Search Results

Search found 11547 results on 462 pages for 'parameter binding'.

Page 121/462 | < Previous Page | 117 118 119 120 121 122 123 124 125 126 127 128  | Next Page >

  • Windows Phone 7: Making ListBox items change dynamically

    - by Chad La Guardia
    I am working on creating a Windows Phone app that will play a series of sound clips selected from a list. I am using the MVVM (Model View View-Model) Design pattern and have designed a model for my data, along with a view model for my page. Here is what the XAML for the ListBox looks like: <ListBox x:Name="MediaListBox" Margin="0,0,-12,0" ItemsSource="{Binding Media}" SelectionChanged="MediaListBox_SelectionChanged" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch"> <ListBox.ItemTemplate > <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432" Orientation="Horizontal"> <Image Source="../Media/Images/play.png" /> <StackPanel > <TextBlock Text="{Binding Title}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}"/> <TextBlock Text="{Binding ShortDescription}" TextWrapping="Wrap" Margin="12,-6,12,0" Visibility="{Binding ShortDescriptionVisibility}" Style="{StaticResource PhoneTextSubtleStyle}"/> <TextBlock Text="{Binding LongDescription}" TextWrapping="Wrap" Visibility="{Binding LongDescriptionVisibility}" /> <StackPanel> <Slider HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" Visibility="{Binding LongDescriptionVisibility}" ValueChanged="Slider_ValueChanged" LargeChange="0.25" SmallChange="0.05" /> </StackPanel> </StackPanel> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> My question is this: I want to be able to expand and collapse part of the items in the ListBox. As you can see, I have a binding for the visibility. That binding is coming from the MediaModel. However, when I change this property in the ObservableCollection, the page is not updated to reflect this. The ViewModel for this page looks like this: public class ListenPageViewModel : INotifyPropertyChanged { public ListenPageViewModel() { this.Media = new ObservableCollection<MediaModel>; } /// <summary> /// A collection for MediaModel objects. /// </summary> public ObservableCollection<MediaModel> Media { get; private set; } public bool IsDataLoaded { get; private set; } /// <summary> /// Creates and adds the media to their respective collections. /// </summary> public void LoadData() { this.Media.Clear(); this.Media.Add(new MediaModel() { Title = "Media 1", ShortDescription = "Short here.", LongDescription = "Long here.", MediaSource = "/Media/test.mp3", LongDescriptionVisibility = Visibility.Collapsed, ShortDescriptionVisibility = Visibility.Visible }); this.Media.Add(new MediaModel() { Title = "Media 2", ShortDescription = "Short here.", LongDescription = "Long here.", MediaSource = "/Media/test2.mp3", LongDescriptionVisibility = Visibility.Collapsed, ShortDescriptionVisibility = Visibility.Visible }); this.IsDataLoaded = true; } public event PropertyChangedEventHandler PropertyChanged; private void NotifyPropertyChanged(String propertyName) { PropertyChangedEventHandler handler = PropertyChanged; if (null != handler) { handler(this, new PropertyChangedEventArgs(propertyName)); } } } The bindings work correctly and I am seeing the data displayed; however, when I change the properties, the list does not update. I believe that this may be because when I change things inside the observable collection, the property changed event is not firing. What can I do to remedy this? I have poked around for some info on this, but many of the tutorials don't cover this kind of behavior. Any help would be greatly appreciated! Thanks Edit: As requested, I have added the MediaModel code: public class MediaModel : INotifyPropertyChanged { public string Title { get; set; } public string ShortDescription { get; set; } public string LongDescription { get; set; } public string MediaSource { get; set; } public Visibility LongDescriptionVisibility { get; set; } public Visibility ShortDescriptionVisibility { get; set; } public MediaModel() { } public MediaModel(string Title, string ShortDescription, string LongDescription, string MediaSource, Visibility LongDescriptionVisibility, Visibility ShortDescriptionVisibility) { this.Title = Title; this.ShortDescription = ShortDescription; this.LongDescription = LongDescription; this.MediaSource = MediaSource; this.LongDescriptionVisibility = LongDescriptionVisibility; this.ShortDescriptionVisibility = ShortDescriptionVisibility; } public event PropertyChangedEventHandler PropertyChanged; private void NotifyPropertyChanged(String propertyName) { PropertyChangedEventHandler handler = PropertyChanged; if (null != handler) { handler(this, new PropertyChangedEventArgs(propertyName)); } } } Originally, I did not have this class implement the INotifyPropertyChanged. I did this to see if it would solve the problem. I was hoping this could just be a data object.

    Read the article

  • The Execute SQL Task

    In this article we are going to take you through the Execute SQL Task in SQL Server Integration Services for SQL Server 2005 (although it appies just as well to SQL Server 2008).  We will be covering all the essentials that you will need to know to effectively use this task and make it as flexible as possible. The things we will be looking at are as follows: A tour of the Task. The properties of the Task. After looking at these introductory topics we will then get into some examples. The examples will show different types of usage for the task: Returning a single value from a SQL query with two input parameters. Returning a rowset from a SQL query. Executing a stored procedure and retrieveing a rowset, a return value, an output parameter value and passing in an input parameter. Passing in the SQL Statement from a variable. Passing in the SQL Statement from a file. Tour Of The Task Before we can start to use the Execute SQL Task in our packages we are going to need to locate it in the toolbox. Let's do that now. Whilst in the Control Flow section of the package expand your toolbox and locate the Execute SQL Task. Below is how we found ours. Now drag the task onto the designer. As you can see from the following image we have a validation error appear telling us that no connection manager has been assigned to the task. This can be easily remedied by creating a connection manager. There are certain types of connection manager that are compatable with this task so we cannot just create any connection manager and these are detailed in a few graphics time. Double click on the task itself to take a look at the custom user interface provided to us for this task. The task will open on the general tab as shown below. Take a bit of time to have a look around here as throughout this article we will be revisting this page many times. Whilst on the general tab, drop down the combobox next to the ConnectionType property. In here you will see the types of connection manager which this task will accept. As with SQL Server 2000 DTS, SSIS allows you to output values from this task in a number of formats. Have a look at the combobox next to the Resultset property. The major difference here is the ability to output into XML. If you drop down the combobox next to the SQLSourceType property you will see the ways in which you can pass a SQL Statement into the task itself. We will have examples of each of these later on but certainly when we saw these for the first time we were very excited. Next to the SQLStatement property if you click in the empty box next to it you will see ellipses appear. Click on them and you will see the very basic query editor that becomes available to you. Alternatively after you have specified a connection manager for the task you can click on the Build Query button to bring up a completely different query editor. This is slightly inconsistent. Once you've finished looking around the general tab, move on to the next tab which is the parameter mapping tab. We shall, again, be visiting this tab throughout the article but to give you an initial heads up this is where you define the input, output and return values from your task. Note this is not where you specify the resultset. If however you now move on to the ResultSet tab this is where you define what variable will receive the output from your SQL Statement in whatever form that is. Property Expressions are one of the most amazing things to happen in SSIS and they will not be covered here as they deserve a whole article to themselves. Watch out for this as their usefulness will astound you. For a more detailed discussion of what should be the parameter markers in the SQL Statements on the General tab and how to map them to variables on the Parameter Mapping tab see Working with Parameters and Return Codes in the Execute SQL Task. Task Properties There are two places where you can specify the properties for your task. One is in the task UI itself and the other is in the property pane which will appear if you right click on your task and select Properties from the context menu. We will be doing plenty of property setting in the UI later so let's take a moment to have a look at the property pane. Below is a graphic showing our properties pane. Now we shall take you through all the properties and tell you exactly what they mean. A lot of these properties you will see across all tasks as well as the package because of everything's base structure The Container. BypassPrepare Should the statement be prepared before sending to the connection manager destination (True/False) Connection This is simply the name of the connection manager that the task will use. We can get this from the connection manager tray at the bottom of the package. DelayValidation Really interesting property and it tells the task to not validate until it actually executes. A usage for this may be that you are operating on table yet to be created but at runtime you know the table will be there. Description Very simply the description of your Task. Disable Should the task be enabled or not? You can also set this through a context menu by right clicking on the task itself. DisableEventHandlers As a result of events that happen in the task, should the event handlers for the container fire? ExecValueVariable The variable assigned here will get or set the execution value of the task. Expressions Expressions as we mentioned earlier are a really powerful tool in SSIS and this graphic below shows us a small peek of what you can do. We select a property on the left and assign an expression to the value of that property on the right causing the value to be dynamically changed at runtime. One of the most obvious uses of this is that the property value can be built dynamically from within the package allowing you a great deal of flexibility FailPackageOnFailure If this task fails does the package? FailParentOnFailure If this task fails does the parent container? A task can he hosted inside another container i.e. the For Each Loop Container and this would then be the parent. ForcedExecutionValue This property allows you to hard code an execution value for the task. ForcedExecutionValueType What is the datatype of the ForcedExecutionValue? ForceExecutionResult Force the task to return a certain execution result. This could then be used by the workflow constraints. Possible values are None, Success, Failure and Completion. ForceExecutionValue Should we force the execution result? IsolationLevel This is the transaction isolation level of the task. IsStoredProcedure Certain optimisations are made by the task if it knows that the query is a Stored Procedure invocation. The docs say this will always be false unless the connection is an ADO connection. LocaleID Gets or sets the LocaleID of the container. LoggingMode Should we log for this container and what settings should we use? The value choices are UseParentSetting, Enabled and Disabled. MaximumErrorCount How many times can the task fail before we call it a day? Name Very simply the name of the task. ResultSetType How do you want the results of your query returned? The choices are ResultSetType_None, ResultSetType_SingleRow, ResultSetType_Rowset and ResultSetType_XML. SqlStatementSource Your Query/SQL Statement. SqlStatementSourceType The method of specifying the query. Your choices here are DirectInput, FileConnection and Variables TimeOut How long should the task wait to receive results? TransactionOption How should the task handle being asked to join a transaction? Usage Examples As we move through the examples we will only cover in them what we think you must know and what we think you should see. This means that some of the more elementary steps like setting up variables will be covered in the early examples but skipped and simply referred to in later ones. All these examples used the AventureWorks database that comes with SQL Server 2005. Returning a Single Value, Passing in Two Input Parameters So the first thing we are going to do is add some variables to our package. The graphic below shows us those variables having been defined. Here the CountOfEmployees variable will be used as the output from the query and EndDate and StartDate will be used as input parameters. As you can see all these variables have been scoped to the package. Scoping allows us to have domains for variables. Each container has a scope and remember a package is a container as well. Variable values of the parent container can be seen in child containers but cannot be passed back up to the parent from a child. Our following graphic has had a number of changes made. The first of those changes is that we have created and assigned an OLEDB connection manager to this Task ExecuteSQL Task Connection. The next thing is we have made sure that the SQLSourceType property is set to Direct Input as we will be writing in our statement ourselves. We have also specified that only a single row will be returned from this query. The expressions we typed in was: SELECT COUNT(*) AS CountOfEmployees FROM HumanResources.Employee WHERE (HireDate BETWEEN ? AND ?) Moving on now to the Parameter Mapping tab this is where we are going to tell the task about our input paramaters. We Add them to the window specifying their direction and datatype. A quick word here about the structure of the variable name. As you can see SSIS has preceeded the variable with the word user. This is a default namespace for variables but you can create your own. When defining your variables if you look at the variables window title bar you will see some icons. If you hover over the last one on the right you will see it says "Choose Variable Columns". If you click the button you will see a list of checkbox options and one of them is namespace. after checking this you will see now where you can define your own namespace. The next tab, result set, is where we need to get back the value(s) returned from our statement and assign to a variable which in our case is CountOfEmployees so we can use it later perhaps. Because we are only returning a single value then if you remember from earlier we are allowed to assign a name to the resultset but it must be the name of the column (or alias) from the query. A really cool feature of Business Intelligence Studio being hosted by Visual Studio is that we get breakpoint support for free. In our package we set a Breakpoint so we can break the package and have a look in a watch window at the variable values as they appear to our task and what the variable value of our resultset is after the task has done the assignment. Here's that window now. As you can see the count of employess that matched the data range was 2. Returning a Rowset In this example we are going to return a resultset back to a variable after the task has executed not just a single row single value. There are no input parameters required so the variables window is nice and straight forward. One variable of type object. Here is the statement that will form the soure for our Resultset. select p.ProductNumber, p.name, pc.Name as ProductCategoryNameFROM Production.ProductCategory pcJOIN Production.ProductSubCategory pscON pc.ProductCategoryID = psc.ProductCategoryIDJOIN Production.Product pON psc.ProductSubCategoryID = p.ProductSubCategoryID We need to make sure that we have selected Full result set as the ResultSet as shown below on the task's General tab. Because there are no input parameters we can skip the parameter mapping tab and move straight to the Result Set tab. Here we need to Add our variable defined earlier and map it to the result name of 0 (remember we covered this earlier) Once we run the task we can again set a breakpoint and have a look at the values coming back from the task. In the following graphic you can see the result set returned to us as a COM object. We can do some pretty interesting things with this COM object and in later articles that is exactly what we shall be doing. Return Values, Input/Output Parameters and Returning a Rowset from a Stored Procedure This example is pretty much going to give us a taste of everything. We have already covered in the previous example how to specify the ResultSet to be a Full result set so we will not cover it again here. For this example we are going to need 4 variables. One for the return value, one for the input parameter, one for the output parameter and one for the result set. Here is the statement we want to execute. Note how much cleaner it is than if you wanted to do it using the current version of DTS. In the Parameter Mapping tab we are going to Add our variables and specify their direction and datatypes. In the Result Set tab we can now map our final variable to the rowset returned from the stored procedure. It really is as simple as that and we were amazed at how much easier it is than in DTS 2000. Passing in the SQL Statement from a Variable SSIS as we have mentioned is hugely more flexible than its predecessor and one of the things you will notice when moving around the tasks and the adapters is that a lot of them accept a variable as an input for something they need. The ExecuteSQL task is no different. It will allow us to pass in a string variable as the SQL Statement. This variable value could have been set earlier on from inside the package or it could have been populated from outside using a configuration. The ResultSet property is set to single row and we'll show you why in a second when we look at the variables. Note also the SQLSourceType property. Here's the General Tab again. Looking at the variable we have in this package you can see we have only two. One for the return value from the statement and one which is obviously for the statement itself. Again we need to map the Result name to our variable and this can be a named Result Name (The column name or alias returned by the query) and not 0. The expected result into our variable should be the amount of rows in the Person.Contact table and if we look in the watch window we see that it is.   Passing in the SQL Statement from a File The final example we are going to show is a really interesting one. We are going to pass in the SQL statement to the task by using a file connection manager. The file itself contains the statement to run. The first thing we are going to need to do is create our file connection mananger to point to our file. Click in the connections tray at the bottom of the designer, right click and choose "New File Connection" As you can see in the graphic below we have chosen to use an existing file and have passed in the name as well. Have a look around at the other "Usage Type" values available whilst you are here. Having set that up we can now see in the connection manager tray our file connection manager sitting alongside our OLE-DB connection we have been using for the rest of these examples. Now we can go back to the familiar General Tab to set up how the task will accept our file connection as the source. All the other properties in this task are set up exactly as we have been doing for other examples depending on the options chosen so we will not cover them again here.   We hope you will agree that the Execute SQL Task has changed considerably in this release from its DTS predecessor. It has a lot of options available but once you have configured it a few times you get to learn what needs to go where. We hope you have found this article useful.

    Read the article

  • Referencing variables in a structure / C++

    - by user1628622
    Below, I provided a minimal example of code I created. I managed to get this code working, but I'm not sure if the practice being employed is sound. In essence, what I am trying to do is have the 'Parameter' class reference select elements in the 'States' class, so variables in States can be changed via Parameters. Questions I have: is the approach taken OK? If not, is there a better way to achieve what I am aiming for? Example code: struct VAR_TYPE{ public: bool is_fixed; // If is_fixed = true, then variable is a parameter double value; // Numerical value std::string name; // Description of variable (to identify it by name) }; struct NODE{ public: VAR_TYPE X, Y, Z; /* VAR_TYPE is a structure of primitive types */ }; class States{ private: std::vector <NODE_ptr> node; // shared ptr to struct NODE std::vector <PROP_DICTIONARY_ptr> property; // CAN NOT be part of Parameter std::vector <ELEMENT_ptr> element; // CAN NOT be part of Parameter public: /* ect */ void set_X_reference ( Parameter &T , int i ) { T.push_var( &node[i]->X ); } void set_Y_reference ( Parameter &T , int i ) { T.push_var( &node[i]->Y ); } void set_Z_reference ( Parameter &T , int i ) { T.push_var( &node[i]->Z ); } bool get_node_bool_X( int i ) { return node[i]->X.is_fixed; } // repeat for Y and Z }; class Parameter{ private: std::vector <VAR_TYPE*> var; public: /* ect */ }; int main(){ States S; Parameter P; /* Here I initialize and set S, and do other stuff */ // Now I assign components in States to Parameters for(int n=0 ; n<S.size_of_nodes() ; n++ ){ if ( S.get_node_bool_X(n)==true ){ S.set_X_reference ( P , n ); }; // repeat if statement for Y and Z }; /* Now P points selected to data in S, and I can * modify the contents of S through P */ return 0; }; Update The reason this issue cropped up is I am working with Fortran legacy code. To sum up this Fotran code - it's a numerical simulation of a flight vehicle. This code has a fairly rigid procedural framework one must work within, which comes with a pre-defined list of allowable Fortran types. The Fortran glue code can create an instance of a C++ object (in actuality, a reference from the perspective of Fortran), but is not aware what is contained in it (other means are used to extract C++ data into Fortran). The problem that I encountered is when a C++ module is dynamically linked to the Fortran glue code, C++ objects have to be initialized each instance the C++ code is called. This happens by virtue of how the Fortran template is defined. To avoid this cycle of re-initializing objects, I plan to use 'State' as a container class. The Fortran code allows a 'State' object, which has an arbitrary definition; but I plan to use it to harness all relevant information about the model. The idea is to use the Parameters class (which is exposed and updated by the Fortran code) to update variables in States.

    Read the article

  • How to Use USER_DEFINED Activity in OWB Process Flow

    - by Jinggen He
    Process Flow is a very important component of Oracle Warehouse Builder. With Process Flow, we can create and control the ETL process by setting all kinds of activities in a well-constructed flow. In Oracle Warehouse Builder 11gR2, there are 28 kinds of activities, which fall into three categories: Control activities, OWB specific activities and Utility activities. For more information about Process Flow activities, please refer to OWB online doc. Most of those activities are pre-defined for some specific use. For example, the Mapping activity allows execution an OWB mapping in Process Flow and the FTP activity allows an interaction between the local host and a remote FTP server. Besides those activities for specific purposes, the User Defined activity enables you to incorporate into a Process Flow an activity that is not defined within Warehouse Builder. So the User Defined activity brings flexibility and extensibility to Process Flow. In this article, we will take an amazing tour of using the User Defined activity. Let's start. Enable execution of User Defined activity Let's start this section from creating a very simple Process Flow, which contains a Start activity, a User Defined activity and an End Success activity. Leave all parameters of activity USER_DEFINED unchanged except that we enter /tmp/test.sh into the Value column of the COMMAND parameter. Then let's create the shell script test.sh in /tmp directory. Here is the content of /tmp/test.sh (this article is demonstrating a scenario in Linux system, and /tmp/test.sh is a Bash shell script): echo Hello World! > /tmp/test.txt Note: don't forget to grant the execution privilege on /tmp/test.sh to OS Oracle user. For simplicity, we just use the following command. chmod +x /tmp/test.sh OK, it's so simple that we’ve almost done it. Now deploy the Process Flow and run it. For a newly installed OWB, we will come across an error saying "RPE-02248: For security reasons, activity operator Shell has been disabled by the DBA". See below. That's because, by default, the User Defined activity is DISABLED. Configuration about this can be found in <ORACLE_HOME>/owb/bin/admin/Runtime.properties: property.RuntimePlatform.0.NativeExecution.Shell.security_constraint=DISABLED The property can be set to three different values: NATIVE_JAVA, SCHEDULER and DISBALED. Where NATIVE_JAVA uses the Java 'Runtime.exec' interface, SCHEDULER uses a DBMS Scheduler external job submitted by the Control Center repository owner which is executed by the default operating system user configured by the DBA. DISABLED prevents execution via these operators. We enable the execution of User Defined activity by setting: property.RuntimePlatform.0.NativeExecution.Shell.security_constraint= NATIVE_JAVA Restart the Control Center service for the change of setting to take effect. cd <ORACLE_HOME>/owb/rtp/sql sqlplus OWBSYS/<password of OWBSYS> @stop_service.sql sqlplus OWBSYS/<password of OWBSYS> @start_service.sql And then run the Process Flow again. We will see that the Process Flow completes successfully. The execution of /tmp/test.sh successfully generated a file /tmp/test.txt, containing the line Hello World!. Pass parameters to User Defined Activity The Process Flow created in the above section has a drawback: the User Defined activity doesn't accept any information from OWB nor does it give any meaningful results back to OWB. That's to say, it lacks interaction. Maybe, sometimes such a Process Flow can fulfill the business requirement. But for most of the time, we need to get the User Defined activity executed according to some information prior to that step. In this section, we will see how to pass parameters to the User Defined activity and pass them into the to-be-executed shell script. First, let's see how to pass parameters to the script. The User Defined activity has an input parameter named PARAMETER_LIST. This is a list of parameters that will be passed to the command. Parameters are separated from one another by a token. The token is taken as the first character on the PARAMETER_LIST string, and the string must also end in that token. Warehouse Builder recommends the '?' character, but any character can be used. For example, to pass 'abc,' 'def,' and 'ghi' you can use the following equivalent: ?abc?def?ghi? or !abc!def!ghi! or |abc|def|ghi| If the token character or '\' needs to be included as part of the parameter, then it must be preceded with '\'. For example '\\'. If '\' is the token character, then '/' becomes the escape character. Let's configure the PARAMETER_LIST parameter as below: And modify the shell script /tmp/test.sh as below: echo $1 is saying hello to $2! > /tmp/test.txt Re-deploy the Process Flow and run it. We will see that the generated /tmp/test.txt contains the following line: Bob is saying hello to Alice! In the example above, the parameters passed into the shell script are static. This case is not so useful because: instead of passing parameters, we can directly write the value of the parameters in the shell script. To make the case more meaningful, we can pass two dynamic parameters, that are obtained from the previous activity, to the shell script. Prepare the Process Flow as below: The Mapping activity MAPPING_1 has two output parameters: FROM_USER, TO_USER. The User Defined activity has two input parameters: FROM_USER, TO_USER. All the four parameters are of String type. Additionally, the Process Flow has two string variables: VARIABLE_FOR_FROM_USER, VARIABLE_FOR_TO_USER. Through VARIABLE_FOR_FROM_USER, the input parameter FROM_USER of USER_DEFINED gets value from output parameter FROM_USER of MAPPING_1. We achieve this by binding both parameters to VARIABLE_FOR_FROM_USER. See the two figures below. In the same way, through VARIABLE_FOR_TO_USER, the input parameter TO_USER of USER_DEFINED gets value from output parameter TO_USER of MAPPING_1. Also, we need to change the PARAMETER_LIST of the User Defined activity like below: Now, the shell script is getting input from the Mapping activity dynamically. Deploy the Process Flow and all of its necessary dependees then run the Process Flow. We see that the generated /tmp/test.txt contains the following line: USER B is saying hello to USER A! 'USER B' and 'USER A' are two outputs of the Mapping execution. Write the shell script within Oracle Warehouse Builder In the previous section, the shell script is located in the /tmp directory. But sometimes, when the shell script is small, or for the sake of maintaining consistency, you may want to keep the shell script inside Oracle Warehouse Builder. We can achieve this by configuring these three parameters of a User Defined activity properly: COMMAND: Set the path of interpreter, by which the shell script will be interpreted. PARAMETER_LIST: Set it blank. SCRIPT: Enter the shell script content. Note that in Linux the shell script content is passed into the interpreter as standard input at runtime. About how to actually pass parameters to the shell script, we can utilize variable substitutions. As in the following figure, ${FROM_USER} will be replaced by the value of the FROM_USER input parameter of the User Defined activity. So will the ${TO_USER} symbol. Besides the custom substitution variables, OWB also provide some system pre-defined substitution variables. You can refer to the online document for that. Deploy the Process Flow and run it. We see that the generated /tmp/test.txt contains the following line: USER B is saying hello to USER A! Leverage the return value of User Defined activity All of the previous sections are connecting the User Defined activity to END_SUCCESS with an unconditional transition. But what should we do if we want different subsequent activities for different shell script execution results? 1.  The simplest way is to add three simple-conditioned out-going transitions for the User Defined activity just like the figure below. In the figure, to simplify the scenario, we connect the User Defined activity to three End activities. Basically, if the shell script ends successfully, the whole Process Flow will end at END_SUCCESS, otherwise, the whole Process Flow will end at END_ERROR (in our case, ending at END_WARNING seldom happens). In the real world, we can add more complex and meaningful subsequent business logic. 2.  Or we can utilize complex conditions to work with different results of the User Defined activity. Previously, in our script, we only have this line: echo ${FROM_USER} is saying hello to ${TO_USER}! > /tmp/test.txt We can add more logic in it and return different values accordingly. echo ${FROM_USER} is saying hello to ${TO_USER}! > /tmp/test.txt if CONDITION_1 ; then ...... exit 0 fi if CONDITION_2 ; then ...... exit 2 fi if CONDITION_3 ; then ...... exit 3 fi After that we can leverage the result by checking RESULT_CODE in condition expression of those out-going transitions. Let's suppose that we have the Process Flow as the following graph (SUB_PROCESS_n stands for more different further processes): We can set complex condition for the transition from USER_DEFINED to SUB_PROCESS_1 like this: Other transitions can be set in the same way. Note that, in our shell script, we return 0, 2 and 3, but not 1. As in Linux system, if the shell script comes across a system error like IO error, the return value will be 1. We can explicitly handle such a return value. Summary Let's summarize what has been discussed in this article: How to create a Process Flow with a User Defined activity in it How to pass parameters from the prior activity to the User Defined activity and finally into the shell script How to write the shell script within Oracle Warehouse Builder How to do variable substitutions How to let the User Defined activity return different values and in what way can we leverage

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Microsoft and jQuery

    - by Rick Strahl
    The jQuery JavaScript library has been steadily getting more popular and with recent developments from Microsoft, jQuery is also getting ever more exposure on the ASP.NET platform including now directly from Microsoft. jQuery is a light weight, open source DOM manipulation library for JavaScript that has changed how many developers think about JavaScript. You can download it and find more information on jQuery on www.jquery.com. For me jQuery has had a huge impact on how I develop Web applications and was probably the main reason I went from dreading to do JavaScript development to actually looking forward to implementing client side JavaScript functionality. It has also had a profound impact on my JavaScript skill level for me by seeing how the library accomplishes things (and often reviewing the terse but excellent source code). jQuery made an uncomfortable development platform (JavaScript + DOM) a joy to work on. Although jQuery is by no means the only JavaScript library out there, its ease of use, small size, huge community of plug-ins and pure usefulness has made it easily the most popular JavaScript library available today. As a long time jQuery user, I’ve been excited to see the developments from Microsoft that are bringing jQuery to more ASP.NET developers and providing more integration with jQuery for ASP.NET’s core features rather than relying on the ASP.NET AJAX library. Microsoft and jQuery – making Friends jQuery is an open source project but in the last couple of years Microsoft has really thrown its weight behind supporting this open source library as a supported component on the Microsoft platform. When I say supported I literally mean supported: Microsoft now offers actual tech support for jQuery as part of their Product Support Services (PSS) as jQuery integration has become part of several of the ASP.NET toolkits and ships in several of the default Web project templates in Visual Studio 2010. The ASP.NET MVC 3 framework (still in Beta) also uses jQuery for a variety of client side support features including client side validation and we can look forward toward more integration of client side functionality via jQuery in both MVC and WebForms in the future. In other words jQuery is becoming an optional but included component of the ASP.NET platform. PSS support means that support staff will answer jQuery related support questions as part of any support incidents related to ASP.NET which provides some piece of mind to some corporate development shops that require end to end support from Microsoft. In addition to including jQuery and supporting it, Microsoft has also been getting involved in providing development resources for extending jQuery’s functionality via plug-ins. Microsoft’s last version of the Microsoft Ajax Library – which is the successor to the native ASP.NET AJAX Library – included some really cool functionality for client templates, databinding and localization. As it turns out Microsoft has rebuilt most of that functionality using jQuery as the base API and provided jQuery plug-ins of these components. Very recently these three plug-ins were submitted and have been approved for inclusion in the official jQuery plug-in repository and been taken over by the jQuery team for further improvements and maintenance. Even more surprising: The jQuery-templates component has actually been approved for inclusion in the next major update of the jQuery core in jQuery V1.5, which means it will become a native feature that doesn’t require additional script files to be loaded. Imagine this – an open source contribution from Microsoft that has been accepted into a major open source project for a core feature improvement. Microsoft has come a long way indeed! What the Microsoft Involvement with jQuery means to you For Microsoft jQuery support is a strategic decision that affects their direction in client side development, but nothing stopped you from using jQuery in your applications prior to Microsoft’s official backing and in fact a large chunk of developers did so readily prior to Microsoft’s announcement. Official support from Microsoft brings a few benefits to developers however. jQuery support in Visual Studio 2010 means built-in support for jQuery IntelliSense, automatically added jQuery scripts in many projects types and a common base for client side functionality that actually uses what most developers are already using. If you have already been using jQuery and were worried about straying from the Microsoft line and their internal Microsoft Ajax Library – worry no more. With official support and the change in direction towards jQuery Microsoft is now following along what most in the ASP.NET community had already been doing by using jQuery, which is likely the reason for Microsoft’s shift in direction in the first place. ASP.NET AJAX and the Microsoft AJAX Library weren’t bad technology – there was tons of useful functionality buried in these libraries. However, these libraries never got off the ground, mainly because early incarnations were squarely aimed at control/component developers rather than application developers. For all the functionality that these controls provided for control developers they lacked in useful and easily usable application developer functionality that was easily accessible in day to day client side development. The result was that even though Microsoft shipped support for these tools in the box (in .NET 3.5 and 4.0), other than for the internal support in ASP.NET for things like the UpdatePanel and the ASP.NET AJAX Control Toolkit as well as some third party vendors, the Microsoft client libraries were largely ignored by the developer community opening the door for other client side solutions. Microsoft seems to be acknowledging developer choice in this case: Many more developers were going down the jQuery path rather than using the Microsoft built libraries and there seems to be little sense in continuing development of a technology that largely goes unused by the majority of developers. Kudos for Microsoft for recognizing this and gracefully changing directions. Note that even though there will be no further development in the Microsoft client libraries they will continue to be supported so if you’re using them in your applications there’s no reason to start running for the exit in a panic and start re-writing everything with jQuery. Although that might be a reasonable choice in some cases, jQuery and the Microsoft libraries work well side by side so that you can leave existing solutions untouched even as you enhance them with jQuery. The Microsoft jQuery Plug-ins – Solid Core Features One of the most interesting developments in Microsoft’s embracing of jQuery is that Microsoft has started contributing to jQuery via standard mechanism set for jQuery developers: By submitting plug-ins. Microsoft took some of the nicest new features of the unpublished Microsoft Ajax Client Library and re-wrote these components for jQuery and then submitted them as plug-ins to the jQuery plug-in repository. Accepted plug-ins get taken over by the jQuery team and that’s exactly what happened with the three plug-ins submitted by Microsoft with the templating plug-in even getting slated to be published as part of the jQuery core in the next major release (1.5). The following plug-ins are provided by Microsoft: jQuery Templates – a client side template rendering engine jQuery Data Link – a client side databinder that can synchronize changes without code jQuery Globalization – provides formatting and conversion features for dates and numbers The first two are ports of functionality that was slated for the Microsoft Ajax Library while functionality for the globalization library provides functionality that was already found in the original ASP.NET AJAX library. To me all three plug-ins address a pressing need in client side applications and provide functionality I’ve previously used in other incarnations, but with more complete implementations. Let’s take a close look at these plug-ins. jQuery Templates http://api.jquery.com/category/plugins/templates/ Client side templating is a key component for building rich JavaScript applications in the browser. Templating on the client lets you avoid from manually creating markup by creating DOM nodes and injecting them individually into the document via code. Rather you can create markup templates – similar to the way you create classic ASP server markup – and merge data into these templates to render HTML which you can then inject into the document or replace existing content with. Output from templates are rendered as a jQuery matched set and can then be easily inserted into the document as needed. Templating is key to minimize client side code and reduce repeated code for rendering logic. Instead a single template can be used in many places for updating and adding content to existing pages. Further if you build pure AJAX interfaces that rely entirely on client rendering of the initial page content, templates allow you to a use a single markup template to handle all rendering of each specific HTML section/element. I’ve used a number of different client rendering template engines with jQuery in the past including jTemplates (a PHP style templating engine) and a modified version of John Resig’s MicroTemplating engine which I built into my own set of libraries because it’s such a commonly used feature in my client side applications. jQuery templates adds a much richer templating model that allows for sub-templates and access to the data items. Like John Resig’s original Micro Template engine, the core basics of the templating engine create JavaScript code which means that templates can include JavaScript code. To give you a basic idea of how templates work imagine I have an application that downloads a set of stock quotes based on a symbol list then displays them in the document. To do this you can create an ‘item’ template that describes how each of the quotes is renderd as a template inside of the document: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div><div>${LastPrice}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div><div>${LastQuoteTimeString}</div> </div> </script> The ‘template’ is little more than HTML with some markup expressions inside of it that define the template language. Notice the embedded ${} expressions which reference data from the quote objects returned from an AJAX call on the server. You can embed any JavaScript or value expression in these template expressions. There are also a number of structural commands like {{if}} and {{each}} that provide for rudimentary logic inside of your templates as well as commands ({{tmpl}} and {{wrap}}) for nesting templates. You can find more about the full set of markup expressions available in the documentation. To load up this data you can use code like the following: <script type="text/javascript"> //var Proxy = new ServiceProxy("../PageMethods/PageMethodsService.asmx/"); $(document).ready(function () { $("#btnGetQuotes").click(GetQuotes); }); function GetQuotes() { var symbols = $("#txtSymbols").val().split(","); $.ajax({ url: "../PageMethods/PageMethodsService.asmx/GetStockQuotes", data: JSON.stringify({ symbols: symbols }), // parameter map type: "POST", // data has to be POSTed contentType: "application/json", timeout: 10000, dataType: "json", success: function (result) { var quotes = result.d; var jEl = $("#stockTemplate").tmpl(quotes); $("#quoteDisplay").empty().append(jEl); }, error: function (xhr, status) { alert(status + "\r\n" + xhr.responseText); } }); }; </script> In this case an ASMX AJAX service is called to retrieve the stock quotes. The service returns an array of quote objects. The result is returned as an object with the .d property (in Microsoft service style) that returns the actual array of quotes. The template is applied with: var jEl = $("#stockTemplate").tmpl(quotes); which selects the template script tag and uses the .tmpl() function to apply the data to it. The result is a jQuery matched set of elements that can then be appended to the quote display element in the page. The template is merged against an array in this example. When the result is an array the template is automatically applied to each each array item. If you pass a single data item – like say a stock quote – the template works exactly the same way but is applied only once. Templates also have access to a $data item which provides the current data item and information about the tempalte that is currently executing. This makes it possible to keep context within the context of the template itself and also to pass context from a parent template to a child template which is very powerful. Templates can be evaluated by using the template selector and calling the .tmpl() function on the jQuery matched set as shown above or you can use the static $.tmpl() function to provide a template as a string. This allows you to dynamically create templates in code or – more likely – to load templates from the server via AJAX calls. In short there are options The above shows off some of the basics, but there’s much for functionality available in the template engine. Check the documentation link for more information and links to additional examples. The plug-in download also comes with a number of examples that demonstrate functionality. jQuery templates will become a native component in jQuery Core 1.5, so it’s definitely worthwhile checking out the engine today and get familiar with this interface. As much as I’m stoked about templating becoming part of the jQuery core because it’s such an integral part of many applications, there are also a couple shortcomings in the current incarnation: Lack of Error Handling Currently if you embed an expression that is invalid it’s simply not rendered. There’s no error rendered into the template nor do the various  template functions throw errors which leaves finding of bugs as a runtime exercise. I would like some mechanism – optional if possible – to be able to get error info of what is failing in a template when it’s rendered. No String Output Templates are always rendered into a jQuery matched set and there’s no way that I can see to directly render to a string. String output can be useful for debugging as well as opening up templating for creating non-HTML string output. Limited JavaScript Access Unlike John Resig’s original MicroTemplating Engine which was entirely based on JavaScript code generation these templates are limited to a few structured commands that can ‘execute’. There’s no code execution inside of script code which means you’re limited to calling expressions available in global objects or the data item passed in. This may or may not be a big deal depending on the complexity of your template logic. Error handling has been discussed quite a bit and it’s likely there will be some solution to that particualar issue by the time jQuery templates ship. The others are relatively minor issues but something to think about anyway. jQuery Data Link http://api.jquery.com/category/plugins/data-link/ jQuery Data Link provides the ability to do two-way data binding between input controls and an underlying object’s properties. The typical scenario is linking a textbox to a property of an object and have the object updated when the text in the textbox is changed and have the textbox change when the value in the object or the entire object changes. The plug-in also supports converter functions that can be applied to provide the conversion logic from string to some other value typically necessary for mapping things like textbox string input to say a number property and potentially applying additional formatting and calculations. In theory this sounds great, however in reality this plug-in has some serious usability issues. Using the plug-in you can do things like the following to bind data: person = { firstName: "rick", lastName: "strahl"}; $(document).ready( function() { // provide for two-way linking of inputs $("form").link(person); // bind to non-input elements explicitly $("#objFirst").link(person, { firstName: { name: "objFirst", convertBack: function (value, source, target) { $(target).text(value); } } }); $("#objLast").link(person, { lastName: { name: "objLast", convertBack: function (value, source, target) { $(target).text(value); } } }); }); This code hooks up two-way linking between a couple of textboxes on the page and the person object. The first line in the .ready() handler provides mapping of object to form field with the same field names as properties on the object. Note that .link() does NOT bind items into the textboxes when you call .link() – changes are mapped only when values change and you move out of the field. Strike one. The two following commands allow manual binding of values to specific DOM elements which is effectively a one-way bind. You specify the object and a then an explicit mapping where name is an ID in the document. The converter is required to explicitly assign the value to the element. Strike two. You can also detect changes to the underlying object and cause updates to the input elements bound. Unfortunately the syntax to do this is not very natural as you have to rely on the jQuery data object. To update an object’s properties and get change notification looks like this: function updateFirstName() { $(person).data("firstName", person.firstName + " (code updated)"); } This works fine in causing any linked fields to be updated. In the bindings above both the firstName input field and objFirst DOM element gets updated. But the syntax requires you to use a jQuery .data() call for each property change to ensure that the changes are tracked properly. Really? Sure you’re binding through multiple layers of abstraction now but how is that better than just manually assigning values? The code savings (if any) are going to be minimal. As much as I would like to have a WPF/Silverlight/Observable-like binding mechanism in client script, this plug-in doesn’t help much towards that goal in its current incarnation. While you can bind values, the ‘binder’ is too limited to be really useful. If initial values can’t be assigned from the mappings you’re going to end up duplicating work loading the data using some other mechanism. There’s no easy way to re-bind data with a different object altogether since updates trigger only through the .data members. Finally, any non-input elements have to be bound via code that’s fairly verbose and frankly may be more voluminous than what you might write by hand for manual binding and unbinding. Two way binding can be very useful but it has to be easy and most importantly natural. If it’s more work to hook up a binding than writing a couple of lines to do binding/unbinding this sort of thing helps very little in most scenarios. In talking to some of the developers the feature set for Data Link is not complete and they are still soliciting input for features and functionality. If you have ideas on how you want this feature to be more useful get involved and post your recommendations. As it stands, it looks to me like this component needs a lot of love to become useful. For this component to really provide value, bindings need to be able to be refreshed easily and work at the object level, not just the property level. It seems to me we would be much better served by a model binder object that can perform these binding/unbinding tasks in bulk rather than a tool where each link has to be mapped first. I also find the choice of creating a jQuery plug-in questionable – it seems a standalone object – albeit one that relies on the jQuery library – would provide a more intuitive interface than the current forcing of options onto a plug-in style interface. Out of the three Microsoft created components this is by far the least useful and least polished implementation at this point. jQuery Globalization http://github.com/jquery/jquery-global Globalization in JavaScript applications often gets short shrift and part of the reason for this is that natively in JavaScript there’s little support for formatting and parsing of numbers and dates. There are a number of JavaScript libraries out there that provide some support for globalization, but most are limited to a particular portion of globalization. As .NET developers we’re fairly spoiled by the richness of APIs provided in the framework and when dealing with client development one really notices the lack of these features. While you may not necessarily need to localize your application the globalization plug-in also helps with some basic tasks for non-localized applications: Dealing with formatting and parsing of dates and time values. Dates in particular are problematic in JavaScript as there are no formatters whatsoever except the .toString() method which outputs a verbose and next to useless long string. With the globalization plug-in you get a good chunk of the formatting and parsing functionality that the .NET framework provides on the server. You can write code like the following for example to format numbers and dates: var date = new Date(); var output = $.format(date, "MMM. dd, yy") + "\r\n" + $.format(date, "d") + "\r\n" + // 10/25/2010 $.format(1222.32213, "N2") + "\r\n" + $.format(1222.33, "c") + "\r\n"; alert(output); This becomes even more useful if you combine it with templates which can also include any JavaScript expressions. Assuming the globalization plug-in is loaded you can create template expressions that use the $.format function. Here’s the template I used earlier for the stock quote again with a couple of formats applied: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div> <div>${$.format(LastPrice,"N2")}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div> <div>${$.format(LastQuoteTime,"MMM dd, yyyy")}</div> </div> </script> There are also parsing methods that can parse dates and numbers from strings into numbers easily: alert($.parseDate("25.10.2010")); alert($.parseInt("12.222")); // de-DE uses . for thousands separators As you can see culture specific options are taken into account when parsing. The globalization plugin provides rich support for a variety of locales: Get a list of all available cultures Query cultures for culture items (like currency symbol, separators etc.) Localized string names for all calendar related items (days of week, months) Generated off of .NET’s supported locales In short you get much of the same functionality that you already might be using in .NET on the server side. The plugin includes a huge number of locales and an Globalization.all.min.js file that contains the text defaults for each of these locales as well as small locale specific script files that define each of the locale specific settings. It’s highly recommended that you NOT use the huge globalization file that includes all locales, but rather add script references to only those languages you explicitly care about. Overall this plug-in is a welcome helper. Even if you use it with a single locale (like en-US) and do no other localization, you’ll gain solid support for number and date formatting which is a vital feature of many applications. Changes for Microsoft It’s good to see Microsoft coming out of its shell and away from the ‘not-built-here’ mentality that has been so pervasive in the past. It’s especially good to see it applied to jQuery – a technology that has stood in drastic contrast to Microsoft’s own internal efforts in terms of design, usage model and… popularity. It’s great to see that Microsoft is paying attention to what customers prefer to use and supporting the customer sentiment – even if it meant drastically changing course of policy and moving into a more open and sharing environment in the process. The additional jQuery support that has been introduced in the last two years certainly has made lives easier for many developers on the ASP.NET platform. It’s also nice to see Microsoft submitting proposals through the standard jQuery process of plug-ins and getting accepted for various very useful projects. Certainly the jQuery Templates plug-in is going to be very useful to many especially since it will be baked into the jQuery core in jQuery 1.5. I hope we see more of this type of involvement from Microsoft in the future. Kudos!© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  

    Read the article

  • Getting TF215097 error after modifying a build process template in TFS Team Build 2010

    - by Jakob Ehn
    When embracing Team Build 2010, you typically want to define several different build process templates for different scenarios. Common examples here are CI builds, QA builds and release builds. For example, in a contiuous build you often have no interest in publishing to the symbol store, you might or might not want to associate changesets and work items etc. The build server is often heavily occupied as it is, so you don’t want to have it doing more that necessary. Try to define a set of build process templates that are used across your company. In previous versions of TFS Team Build, there was no easy way to do this. But in TFS 2010 it is very easy so there is no excuse to not do it! :-)   I ran into a scenario today where I had an existing build definition that was based on our release build process template. In this template, we have defined several different build process parameters that control the release build. These are placed into its own sectionin the Build Process Parameters editor. This is done using the ProcessParameterMetadataCollection element, I will explain how this works in a future post.   I won’t go into details on these parametes, the issue for this blog post is what happens when you modify a build process template so that it is no longer compatible with the build definition, i.e. a breaking change. In this case, I removed a parameter that was no longer necessary. After merging the new build process template to one of the projects and queued a new release build, I got this error:   TF215097: An error occurred while initializing a build for build definition <Build Definition Name>: The values provided for the root activity's arguments did not satisfy the root activity's requirements: 'DynamicActivity': The following keys from the input dictionary do not map to arguments and must be removed: <Parameter Name>.  Please note that argument names are case sensitive. Parameter name: rootArgumentValues <Parameter Name> was the parameter that I removed so it was pretty easy to understand why the error had occurred. However, it is not entirely obvious how to fix the problem. When open the build definition everything looks OK, the removed build process parameter is not there, and I can open the build process template without any validation warnings. The problem here is that all settings specific to a particular build definition is stored in the TFS database. In TFS 2005, everything that was related to a build was stored in TFS source control in files (TFSBuild.proj, WorkspaceMapping.xml..). In TFS 2008, many of these settings were moved into the database. Still, lots of things were stored in TFSBuild.proj, such as the solution and configuration to build, wether to execute tests or not. In TFS 2010, all settings for a build definition is stored in the database. If we look inside the database we can see what this looks like. The table tbl_BuildDefinition contains all information for a build definition. One of the columns is called ProcessParameters and contains a serialized representation of a Dictionary that is the underlying object where these settings are stoded. Here is an example:   <Dictionary x:TypeArguments="x:String, x:Object" xmlns="clr-namespace:System.Collections.Generic;assembly=mscorlib" xmlns:mtbwa="clr-namespace:Microsoft.TeamFoundation.Build.Workflow.Activities;assembly=Microsoft.TeamFoundation.Build.Workflow" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"> <mtbwa:BuildSettings x:Key="BuildSettings" ProjectsToBuild="$/PathToProject.sln"> <mtbwa:BuildSettings.PlatformConfigurations> <mtbwa:PlatformConfigurationList Capacity="4"> <mtbwa:PlatformConfiguration Configuration="Release" Platform="Any CPU" /> </mtbwa:PlatformConfigurationList> </mtbwa:BuildSettings.PlatformConfigurations> </mtbwa:BuildSettings> <mtbwa:AgentSettings x:Key="AgentSettings" Tags="Agent1" /> <x:Boolean x:Key="DisableTests">True</x:Boolean> <x:String x:Key="ReleaseRepositorySolution">ERP</x:String> <x:Int32 x:Key="Major">2</x:Int32> <x:Int32 x:Key="Minor">3</x:Int32> </Dictionary> Here we can see that it is really only the non-default values that are persisted into the databasen. So, the problem in my case was that I removed one of the parameteres from the build process template, but the parameter and its value still existed in the build definition database. The solution to the problem is to refresh the build definition and save it. In the process tab, there is a Refresh button that will reload the build definition and the process template and synchronize them:   After refreshing the build definition and saving it, the build was running successfully again.

    Read the article

  • Using C# 4.0’s DynamicObject as a Stored Procedure Wrapper

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Overview Ignoring the fashion, I still make a lot of use of DALs – typically when inheriting a codebase with an established database schema which is full of tried and trusted stored procedures. In the DAL a collection of base classes have all the scaffolding, so the usual pattern is to create a wrapper class for each stored procedure, giving typesafe access to parameter values and output. DAL calls then looks like instantiate wrapper-populate parameters-execute call:       using (var sp = new uspGetManagerEmployees())     {         sp.ManagerID = 16;         using (var reader = sp.Execute())         {             //map entities from the output         }     }   Or rolling it all into a fluent DAL call – which is nicer to read and implicitly disposes the resources:   This is fine, the wrapper classes are very simple to handwrite or generate. But as the codebase grows, you end up with a proliferation of very small wrapper classes: The wrappers don't add much other than encapsulating the stored procedure call and giving you typesafety for the parameters. With the dynamic extension in .NET 4.0 you have the option to build a single wrapper class, and get rid of the one-to-one stored procedure to wrapper class mapping. In the dynamic version, the call looks like this:       dynamic getUser = new DynamicSqlStoredProcedure("uspGetManagerEmployees", Database.AdventureWorks);     getUser.ManagerID = 16;       var employees = Fluently.Load<List<Employee>>()                             .With<EmployeeMap>()                             .From(getUser);   The important difference is that the ManagerId property doesn't exist in the DynamicSqlStoredProcedure class. Declaring the getUser object with the dynamic keyword allows you to dynamically add properties, and the DynamicSqlStoredProcedure class intercepts when properties are added and builds them as stored procedure parameters. When getUser.ManagerId = 16 is executed, the base class adds a parameter call (using the convention that parameter name is the property name prefixed by "@"), specifying the correct SQL Server data type (mapping it from the type of the value the property is set to), and setting the parameter value. Code Sample This is worked through in a sample project on github – Dynamic Stored Procedure Sample – which also includes a static version of the wrapper for comparison. (I'll upload this to the MSDN Code Gallery once my account has been resurrected). Points worth noting are: DynamicSP.Data – database-independent DAL that has all the data plumbing code. DynamicSP.Data.SqlServer – SQL Server DAL, thin layer on top of the generic DAL which adds SQL Server specific classes. Includes the DynamicSqlStoredProcedure base class. DynamicSqlStoredProcedure.TrySetMember. Invoked when a dynamic member is added. Assumes the property is a parameter named after the SP parameter name and infers the SqlDbType from the framework type. Adds a parameter to the internal stored procedure wrapper and sets its value. uspGetManagerEmployees – the static version of the wrapper. uspGetManagerEmployeesTest – test fixture which shows usage of the static and dynamic stored procedure wrappers. The sample uses stored procedures from the AdventureWorks database in the SQL Server 2008 Sample Databases. Discussion For this scenario, the dynamic option is very favourable. Assuming your DAL is itself wrapped by a higher layer, the stored procedure wrapper classes have very little reuse. Even if you're codegening the classes and test fixtures, it's still additional effort for very little value. The main consideration with dynamic classes is that the compiler ignores all the members you use, and evaluation only happens at runtime. In this case where scope is strictly limited that's not an issue – but you're relying on automated tests rather than the compiler to find errors, but that should just encourage better test coverage. Also you can codegen the dynamic calls at a higher level. Performance may be a consideration, as there is a first-time-use overhead when the dynamic members of an object are bound. For a single run, the dynamic wrapper took 0.2 seconds longer than the static wrapper. The framework does a good job of caching the effort though, so for 1,000 calls the dynamc version still only takes 0.2 seconds longer than the static: You don't get IntelliSense on dynamic objects, even for the declared members of the base class, and if you've been using class names as keys for configuration settings, you'll lose that option if you move to dynamics. The approach may make code more difficult to read, as you can't navigate through dynamic members, but you do still get full debugging support.     var employees = Fluently.Load<List<Employee>>()                             .With<EmployeeMap>()                             .From<uspGetManagerEmployees>                             (                                 i => i.ManagerID = 16,                                 x => x.Execute()                             );

    Read the article

  • TDD and WCF behavior

    - by Frederic Hautecoeur
    Some weeks ago I wanted to develop a WCF behavior using TDD. I have lost some time trying to use mocks. After a while i decided to just use a host and a client. I don’t like this approach but so far I haven’t found a good and fast solution to use Unit Test for testing a WCF behavior. To Implement my solution I had to : Create a Dummy Service Definition; Create the Dummy Service Implementation; Create a host; Create a client in my test; Create and Add the behavior; Dummy Service Definition This is just a simple service, composed of an Interface and a simple implementation. The structure is aimed to be easily customizable for my future needs.   Using Clauses : 1: using System.Runtime.Serialization; 2: using System.ServiceModel; 3: using System.ServiceModel.Channels; The DataContract: 1: [DataContract()] 2: public class MyMessage 3: { 4: [DataMember()] 5: public string MessageString; 6: } The request MessageContract: 1: [MessageContract()] 2: public class RequestMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myRequest; 9: } The response MessageContract: 1: [MessageContract()] 2: public class ResponseMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myResponse; 9: } The ServiceContract: 1: [ServiceContract(Name="DummyService", Namespace="http://dummyservice",SessionMode=SessionMode.Allowed )] 2: interface IDummyService 3: { 4: [OperationContract(Action="Perform", IsOneWay=false, ProtectionLevel=System.Net.Security.ProtectionLevel.None )] 5: ResponseMessage DoThis(RequestMessage request); 6: } Dummy Service Implementation 1: public class DummyService:IDummyService 2: { 3: #region IDummyService Members 4: public ResponseMessage DoThis(RequestMessage request) 5: { 6: ResponseMessage response = new ResponseMessage(); 7: response.myHeader = "Response"; 8: response.myResponse = new MyMessage(); 9: response.myResponse.MessageString = 10: string.Format("Header:<{0}> and Request was <{1}>", 11: request.myHeader, request.myRequest.MessageString); 12: return response; 13: } 14: #endregion 15: } Host Creation The most simple host implementation using a Named Pipe binding. The GetBinding method will create a binding for the host and can be used to create the same binding for the client. 1: public static class TestHost 2: { 3: 4: internal static string hostUri = "net.pipe://localhost/dummy"; 5:  6: // Create Host method. 7: internal static ServiceHost CreateHost() 8: { 9: ServiceHost host = new ServiceHost(typeof(DummyService)); 10:  11: // Creating Endpoint 12: Uri namedPipeAddress = new Uri(hostUri); 13: host.AddServiceEndpoint(typeof(IDummyService), GetBinding(), namedPipeAddress); 14:  15: return host; 16: } 17:  18: // Binding Creation method. 19: internal static Binding GetBinding() 20: { 21: NamedPipeTransportBindingElement namedPipeTransport = new NamedPipeTransportBindingElement(); 22: TextMessageEncodingBindingElement textEncoding = new TextMessageEncodingBindingElement(); 23:  24: return new CustomBinding(textEncoding, namedPipeTransport); 25: } 26:  27: // Close Method. 28: internal static void Close(ServiceHost host) 29: { 30: if (null != host) 31: { 32: host.Close(); 33: host = null; 34: } 35: } 36: } Checking the service A simple test tool check the plumbing. 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Open(); 7:  8: using (ChannelFactory<IDummyService> channel = 9: new ChannelFactory<IDummyService>(TestHost.GetBinding() 10: , new EndpointAddress(TestHost.hostUri))) 11: { 12: IDummyService svc = channel.CreateChannel(); 13: try 14: { 15: RequestMessage request = new RequestMessage(); 16: request.myHeader = Guid.NewGuid().ToString(); 17: request.myRequest = new MyMessage(); 18: request.myRequest.MessageString = "I want some beer."; 19:  20: ResponseMessage response = svc.DoThis(request); 21: } 22: catch (Exception ex) 23: { 24: Assert.Fail(ex.Message); 25: } 26: } 27: host.Close(); 28: } 29: } Running the service should show that the client and the host are running fine. So far so good. Adding the Behavior Add a reference to the Behavior project and add the using entry in the test class. We just need to add the behavior to the service host : 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Description.Behaviors.Add(new MyBehavior()); 7: host.Open();¨ 8: …  If you set a breakpoint in your behavior and run the test in debug mode, you will hit the breakpoint. In this case I used a ServiceBehavior. To add an Endpoint behavior you have to add it to the endpoints. 1: host.Description.Endpoints[0].Behaviors.Add(new MyEndpointBehavior()) To add a contract or an operation behavior a custom attribute should work on the service contract definition. I haven’t tried that yet.   All the code provided in this blog and in the following files are for sample use. Improvements I don’t like to instantiate a client and a service to test my behaviors. But so far I have' not found an easy way to do it. Today I am passing a type of endpoint to the host creator and it creates the right binding type. This allows me to easily switch between bindings at will. I have used the same approach to test Mex Endpoints, another post should come later for this. Enjoy !

    Read the article

  • Need to call COM component using reflections in C#.NET

    - by Usman
    Hello, I need to determin the COM component(unmanaged code) type and invoke the exposed interface's methods using reflection in C#.NET at runtime. 1 -- First What member of "Type" tells that type is COM component and we can take CLSID at runtime? Is Type.COMObject? 2 -- I need to call methods of exposed interfaces as they called in unmanaged code using CoCreateInstance by passing CLSID and REFID ... I am using InvokeMember but it returns null or 0 as out parameter. How to pass out parameter in this case.? Is there any need to pass out parameter? As all my COM unamanged code suppose to take las parameter as an OUT parameter and after executing it puts the result into that out param. But I've converted all my unmanged COM code to .NET managed assemblies using tlbimp.exe. Regards Usman

    Read the article

  • Solving Null Entity Problems with JPA Data Controls in PS1

    - by shay.shmeltzer
    Turns out there is a slight bug that seems to prevent you from doing interactions (update, scroll) with the results of a JPA named query that you dropped on a page using ADF Binding. People are running into this when they are doing the EJB tutorial on OTN for example. The problem is that the way the binding is set up for you automatically doesn't allow you to actually access the iterator set of records to do follow up operations. When I last checked this was solved in the next release of JDeveloper, but in the meantime there is a quick simple way to resolve the issue by changing the refresh condition of the oiterator in your page binding. Here is a little demo that shows the problem and the solution:

    Read the article

  • PySide 1.0.0 beta 2, le support complet des interfaces déclaratives arrive dans ce bindind LGPL Python de Qt

    Voici donc sortie la deuxième beta de PySide, le binding Python de Qt initié par Nokia, dont la principale différence avec le binding historique, PyQt, réside dans la licence : PySide est disponible sous LGPL, une licence moins restrictive que la GPL employée par PyQt. Ainsi, un binding Python de Qt peut être utilisé pour des développements propriétaires sans obligation de payer une licence commerciale. La première version beta de PySide (la bien dénommée beta 1) apportait un grand changement par rapport aux versions précédents (0.4.2 et avant) : un changement dans l'ABI (Application Binary Interface), ce qui, pour rester en dehors des détails techniques, obligeait à recompiler toute application se basant sur PySide (notamment le module Python). Cependant, ainsi, le projet ...

    Read the article

  • Yet another blog about IValueConverter

    - by codingbloke
    After my previous blog on a Generic Boolean Value Converter I thought I might as well blog up another IValueConverter implementation that I use. The Generic Boolean Value Converter effectively converters an input which only has two possible values to one of two corresponding objects.  The next logical step would be to create a similar converter that can take an input which has multiple (but finite and discrete) values to one of multiple corresponding objects.  To put it more simply a Generic Enum Value Converter. Now we already have a tool that can help us in this area, the ResourceDictionary.  A simple IValueConverter implementation around it would create a StringToObjectConverter like so:- StringToObjectConverter using System; using System.Windows; using System.Windows.Data; using System.Linq; using System.Windows.Markup; namespace SilverlightApplication1 {     [ContentProperty("Items")]     public class StringToObjectConverter : IValueConverter     {         public ResourceDictionary Items { get; set; }         public string DefaultKey { get; set; }                  public StringToObjectConverter()         {             DefaultKey = "__default__";         }         public virtual object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             if (value != null && Items.Contains(value.ToString()))                 return Items[value.ToString()];             else                 return Items[DefaultKey];         }         public virtual object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             return Items.FirstOrDefault(kvp => value.Equals(kvp.Value)).Key;         }     } } There are some things to note here.  The bulk of managing the relationship between an object instance and the related string key is handled by the Items property being an ResourceDictionary.  Also there is a catch all “__default__” key value which allows for only a subset of the possible input values to mapped to an object with the rest falling through to the default. We can then set one of these up in Xaml:-             <local:StringToObjectConverter x:Key="StatusToBrush">                 <ResourceDictionary>                     <SolidColorBrush Color="Red" x:Key="Overdue" />                     <SolidColorBrush Color="Orange" x:Key="Urgent" />                     <SolidColorBrush Color="Silver" x:Key="__default__" />                 </ResourceDictionary>             </local:StringToObjectConverter> You could well imagine that in the model being bound these key names would actually be members of an enum.  This still works due to the use of ToString in the Convert method.  Hence the only requirement for the incoming object is that it has a ToString implementation which generates a sensible string instead of simply the type name. I can’t imagine right now a scenario where this converter would be used in a TwoWay binding but there is no reason why it can’t.  I prefer to avoid leaving the ConvertBack throwing an exception if that can be be avoided.  Hence it just enumerates the KeyValuePair entries to find a value that matches and returns the key its mapped to. Ah but now my sense of balance is assaulted again.  Whilst StringToObjectConverter is quite happy to accept an enum type via the Convert method it returns a string from the ConvertBack method not the original input enum type that arrived in the Convert.  Now I could address this by complicating the ConvertBack method and examining the targetType parameter etc.  However I prefer to a different approach, deriving a new EnumToObjectConverter class instead. EnumToObjectConverter using System; namespace SilverlightApplication1 {     public class EnumToObjectConverter : StringToObjectConverter     {         public override object Convert(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             string key = Enum.GetName(value.GetType(), value);             return base.Convert(key, targetType, parameter, culture);         }         public override object ConvertBack(object value, Type targetType, object parameter, System.Globalization.CultureInfo culture)         {             string key = (string)base.ConvertBack(value, typeof(String), parameter, culture);             return Enum.Parse(targetType, key, false);         }     } }   This is a more belts and braces solution with specific use of Enum.GetName and Enum.Parse.  Whilst its more explicit in that the a developer has to  choose to use it, it is only really necessary when using TwoWay binding, in OneWay binding the base StringToObjectConverter would serve just as well. The observant might note that there is actually no “Generic” aspect to this solution in the end.  The use of a ResourceDictionary eliminates the need for that.

    Read the article

  • Need to call COM component using reflection in .NET

    - by Usman
    I need to determine the COM component(unmanaged code) type and invoke the exposed interface's methods using reflection in C# at runtime. First What member of "Type" tells that type is COM component and we can take CLSID at runtime? Is Type.COMObject? I need to call methods of exposed interfaces as they called in unmanaged code using CoCreateInstance by passing CLSID and REFID ... I am using InvokeMember but it returns null or 0 as out parameter. How to pass out parameter in this case.? Is there any need to pass out parameter? As all my COM unmanaged code suppose to take last parameter as an OUT parameter and after executing it puts the result into that out param. But I've converted all my unmanaged COM code to .NET managed assemblies using tlbimp.exe.

    Read the article

  • Cost of using repeated parameters

    - by Palimondo
    I consider refactoring few method signatures that currently take parameter of type List or Set of concrete classes --List[Foo]-- to use repeated parameters instead: Foo*. This would allow me to use the same method name and overload it based on the parameter type. This was not possible using List or Set, because List[Foo] and List[Bar] have same type after erasure: List[Object]. In my case the refactored methods work fine with scala.Seq[Foo] that results from the repeated parameter. I would have to change all the invocations and add a sequence argument type annotation to all collection parameters: baz.doStuffWith(foos:_*). Given that switching from collection parameter to repeated parameter is semantically equivalent, does this change have some performance impact that I should be aware of? Is the answer same for scala 2.7._ and 2.8?

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 5: Service Client (more Flexibility with WSTrustChannelFactory)

    - by Your DisplayName here!
    See the previous posts first. WIF includes an API to manually request tokens from a token service. This gives you more control over the request and more flexibility since you can use your own token caching scheme instead of being bound to the channel object lifetime. The API is straightforward. You first request a token from the STS and then use that token to create a channel to the relying party service. I’d recommend using the WS-Trust bindings that ship with WIF to talk to ADFS 2 – they are pre-configured to match the binding configuration of the ADFS 2 endpoints. The following code requests a token for a WCF service from ADFS 2: private static SecurityToken GetToken() {     // Windows authentication over transport security     var factory = new WSTrustChannelFactory(         new WindowsWSTrustBinding(SecurityMode.Transport),         stsEndpoint);     factory.TrustVersion = TrustVersion.WSTrust13;       var rst = new RequestSecurityToken     {         RequestType = RequestTypes.Issue,         AppliesTo = new EndpointAddress(svcEndpoint),         KeyType = KeyTypes.Symmetric     };       var channel = factory.CreateChannel();     return channel.Issue(rst); } Afterwards, the returned token can be used to create a channel to the service. Again WIF has some helper methods here that make this very easy: private static void CallService(SecurityToken token) {     // create binding and turn off sessions     var binding = new WS2007FederationHttpBinding(         WSFederationHttpSecurityMode.TransportWithMessageCredential);     binding.Security.Message.EstablishSecurityContext = false;       // create factory and enable WIF plumbing     var factory = new ChannelFactory<IService>(binding, new EndpointAddress(svcEndpoint));     factory.ConfigureChannelFactory<IService>();       // turn off CardSpace - we already have the token     factory.Credentials.SupportInteractive = false;       var channel = factory.CreateChannelWithIssuedToken<IService>(token);       channel.GetClaims().ForEach(c =>         Console.WriteLine("{0}\n {1}\n  {2} ({3})\n",             c.ClaimType,             c.Value,             c.Issuer,             c.OriginalIssuer)); } Why is this approach more flexible? Well – some don’t like the configuration voodoo. That’s a valid reason for using the manual approach. You also get more control over the token request itself since you have full control over the RST message that gets send to the STS. One common parameter that you may want to set yourself is the appliesTo value. When you use the automatic token support in the WCF federation binding, the appliesTo is always the physical service address. This means in turn that this address will be used as the audience URI value in the SAML token. Well – this in turn means that when you have an application that consists of multiple services, you always have to configure all physical endpoint URLs in ADFS 2 and in the WIF configuration of the service(s). Having control over the appliesTo allows you to use more symbolic realm names, e.g. the base address or a completely logical name. Since the URL is never de-referenced you have some degree of freedom here. In the next post we will look at the necessary code to request multiple tokens in a call chain. This is a common scenario when you first have to acquire a token from an identity provider and have to send that on to a federation gateway or Resource STS. Stay tuned.

    Read the article

  • Confusion about MVC Routes

    - by yang
    What is the problem below? routes.MapRoute( "Default2", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = "test" } // Parameter defaults ); routes.MapRoute( "Default1", // Route name "{controller}/{action}/{name}", // URL with parameters new { controller = "Home", action = "Report", name = "" } // Parameter defaults ); When I navigate to /home/index "id" parameter takes the default value of "test" but when I navigate to home/report the name parameter is null. In short, if the route definition is the first in the route table, then the parameter takes its default value. But the others below don't.

    Read the article

  • ajax and servlet

    - by kawtousse
    Hi everyone I am using ajax to send a value to a servlet with that parameter value I must display a table HTML. from my JSP when sending with following: xhr.open("POST","ServletImputOPC",true); xhr.setRequestHeader('Content-Type','application/x-www-form-urlencoded'); var unit =document.getElementById('unit').value; xhr.send("t[0]="+t[0]); it returns the clause in my servlet correctly witch is: parameter received:Nameof my parameter. that is improve that the servlet receive the parameter. But when using it in the servlet it return a null value. So the problem that the servlet return the parameter received but did not able to use it. What should I do to resolve it. Many thinks.

    Read the article

  • Style of if: to nest or not to nest

    - by Marco
    A colleague of mine and me had a discussion about the following best-practice issue. Most functions/methods start with some parameter checking. I advocate the following style, which avoids nesting. if (parameter one is ugly) return ERROR; if (parameter two is nonsense || it is raining) return ERROR; // do the useful stuff return result; He, who comes from a more functional/logic programming background, prefers the following, because it reduces the number of exit points from the function. if (parameter one is ok) { if (parameter two is ok && the sun is shining) { // do the useful stuff return result } } return ERROR; Which one would you prefer and why?

    Read the article

  • Modifying the SL/WIF Integration Bits to support Issued Token Credentials

    - by Your DisplayName here!
    The SL/WIF integration code that ships with the Identity Training Kit only supports Windows and UserName credentials to request tokens from an STS. This is fine for simple single STS scenarios (like a single IdP). But the more common pattern for claims/token based systems is to split the STS roles into an IdP and a Resource STS (or whatever you wanna call it). In this case, the 2nd leg requires to present the issued token from the 1st leg – this is not directly supported by the bits. But they can be easily modified to accomplish this. The Credential Fist we need a class that represents an issued token credential. Here we store the RSTR that got returned from the client to IdP request: public class IssuedTokenCredentials : IRequestCredentials {     public string IssuedToken { get; set; }     public RequestSecurityTokenResponse RSTR { get; set; }     public IssuedTokenCredentials(RequestSecurityTokenResponse rstr)     {         RSTR = rstr;         IssuedToken = rstr.RequestedSecurityToken.RawToken;     } } The Binding Next we need a binding to be used with issued token credential requests. This assumes you have an STS endpoint for mixed mode security with SecureConversation turned off. public class WSTrustBindingIssuedTokenMixed : WSTrustBinding {     public WSTrustBindingIssuedTokenMixed()     {         this.Elements.Add( new HttpsTransportBindingElement() );     } } WSTrustClient The last step is to make some modifications to WSTrustClient to make it issued token aware. In the constructor you have to check for the credential type, and if it is an issued token, store it away. private RequestSecurityTokenResponse _rstr; public WSTrustClient( Binding binding, EndpointAddress remoteAddress, IRequestCredentials credentials )     : base( binding, remoteAddress ) {     if ( null == credentials )     {         throw new ArgumentNullException( "credentials" );     }     if (credentials is UsernameCredentials)     {         UsernameCredentials usernname = credentials as UsernameCredentials;         base.ChannelFactory.Credentials.UserName.UserName = usernname.Username;         base.ChannelFactory.Credentials.UserName.Password = usernname.Password;     }     else if (credentials is IssuedTokenCredentials)     {         var issuedToken = credentials as IssuedTokenCredentials;         _rstr = issuedToken.RSTR;     }     else if (credentials is WindowsCredentials)     { }     else     {         throw new ArgumentOutOfRangeException("credentials", "type was not expected");     } } Next – when WSTrustClient constructs the RST message to the STS, the issued token header must be embedded when needed: private Message BuildRequestAsMessage( RequestSecurityToken request ) {     var message = Message.CreateMessage( base.Endpoint.Binding.MessageVersion ?? MessageVersion.Default,       IssueAction,       (BodyWriter) new WSTrustRequestBodyWriter( request ) );     if (_rstr != null)     {         message.Headers.Add(new IssuedTokenHeader(_rstr));     }     return message; } HTH

    Read the article

  • C# 4 Named Parameters for Overload Resolution

    - by Steve Michelotti
    C# 4 is getting a new feature called named parameters. Although this is a stand-alone feature, it is often used in conjunction with optional parameters. Last week when I was giving a presentation on C# 4, I got a question on a scenario regarding overload resolution that I had not considered before which yielded interesting results. Before I describe the scenario, a little background first. Named parameters is a well documented feature that works like this: suppose you have a method defined like this: 1: void DoWork(int num, string message = "Hello") 2: { 3: Console.WriteLine("Inside DoWork() - num: {0}, message: {1}", num, message); 4: } This enables you to call the method with any of these: 1: DoWork(21); 2: DoWork(num: 21); 3: DoWork(21, "abc"); 4: DoWork(num: 21, message: "abc"); and the corresponding results will be: Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: Hello Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc This is all pretty straight forward and well-documented. What is slightly more interesting is how resolution is handled with method overloads. Suppose we had a second overload for DoWork() that looked like this: 1: void DoWork(object num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } The first rule applied for method overload resolution in this case is that it looks for the most strongly-type match first.  Hence, since the second overload has System.Object as the parameter rather than Int32, this second overload will never be called for any of the 4 method calls above.  But suppose the method overload looked like this: 1: void DoWork(int num) 2: { 3: Console.WriteLine("Inside second overload: " + num); 4: } In this case, both overloads have the first parameter as Int32 so they both fulfill the first rule equally.  In this case the overload with the optional parameters will be ignored if the parameters are not specified. Therefore, the same 4 method calls from above would result in: Inside second overload: 21 Inside second overload: 21 Inside DoWork() - num: 21, message: abc Inside DoWork() - num: 21, message: abc Even all this is pretty well documented. However, we can now consider the very interesting scenario I was presented with. The question was what happens if you change the parameter name in one of the overloads.  For example, what happens if you change the parameter *name* for the second overload like this: 1: void DoWork(int num2) 2: { 3: Console.WriteLine("Inside second overload: " + num2); 4: } In this case, the first 2 method calls will yield *different* results: 1: DoWork(21); 2: DoWork(num: 21); results in: Inside second overload: 21 Inside DoWork() - num: 21, message: Hello We know the first method call will go to the second overload because of normal method overload resolution rules which ignore the optional parameters.  But for the second call, even though all the same rules apply, the compiler will allow you to specify a named parameter which, in effect, overrides the typical rules and directs the call to the first overload. Keep in mind this would only work if the method overloads had different parameter names for the same types (which in itself is weird). But it is a situation I had not considered before and it is one in which you should be aware of the rules that the C# 4 compiler applies.

    Read the article

  • Working with Tile Notifications in Windows 8 Store Apps – Part I

    - by dwahlin
    One of the features that really makes Windows 8 apps stand out from others is the tile functionality on the start screen. While icons allow a user to start an application, tiles provide a more engaging way to engage the user and draw them into an application. Examples of “live” tiles on part of my current start screen are shown next: I’ll admit that if you get enough of these tiles going the start screen can actually be a bit distracting. Fortunately, a user can easily disable a live tile by right-clicking on it or pressing and holding a tile on a touch device and then selecting Turn live tile off from the AppBar: The can also make a wide tile smaller (into a square tile) or make a square tile bigger assuming the application supports both squares and rectangles. In this post I’ll walk through how to add tile notification functionality into an application. Both XAML/C# and HTML/JavaScript apps support live tiles and I’ll show the code for both options.   Understanding Tile Templates The first thing you need to know if you want to add custom tile functionality (live tiles) into your application is that there is a collection of tile templates available out-of-the-box. Each tile template has XML associated with it that you need to load, update with your custom data, and then feed into a tile update manager. By doing that you can control what shows in your app’s tile on the Windows 8 start screen. So how do you learn more about the different tile templates and their respective XML? Fortunately, Microsoft has a nice documentation page in the Windows 8 Store SDK. Visit http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx to see a complete list of square and wide/rectangular tile templates that you can use. Looking through the templates you’ll It has the following XML template associated with it:  <tile> <visual> <binding template="TileSquareBlock"> <text id="1">Text Field 1</text> <text id="2">Text Field 2</text> </binding> </visual> </tile> An example of a wide/rectangular tile template is shown next:    <tile> <visual> <binding template="TileWideImageAndText01"> <image id="1" src="image1.png" alt="alt text"/> <text id="1">Text Field 1</text> </binding> </visual> </tile>   To use these tile templates (or others you find interesting), update their content, and get them to show for your app’s tile on the Windows 8 start screen you’ll need to perform the following steps: Define the tile template to use in your app Load the tile template’s XML into memory Modify the children of the <binding> tag Feed the modified tile XML into a new TileNotification instance Feed the TileNotification instance into the Update() method of the TileUpdateManager In the remainder of the post I’ll walk through each of the steps listed above to provide wide and square tile notifications for an application. The wide tile that’s shown will show an image and text while the square tile will only show text. If you’re going to provide custom tile notifications it’s recommended that you provide wide and square tiles since users can switch between the two of them directly on the start screen. Note: When working with tile notifications it’s possible to manipulate and update a tile’s XML template without having to know XML parsing techniques. This can be accomplished using some C# notification extension classes that are available. In this post I’m going to focus on working with tile notifications using an XML parser so that the focus is on the steps required to add notifications to the Windows 8 start screen rather than on external extension classes. You can access the extension classes in the Windows 8 samples gallery if you’re interested.   Steps to Create Custom App Tile Notifications   Step 1: Define the tile template to use in your app Although you can cut-and-paste a tile template’s XML directly into your C# or HTML/JavaScript Windows store app and then parse it using an XML parser, it’s easier to use the built-in TileTemplateType enumeration from the Windows.UI.Notifications namespace. It provides direct access to the XML for the various templates so once you locate a template you like in the documentation (mentioned above), simplify reference it:HTML/JavaScript var notifications = Windows.UI.Notifications; var template = notifications.TileTemplateType.tileWideImageAndText01; .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C# var template = TileTemplateType.TileWideImageAndText01;   Step 2: Load the tile template’s XML into memory Once the target template’s XML is identified, load it into memory using the TileUpdateManager’s GetTemplateContent() method. This method parses the template XML and returns an XmlDocument object:   HTML/JavaScript   var tileXml = notifications.TileUpdateManager.getTemplateContent(template); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#  var tileXml = TileUpdateManager.GetTemplateContent(template);   Step 3: Modify the children of the <binding> tag Once the XML for a given template is loaded into memory you need to locate the appropriate <image> and/or <text> elements in the XML and update them with your app data. This can be done using standard XML DOM manipulation techniques. The example code below locates the image folder and loads the path to an image file located in the project into it’s inner text. The code also creates a square tile that consists of text, updates it’s <text> element, and then imports and appends it into the wide tile’s XML.   HTML/JavaScript var image = tileXml.selectSingleNode('//image[@id="1"]'); image.setAttribute('src', 'ms-appx:///images/' + imageFile); image.setAttribute('alt', 'Live Tile'); var squareTemplate = notifications.TileTemplateType.tileSquareText04; var squareTileXml = notifications.TileUpdateManager.getTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.selectSingleNode('//text[@id="1"]'); squareTileTextAttributes.appendChild(squareTileXml.createTextNode(content)); var node = tileXml.importNode(squareTileXml.selectSingleNode('//binding'), true); tileXml.selectSingleNode('//visual').appendChild(node); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileXml = TileUpdateManager.GetTemplateContent(template); var text = tileXml.SelectSingleNode("//text[@id='1']"); text.AppendChild(tileXml.CreateTextNode(content)); var image = (XmlElement)tileXml.SelectSingleNode("//image[@id='1']"); image.SetAttribute("src", "ms-appx:///Assets/" + imageFile); image.SetAttribute("alt", "Live Tile"); Debug.WriteLine(image.GetXml()); var squareTemplate = TileTemplateType.TileSquareText04; var squareTileXml = TileUpdateManager.GetTemplateContent(squareTemplate); var squareTileTextAttributes = squareTileXml.SelectSingleNode("//text[@id='1']"); squareTileTextAttributes.AppendChild(squareTileXml.CreateTextNode(content)); var node = tileXml.ImportNode(squareTileXml.SelectSingleNode("//binding"), true); tileXml.SelectSingleNode("//visual").AppendChild(node);  Step 4: Feed the modified tile XML into a new TileNotification instance Now that the XML data has been updated with the desired text and images, it’s time to load the XmlDocument object into a new TileNotification instance:   HTML/JavaScript var tileNotification = new notifications.TileNotification(tileXml); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#var tileNotification = new TileNotification(tileXml);  Step 5: Feed the TileNotification instance into the Update() method of the TileUpdateManager Once the TileNotification instance has been created and the XmlDocument has been passed to its constructor, it needs to be passed to the Update() method of a TileUpdator in order to be shown on the Windows 8 start screen:   HTML/JavaScript notifications.TileUpdateManager.createTileUpdaterForApplication().update(tileNotification); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   XAML/C#TileUpdateManager.CreateTileUpdaterForApplication().Update(tileNotification);    Once the tile notification is updated it’ll show up on the start screen. An example of the wide and square tiles created with the included demo code are shown next:     Download the HTML/JavaScript and XAML/C# sample application here. In the next post in this series I’ll walk through how to queue multiple tiles and clear a queue.

    Read the article

  • How do I associate Parameters to Command objects in ADO with VBScript?

    - by Krashman5k
    I have been working an ADO VBScript that needs to accept parameters and incorporate those parameters in the Query string that gets passed the the database. I keep getting errors when the Record Set Object attempts to open. If I pass a query without parameters, the recordset opens and I can work with the data. When I run the script through a debugger, the command object does not show a value for the parameter object. It seems to me that I am missing something that associates the Command object and Parameter object, but I do not know what. Here is a bit of the VBScript Code: ... 'Open Text file to collect SQL query string' Set fso = CreateObject("Scripting.FileSystemObject") fileName = "C:\SQLFUN\Limits_ADO.sql" Set tso = fso.OpenTextFile(fileName, FORREADING) SQL = tso.ReadAll 'Create ADO instance' connString = "DRIVER={SQL Server};SERVER=myserver;UID=MyName;PWD=notapassword; Database=favoriteDB" Set connection = CreateObject("ADODB.Connection") Set cmd = CreateObject("ADODB.Command") connection.Open connString cmd.ActiveConnection = connection cmd.CommandText = SQL cmd.CommandType = adCmdText Set paramTotals = cmd.CreateParameter With paramTotals .value = "tot%" .Name = "Param1" End With 'The error occurs on the next line' Set recordset = cmd.Execute If recordset.EOF then WScript.Echo "No Data Returned" Else Do Until recordset.EOF WScript.Echo recordset.Fields.Item(0) ' & vbTab & recordset.Fields.Item(1) recordset.MoveNext Loop End If The SQL string that I use is fairly standard except I want to pass a parameter to it. It is something like this: SELECT column1 FROM table1 WHERE column1 IS LIKE ? I understand that ADO should replace the "?" with the parameter value I assign in the script. The problem I am seeing is that the Parameter object shows the correct value, but the command object's parameter field is null according to my debugger.

    Read the article

  • Unable to access value of nested array element

    - by John Conde
    I'm having an issue getting the value of a nested array element. Here's what I've got: print_r($environment); // Outputs Array ( [0] => Array ( ['parameter'] => Vibration ['conditions'] => 204 ['method'] => D ) [1] => Array ( ['parameter'] => Immersion ['conditions'] => 104 ['method'] => B ) [2] => Array ( ['parameter'] => Shock ['conditions'] => 213 ['method'] => I ) [3] => Array ( ['parameter'] => Humidity ['conditions'] => 106 ['method'] => - ) ) print_r($environment[0]); // Outputs Array ( ['parameter'] => Vibration ['conditions'] => 204 ['method'] => D ) echo $environment[0]['parameter']; // Nothing Maybe I've been looking at this for too long. Any ideas would be greatly appreciated.

    Read the article

  • Problem when reading input in C

    - by gcx
    I've made a Linked List. Its elements keep both previous and next items' address. It gets commands from an input file. It detects the command and uses the following statement as a parameter. (text: add_to_front john - means: add_to_front(john)) Code: http://pastebin.com/KcAm1y3L When I try to give the commands from an input file it gives me same output over and over. However, if I write inputs in main() manually, it works. For ex input file: add_to_front john add_to_back jane add_to_back jane print (unfortunately) the output is: >add_to_front john >add_to_back jane >add_to_back jane >print jane jane jane Although, if I write add_to_front(john); add_to_back(jane); add_to_back(jane); print(); instead of this command check: while (scanf("%s",command)!=EOF) { if (strcmp(command,"add_to_front")==0) { gets(parameter); add_to_front(parameter); } else if (strcmp(command,"add_to_back")==0) { gets(parameter); add_to_back(parameter); } else if (strcmp(command,"remove_from_back")==0) remove_from_back(parameter); ... printf(" HUH?\n"); } } in main() it gives the correct output. I know it's a lot to ask but this thing is bothering me for 2 days. What do you think i'm doing wrong?

    Read the article

< Previous Page | 117 118 119 120 121 122 123 124 125 126 127 128  | Next Page >