transistor is a bit, and the order that the transistors fire (or not fire) is what distinguishes one value from  another in the computers head (or CPU).  Consider 32 bit vs 64 bit processing…..a 64 bit processor has the capability to read 64 transistors at a time.  A 32 bit processor can only read half as many at a time, so in theory the 64 bit processor should be much faster.  There are many more factors involved in CPU performance, but that is the fundamental difference.    DECIMAL HEX BINARY 0 0 0000 1 1 0001 2 2 0010 3 3 0011 4 4 0100 5 5 0101 6 6 0110 7 7 0111 8 8 1000 9 9 1001 10 A 1010 11 B 1011 12 C 1100 13 D 1101 14 E 1110 15 F 1111   Remember that each character is a BYTE, there are 2 HEX characters in a byte (called nibbles) and 8 BITS in a byte.  I hope you enjoyed reading about the theory of data processing.  This is just a high-level explanation, and there is much more to be learned.  It is safe to say that, no matter how advanced our programming languages and visual studios become, they are nothing more than a way to interpret bits and bytes.  There is nothing like the joy of hex to get the mind racing.

    Read the article

  • When row estimation goes wrong

    - by Dave Ballantyne
    Whilst working at a client site, I hit upon one of those issues that you are not sure if that this is something entirely new or a bug or a gap in your knowledge. The client had a large query that needed optimizing.  The query itself looked pretty good, no udfs, UNION ALL were used rather than UNION, most of the predicates were sargable other than one or two minor ones.  There were a few extra joins that could be eradicated and having fixed up the query I then started to dive into the plan. I could see all manor of spills in the hash joins and the sort operations,  these are caused when SQL Server has not reserved enough memory and has to write to tempdb.  A VERY expensive operation that is generally avoidable.  These, however, are a symptom of a bad row estimation somewhere else, and when that bad estimation is combined with other estimation errors, chaos can ensue. Working my way back down the plan, I found the cause, and the more I thought about it the more i came convinced that the optimizer could be making a much more intelligent choice. First step is to reproduce and I was able to simplify the query down a single join between two tables, Product and ProductStatus,  from a business point of view, quite fundamental, find the status of particular products to show if ‘active’ ,’inactive’ or whatever. The query itself couldn’t be any simpler The estimated plan looked like this: Ignore the “!” warning which is a missing index, but notice that Products has 27,984 rows and the join outputs 14,000. The actual plan shows how bad that estimation of 14,000 is : So every row in Products has a corresponding row in ProductStatus.  This is unsurprising, in fact it is guaranteed,  there is a trusted FK relationship between the two columns.  There is no way that the actual output of the join can be different from the input. The optimizer is already partly aware of the foreign key meta data, and that can be seen in the simplifiction stage. If we drop the Description column from the query: the join to ProductStatus is optimized out. It serves no purpose to the query, there is no data required from the table and the optimizer knows that the FK will guarantee that a matching row will exist so it has been removed. Surely the same should be applied to the row estimations in the initial example, right ?  If you think so, please upvote this connect item. So what are our options in fixing this error ? Simply changing the join to a left join will cause the optimizer to think that we could allow the rows not to exist. or a subselect would also work However, this is a client site, Im not able to change each and every query where this join takes place but there is a more global switch that will fix this error,  TraceFlag 2301. This is described as, perhaps loosely, “Enable advanced decision support optimizations”. We can test this on the original query in isolation by using the “QueryTraceOn” option and lo and behold our estimated plan now has the ‘correct’ estimation. Many thanks goes to Paul White (b|t) for his help and keeping me sane through this

    Read the article

  • methods DSA_do_verify and SHA1 (OpenSSL library for Windows)

    - by Rei
    i am working on a program to authenticate an ENC signature file by using OpenSSL for windows, and specifically methods DSA_do_verify(...) and SHA1(...) hash algorithm, but is having problems as the result from DSA_do_verify is always 0 (invalid). I am using the signature file of test set 4B from the IHO S-63 Data Protection Scheme, and also the SA public key (downloadable from IHO) for verification. Below is my program, can anyone help to see where i have gone wrong as i have tried many ways but failed to get the verification to be valid, thanks.. The signature file from test set 4B // Signature part R: 3F14 52CD AEC5 05B6 241A 02C7 614A D149 E7D6 C408. // Signature part S: 44BB A3DB 8C46 8D11 B6DB 23BE 1A79 55E6 B083 7429. // Signature part R: 93F5 EF86 1FF6 BA6F 1C2B B9BB 7F36 0C80 2F9B 2414. // Signature part S: 4877 8130 12B4 50D8 3688 B52C 7A84 8E26 D442 8B6E. // BIG p C16C BAD3 4D47 5EC5 3966 95D6 94BC 8BC4 7E59 8E23 B5A9 D7C5 CEC8 2D65 B682 7D44 E953 7848 4730 C0BF F1F4 CB56 F47C 6E51 054B E892 00F3 0D43 DC4F EF96 24D4 665B. // BIG q B7B8 10B5 8C09 34F6 4287 8F36 0B96 D7CC 26B5 3E4D. // BIG g 4C53 C726 BDBF BBA6 549D 7E73 1939 C6C9 3A86 9A27 C5DB 17BA 3CAC 589D 7B3E 003F A735 F290 CFD0 7A3E F10F 3515 5F1A 2EF7 0335 AF7B 6A52 11A1 1035 18FB A44E 9718. // BIG y 15F8 A502 11C2 34BB DF19 B3CD 25D1 4413 F03D CF38 6FFC 7357 BCEE 59E4 EBFD B641 6726 5E5F 0682 47D4 B50B 3B86 7A85 FB4D 6E01 8329 A993 C36C FD9A BFB6 ED6D 29E0. dataServer_pkeyfile.txt (extracted from above) // BIG p C16C BAD3 4D47 5EC5 3966 95D6 94BC 8BC4 7E59 8E23 B5A9 D7C5 CEC8 2D65 B682 7D44 E953 7848 4730 C0BF F1F4 CB56 F47C 6E51 054B E892 00F3 0D43 DC4F EF96 24D4 665B. // BIG q B7B8 10B5 8C09 34F6 4287 8F36 0B96 D7CC 26B5 3E4D. // BIG g 4C53 C726 BDBF BBA6 549D 7E73 1939 C6C9 3A86 9A27 C5DB 17BA 3CAC 589D 7B3E 003F A735 F290 CFD0 7A3E F10F 3515 5F1A 2EF7 0335 AF7B 6A52 11A1 1035 18FB A44E 9718. // BIG y 15F8 A502 11C2 34BB DF19 B3CD 25D1 4413 F03D CF38 6FFC 7357 BCEE 59E4 EBFD B641 6726 5E5F 0682 47D4 B50B 3B86 7A85 FB4D 6E01 8329 A993 C36C FD9A BFB6 ED6D 29E0. Program abstract: QbyteArray pk_data; QFile pk_file("./dataServer_pkeyfile.txt"); if (pk_file.open(QIODevice::Text | QIODevice::ReadOnly)) { pk_data.append(pk_file.readAll()); } pk_file.close(); unsigned char ptr_sha_hashed[20]; unsigned char *ptr_pk_data = (unsigned char *)pk_data.data(); // openssl SHA1 hashing algorithm SHA1(ptr_pk_data, pk_data.length(), ptr_sha_hashed); DSA_SIG *dsasig = DSA_SIG_new(); char ptr_r[] = "93F5EF861FF6BA6F1C2BB9BB7F360C802F9B2414"; //from tset 4B char ptr_s[] = "4877813012B450D83688B52C7A848E26D4428B6E"; //from tset 4B if (BN_hex2bn(&dsasig->r, ptr_r) == 0) return 0; if (BN_hex2bn(&dsasig->s, ptr_s) == 0) return 0; DSA *dsakeys = DSA_new(); //the following values are from the SA public key char ptr_p[] = "FCA682CE8E12CABA26EFCCF7110E526DB078B05EDECBCD1EB4A208F3AE1617AE01F35B91A47E6DF63413C5E12ED0899BCD132ACD50D99151BDC43EE737592E17"; char ptr_q[] = "962EDDCC369CBA8EBB260EE6B6A126D9346E38C5"; char ptr_g[] = "678471B27A9CF44EE91A49C5147DB1A9AAF244F05A434D6486931D2D14271B9E35030B71FD73DA179069B32E2935630E1C2062354D0DA20A6C416E50BE794CA4"; char ptr_y[] = "963F14E32BA5372928F24F15B0730C49D31B28E5C7641002564DB95995B15CF8800ED54E354867B82BB9597B158269E079F0C4F4926B17761CC89EB77C9B7EF8"; if (BN_hex2bn(&dsakeys->p, ptr_p) == 0) return 0; if (BN_hex2bn(&dsakeys->q, ptr_q) == 0) return 0; if (BN_hex2bn(&dsakeys->g, ptr_g) == 0) return 0; if (BN_hex2bn(&dsakeys->pub_key, ptr_y) == 0) return 0; int result; //valid = 1, invalid = 0, error = -1 result = DSA_do_verify(ptr_sha_hashed, 20, dsasig, dsakeys); //result is 0 (invalid)

    Read the article

  • Application Composer: Exposing Your Customizations in BI Analytics and Reporting

    - by Richard Bingham
    Introduction This article explains in simple terms how to ensure the customizations and extensions you have made to your Fusion Applications are available for use in reporting and analytics. It also includes four embedded demo videos from our YouTube channel (if they don't appear check the browser address bar for a blocking shield icon). If you are new to Business Intelligence consider first reviewing our getting started article, and you can read more about the topic of custom subject areas in the documentation book Extending Sales. There are essentially four sections to this post. First we look at how custom fields added to standard objects are made available for reporting. Secondly we look at creating custom subject areas on the standard objects. Next we consider reporting on custom objects, starting with simple standalone objects, then child custom objects, and finally custom objects with relationships. Finally this article reviews how flexfields are exposed for reporting. Whilst this article applies to both Cloud/SaaS and on-premises deployments, if you are an on-premises developer then you can also use the BI Administration Tool to customize your BI metadata repository (the RPD) and create new subject areas. Whilst this is not covered here you can read more in Chapter 8 of the Extensibility Guide for Developers. Custom Fields on Standard Objects If you add a custom field to your standard object then it's likely you'll want to include it in your reports. This is very simple, since all new fields are instantly available in the "[objectName] Extension" folder in existing subject areas. The following two minute video demonstrates this. Custom Subject Areas for Standard Objects You can create your own subject areas for use in analytics and reporting via Application Composer. An example use-case could be to simplify the seeded subject areas, since they sometimes contain complex data fields and internal values that could confuse business users. One thing to note is that you cannot create subject areas in a sandbox, as it is not supported by BI, so once your custom object is tested and complete you'll need to publish the sandbox before moving forwards. The subject area creation processes is essentially two-fold. Once the request is submitted the ADF artifacts are generated, then secondly the related metadata is sent to the BI presentation server API's to make the updates there. One thing to note is that this second step may take up to ten minutes to complete. Once finished the status of the custom subject area request should show as 'OK' and it is then ready for use. Within the creation processes wizard-like steps there are three concepts worth highlighting: Date Flattening - this feature permits the roll up of reports at various date levels, such as data by week, month, quarter, or year. You simply check the box to enable it for that date field. Measures - these are your own functions that you can build into the custom subject area. They are related to the field data type and include min-max for dates, and sum(), avg(), and count() for  numeric fields. Implicit Facts - used to make the BI metadata join between your object fields and the calculated measure fields. The advice is to choose the most frequently used measure to ensure consistency. This video shows a simple example, where a simplified subject area is created for the customer 'Contact' standard object, picking just a few fields upon which users can then create reports. Custom Objects Custom subject areas support three types of custom objects. First is a simple standalone custom object and for which the same process mentioned above applies. The next is a custom child object created on a standard object parent, and finally a custom object that is related to a parent object - usually through a dynamic choice list. Whilst the steps in each of these last two are mostly the same, there are differences in the way you choose the objects and their fields. This is illustrated in the videos below.The first video shows the process for creating a custom subject area for a simple standalone custom object. This second video demonstrates how to create custom subject areas for custom objects that are of parent:child type, as well as those those with dynamic-choice-list relationships. &lt;span id=&quot;XinhaEditingPostion&quot;&gt;&lt;/span&gt; Flexfields Dynamic and Extensible Flexfields satisfy a similar requirement as custom fields (for Application Composer), with flexfields common across the Fusion Financials, Supply Chain and Procurement, and HCM applications. The basic principle is when you enable and configure your flexfields, in the edit page under each segment region (for both global and context segments) there is a BI Enabled check box. Once this is checked and you've completed your configuration, you run the Scheduled Process job named 'Import Oracle Fusion Data Extensions for Transactional Business Intelligence' to generate and migrate the related BI artifacts and data. This applies for dynamic, key, and extensible flexfields. Of course there is more to consider in terms of how you wish your flexfields to be implemented and exposed in your reports, and details are given in Chapter 4 of the Extending Applications guide.

    Read the article

  • CI tests to enforce specific development rules - good practice?

    - by KeithS
    The following is all purely hypothetical and any particular portion of it may or may not accurately describe real persons or situations, whether living, dead or just pretending. Let's say I'm a senior dev or architect in charge of a dev team working on a project. This project includes a security library for user authentication/authorization of the application under development. The library must be available for developers to edit; however, I wish to "trust but verify" that coders are not doing things that could compromise the security of the finished system, and because this isn't my only responsibility I want it to be done in an automated way. As one example, let's say I have an interface that represents a user which has been authenticated by the system's security library. The interface exposes basic user info and a list of things the user is authorized to do (so that the client app doesn't have to keep asking the server "can I do this?"), all in an immutable fashion of course. There is only one implementation of this interface in production code, and for the purposes of this post we can say that all appropriate measures have been taken to ensure that this implementation can only be used by the one part of our code that needs to be able to create concretions of the interface. The coders have been instructed that this interface and its implementation are sacrosanct and any changes must go through me. However, those are just words; the security library's source is open for editing by necessity. Any of my devs could decide that this secured, private, hash-checked implementation needs to be public so that they could do X, or alternately they could create their own implementation of this public interface in a different library, exposing the hashing algorithm that provides the secure checksum, in order to do Y. I may not be made aware of these changes so that I can beat the developer over the head for it. An attacker could then find these little nuggets in an unobfuscated library of the compiled product, and exploit it to provide fake users and/or falsely-elevated administrative permissions, bypassing the entire security system. This possibility keeps me awake for a couple of nights, and then I create an automated test that reflectively checks the codebase for types deriving from the interface, and fails if it finds any that are not exactly what and where I expect them to be. I compile this test into a project under a separate folder of the VCS that only I have rights to commit to, have CI compile it as an external library of the main project, and set it up to run as part of the CI test suite for user commits. Now, I have an automated test under my complete control that will tell me (and everyone else) if the number of implementations increases without my involvement, or an implementation that I did know about has anything new added or has its modifiers or those of its members changed. I can then investigate further, and regain the opportunity to beat developers over the head as necessary. Is this considered "reasonable" to want to do in situations like this? Am I going to be seen in a negative light for going behind my devs' backs to ensure they aren't doing something they shouldn't?

    Read the article

  • Removing occurrences of characters in a string

    - by DmainEvent
    I am reading this book, programming Interviews exposed by John Wiley and sons and in chapter 6 they are discussing removing all instances of characters in a src string using a removal string... so removeChars(string str, string remove) In there writeup they sey the steps to accomplish this are to have a boolean lookup array with all values initially set to false, then loop through each character in remove setting the corresponding value in the lookup array to true (note: this could also be a hash if the possible character set where huge like Unicode-16 or something like that or if str and remove are both relatively small... < 100 characters I suppose). You then iterate through the str with a source and destination index, copying each character only if its corresponding value in the lookup array is false... Which makes sense... I don't understand the code that they use however... They have for(src = 0; src < len; ++src){ flags[r[src]] == true; } which is turning the flag value at the remove string indexed at src to true... so if you start out with PLEASE HELP as your str and LEA as your remove you will be setting in your flag table at 0,1,2... t|t|t but after that you will get an out of bounds exception because r doesn't have have anything greater than 2 in it... even using there example you get an out of bounds exception... Am is there code example unworkable? Entire function string removeChars( string str, string remove ){ char[] s = str.toCharArray(); char[] r = remove.toCharArray(); bool[] flags = new bool[128]; // assumes ASCII! int len = s.Length; int src, dst; // Set flags for characters to be removed for( src = 0; src < len; ++src ){ flags[r[src]] = true; } src = 0; dst = 0; // Now loop through all the characters, // copying only if they aren’t flagged while( src < len ){ if( !flags[ (int)s[src] ] ){ s[dst++] = s[src]; } ++src; } return new string( s, 0, dst ); } as you can see, r comes from the remove string. So in my example the remove string has only a size of 3 while my str string has a size of 11. len is equal to the length of the str string. So it would be 11. How can I loop through the r string since it is only size 3? I haven't compiled the code so I can loop through it, but just looking at it I know it won't work. I am thinking they wanted to loop through the r string... in other words they got the length of the wrong string here.

    Read the article

  • Should I manage authentication on my own if the alternative is very low in usability and I am already managing roles?

    - by rumtscho
    As a small in-house dev department, we only have experience with developing applications for our intranet. We use the existing Active Directory for user account management. It contains the accounts of all company employees and many (but not all) of the business partners we have a cooperation with. Now, the top management wants a technology exchange application, and I am the lead dev on the new project. Basically, it is a database containing our know-how, with a web frontend. Our employees, our cooperating business partners, and people who wish to become our cooperating business partners should have access to it and see what technologies we have, so they can trade for them with the department which owns them. The technologies are not patented, but very valuable to competitors, so the department bosses are paranoid about somebody unauthorized gaining access to their technology description. This constraint necessitates a nightmarishly complicated multi-dimensional RBAC-hybrid model. As the Active Directory doesn't even contain all the information needed to infer the roles I use, I will have to manage roles plus per-technology per-user granted access exceptions within my system. The current plan is to use Active Directory for authentication. This will result in a multi-hour registration process for our business partners where the database owner has to manually create logins in our Active Directory and send them credentials. If I manage the logins in my own system, we could improve the usability a lot, for example by letting people have an active (but unprivileged) account as soon as they register. It seems to me that, after I am having a users table in the DB anyway (and managing ugly details like storing historical user IDs so that recycled user IDs within the Active Directory don't unexpectedly get rights to view someone's technologies), the additional complexity from implementing authentication functionality will be minimal. Therefore, I am starting to lean towards doing my own user login management and forgetting the AD altogether. On the other hand, I see some reasons to stay with Active Directory. First, the conventional wisdom I have heard from experienced programmers is to not do your own user management if you can avoid it. Second, we have code I can reuse for connection to the active directory, while I would have to code the authentication if done in-system (and my boss has clearly stated that getting the project delivered on time has much higher priority than delivering a system with high usability). Third, I am not a very experienced developer (this is my first lead position) and have never done user management before, so I am afraid that I am overlooking some important reasons to use the AD, or that I am underestimating the amount of work left to do my own authentication. I would like to know if there are more reasons to go with the AD authentication mechanism. Specifically, if I want to do my own authentication, what would I have to implement besides a secure connection for the login screen (which I would need anyway even if I am only transporting the pw to the AD), lookup of a password hash and a mechanism for password recovery (which will probably include manual identity verification, so no need for complex mTAN-like solutions)? And, if you have experience with such security-critical systems, which one would you use and why?

    Read the article

  • Intern Screening - Software 'Quiz'

    - by Jeremy1026
    I am in charge of selecting a new software development intern for a company that I work with. I wanted to throw a little 'quiz' at the applicants before moving forth with interviews so as to weed out the group a little bit to find some people that can demonstrate some skill. I put together the following quiz to send to applicants, it focuses only on PHP, but that is because that is what about 95% of the work will be done in. I'm hoping to get some feedback on A. if its a good idea to send this to applicants and B. if it can be improved upon. # 1. FizzBuzz # Write a small application that does the following: # Counts from 1 to 100 # For multiples of 3 output "Fizz" # For multiples of 5 output "Buzz" # For multiples of 3 and 5 output "FizzBuzz" # For numbers that are not multiples of 3 nor 5 output the number. <?php ?> # 2. Arrays # Create a multi-dimensional array that contains # keys for 'id', 'lot', 'car_model', 'color', 'price'. # Insert three sets of data into the array. <?php ?> # 3. Comparisons # Without executing the code, tell if the expressions # below will return true or false. <?php if ((strpos("a","abcdefg")) == TRUE) echo "True"; else echo "False"; //True or False? if ((012 / 4) == 3) echo "True"; else echo "False"; //True or False? if (strcasecmp("abc","ABC") == 0) echo "True"; else echo "False"; //True or False? ?> # 4. Bug Checking # The code below is flawed. Fix it so that the code # runs properly without producing any Errors, Warnings # or Notices, and returns the proper value. <?php //Determine how many parts are needed to create a 3D pyramid. function find_3d_pyramid($rows) { //Loop through each row. for ($i = 0; $i < $rows; $i++) { $lastRow++; //Append the latest row to the running total. $total = $total + (pow($lastRow,3)); } //Return the total. return $total; } $i = 3; echo "A pyramid consisting of $i rows will have a total of ".find_3d_pyramid($i)." pieces."; ?> # 5. Quick Examples # Create a small example to complete the task # for each of the following problems. # Create an md5 hash of "Hello World"; # Replace all occurances of "_" with "-" in the string "Welcome_to_the_universe." # Get the current date and time, in the following format, YYYY/MM/DD HH:MM:SS AM/PM # Find the sum, average, and median of the following set of numbers. 1, 3, 5, 6, 7, 9, 10. # Randomly roll a six-sided die 5 times. Store the 5 rolls into an array. <?php ?>

    Read the article

  • Custom page sizes in paging dropdown in Telerik RadGrid

    Working with Telerik RadControls for ASP.NET AJAX is actually quite easy and the initial effort to get started with the control suite is very low. Meaning that you can easily get good result with little time. But there are usually cases where you have to go a little further and dig a little bit deeper than the standard scenarios. In this article I am going to describe how you can customize the default values (10, 20 and 50) of the drop-down list in the paging element of RadGrid. Get control over the displayed page sizes while using numeric paging... The default page sizes are good but not always good enough The paging feature in RadGrid offers you 3, well actually 4, possible page sizes in the drop-down element out-of-the box, which are 10, 20 or 50 items. You can get a fourth option by specifying a value different than the three standards for the PageSize attribute, ie. 35 or 100. The drawback in that case is that it is the initial page size. Certainly, the available choices could be more flexible or even a little bit more intelligent. For example, by taking the total count of records into consideration. There are some interesting scenarios that would justify a customized page size element: A low number of records, like 14 or similar shouldn't provide a page size of 50, A high total count of records (ie: 300+) should offer more choices, ie: 100, 200, 500, or display of all records regardless of number of records I am sure that you might have your own requirements, and I hope that the following source code snippets might be helpful. Wiring the ItemCreated event In order to adjust and manipulate the existing RadComboBox in the paging element we have to handle the OnItemCreated event of RadGrid. Simply specify your code behind method in the attribute of the RadGrid tag, like so: <telerik:RadGrid ID="RadGridLive" runat="server" AllowPaging="true" PageSize="20"    AllowSorting="true" AutoGenerateColumns="false" OnNeedDataSource="RadGridLive_NeedDataSource"    OnItemDataBound="RadGrid_ItemDataBound" OnItemCreated="RadGrid_ItemCreated">    <ClientSettings EnableRowHoverStyle="true">        <ClientEvents OnRowCreated="RowCreated" OnRowSelected="RowSelected" />        <Resizing AllowColumnResize="True" AllowRowResize="false" ResizeGridOnColumnResize="false"            ClipCellContentOnResize="true" EnableRealTimeResize="false" AllowResizeToFit="true" />        <Scrolling AllowScroll="true" ScrollHeight="360px" UseStaticHeaders="true" SaveScrollPosition="true" />        <Selecting AllowRowSelect="true" />    </ClientSettings>    <MasterTableView DataKeyNames="AdvertID">        <PagerStyle AlwaysVisible="true" Mode="NextPrevAndNumeric" />        <Columns>            <telerik:GridBoundColumn HeaderText="Listing ID" DataField="AdvertID" DataType="System.Int32"                SortExpression="AdvertID" UniqueName="AdvertID">                <HeaderStyle Width="66px" />            </telerik:GridBoundColumn>             <!--//  ... and some more columns ... -->         </Columns>    </MasterTableView></telerik:RadGrid> To provide a consistent experience for your visitors it might be helpful to display the page size selection always. This is done by setting the AlwaysVisible attribute of the PagerStyle element to true, like highlighted above. Customize the values of page size Your delegate method for the ItemCreated event should look like this: protected void RadGrid_ItemCreated(object sender, GridItemEventArgs e){    if (e.Item is GridPagerItem)    {        var dropDown = (RadComboBox)e.Item.FindControl("PageSizeComboBox");        var totalCount = ((GridPagerItem)e.Item).Paging.DataSourceCount;        var sizes = new Dictionary<string, string>() {            {"10", "10"},            {"20", "20"},            {"50", "50"}        };        if (totalCount > 100)        {            sizes.Add("100", "100");        }        if (totalCount > 200)        {            sizes.Add("200", "200");        }        sizes.Add("All", totalCount.ToString());        dropDown.Items.Clear();        foreach (var size in sizes)        {            var cboItem = new RadComboBoxItem() { Text = size.Key, Value = size.Value };            cboItem.Attributes.Add("ownerTableViewId", e.Item.OwnerTableView.ClientID);            dropDown.Items.Add(cboItem);        }        dropDown.FindItemByValue(e.Item.OwnerTableView.PageSize.ToString()).Selected = true;    }} It is important that we explicitly check the event arguments for GridPagerItem as it is the control that contains the PageSizeComboBox control that we want to manipulate. To keep the actual modification and exposure of possible page size values flexible I am filling a Dictionary with the requested 'key/value'-pairs based on the number of total records displayed in the grid. As a final step, ensure that the previously selected value is the active one using the FindItemByValue() method. Of course, there might be different requirements but I hope that the snippet above provide a first insight into customized page size value in Telerik's Grid. The Grid demos describe a more advanced approach to customize the Pager.

    Read the article

  • How can I estimate the entropy of a password?

    - by Wug
    Having read various resources about password strength I'm trying to create an algorithm that will provide a rough estimation of how much entropy a password has. I'm trying to create an algorithm that's as comprehensive as possible. At this point I only have pseudocode, but the algorithm covers the following: password length repeated characters patterns (logical) different character spaces (LC, UC, Numeric, Special, Extended) dictionary attacks It does NOT cover the following, and SHOULD cover it WELL (though not perfectly): ordering (passwords can be strictly ordered by output of this algorithm) patterns (spatial) Can anyone provide some insight on what this algorithm might be weak to? Specifically, can anyone think of situations where feeding a password to the algorithm would OVERESTIMATE its strength? Underestimations are less of an issue. The algorithm: // the password to test password = ? length = length(password) // unique character counts from password (duplicates discarded) uqlca = number of unique lowercase alphabetic characters in password uquca = number of uppercase alphabetic characters uqd = number of unique digits uqsp = number of unique special characters (anything with a key on the keyboard) uqxc = number of unique special special characters (alt codes, extended-ascii stuff) // algorithm parameters, total sizes of alphabet spaces Nlca = total possible number of lowercase letters (26) Nuca = total uppercase letters (26) Nd = total digits (10) Nsp = total special characters (32 or something) Nxc = total extended ascii characters that dont fit into other categorys (idk, 50?) // algorithm parameters, pw strength growth rates as percentages (per character) flca = entropy growth factor for lowercase letters (.25 is probably a good value) fuca = EGF for uppercase letters (.4 is probably good) fd = EGF for digits (.4 is probably good) fsp = EGF for special chars (.5 is probably good) fxc = EGF for extended ascii chars (.75 is probably good) // repetition factors. few unique letters == low factor, many unique == high rflca = (1 - (1 - flca) ^ uqlca) rfuca = (1 - (1 - fuca) ^ uquca) rfd = (1 - (1 - fd ) ^ uqd ) rfsp = (1 - (1 - fsp ) ^ uqsp ) rfxc = (1 - (1 - fxc ) ^ uqxc ) // digit strengths strength = ( rflca * Nlca + rfuca * Nuca + rfd * Nd + rfsp * Nsp + rfxc * Nxc ) ^ length entropybits = log_base_2(strength) A few inputs and their desired and actual entropy_bits outputs: INPUT DESIRED ACTUAL aaa very pathetic 8.1 aaaaaaaaa pathetic 24.7 abcdefghi weak 31.2 H0ley$Mol3y_ strong 72.2 s^fU¬5ü;y34G< wtf 88.9 [a^36]* pathetic 97.2 [a^20]A[a^15]* strong 146.8 xkcd1** medium 79.3 xkcd2** wtf 160.5 * these 2 passwords use shortened notation, where [a^N] expands to N a's. ** xkcd1 = "Tr0ub4dor&3", xkcd2 = "correct horse battery staple" The algorithm does realize (correctly) that increasing the alphabet size (even by one digit) vastly strengthens long passwords, as shown by the difference in entropy_bits for the 6th and 7th passwords, which both consist of 36 a's, but the second's 21st a is capitalized. However, they do not account for the fact that having a password of 36 a's is not a good idea, it's easily broken with a weak password cracker (and anyone who watches you type it will see it) and the algorithm doesn't reflect that. It does, however, reflect the fact that xkcd1 is a weak password compared to xkcd2, despite having greater complexity density (is this even a thing?). How can I improve this algorithm? Addendum 1 Dictionary attacks and pattern based attacks seem to be the big thing, so I'll take a stab at addressing those. I could perform a comprehensive search through the password for words from a word list and replace words with tokens unique to the words they represent. Word-tokens would then be treated as characters and have their own weight system, and would add their own weights to the password. I'd need a few new algorithm parameters (I'll call them lw, Nw ~= 2^11, fw ~= .5, and rfw) and I'd factor the weight into the password as I would any of the other weights. This word search could be specially modified to match both lowercase and uppercase letters as well as common character substitutions, like that of E with 3. If I didn't add extra weight to such matched words, the algorithm would underestimate their strength by a bit or two per word, which is OK. Otherwise, a general rule would be, for each non-perfect character match, give the word a bonus bit. I could then perform simple pattern checks, such as searches for runs of repeated characters and derivative tests (take the difference between each character), which would identify patterns such as 'aaaaa' and '12345', and replace each detected pattern with a pattern token, unique to the pattern and length. The algorithmic parameters (specifically, entropy per pattern) could be generated on the fly based on the pattern. At this point, I'd take the length of the password. Each word token and pattern token would count as one character; each token would replace the characters they symbolically represented. I made up some sort of pattern notation, but it includes the pattern length l, the pattern order o, and the base element b. This information could be used to compute some arbitrary weight for each pattern. I'd do something better in actual code. Modified Example: Password: 1234kitty$$$$$herpderp Tokenized: 1 2 3 4 k i t t y $ $ $ $ $ h e r p d e r p Words Filtered: 1 2 3 4 @W5783 $ $ $ $ $ @W9001 @W9002 Patterns Filtered: @P[l=4,o=1,b='1'] @W5783 @P[l=5,o=0,b='$'] @W9001 @W9002 Breakdown: 3 small, unique words and 2 patterns Entropy: about 45 bits, as per modified algorithm Password: correcthorsebatterystaple Tokenized: c o r r e c t h o r s e b a t t e r y s t a p l e Words Filtered: @W6783 @W7923 @W1535 @W2285 Breakdown: 4 small, unique words and no patterns Entropy: 43 bits, as per modified algorithm The exact semantics of how entropy is calculated from patterns is up for discussion. I was thinking something like: entropy(b) * l * (o + 1) // o will be either zero or one The modified algorithm would find flaws with and reduce the strength of each password in the original table, with the exception of s^fU¬5ü;y34G<, which contains no words or patterns.

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

  • ????: PostgreSQL??Oracle RAC????

    - by Kumiko Fujita
    ?????????????????????????????????????????????????????????????????????????? ????????????????????????? * * * ?????????????????????????????????????DBMS??????????????????????????????DBMS????????????????????????????????????????????? 1. ???? ?????????????????????????????????????????????????????????????????????1?????? ???????????????? ?????????????????????????????DB???????OSS?PostgreSQL?????AP?????DB??????????????????? ???????? ?????10?????????????GB????????????????????????????DB?????????????????????????? ?????????????3,500?????????24????????????????????????????????????? ??AP?????????????????????????????????????????DB??PostgreSQL??????????????????PostgreSQL ????????????????????Vacuum????????????????????????????????????????????????????? ??????????????????PostgreSQL?OSS??????????????????????????????????????????????????DB MS??????Oracle Database 11gR2???????????????????????500GB???????????????????????????Partitioning ???????? Oracle Database Enterprise Edition?????????????????????????????????????????????? ????SAN?????Active/Standby???HA????????????????? 2. ????? 2.1. ???? PostgreSQL??????Oracle??????????????????????????????????????????????????????TEXT????? ????????????????????Oracle??????????????????????????PostgreSQL??csv???????Oracle Database?SQL*Loa der????????????? ??????????????????????????????DB??????????????Windows?Liunx??????????????????????? ????????????????????????????????????????????????? ?????????????PostgreSQL?NULL?????''????????????Oracle Database???????????????????????? ?????????? table { border-collapse: collapse; } th { border: solid 1px #666666; color: #000000; background-color: #ff9999; } td { border: solid 1px #666666; color: #000000; background-color: #ffffff; } ???? PostgreSQL Oracle Database ??? CHAR(n) CHAR(n),CLOB VARCHAR(n) VARCHAR2(n),CLOB TEXT CLOB ??? NUMERIC NUMBER INTEGER NUMBER SMALLINT NUMBER BIGINT NUMBER REAL NUMBER DOUBLE PRECISION NUMBER ??? DATE DATE TIMESTAMP TIMESTAMP ????? Bytea BLOB LOB BFILE/SecureFiles ??? OID ROWID 2.2. ????? ?????????????PostgreSQL?Oracle Database??????????SQL???????????????????????????????????Postg reSQL?LIMIT?OFFSET??Oracle Database?????????????????????? LIMIT,OFFSET???SELECT?????? /* PostgreSQL LIMIT,OFFSET */ SELECT ??? FROM ????? ORDER BY ???? LIMIT 2 OFFSET 5; /* Oracle Database????? */ SELECT ??? FROM (SELECT ???, ROWNUM line_no FROM (SELECT??? FROM ????? OREDR BY ???? ) ) WHERE line_no BETWEEN 6 AND 7; ??????????????????????????????????????????????????????????????????????????? ?????????????????? ????????????????????????????????????????????????Oracle Database??????????????????????Oracle Database????WHERE??????????????????????????????????????????????????????WHERE?????????????????????? 3. ???? ???????????????????????30%~40%????????????????????80%????????????????????? ?ITpro???:???????4????? ??????????????????????????????????? ·?????·??????????????????????????? ·????????????????????????????? ????????????????????????????????????????? 3.1. ??????? ????????????????????????????????????????·??????????????????????????????????? ???????????????????????????????????????????????????????·?????????????????? ???????????????????????????? (1)???????????????????? (2)???????????????????????????????????????????? (3)??????????????? (4)???????????????????????????????? ???????????·???????????????????????????????????????????????????????????????? ????????????????????? ????????·?? table { border-collapse: collapse; } th { border: solid 1px #666666; color: #000000; background-color: #ff9999; } td { border: solid 1px #666666; color: #000000; background-color: #ffffff; } ?? ?? ?? (1) ?????????? ????????????·???????????????????????? (2) ???????????????????? ?????????????????????????????? (3) ?????4????????????????? ???????????????????????DB????????? (4) ??????????(3)???????? ???????????????????????? ?????????????????????GB???????????????????????????????????????????(3)?????????? ??????? ??????????????????????????????????????????????csv??????????SQL*Loader?Oracle Database?????????????????????Oracle Database???????????????????????????INSERT????????????? ???????????????????????????????????????????????????????????????????????????? ?????????????????????? 3.2. ????? ???????????????????????????????????????????????????????????????????????????? ????????????????????????????????????????????????????????????????????????????????????????????? ?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 3.3. ????? ??????????????????????????????????????????????????????????????????????????? ??????????????????????? DBMS????????????????????????SQL??????????????????????????????????????????????????PostgreSQL?Oracle Database???????????MVCC?????????????????????????Read Committed??????????????????????????????????????????????????????????????????????????????????? ????????????????DBMS?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4. ??? PostgreSQL??Oracle Database?????????????????????????????? ????????????·????????????????????????????????????? ??????4???????????????????????·??????????????????? ???????????????????????????????????????????????? ?????????????????????????????????????????????DBMS???????????????????DBMS???????? ?????SQL?????????????????????????????DB???????????????????????????? ???????????????????????????DBMS?????????????????????????????????????????????????????? ??????????????????????????????

    Read the article

< Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >