Search Results

Search found 24734 results on 990 pages for 'floating point conversion'.

Page 122/990 | < Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >

  • Problem in calling a function from different class using protocols-iphone

    - by Muniraj
    I use cocos2d for my game. In which I play a movie and have a separate overlay view for controls.The touches are detected in the overlay view. Now when the touches are detected the function in the game code has to be invoked. But the function is not detected and there is no error. I dont know what has gone wrong. Someone please help me. The code are as follows The protocol part is @protocol Protocol @required -(void) transition1:(id) sender; @end The function which is to be invoked in the game code is (void) transition1:(id) sender { [[Director sharedDirector] replaceScene: [ [Scene node] addChild: [Layer4 node] z:0] ]; } The code in the overlay view in MovieOverlayViewController.h import "Protocol.h" @interface MovieOverlayViewController : UIViewController { UIImageView *overlay; NSObject <Protocol> *transfer; } @end The code in the overlay view in MovieOverlayViewController.m @implementation MovieOverlayViewController (id)init { if ((self = [super init])) self.view = [[[UIView alloc] initWithFrame:[[UIScreen mainScreen] applicationFrame]] autorelease]; return self; } -(void) viewWillAppear:(BOOL)animated { overlay = [[[UIImageView alloc] initWithImage:[UIImage imageNamed:@"overlay.png"]] autorelease]; [self.view addSubview:overlay]; } (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event { UITouch *touch = [touches anyObject]; CGPoint point = [touch locationInView:self.view]; NSLog(@"pointx: %f pointy:%f", point.x, point.y); if (CGRectContainsPoint(CGRectMake(1, 440, 106, 40), point)) { // the function is called here [transfer transition1: nil]; } else if (CGRectContainsPoint(CGRectMake(107, 440, 106, 40), point)) NSLog(@"tab 2 touched"); } (void)dealloc { [overlay release]; [super dealloc]; } @end

    Read the article

  • How do I put a vector inside of a struct in Go?

    - by Brian T Hannan
    I'm trying to put a vector variable inside a struct in Google's Go programming language. This is what I have so far: Want: type Point struct { x, y int } type myStruct struct { myVectorInsideStruct vector; } func main(){ myMyStruct := myStruct{vector.New(0)}; myPoint := Point{2,3}; myMyStruct.myVectorInsideStruct.Push(myPoint); } Have: type Point struct { x, y int } func main(){ myVector := vector.New(0); myPoint := Point{2,3}; myVector.Push(myPoint); } I can get the vector to work in my main function just fine, but I want to encapsulate it inside a struct for easier use.

    Read the article

  • Fast ceiling of an integer division in C / C++

    - by andand
    Given integer values x and y, C and C++ returns as the quotient q = x/y the floor of the floating point valued equivalent. I'm interestd in a method of returning the ceiling instead? For example, ceil(10/5) = 2 and ceil(11/5) = 3. The obvious approach involves something like: q = x / y; if (q * y < x) ++q; This requires an extra comparison and multiplication; and other methods I've seen (used in fact) involve casting as a float or double. Is there a more direct method that avoids the additional multiplication (or a second division) and branch, and that also avoids casting as a floating point number?

    Read the article

  • How do I make the info window editable in the Google Maps API?

    - by zjm1126
    I would like to make the info window editable when i click on it. This is my code: <!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN" "http://www.wapforum.org/DTD/xhtml-mobile10.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" > <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta name="viewport" content="width=device-width,minimum-scale=0.3,maximum-scale=5.0,user-scalable=yes"> </head> <body onload="initialize()" onunload="GUnload()"> <style type="text/css"> *{ margin:0; padding:0; } </style> <!--<div style="width:100px;height:100px;background:blue;"> </div>--> <div id="map_canvas" style="width: 500px; height: 300px;"></div> <div class=b style="width: 20px; height: 20px;background:red;position:absolute;left:700px;top:200px;"></div> <div class=b style="width: 20px; height: 20px;background:red;position:absolute;left:700px;top:200px;"></div> <script src="jquery-1.4.2.js" type="text/javascript"></script> <script src="jquery-ui-1.8rc3.custom.min.js" type="text/javascript"></script> <script src="http://maps.google.com/maps?file=api&amp;v=2&amp;key=ABQIAAAA-7cuV3vqp7w6zUNiN_F4uBRi_j0U6kJrkFvY4-OX2XYmEAa76BSNz0ifabgugotzJgrxyodPDmheRA&sensor=false"type="text/javascript"></script> <script type="text/javascript"> var aFn; //********** function initialize() { if (GBrowserIsCompatible()) { var map = new GMap2(document.getElementById("map_canvas")); var center=new GLatLng(39.9493, 116.3975); map.setCenter(center, 13); aFn=function(x,y){ var point =new GPoint(x,y) point = map.fromContainerPixelToLatLng(point); //console.log(point.x+" "+point.y) var marker = new GMarker(point,{draggable:true}); GEvent.addListener(marker, "click", function() { marker.openInfoWindowHtml("<b>wwww</b>"); }); map.addOverlay(marker); /********** var marker = new GMarker(point, {draggable: true}); GEvent.addListener(marker, "dragstart", function() { map.closeInfoWindow(); }); GEvent.addListener(marker, "dragend", function() { marker.openInfoWindowHtml("????..."); }); map.addOverlay(marker); //*/ } $(".b").draggable({ revert: true, revertDuration: 0 }); $("#map_canvas").droppable({ drop: function(event,ui) { //console.log(ui.offset.left+' '+ui.offset.top) aFn(event.pageX-$("#map_canvas").offset().left,event.pageY-$("#map_canvas").offset().top); } }); } } </script> </body> </html>

    Read the article

  • Get the screen height in Android

    - by Dan Bray
    How can I get the available height of the screen in Android? I need to the height minus the status bar / menu bar or any other decorations that might be on screen and I need it to work for all devices. Also, I need to know this in the onCreate function. I know this question has been asked before but I have already tried their solutions and none of them work. Here are some of the things I have tried: I have tested this code on API 7 - 17. Unfortunately, on API 13 there is extra space at bottom both horizontally and vertically and on API 10, 8, and 7 there is not enough space at the bottom both horizontally and vertically. (I have not tested on obsolete API's): Display display = getWindowManager().getDefaultDisplay(); DisplayMetrics metrics = new DisplayMetrics(); display.getMetrics(metrics); screenWidth = metrics.widthPixels; screenHeight = metrics.heightPixels; TypedValue tv = new TypedValue(); if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) { if (getTheme().resolveAttribute(android.R.attr.actionBarSize, tv, true)) screenHeight -= TypedValue.complexToDimensionPixelSize(tv.data,getResources().getDisplayMetrics()); } int resourceId = getResources().getIdentifier("status_bar_height", "dimen", "android"); if (resourceId > 0) screenHeight -= getResources().getDimensionPixelSize(resourceId); This does not take into account the status bar / menu bar: Display display = getWindowManager().getDefaultDisplay(); screenWidth = display.getWidth(); screenHeight = display.getHeight(); Neither does this: Point size = new Point(); getWindowManager().getDefaultDisplay().getSize(size); screenWidth = size.x; screenHeight = size.y; Nor this: Point size = new Point(); getWindowManager().getDefaultDisplay().getRealSize(size); screenWidth = size.x; screenHeight = size.y; This does not work: Display display = getWindowManager().getDefaultDisplay(); DisplayMetrics metrics = new DisplayMetrics(); display.getMetrics(metrics); // since SDK_INT = 1; screenWidth = metrics.widthPixels; screenHeight = metrics.heightPixels; try { // used when 17 > SDK_INT >= 14; includes window decorations (statusbar bar/menu bar) screenWidth = (Integer) Display.class.getMethod("getRawWidth").invoke(display); screenHeight = (Integer) Display.class.getMethod("getRawHeight").invoke(display); } catch (Exception ignored) { // Do nothing } try { // used when SDK_INT >= 17; includes window decorations (statusbar bar/menu bar) Point realSize = new Point(); Display.class.getMethod("getRealSize", Point.class).invoke(display, realSize); screenWidth = realSize.x; screenHeight = realSize.y; } catch (Exception ignored) { // Do nothing } I then used the following code to subtract the height of the status bar and menu bar from the screen height: int result = 0; int resourceId = getResources().getIdentifier("status_bar_height", "dimen", "android"); if (resourceId > 0) result = getResources().getDimensionPixelSize(resourceId); screenHeight -= result; result = 0; if (screenHeight >= screenWidth) resourceId = getResources().getIdentifier("navigation_bar_height", "dimen", "android"); else resourceId = getResources().getIdentifier("navigation_bar_height_landscape", "dimen", "android"); if (resourceId > 0) result = getResources().getDimensionPixelSize(resourceId); screenHeight -= result; On API 17 it correctly calculates the height of the status bar and menu bar in portrait but not in landscape. On API 10, it returns 0. I need it to work ideally on all devices or minimum API 7. Any help would be greatly appreciated.

    Read the article

  • find lowest neighbor matlab

    - by user1812719
    I am trying to write a function [offset,coffset]=findLowNhbr(map) that for each pixel in a map finds the eight neighbors to the pixel, and returns two matrices with both the row and column offsets to the lowest neighbor (uses the numbers -1, 0 and 1). Border pixels are given 0 offsets for both the row and column, since they do not have neighbors. Here is what I think the general plan for this function should be: For each point, find the eight nearest neighbors. If the neighbor is lower than the point, return -1 If the neighbor is at the same elevation as the point, return 0 If the neighbor is higher than the point, return +1 Store these offsets in two matrices. I am at a complete loss as to where to start, so any advice or questions are welcome!

    Read the article

  • Determining if two lines intersect

    - by Faken
    I have two lines that extend to infinity but both have a starting point. They are both described by a starting point and a vector in the direction of the line extending to infinity. I want to find out if the two lines intersect but i don't need to know where they intersect (its part of a collision detection algorithm). Everything i have looked at so far describes finding the intersection point of two lines or line segments. Anyone know a fast algorithm to solve this?

    Read the article

  • Apache2 httpd.conf help

    - by Axsuul
    I have a domain, for example, http://example.com. It is already configured to point to /var/www/ Basically, i want http://example.com to point to /var/www/4.0/ and http://example.com/foobar/ to point to /var/www/moo/ How can I do this with the httpd.conf file for Apache2? Thanks

    Read the article

  • Accessing loop iteration in a sub-function?

    - by DisgruntledGoat
    I'm using the Google Maps API to plot several points on a map. However, in the click event function below, i is always set to 4, i.e. its value after iterating the loop: // note these are actual addresses in the real page var addresses = new Array( "addr 1", "addr 2", "addr 3", "addr 4" ); for (var i = 0; i < addresses.length; i++) { geocoder.getLatLng(addresses[i], function(point) { if (point) { var marker = new GMarker(point); map.addOverlay(marker); map.setCenter(point, 13); GEvent.addListener(marker, "click", function() { // here, i=4 marker.openInfoWindowHtml("Address: <b>" + addresses[i] + "</b>"); }); } }); } So when the marker displays it's using addresses[4] which is undefined. How do I pass the correct value of i to the function?

    Read the article

  • How to attach a line to a moving object?

    - by snow-spur
    Hello i have designed a maze and i want to draw a path between the cells as the 'person' moves from one cell to the next. So each time i move the cell a line is drawn I have done this so far but do not want to show my full code However i get an error saying Circle has no attribute center my circle which is my cell center = Point(15, 15) c = Circle(center, 12) c.setFill('blue') c.setOutline('yellow') c.draw(win) p1 = Point(c.center().getx(), c.center().gety()) this bit is in my loop p2 = Point(getx(), gety()) line = graphics.Line(p1, p2)

    Read the article

  • SQL SERVER Spatial Data

    - by Sam
    Hi All, I am struggeling finding an effectient way to find a distance between a Point that interetcts a polygon and the border of that polygon. I was able to use the STDistance comparing the point to every point that made up the polygon but that is taking a lot of time. Using SPatial indexed wasnt much helpful because the STDistance is not part of any constraint and even when I did put the constraint, the index didnt help much. I appreciate any feedback. Thanks.

    Read the article

  • What is wrong with my version of strchr?

    - by Eduard Saakashvili
    My assignment is to write my own version of strchr, yet it doesn't seem to work. Any advice would be much appreciated. Here it is: char *strchr (const char *s, int c) //we are looking for c on the string s { int dog; //This is the index on the string, initialized as 0 dog = 0; int point; //this is the pointer to the location given by the index point = &s[dog]; while ((s[dog] != c) && (s[dog] != '\0')) { //it keeps adding to dog until it stumbles upon either c or '\0' dog++; } if (s[dog]==c) { return point; //at this point, if this value is equal to c it returns the pointer to that location } else { return NULL; //if not, this means that c is not on the string } }

    Read the article

  • Find the end/finish coordinates you a UISwipeGestureRecognizer

    - by Code
    I can find the start coordinates of where a swipe starts by doing the following - (void)oneFingerSwipeUp:(UISwipeGestureRecognizer *)recognizer { CGPoint point = [recognizer locationInView:[self view]]; NSLog(@"Swipe up - start location: %f,%f", point.x, point.y); } Is it possible to find the coordinates where the swipe ended? I looked into the docs and its not mentioned. Is there some work around for this? Many Thanks, -Code

    Read the article

  • When is a program limited by the memory bandwidth?

    - by hanno
    I want to know if a program that I am using and which requires a lot of memory is limited by the memory bandwidth. When do you expect this to happen? Did it ever happen to you in a real life scenario? I found several articles discussing this issue, including http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/node12.html http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/node13.html http://ispass.org/ucas5/session2_3_ibm.pdf The first link is a bit old, but suggests that you need to perform less than about 1-40 floating point operations per floating point variable in order to see this effect (correct me if I'm wrong). How can I measure the memory bandwidth that a given program is using and how do I measure the (peak) bandwidth that my system can offer? I don't want to discuss any complicated cache issues here. I'm only interested in the communication between the CPU and the memory.

    Read the article

  • Calculating percent "x/y * 100" always results in 0?

    - by Patrick Beninga
    In my assignment i have to make a simple version of Craps, for some reason the percentage assignments always produce 0 even when both variables are non 0, here is the code. import java.util.Random; Header, note the variables public class Craps { private int die1, die2,myRoll ,myBet,point,myWins,myLosses; private double winPercent,lossPercent; private Random r = new Random(); Just rolls two dies and produces their some. public int roll(){ die1 = r.nextInt(6)+1; die2 = r.nextInt(6)+1; return(die1 + die2); } The Play method, this just loops through the game. public void play(){ myRoll = roll(); point = 0; if(myRoll == 2 ||myRoll == 3 || myRoll == 12){ System.out.println("You lose!"); myLosses++; }else if(myRoll == 7 || myRoll == 11){ System.out.println("You win!"); myWins++; }else{ point = myRoll; do { myRoll = roll(); }while(myRoll != 7 && myRoll != point); if(myRoll == point){ System.out.println("You win!"); myWins++; }else{ System.out.println("You lose!"); myLosses++; } } } This is where the bug is, this is the tester method. public void tester(int howMany){ int i = 0; while(i < howMany){ play(); i++; } bug is right here in these assignments statements winPercent = myWins/i * 100; lossPercent = myLosses/i* 100; System.out.println("program ran "+i+" times "+winPercent+"% wins "+ lossPercent+"% losses with "+myWins+" wins and "+myLosses+" losses"); } }

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Upgrading from MVC 1.0 to MVC2 in Visual Studio 2010 and VS2008.

    - by Sam Abraham
    With MVC2 officially released, I was involved in a few conversations regarding the feasibility of upgrading existing MVC 1.0 projects to quickly leverage the newly introduced MVC features. Luckily, Microsoft has proactively addressed this question for both Visual Studio 2008 and 2010 and many online resources discussing the upgrade process are a "Bing/Google Search" away. As I will happen to be speaking about MVC2 and Visual Studio 2010 at the Ft Lauderdale ArcSig .Net User Group Meeting on April 20th 2010 (Check http://www.fladotnet.com for more info.), I decided to include a quick demo on upgrading the NerdDinner project (which I consider the "Hello MVC World" project) from MVC 1.0 to MVC2 using Visual studio 2010 to demonstrate how simple the upgrade process is. In the next few lines, I will be briefly touching on upgrading to MVC2 for Visual Studio 2008 then discussing, in more detail, the upgrade process using Visual Studio 2010 while highlighting the advantage of its multi-targeting support. Using Visual Studio 2008 SP1 For upgrading to MVC2 Using VS2008 SP1, a Microsoft White Paper [1] presents two approaches:  1- Using a provided automated upgrade tool, 2-Manually upgrading the project. I personally prefer using the automated tool although it comes with an "AS IS" disclaimer. For those brave souls, or those who end up with no luck using the tool, detailed manual upgrade steps are also provided as a second option. Backing up the project in question is a must regardless of which route one would take to upgrade. Using Visual Studio 2010 Life is much easier for developers who already adopted Visual Studio 2010. Simply opening the MVC 1.0 solution file brings up the upgrade wizard as shown in figures 1, 2, 3 and 4. As we proceed with the upgrade process, the wizard requests confirmation on whether we choose to upgrade our target framework version to .Net 4.0 or keep the existing .Net 3.5 (Figure 5). VS2010 does a good job with multi-targeting where we can still develop .Net 3.5 applications while leveraging all the new bells and whistles that VS2010 brings to the table (Multi-targeting enables us to develop with as early as .Net 2.0 in VS2010) Figure 1 - Open Solution File Using VS2010   Figure 2 - VS2010 Conversion Wizard Figure 3- Ready To Convert To VS2010 Confirmation Screen Figure 4 - VS2010 Solution Conversion Progress Figure 5 - Confirm Target Framework Upgrade In an attempt to make my demonstration realistic, I decided to opt to keep the project targeted to the .Net 3.5 Framework.  After the successful completion of the conversion process,  a quick sanity check revealed that the NerdDinner project is still targeted to the .Net 3.5 framework as shown in figure 6. Inspecting the Web.Config revealed that the MVC DLL version our code compiles against has been successfully upgraded to 2.0 (Figure 7) and hence we should now be able to leverage the newly introduced features in MVC2 and VS2010 with no effort or time invested on modifying existing code. Figure 6- Confirm Target Framework Remained .Net 3.5  Figure 7 - Confirm MVC DLL Version Has Been Upgraded In Conclusion, Microsoft has empowered developers with the tools necessary to quickly and seamlessly upgrade their MVC solutions to the newly released MVC2. The multi-targeting feature in Visual Studio 2010 enables us to adopt this latest and greatest development tool while supporting development in as early as .Net 2.0. References 1. "Upgrading an ASP.NET MVC 1.0 Application to ASP.NET MVC 2" http://www.asp.net/learn/whitepapers/aspnet-mvc2-upgrade-notes

    Read the article

  • Converting .docx to pdf (or .doc to pdf, or .doc to odt, etc.) with libreoffice on a webserver on the fly using php

    - by robertphyatt
    Ok, so I needed to convert .docx files to .pdf files on the fly, but none of the free php libraries that were available let me do it on my server (a webservice was not good enough). Basically either I needed to pay for a library (and have it maybe suck) or just deal with the free ones that didn't convert the formatting well enough. Not good enough! I found that LibreOffice (OpenOffice's successor) allows command line conversion using the LibreOffice conversion engine (which DID preserve the formatting like I wanted and generally worked great). I loaded the latest version of Ubuntu (http://www.ubuntu.com/download/ubuntu/download) onto my Virtual Box (https://www.virtualbox.org/wiki/Downloads) on my computer and found that I was able to easily convert files using the commandline like this: libreoffice --headless -convert-to pdf fileToConvert.docx -outdir output/path/for/pdf I thought: sweet...but I don't have admin rights on my host's web server. I tried to use a "portable" version of LibreOffice that I obtained from http://portablelinuxapps.org/ but I was unable to get it to work on my host's webserver, because my host's webserver didn't have all the dependencies (Dependency Hell! http://en.wikipedia.org/wiki/Dependency_hell) I was at a loss of how to make it work, until I ran across a cool project made by a Ph.D. student (Philip J. Guo) at Stanford called CDE: http://www.stanford.edu/~pgbovine/cde.html I will let you look at his explanations of how it works (I followed what he did in http://www.youtube.com/watch?feature=player_embedded&v=6XdwHo1BWwY, starting at about 32:00 as well as the directions on his site), but in short, it allows one to avoid dependency hell by copying all the files used when you run certain commands, recreating the linux environment where the command worked. I was able to use this to run LibreOffice without having to resort to someone's portable version of it, and it worked just like it did when I did it on Ubuntu with the command above, with a tweak: I needed to run the wrapper of LibreOffice the CDE generated. So, below is my PHP code that calls it. In this code snippet, the filename to be copied is passed in as $_POST["filename"]. I copy the file to the same spot where I originally converted the file, convert it, copy it back and then delete all the files (so that it doesn't start growing exponentially). I did it this way because I wasn't able to make it work otherwise on the webserver. If there is a linux + webserver ninja out there that can figure out how to make it work without doing this, I would be interested to know what you did. Please post a comment or something if you did that. <?php //first copy the file to the magic place where we can convert it to a pdf on the fly copy($time.$_POST["filename"], "../LibreOffice/cde-package/cde-root/home/robert/Desktop/".$_POST["filename"]); //change to that directory chdir('../LibreOffice/cde-package/cde-root/home/robert'); //the magic command that does the conversion $myCommand = "./libreoffice.cde --headless -convert-to pdf Desktop/".$_POST["filename"]." -outdir Desktop/"; exec ($myCommand); //copy the file back copy("Desktop/".str_replace(".docx", ".pdf", $_POST["filename"]), "../../../../../documents/".str_replace(".docx", ".pdf", $_POST["filename"])); //delete all the files out of the magic place where we can convert it to a pdf on the fly $files1 = scandir('Desktop'); //my files that I generated all happened to start with a number. $pattern = '/^[0-9]/'; foreach ($files1 as $value) { preg_match($pattern, $value, $matches); if(count($matches) ?> 0) { unlink("Desktop/".$value); } } //changing the header to the location of the file makes it work well on androids header( 'Location: '.str_replace(".docx", ".pdf", $_POST["filename"]) ); ?> And here is the tar.gz file I generated I generated with CDE. To duplicate what I did exactly, put the tar.gz file in a folder somewhere. I will call that folder the "root". Make a new folder called "documents" in the "root" folder. Unpack the tar.gz and run the php script above from the "documents" folder. Success! I made a truly portable version of LibreOffice that can convert files on the fly on a webserver using 100% free, open source software!

    Read the article

  • Best approach to depth streaming via existing codec

    - by Kevin
    I'm working on a development system (and game) intended for games set mostly in static third-person views. We produce our scenery by CG and photographic techniques. Our background art is rendered off-line by a production-grade renderer. To allow the runtime imagery to properly interact with the background art, I wrote a program to convert from depth output by Mental Ray into a texture, and a pixel shader to draw a quad such that the Z data comes from the texture. This technique is working out very well, but now we've decided that some of the camera angle changes between scenes should be animated. The animation itself is straightforward to produce from our CG models. We intend to encode it to some HD video codec such as H.264. The problem is that in order to maintain our runtime imagery on the screen, the depth buffer will need to be loaded for each video frame. Due to the bandwidth, the video's depth data will need to be compressed efficiently. I've looked into methods for performing temporal compression of depth info and found an interesting research paper here: http://web4.cs.ucl.ac.uk/staff/j.kautz/publications/depth-streaming.pdf The method establishes a mapping between 16-bit depth values and YCbCr values. The mapping is tuned to the properties of existing video codecs in order to maximize precision of the decoded depths after the YCbCr has undergone video compression. It allows an existing, unmodified video codec to be used on the backend. I'm looking at how to pull this off with the least possible work. (This design change was unplanned.) Our game engine itself is native C++, presently for Win32 and DirectX, although we've worked hard to keep platform dependence segregated because we intend other ports. We don't have motion video facilities in the engine yet but will ultimately need that anyway for cinematics. I was planning on using some off-the-shelf motion video solution we can plug into our engine, and haven't chosen one yet. This new added requirement makes selecting one harder since, among other things, we'll now need to bypass colourspace conversion on one of the streams, and also will need to be playing two streams simultaneously in lockstep, on top of in some cases audio on one of them (for the cinematics). I'm also wondering if it's possible (or even useful) to do the conversion from YCbCr to depth in a pixel shader, or if it's better to just do it in CPU and separately load the resulting depth values into a locked tex. The conversion unfortunately does involve branching logic per-pixel. (There are more naive mappings that don't need branching, but they produce inferior results.) It could be reduced to a table lookup but the table would be 32MB. Programming is second-nature to me but I'm not that experienced with pix shaders and have zero knowledge of off-the-shelf video solutions. I'd therefore be interested in advice from others who may have dealt more with depth streaming, pixel shaders, and/or off-the-shelf codecs, regarding how feasible the proposed application is and what off-the-shelf video systems out there would best get along with this usage case.

    Read the article

  • Character Encoding: â??

    - by akaphenom
    I am trying to piece together the mysterious string of characters â?? I am seeing quite a bit of in our database - I am fairly sure this is a result of conversion between character encodings, but I am not completely positive. The users are able to enter text (or cut and paste) into a Ext-Js rich text editor. The data is posted to a severlet which persists it to the database, and when I view it in the database i see those strange characters... is there any way to decode these back to their original meaning, if I was able to discover the correct encoding - or is there a loss of bits or bytes that has occured through the conversion process? Users are cutting and pasting from multiple versions of MS Word and PDF. Does the encoding follow where the user copied from? Thank you website is UTF-8 We are using ms sql server 2005; SELECT serverproperty('Collation') -- Server default collation. Latin1_General_CI_AS SELECT databasepropertyex('xxxx', 'Collation') -- Database default SQL_Latin1_General_CP1_CI_AS and the column: Column_name Type Computed Length Prec Scale Nullable TrimTrailingBlanks FixedLenNullInSource Collation text varchar no -1 yes no yes SQL_Latin1_General_CP1_CI_AS The non-Unicode equivalents of the nchar, nvarchar, and ntext data types in SQL Server 2000 are listed below. When Unicode data is inserted into one of these non-Unicode data type columns through a command string (otherwise known as a "language event"), SQL Server converts the data to the data type using the code page associated with the collation of the column. When a character cannot be represented on a code page, it is replaced by a question mark (?), indicating the data has been lost. Appearance of unexpected characters or question marks in your data indicates your data has been converted from Unicode to non-Unicode at some layer, and this conversion resulted in lost characters. So this may be the root cause of the problem... and not an easy one to solve on our end.

    Read the article

  • Error Converting PIL B&W images to Numpy Arrays

    - by Elliot
    I am getting weird errors when I try to convert a black and white PIL image to a numpy array. An example of the code I am working with is below. if image.mode != '1': image = image.convert('1') #convert to B&W data = np.array(image) #convert data to a numpy array n_lines = data.shape[0] #number of raster passes line_range = range(data.shape[1]) for l in range(n_lines): # process one horizontal line of the image line = data[l] for n in line_range: if line[n] == 1: write_line_to(xl, z+scale*n, speed) #conversion to other program code elif line[n] == 0: run_to(xl, z+scale*n) #conversion to other program code I have tried this using both array and asarray for the conversion, and gotten different errors. If I use array, then the data I get out is nothing like what I put in. It looks like several very shrunken partial images side by side, with the remainder of the image space filled in in black. If I use asarray, then the entirety of python crashes during the raster step (on a random line). If I work with a greyscale image ('L'), then neither of these errors occurs for either array or asarray. Does anyone know what I am doing wrong? Is there something odd about the way PIL encodes B&W images, or something special I need to pass numpy to make it convert properly?

    Read the article

  • Weird bug with C++ lambda expressions in VS2010

    - by Andrei Tita
    In a couple of my projects, the following code: class SmallClass { public: int x1, y1; void TestFunc() { auto BadLambda = [&]() { int g = x1 + 1; //ok int h = y1 + 1; //c2296 int l = static_cast<int>(y1); //c2440 }; int y1_copy = y1; //it works if you create a local copy auto GoodLambda = [&]() { int h = y1_copy + 1; //ok int l = this->y1 + 1; //ok }; } }; generates error C2296: '+' : illegal, left operand has type 'double (__cdecl *)(double)' or alternatively error C2440: 'static_cast' : cannot convert from 'double (__cdecl *)(double)' to 'int' You get the picture. It also happens if catching by value. The error seems to be tied to the member name "y1". It happened in different classes, different projects and with (seemingly) any type for y1; for example, this code: [...] MyClass y1; void TestFunc() { auto BadLambda = [&]()->void { int l = static_cast<int>(y1); //c2440 }; } generates both these errors: error C2440: 'static_cast' : cannot convert from 'MyClass' to 'int' No user-defined-conversion operator available that can perform this conversion, or the operator cannot be called error C2440: 'static_cast' : cannot convert from 'double (__cdecl *)(double)' to 'int' There is no context in which this conversion is possible It didn't, however, happen in a completely new project. I thought maybe it was related to Lua (the projects where I managed to reproduce this bug both used Lua), but I did not manage to reproduce it in a new project linking Lua. It doesn't seem to be a known bug, and I'm at a loss. Any ideas as to why this happens? (I don't need a workaround; there are a few in the code already). Using Visual Studio 2010 Express version 10.0.40219.1 Sp1Rel.

    Read the article

  • Input string was not in correct format

    - by Luke
    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.IO; namespace measurementConverter { class Program { static void Main(string[] args) { //read in the file StreamReader convert = new StreamReader("../../convert.txt"); //define variables string line = convert.ReadLine(); int conversion; int numberIn; float conversionFactor; Console.WriteLine("Enter the conversion in the form (amount,from,to)"); String inputMeasurement = Console.ReadLine(); string[] inputMeasurementArray = inputMeasurement.Split(','); while (line != null) { string[] fileMeasurementArray = line.Split(','); if (fileMeasurementArray[0] == inputMeasurementArray[1]) { if (fileMeasurementArray[1] == inputMeasurementArray[2]) { Console.WriteLine("{0}", fileMeasurementArray[2]); } } line = convert.ReadLine(); //convert to int numberIn = Convert.ToInt32(inputMeasurementArray[0]); conversionFactor = Convert.ToInt32(fileMeasurementArray[2]); conversion = (numberIn * conversionFactor); } Console.ReadKey(); } } } Hello, I am trying to get the calculating going. On the line conversionFactor = Convert.ToInt32(fileMeasurementArray[2]);, I am getting an error saying "Input string was not in correct format". Please help! The text file consists of the following: ounce,gram,28.0 pound,ounce,16.0 pound,kilogram,0.454 pint,litre,0.568 inch,centimetre,2.5 mile,inch,63360.0

    Read the article

< Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >