Search Results

Search found 11634 results on 466 pages for 'nested properties'.

Page 122/466 | < Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >

  • How can I return an object into PHP userspace from my extension?

    - by John Factorial
    I have a C++ object, Graph, which contains a property named cat of type Category. I'm exposing the Graph object to PHP in an extension I'm writing in C++. As long as the Graph's methods return primitives like boolean or long, I can use the Zend RETURN_*() macros (e.g. RETURN_TRUE(); or RETURN_LONG(123);. But how can I make Graph-getCategory(); return a Category object for the PHP code to manipulate? I'm following the tutorial over at http://devzone.zend.com/article/4486, and here's the Graph code I have so far: #include "php_getgraph.h" zend_object_handlers graph_object_handlers; struct graph_object { zend_object std; Graph *graph; }; zend_class_entry *graph_ce; #define PHP_CLASSNAME "WFGraph" ZEND_BEGIN_ARG_INFO_EX(php_graph_one_arg, 0, 0, 1) ZEND_END_ARG_INFO() ZEND_BEGIN_ARG_INFO_EX(php_graph_two_args, 0, 0, 2) ZEND_END_ARG_INFO() void graph_free_storage(void *object TSRMLS_DC) { graph_object *obj = (graph_object*)object; delete obj-graph; zend_hash_destroy(obj-std.properties); FREE_HASHTABLE(obj-std.properties); efree(obj); } zend_object_value graph_create_handler(zend_class_entry *type TSRMLS_DC) { zval *tmp; zend_object_value retval; graph_object *obj = (graph_object*)emalloc(sizeof(graph_object)); memset(obj, 0, sizeof(graph_object)); obj-std.ce = type; ALLOC_HASHTABLE(obj-std.properties); zend_hash_init(obj-std.properties, 0, NULL, ZVAL_PTR_DTOR, 0); zend_hash_copy(obj-std.properties, &type-default_properties, (copy_ctor_func_t)zval_add_ref, (void*)&tmp, sizeof(zval*)); retval.handle = zend_objects_store_put(obj, NULL, graph_free_storage, NULL TSRMLS_CC); retval.handlers = &graph_object_handlers; return retval; } PHP_METHOD(Graph, __construct) { char *perspectives; int perspectives_len; Graph *graph = NULL; zval *object = getThis(); if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &perspectives, &perspectives_len) == FAILURE) { RETURN_NULL(); } graph = new Graph(perspectives); graph_object *obj = (graph_object*)zend_object_store_get_object(object TSRMLS_CC); obj-graph = graph; } PHP_METHOD(Graph, hasCategory) { long perspectiveId; Graph *graph; graph_object *obj = (graph_object*)zend_object_store_get_object(getThis() TSRMLS_CC); graph = obj-graph; if (graph == NULL) { RETURN_NULL(); } if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &perspectiveId) == FAILURE) { RETURN_NULL(); } RETURN_BOOL(graph-hasCategory(perspectiveId)); } PHP_METHOD(Graph, getCategory) { // what to do here? RETURN_TRUE; } function_entry php_getgraph_functions[] = { PHP_ME(Graph,__construct,NULL,ZEND_ACC_PUBLIC|ZEND_ACC_CTOR) PHP_ME(Graph,hasCategory,php_graph_one_arg,ZEND_ACC_PUBLIC) PHP_ME(Graph,getCategory,php_graph_one_arg,ZEND_ACC_PUBLIC) { NULL, NULL, NULL } }; PHP_MINIT_FUNCTION(getgraph) { zend_class_entry ce; INIT_CLASS_ENTRY(ce, PHP_CLASSNAME, php_getgraph_functions); graph_ce = zend_register_internal_class(&ce TSRMLS_CC); graph_ce-create_object = graph_create_handler; memcpy(&graph_object_handlers, zend_get_std_object_handlers(), sizeof(zend_object_handlers)); graph_object_handlers.clone_obj = NULL; return SUCCESS; } zend_module_entry getgraph_module_entry = { #if ZEND_MODULE_API_NO = 20010901 STANDARD_MODULE_HEADER, #endif PHP_GETGRAPH_EXTNAME, NULL, /* Functions */ PHP_MINIT(getgraph), NULL, /* MSHUTDOWN */ NULL, /* RINIT */ NULL, /* RSHUTDOWN */ NULL, /* MINFO */ #if ZEND_MODULE_API_NO = 20010901 PHP_GETGRAPH_EXTVER, #endif STANDARD_MODULE_PROPERTIES }; #ifdef COMPILE_DL_GETGRAPH extern "C" { ZEND_GET_MODULE(getgraph) } #endif

    Read the article

  • MailEnable - Configuring TLS for secure SMTP (Gmail)

    - by Buckers
    I have the latest version of MailEnable Pro installed on a new server that I'm setting up. Sending & receiving works fine with a new email account that I have set up, however I am now trying to configure GMail to use the mailserver for outgoing SMTP. I've done the following so far: Creating a self-cert SSL certficiate Ticked "Enable TLS" on the General tab of the SMTP connector properties Ticked "Send using TLS if remote server supports it" on the Outbound tab of the SMTP connector properties Selected the new self-cert SSL certificate on the SSL tab of the localhost server properties. Given permissions to IME_System on the new certificate However, Gmail is still giving me the following error: Authentication failed. Please check your username/password. [Server response: 454 TLS not available due to temporary reason code(454) ] I'm trying to connect on port 25, (someone told me you can still do this and you dont have to connect on 465). Is this right? Or do I need to tell MailEnable to use port 465? Am I missing something? Thanks, Chris.

    Read the article

  • WMI permissions: Select CommandLine, ProcessId FROM Win32_Process returns no data for CommandLine

    - by user57935
    Hi all, I am gathering performance data via WMI and would like to avoid having to use an account in the Administrators group for this purpose. The target machine is running Windows Server 2003 with the latest SP/updates. I've done what I believe to be the appropriate configuration to allow our user access to WMI (similar to what is described here: http://msdn.microsoft.com/en-us/library/aa393266.aspx). Here are the specific steps that were followed: Open Administrative Tools - Computer Management: Under Computer Management (Local) Expand Services and Applications, right click WMI Control and select properties. In the Security tab, expand Root, highlight CIMV2, click Security (near bottom of window); add Performance Monitor Users and enable the options : Enable Account and Remote Enable. ­Open Administrative Tools - Component Services: Under Console Root go to Component Services- Computers - Right click My Computer and select properties, select the COM security tab, in “Access Permissions” click "Edit Default" select(or add then select) “Performance Monitor Users” group and allow local access and remote access and click ok. In “Launch and Activation Permissions” click “Edit Default” select(or add then select) “Performance Monitor Users” group and allow Local and Remote Launch and Activation Permissions. ­Open Administrative Tools - Component Services: Under Console Root go to Component Services- Computers - My Computer - DCOM Config - highlight “Windows Management and Instrumentation” right click and select properties, Select the Security tab, Under “Launch and Activation Permissions” select Customize, then click edit, add the “Performance Users Group” and allow local and remote Remote Launch and Remote Activation privileges. I am able to connect remotely via WMI Explorer but when I perform this query: Select CommandLine, ProcessId FROM Win32_Process I get a valid result but every row has an empty CommandLine. If I add the user to the Administrators group and re-run the query, the CommandLine column contains the expected data. It seems there is a permission I am missing somewhere but I am not having much luck tracking it down. Many thanks in advance.

    Read the article

  • WMI permissions: Select CommandLine, ProcessId FROM Win32_Process returns no data for CommandLine

    - by user57935
    I am gathering performance data via WMI and would like to avoid having to use an account in the Administrators group for this purpose. The target machine is running Windows Server 2003 with the latest SP/updates. I've done what I believe to be the appropriate configuration to allow our user access to WMI (similar to what is described here: http://msdn.microsoft.com/en-us/library/aa393266.aspx). Here are the specific steps that were followed: Open Administrative Tools - Computer Management: Under Computer Management (Local) Expand Services and Applications, right click WMI Control and select properties. In the Security tab, expand Root, highlight CIMV2, click Security (near bottom of window); add Performance Monitor Users and enable the options : Enable Account and Remote Enable. ­Open Administrative Tools - Component Services: Under Console Root go to Component Services- Computers - Right click My Computer and select properties, select the COM security tab, in “Access Permissions” click "Edit Default" select(or add then select) “Performance Monitor Users” group and allow local access and remote access and click ok. In “Launch and Activation Permissions” click “Edit Default” select(or add then select) “Performance Monitor Users” group and allow Local and Remote Launch and Activation Permissions. ­Open Administrative Tools - Component Services: Under Console Root go to Component Services- Computers - My Computer - DCOM Config - highlight “Windows Management and Instrumentation” right click and select properties, Select the Security tab, Under “Launch and Activation Permissions” select Customize, then click edit, add the “Performance Users Group” and allow local and remote Remote Launch and Remote Activation privileges. I am able to connect remotely via WMI Explorer but when I perform this query: Select CommandLine, ProcessId FROM Win32_Process I get a valid result but every row has an empty CommandLine. If I add the user to the Administrators group and re-run the query, the CommandLine column contains the expected data. It seems there is a permission I am missing somewhere but I am not having much luck tracking it down. Many thanks in advance.

    Read the article

  • How to check DVD region settings in Window 7

    - by jmatthias
    I have installed Windows 7 on my laptop. When I put a movie in the DVD drive, the video player starts up and tells me 'THIS DISC IS NOT FORMATTED TO PLAY IN THIS REGION'. I have changed the DVD region a few times in the past but while I was in Windows XP I changed the region in Region 1. I cannot find how to check the DVD region setting in Windows 7 (it's not located on the hard properties page of the DVD anymore. Does anybody know how to check the DVD region in Windows 7? Update: If I connect an external USB DVD drive I can see the DVD region tab on the hardware properties dialog. I guess there is some compatibility problem with my internal DVD drive and Windows 7 (as I said I was able to inspect/change the DVD region in Windows XP). Solution: I think I had used LtnRPC in the past to remove the region from my DVD drive. It looks like Windows 7 does not like region free DVD drives (at least mine anyway). I was able to use LtnRPC to reset the region back to 1. I can now see the region tab on the DVD drives hardware properties.

    Read the article

  • BizTalk configuration broken following WCF hotfix installation

    - by Sir Crispalot
    I usually post over on StackOverflow, but thought this was probably better suited to ServerFault. Please migrate if I'm wrong! I am developing a WCF service and a BizTalk application on my workstation at the moment. As part of the WCF service, I had to install hotfix 971493 from Microsoft which updates some core WCF assemblies. Following installation of that hotfix, I am now experiencing severe issues in my existing BizTalk application. When I attempt to configure the properties of an existing WCF-Custom receive location, I get this error: Error loading properties (System.IO.FileLoadException) The located assembly's manifest definition does not match the assembly reference. (Exception from HRESULT: 0x80131040) If I click OK (the same error repeats four times) I eventually see the WCF-Custom properties dialog. However if I click on the various tabs, I continue to receive errors: The located assembly's manifest definition does not match the assembly reference. (Exception from HRESULT: 0x80131040) (Microsoft.BizTalk.Adapter.Wcf.Admin) The WCF-Custom receive location was working yesterday, and I installed the hotfix this morning. I'm guessing these two are related, and that BizTalk somehow has a reference to the old WCF assemblies. Does anyone know how I can fix this?

    Read the article

  • Windows XP over two monitors, but one of them switches off at boot... how to fix? How to switch bac

    - by jae
    When booting into XP (x64, Athlon II X2 245, 4GB RAM), my main monitor (got two 19" TFTs hooked up, two gfx cards, a 4650 (1GB, the primary monitor's on this) and a 4350 (512MB)) switches off. Logging in blind (cursor down key, typing password) gets me one screen, the secondary. Booted correctly until about two days ago. No clue what's the cause, last change was (if I don't overlook something) installing the ATI 9-12 hotfix. And booting into Windows 7, after returning from 7, it was like this. For some weird reason, I cannot start Catalyst Control Center (I right-click desktop, choose the CCC entry, the pointer changes to hourglass for a half-second... and nothing. Likewise with "Properties"... I think, as all windows open on the primary (off) screen, and no entry appears in the task bar for Properties) Completely stumped. Windows 7, same setup, works w/o a hitch. The primary monitor appears to run in some unknown, but pretty low, resolution, as the mouse pointer only moves onto it at about half-height. But, w/o CCC or display properties, I cannot check. And, obviously, not change anything. Hope this was not too long-winded. And I'm sure I still forgot essential stuff. :P

    Read the article

  • Windows7 shows a drive as full in summary but files, including backup folder, shown on drive are ver

    - by Rob
    I have a drive partitioned so it is seen by Windows as 2 drives: C:\ and D:\ Windows7 shows D:\ as full up in the graphical summary in 'My Computer' summary of all the drives, e.g. the bar graph indicates full and nearly all of the drive's capacity, 108Gb, is full. So I go into the D:\ drive to look at the files, I see several folders. I select them all and the right click menu Properties to count their size, expecting the value to be about the same as what Windows reports in the summary, i.e. nearly 108Gb. But the properties shows the files are very small, Kbs and Mbs, nowhere near 108Gbs. One of the folders is a backup, but its size is very small. I've checked the folder options to show all system files and hidden files too - and counted these in the properties. Something invisible is holding the space. What is happening here? I'm afraid to delete anything if it removes valuable backups. Have I got huge backups here? Why can't I see them? How do I see them?

    Read the article

  • Proxy settings in Java mail API

    - by coder
    I've written a piece of java code where user1 sends email to user2. I'm behind a proxy and hence I'm getting a javax.mail.MessagingException. How do I solve this problem? Here is the code- import java.util.Properties; import javax.mail.Message; import javax.mail.MessagingException; import javax.mail.PasswordAuthentication; import javax.mail.Session; import javax.mail.Transport; import javax.mail.internet.InternetAddress; import javax.mail.internet.MimeMessage; public class Mail { public static void main(String[] args) { final String username = "[email protected]"; final String password = "abc"; Properties props = new Properties(); props = System.getProperties(); props.put("mail.smtp.auth", "true"); props.put("mail.smtp.starttls.enable", "true"); props.put("mail.smtp.host", "smtp.gmail.com"); props.put("mail.smtp.port", "587"); Session session = Session.getInstance(props, new javax.mail.Authenticator() { protected PasswordAuthentication getPasswordAuthentication() { return new PasswordAuthentication(username, password); } }); try { Message message = new MimeMessage(session); message.setFrom(new InternetAddress("[email protected]")); message.setRecipients(Message.RecipientType.TO, InternetAddress.parse("[email protected]")); message.setSubject("Testing Subject"); message.setText("Dear Mail Crawler," + "\n\n No spam to my email, please!"); Transport.send(message); System.out.println("Done"); } catch (MessagingException e) { throw new RuntimeException(e); } } }

    Read the article

  • Windows 7 shows a drive as full in summary but files shown on drive are very small

    - by Rob
    I have a drive partitioned so it is seen by Windows as 2 drives: C:\ and D:\ Windows 7 shows D:\ as full up in the graphical summary in 'My Computer' summary of all the drives, e.g. the bar graph indicates full and nearly all of the drive's capacity, 108Gb, is full. So I go into the D:\ drive to look at the files, I see several folders. I select them all and the right-click menu Properties to count their size, expecting the value to be about the same as what Windows reports in the summary, i.e. nearly 108Gb. But the properties window shows the files are very small, Kbs and Mbs, nowhere near 108Gbs. One of the folders is a backup, but its size is very small. I've checked the folder options to show all system files and hidden files too - and counted these in the properties. Something invisible is holding the space. What is happening here? I'm afraid to delete anything if it removes valuable backups. Have I got huge backups here? Why can't I see them? How do I see them?

    Read the article

  • Certificate enrollment request chain not trusted

    - by makerofthings7
    I am working on a MSFT lab for Direct Access, and need to create a Web certificate. The instructions ask be to do the following: On EDGE1, click Start, type mmc, and then press ENTER. Click Yes at the User Account Control prompt. Click File, and then click Add/Remove Snap-ins. Click Certificates, click Add, click Computer account, click Next, select Local computer, click Finish, and then click OK. In the console tree of the Certificates snap-in, open Certificates (Local Computer)\Personal\Certificates. Right-click Certificates, point to All Tasks, and then click Request New Certificate. Click Next twice. On the Request Certificates page, click Web Server, and then click More information is required to enroll for this certificate. On the Subject tab of the Certificate Properties dialog box, in Subject name, for Type, select Common Name. In Value, type edge1.contoso.com, and then click Add. Click OK, click Enroll, and then click Finish. In the details pane of the Certificates snap-in, verify that a new certificate with the name edge1.contoso.com was enrolled with Intended Purposes of Server Authentication. Right-click the certificate, and then click Properties. In Friendly Name, type IP-HTTPS Certificate, and then click OK. Close the console window. If you are prompted to save settings, click No. In production, our company has overridden the Web Server template and it doesn't seem to be issuing certificates with the full CA chain. When I look at the issued certificate properties then both tiers of the 2 tier CA hierarchy are missing. How can I fix this? I'm not sure where to look outside the GUI.

    Read the article

  • pptp server 2003 hands out gateway from nic not dhcp server

    - by Pete
    I have created a pptp RRAS server for a handful of clients to connect to. I would like them to use the servers default gateway (.1) for internet access. They are able to successfully connect (& see LAN) but it then cuts them off the internet. I understand that all internet traffic would be routed through the pptp server but that's ok since I have enough pipe. The problem seems to be that: the clients gateway shows as their assigned RAS ip. The clients assigned DNS settings seem to be what is set to the servers nic not what I have specified in dhcp (which is the same server). DHCP relay agent properties points to the nic DHCP is running on (192.168.100.163). .1 is gateway in nic hw properties & dhcp. I have different dns secondary & third entries on my nic properties than what dhcp is configured for. The problem is that I have a 10.10.1.x network that people can not see if they uncheck the gateway option but, they are then unable to see our other hosted sites on the internet.

    Read the article

  • Creating MS Word 2010 Relative Links?

    - by leeand00
    Okay here is what I've tried so far for creating relative links in my MS Word Documents. In my document from the ribbon I select the File tab. I then select Info from the side bar. Click the properties drop down from the right hand column. (a bit difficult to find initially, since it looks like text not a drop down, but it's there). Click Advanced Properties The <document-name>.docx Properties Dialog Appears I enter .\ to specify that I want a relative path for the links in my document. I click OK. I go back into my document select some text and attempt to make a link out of it clicking the Insert tab of the ribbon, and then clicking Hyperlink. I then select a document from the current folder, and strip the full path from it, leaving just the name of the .docx file to which I wish to link. Then I click OK. The link appears, I try to click it using Ctrl+Click. I am informed that the address of the site is not valid. Check the address and try again. What could I possibly be doing wrong here? I just want a relative link. It's so easy in to do this in HTML.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Glassfish 3 Cant update JDK no way

    - by Parhs
    Hello.. I was using 1.6.0_19 jdk and installed 1.6.0_20 jdk.. Glassfish doesnt like that... Here are my windows environment variables.. ALLUSERSPROFILE=C:\ProgramData ANT_HOME=C:\apache-ant-1.8.1\ APPDATA=C:\Users\Parhs\AppData\Roaming CommonProgramFiles=C:\Program Files\Common Files COMPUTERNAME=PARHS-PC ComSpec=C:\Windows\system32\cmd.exe FP_NO_HOST_CHECK=NO HOMEDRIVE=C: HOMEPATH=\Users\Parhs JAVA_HOME=C:\Program Files\Java\jdk1.6.0_20\ LOCALAPPDATA=C:\Users\Parhs\AppData\Local LOGONSERVER=\\PARHS-PC NUMBER_OF_PROCESSORS=2 OS=Windows_NT Path=C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wb em;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetoot h Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apa che-ant-1.8.1\bin PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC PHPRC=C:\Program Files\PHP\php.ini PROCESSOR_ARCHITECTURE=x86 PROCESSOR_IDENTIFIER=x86 Family 6 Model 14 Stepping 8, GenuineIntel PROCESSOR_LEVEL=6 PROCESSOR_REVISION=0e08 ProgramData=C:\ProgramData ProgramFiles=C:\Program Files PROMPT=$P$G PSModulePath=C:\Windows\system32\WindowsPowerShell\v1.0\Modules\ PUBLIC=C:\Users\Public SESSIONNAME=Console SystemDrive=C: SystemRoot=C:\Windows TEMP=C:\Users\Parhs\AppData\Local\Temp TMP=C:\Users\Parhs\AppData\Local\Temp USERDOMAIN=Parhs-PC USERNAME=Parhs USERPROFILE=C:\Users\Parhs VS90COMNTOOLS=C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\ windir=C:\Windows Also here is my asenv.bat REM DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. REM REM Copyright 2004-2009 Sun Microsystems, Inc. All rights reserved. REM REM Use is subject to License Terms REM set AS_IMQ_LIB=....\mq\lib set AS_IMQ_BIN=....\mq\bin set AS_CONFIG=..\config set AS_INSTALL=.. set AS_DEF_DOMAINS_PATH=..\domains set AS_DERBY_INSTALL=....\javadb set AS_JAVA="C:\Program Files\Java\jdk1.6.0_20" And although restarting system and server i am getting this report Operating System Information: Name of the Operating System: Windows 7 Binary Architecture name of the Operating System: x86, Version: 6.1 Number of processors available on the Operating System: 2 System load on the available processors for the last minute: -1.0. (Sum of running and queued runnable entities per minute) General Java Runtime Environment Information for the VM: 6152@Parhs-PC JRE BootClassPath: C:\glassfishv3\glassfish/modules/endorsed\javax.annotation.jar;C:\glassfishv3\glassfish/modules/endorsed\jaxb-api-osgi.jar;C:\glassfishv3\glassfish/modules/endorsed\webservices-api-osgi.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\resources.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\rt.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\sunrsasign.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jce.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.6.0_19\jre\classes;C:\glassfishv3\glassfish\lib\monitor\btrace-boot.jar JRE ClassPath: C:\glassfishv3\glassfish\modules\glassfish.jar;C:\glassfishv3\glassfish\lib\monitor\btrace-agent.jar JRE Native Library Path: C:\Program Files\Java\jdk1.6.0_19\bin;.;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetooth Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apache-ant-1.8.1\bin JRE name: Java HotSpot(TM) Client VM Vendor: Sun Microsystems Inc. Version: 16.2-b04 List of System Properties for the Java Virtual Machine: ANTLR_USE_DIRECT_CLASS_LOADING = true AS_CONFIG = C:\glassfishv3\glassfish\config\..\config AS_DEF_DOMAINS_PATH = C:\glassfishv3\glassfish\config\..\domains AS_DERBY_INSTALL = C:\glassfishv3\glassfish\config\..\..\javadb AS_IMQ_BIN = C:\glassfishv3\glassfish\config\..\..\mq\bin AS_IMQ_LIB = C:\glassfishv3\glassfish\config\..\..\mq\lib AS_INSTALL = C:\glassfishv3\glassfish\config\.. AS_JAVA = C:\Program Files\Java\jdk1.6.0_20\jre GlassFish_Platform = Felix awt.toolkit = sun.awt.windows.WToolkit catalina.base = C:\glassfishv3\glassfish\domains\domain1 catalina.home = C:\glassfishv3\glassfish\domains\domain1 catalina.useNaming = false com.sun.aas.configRoot = C:\glassfishv3\glassfish\config com.sun.aas.derbyRoot = C:\glassfishv3\javadb com.sun.aas.domainsRoot = C:\glassfishv3\glassfish\domains com.sun.aas.hostName = Parhs-PC com.sun.aas.imqBin = C:\glassfishv3\mq\bin com.sun.aas.imqLib = C:\glassfishv3\mq\lib com.sun.aas.installRoot = C:\glassfishv3\glassfish com.sun.aas.installRootURI = file:/C:/glassfishv3/glassfish/ com.sun.aas.instanceName = server com.sun.aas.instanceRoot = C:\glassfishv3\glassfish\domains\domain1 com.sun.aas.instanceRootURI = file:/C:/glassfishv3/glassfish/domains/domain1/ com.sun.aas.javaRoot = C:\Program Files\Java\jdk1.6.0_19\jre com.sun.enterprise.config.config_environment_factory_class = com.sun.enterprise.config.serverbeans.AppserverConfigEnvironmentFactory com.sun.enterprise.hk2.cacheDir = C:\glassfishv3\glassfish\domains\domain1\osgi-cache\felix com.sun.enterprise.jaccprovider.property.repository = C:\glassfishv3\glassfish\domains\domain1/generated/policy com.sun.enterprise.security.httpsOutboundKeyAlias = s1as common.loader = ${catalina.home}/common/classes,${catalina.home}/common/endorsed/*.jar,${catalina.home}/common/lib/*.jar eclipselink.security.usedoprivileged = true ejb.home = C:\glassfishv3\glassfish\modules\ejb felix.config.properties = file:/C:/glassfishv3/glassfish/osgi/felix/conf/config.properties felix.fileinstall.bundles.new.start = true felix.fileinstall.debug = 1 felix.fileinstall.dir = C:\glassfishv3\glassfish/modules/autostart/ felix.fileinstall.poll = 5000 felix.system.properties = file:/C:/glassfishv3/glassfish/osgi/felix/conf/system.properties file.encoding = Cp1253 file.encoding.pkg = sun.io file.separator = \ glassfish.version = GlassFish v3 (build 74.2) hk2.startup.context.args = #Mon Jun 07 20:27:37 EEST 2010 -startup-classpath=C\:\\glassfishv3\\glassfish\\modules\\glassfish.jar;C\:\\glassfishv3\\glassfish\\lib\\monitor\\btrace-agent.jar __time_zero=1275931657334 hk2.startup.context.mainModule=org.glassfish.core.kernel -startup-args=--domain,,,domain1,,,--domaindir,,,C\:\\glassfishv3\\glassfish\\domains\\domain1 --domain=domain1 -startup-classname=com.sun.enterprise.glassfish.bootstrap.ASMain --domaindir=C\:\\glassfishv3\\glassfish\\domains\\domain1 hk2.startup.context.root = C:\glassfishv3\glassfish\modules http.nonProxyHosts = localhost|127.0.0.1|Parhs-PC java.awt.graphicsenv = sun.awt.Win32GraphicsEnvironment java.awt.printerjob = sun.awt.windows.WPrinterJob java.class.path = C:\glassfishv3\glassfish\modules\glassfish.jar;C:\glassfishv3\glassfish\lib\monitor\btrace-agent.jar java.class.version = 50.0 java.endorsed.dirs = C:\glassfishv3\glassfish/modules/endorsed;C:\glassfishv3\glassfish/lib/endorsed java.ext.dirs = C:\Program Files\Java\jdk1.6.0_19\jre/lib/ext;C:\Program Files\Java\jdk1.6.0_19\jre/jre/lib/ext;C:\glassfishv3\glassfish\domains\domain1/lib/ext java.home = C:\Program Files\Java\jdk1.6.0_19\jre java.io.tmpdir = C:\Users\Parhs\AppData\Local\Temp\ java.library.path = C:\Program Files\Java\jdk1.6.0_19\bin;.;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program Files\PHP\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Toshiba\Bluetooth Toshiba Stack\sys\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\apache-ant-1.8.1\bin java.net.useSystemProxies = true java.rmi.server.randomIDs = true java.runtime.name = Java(TM) SE Runtime Environment java.runtime.version = 1.6.0_19-b04 java.security.auth.login.config = C:\glassfishv3\glassfish\domains\domain1/config/login.conf java.security.policy = C:\glassfishv3\glassfish\domains\domain1/config/server.policy java.specification.name = Java Platform API Specification java.specification.vendor = Sun Microsystems Inc. java.specification.version = 1.6 java.util.logging.config.file = C:\glassfishv3\glassfish\domains\domain1\config\logging.properties java.vendor = Sun Microsystems Inc. java.vendor.url = http://java.sun.com/ java.vendor.url.bug = http://java.sun.com/cgi-bin/bugreport.cgi java.version = 1.6.0_19 java.vm.info = mixed mode java.vm.name = Java HotSpot(TM) Client VM java.vm.specification.name = Java Virtual Machine Specification java.vm.specification.vendor = Sun Microsystems Inc. java.vm.specification.version = 1.0 java.vm.vendor = Sun Microsystems Inc. java.vm.version = 16.2-b04 javax.net.ssl.keyStore = C:\glassfishv3\glassfish\domains\domain1/config/keystore.jks javax.net.ssl.keyStorePassword = changeit javax.net.ssl.trustStore = C:\glassfishv3\glassfish\domains\domain1/config/cacerts.jks javax.net.ssl.trustStorePassword = changeit javax.rmi.CORBA.PortableRemoteObjectClass = com.sun.corba.ee.impl.javax.rmi.PortableRemoteObject javax.rmi.CORBA.StubClass = com.sun.corba.ee.impl.javax.rmi.CORBA.StubDelegateImpl javax.rmi.CORBA.UtilClass = com.sun.corba.ee.impl.javax.rmi.CORBA.Util javax.security.jacc.PolicyConfigurationFactory.provider = com.sun.enterprise.security.provider.PolicyConfigurationFactoryImpl jdbc.drivers = org.apache.derby.jdbc.ClientDriver jpa.home = C:\glassfishv3\glassfish\modules\jpa line.separator = org.glassfish.web.rfc2109_cookie_names_enforced = false org.jvnet.hk2.osgimain.autostartBundles = osgi-adapter.jar, org.apache.felix.shell.jar, org.apache.felix.shell.remote.jar, org.apache.felix.configadmin.jar, org.apache.felix.fileinstall.jar org.jvnet.hk2.osgimain.bundlesDir = C:\glassfishv3\glassfish\modules org.jvnet.hk2.osgimain.excludedSubDirs = autostart/ org.omg.CORBA.ORBClass = com.sun.corba.ee.impl.orb.ORBImpl org.omg.CORBA.ORBSingletonClass = com.sun.corba.ee.impl.orb.ORBSingleton org.osgi.framework.storage = C:\glassfishv3\glassfish\domains\domain1\osgi-cache\felix os.arch = x86 os.name = Windows 7 os.version = 6.1 osgi.shell.telnet.ip = 127.0.0.1 osgi.shell.telnet.maxconn = 1 osgi.shell.telnet.port = 6666 package.access = package.definition = path.separator = ; security.home = C:\glassfishv3\glassfish\modules\security server.loader = ${catalina.home}/server/classes,${catalina.home}/server/lib/*.jar shared.loader = ${catalina.home}/shared/classes,${catalina.home}/shared/lib/*.jar sun.arch.data.model = 32 sun.boot.class.path = C:\glassfishv3\glassfish/modules/endorsed\javax.annotation.jar;C:\glassfishv3\glassfish/modules/endorsed\jaxb-api-osgi.jar;C:\glassfishv3\glassfish/modules/endorsed\webservices-api-osgi.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\resources.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\rt.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\sunrsasign.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\jce.jar;C:\Program Files\Java\jdk1.6.0_19\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.6.0_19\jre\classes;C:\glassfishv3\glassfish\lib\monitor\btrace-boot.jar sun.boot.library.path = C:\Program Files\Java\jdk1.6.0_19\jre\bin sun.cpu.endian = little sun.cpu.isalist = pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 i86 sun.desktop = windows sun.io.unicode.encoding = UnicodeLittle sun.java.launcher = SUN_STANDARD sun.jnu.encoding = Cp1253 sun.management.compiler = HotSpot Client Compiler sun.os.patch.level = user.country = GR user.dir = C:\glassfishv3\glassfish\domains\domain1 user.home = C:\Users\Parhs user.language = el user.name = Parhs user.timezone = Europe/Athens user.variant = web.home = C:\glassfishv3\glassfish\modules\web weld.home = C:\glassfishv3\glassfish\modules\weld Why it is so damn hard??? What am i missing?

    Read the article

  • WPF performance : Converters vs. Triggers

    - by Joachim Kerschbaumer
    hi there, i´m currently facing a problem where i have to set properties on a bunch of framework elements depending on some other properties. i wonder how triggers and converters compare when it comes to performance. Especially MultiTriggers and IMultiValueConverters. Is there any difference? google wasn't helpful so i thought maybe some of the guys over here at SO could bring in some light. thanks, j.

    Read the article

  • Unable to resolve class in build.gradle using Android Studio 0.60/Gradle 0.11

    - by saywhatnow
    Established app working fine using Android Studio 0.5.9/ Gradle 0.9 but upgrading to Android Studio 0.6.0/ Gradle 0.11 causes the error below. Somehow Studio seems to have lost the ability to resolve the android tools import at the top of the build.gradle file. Anyone got any ideas on how to solve this? build file 'Users/[me]/Repositories/[project]/[module]/build.gradle': 1: unable to resolve class com.android.builder.DefaultManifestParser @ line 1, column 1. import com.android.builder.DefaultManifestParser 1 error at org.codehaus.groovy.control.ErrorCollector.failIfErrors(ErrorCollector.java:302) at org.codehaus.groovy.control.CompilationUnit.applyToSourceUnits(CompilationUnit.java:858) at org.codehaus.groovy.control.CompilationUnit.doPhaseOperation(CompilationUnit.java:548) at org.codehaus.groovy.control.CompilationUnit.compile(CompilationUnit.java:497) at groovy.lang.GroovyClassLoader.doParseClass(GroovyClassLoader.java:306) at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:287) at org.gradle.groovy.scripts.internal.DefaultScriptCompilationHandler.compileScript(DefaultScriptCompilationHandler.java:115) ... 77 more 2014-06-09 10:15:28,537 [ 92905] INFO - .BaseProjectImportErrorHandler - Failed to import Gradle project at '/Users/[me]/Repositories/[project]' org.gradle.tooling.BuildException: Could not run build action using Gradle distribution 'http://services.gradle.org/distributions/gradle-1.12-all.zip'. at org.gradle.tooling.internal.consumer.ResultHandlerAdapter.onFailure(ResultHandlerAdapter.java:53) at org.gradle.tooling.internal.consumer.async.DefaultAsyncConsumerActionExecutor$1$1.run(DefaultAsyncConsumerActionExecutor.java:57) at org.gradle.internal.concurrent.DefaultExecutorFactory$StoppableExecutorImpl$1.run(DefaultExecutorFactory.java:64) [project]/[module]/build.gradle import com.android.builder.DefaultManifestParser apply plugin: 'android-sdk-manager' apply plugin: 'android' android { sourceSets { main { manifest.srcFile 'src/main/AndroidManifest.xml' res.srcDirs = ['src/main/res'] } debug { res.srcDirs = ['src/debug/res'] } release { res.srcDirs = ['src/release/res'] } } compileSdkVersion 19 buildToolsVersion '19.0.0' defaultConfig { minSdkVersion 14 targetSdkVersion 19 } signingConfigs { release } buildTypes { release { runProguard false proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.txt' signingConfig signingConfigs.release applicationVariants.all { variant -> def file = variant.outputFile def manifestParser = new DefaultManifestParser() def wmgVersionCode = manifestParser.getVersionCode(android.sourceSets.main.manifest.srcFile) println wmgVersionCode variant.outputFile = new File(file.parent, file.name.replace("-release.apk", "_" + wmgVersionCode + ".apk")) } } } packagingOptions { exclude 'META-INF/LICENSE.txt' exclude 'META-INF/NOTICE.txt' } } def Properties props = new Properties() def propFile = file('signing.properties') if (propFile.canRead()){ props.load(new FileInputStream(propFile)) if (props!=null && props.containsKey('STORE_FILE') && props.containsKey('STORE_PASSWORD') && props.containsKey('KEY_ALIAS') && props.containsKey('KEY_PASSWORD')) { println 'RELEASE BUILD SIGNING' android.signingConfigs.release.storeFile = file(props['STORE_FILE']) android.signingConfigs.release.storePassword = props['STORE_PASSWORD'] android.signingConfigs.release.keyAlias = props['KEY_ALIAS'] android.signingConfigs.release.keyPassword = props['KEY_PASSWORD'] } else { println 'RELEASE BUILD NOT FOUND SIGNING PROPERTIES' android.buildTypes.release.signingConfig = null } }else { println 'RELEASE BUILD NOT FOUND SIGNING FILE' android.buildTypes.release.signingConfig = null } repositories { maven { url 'https://repo.commonsware.com.s3.amazonaws.com' } maven { url 'https://oss.sonatype.org/content/repositories/snapshots/' } } dependencies { compile 'com.github.gabrielemariotti.changeloglib:library:1.4.+' compile 'com.google.code.gson:gson:2.2.4' compile 'com.google.android.gms:play-services:+' compile 'com.android.support:appcompat-v7:+' compile 'com.squareup.okhttp:okhttp:1.5.+' compile 'com.octo.android.robospice:robospice:1.4.11' compile 'com.octo.android.robospice:robospice-cache:1.4.11' compile 'com.octo.android.robospice:robospice-retrofit:1.4.11' compile 'com.commonsware.cwac:security:0.1.+' compile 'com.readystatesoftware.sqliteasset:sqliteassethelper:+' compile 'com.android.support:support-v4:19.+' compile 'uk.co.androidalliance:edgeeffectoverride:1.0.1+' compile 'de.greenrobot:eventbus:2.2.1+' compile project(':captureActivity') compile ('de.keyboardsurfer.android.widget:crouton:1.8.+') { exclude group: 'com.google.android', module: 'support-v4' } compile files('libs/CWAC-LoaderEx.jar') }

    Read the article

  • IF adding new Entity gives error me : EntityCommandCompilationException was unhandled bu user code

    - by programmerist
    i have 5 tables in started projects. if i adds new table (Urun enttiy) writing below codes: project.BAL : public static List<Urun> GetUrun() { using (GenoTipSatisEntities genSatisUrunCtx = new GenoTipSatisEntities()) { ObjectQuery<Urun> urun = genSatisUrunCtx.Urun; return urun.ToList(); } } if i receive data form BAL in UI.aspx: using project.BAL; namespace GenoTip.Web.ContentPages.Satis { public partial class SatisUrun : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { FillUrun(); } } void FillUrun() { ddlUrun.DataSource = SatisServices.GetUrun(); ddlUrun.DataValueField = "ID"; ddlUrun.DataTextField = "Ad"; ddlUrun.DataBind(); } } } i added URun later. error appears ToList method: EntityCommandCompilationException was unhandled bu user code error Detail: Error 1 Error 3007: Problem in Mapping Fragments starting at lines 659, 873: Non-Primary-Key column(s) [UrunID] are being mapped in both fragments to different conceptual side properties - data inconsistency is possible because the corresponding conceptual side properties can be independently modified. C:\Users\pc\Desktop\GenoTip.Satis\GenoTip.DAL\ModelSatis.edmx 660 15 GenoTip.DAL Error 2 Error 3012: Problem in Mapping Fragments starting at lines 659, 873: Data loss is possible in FaturaDetay.UrunID. An Entity with Key (PK) will not round-trip when: (PK does NOT play Role 'FaturaDetay' in AssociationSet 'FK_FaturaDetay_Urun' AND PK is in 'FaturaDetay' EntitySet) C:\Users\pc\Desktop\GenoTip.Satis\GenoTip.DAL\ModelSatis.edmx 874 11 GenoTip.DAL Error 3 Error 3012: Problem in Mapping Fragments starting at lines 659, 873: Data loss is possible in FaturaDetay.UrunID. An Entity with Key (PK) will not round-trip when: (PK is in 'FaturaDetay' EntitySet AND PK does NOT play Role 'FaturaDetay' in AssociationSet 'FK_FaturaDetay_Urun' AND Entity.UrunID is not NULL) C:\Users\pc\Desktop\GenoTip.Satis\GenoTip.DAL\ModelSatis.edmx 660 15 GenoTip.DAL Error 4 Error 3007: Problem in Mapping Fragments starting at lines 748, 879: Non-Primary-Key column(s) [UrunID] are being mapped in both fragments to different conceptual side properties - data inconsistency is possible because the corresponding conceptual side properties can be independently modified. C:\Users\pc\Desktop\GenoTip.Satis\GenoTip.DAL\ModelSatis.edmx 749 15 GenoTip.DAL Error 5 Error 3012: Problem in Mapping Fragments starting at lines 748, 879: Data loss is possible in Satis.UrunID. An Entity with Key (PK) will not round-trip when: (PK does NOT play Role 'Satis' in AssociationSet 'FK_Satis_Urun' AND PK is in 'Satis' EntitySet) C:\Users\pc\Desktop\GenoTip.Satis\GenoTip.DAL\ModelSatis.edmx 880 11 GenoTip.DAL Error 6 Error 3012: Problem in Mapping Fragments starting at lines 748, 879: Data loss is possible in Satis.UrunID. An Entity with Key (PK) will not round-trip when: (PK is in 'Satis' EntitySet AND PK does NOT play Role 'Satis' in AssociationSet 'FK_Satis_Urun' AND Entity.UrunID is not NULL) C:\Users\pc\Desktop\GenoTip.Satis\GenoTip.DAL\ModelSatis.edmx 749 15 GenoTip.DAL

    Read the article

  • How to support both HTTP and HTTPS channels in Flex/BlazeDS?

    - by digitalsanctum
    I've been trying to find the right configuration for supporting both http/s requests in a Flex app. I've read all the docs and they allude to doing something like the following: <default-channels> <channel ref="my-secure-amf"> <serialization> <log-property-errors>true</log-property-errors> </serialization> </channel> <channel ref="my-amf"> <serialization> <log-property-errors>true</log-property-errors> </serialization> </channel> This works great when hitting the app via https but get intermittent communication failures when hitting the same app via http. Here's an abbreviated services-config.xml: <channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel"> <endpoint url="http://{server.name}:{server.port}/{context.root}/messagebroker/amf" class="flex.messaging.endpoints.AMFEndpoint"/> <properties> <!-- HTTPS requests don't work on IE when pragma "no-cache" headers are set so you need to set the add-no-cache-headers property to false --> <add-no-cache-headers>false</add-no-cache-headers> <!-- Use to limit the client channel's connect attempt to the specified time interval. --> <connect-timeout-seconds>10</connect-timeout-seconds> </properties> </channel-definition> <channel-definition id="my-secure-amf" class="mx.messaging.channels.SecureAMFChannel"> <!--<endpoint url="https://{server.name}:{server.port}/{context.root}/messagebroker/amfsecure" class="flex.messaging.endpoints.SecureAMFEndpoint"/>--> <endpoint url="https://{server.name}:{server.port}/{context.root}/messagebroker/amfsecure" class="flex.messaging.endpoints.AMFEndpoint"/> <properties> <add-no-cache-headers>false</add-no-cache-headers> <connect-timeout-seconds>10</connect-timeout-seconds> </properties> </channel-definition> I'm running with Tomcat 5.5.17 and Java 5. The BlazeDS docs say this is the best practice. Is there a better way? With this config, there seems to be 2-3 retries associated with each channel defined in the default-channels element so it always takes ~20s before the my-amf channel connects via a http request. Is there a way to override the 2-3 retries to say, 1 retry for each channel? Thanks in advance for answers.

    Read the article

  • Building a template to auto-scaffold Index views in ASP.NET MVC

    - by DanM
    I'm trying to write an auto-scaffolder for Index views. I'd like to be able to pass in a collection of models or view-models (e.g., IQueryable<MyViewModel>) and get back an HTML table that uses the DisplayName attribute for the headings (th elements) and Html.Display(propertyName) for the cells (td elements). Each row should correspond to one item in the collection. Here's what I have so far: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> <% var items = (IQueryable<TestProj.ViewModels.TestViewModel>)Model; // Should be generic! var properties = items.First().GetMetadata().Properties .Where(pm => pm.ShowForDisplay && !ViewData.TemplateInfo.Visited(pm)); %> <table> <tr> <% foreach(var property in properties) { %> <th> <%= property.DisplayName %> </th> <% } %> </tr> <% foreach(var item in items) { %> <tr> <% foreach(var property in properties) { %> <td> <%= Html.Display(property.DisplayName) %> // This doesn't work! </td> <% } %> </tr> <% } %> </table> Two problems with this: I'd like it to be generic. So, I'd like to replace var items = (IQueryable<TestProj.ViewModels.TestViewModel>)Model; with var items = (IQueryable<T>)Model; or something to that effect. The <td> elements are not working because the Html in <%= Html.Display(property.DisplayName) %> contains the model for the view, which is a collection of items, not the item itself. Somehow, I need to obtain an HtmlHelper object whose Model property is the current item, but I'm not sure how to do that. How do I solve these two problems?

    Read the article

  • Glassfishv3 and log4j

    - by Jackson
    Hi... I´m using glassfishv3 for few days. But i don´t know how to get log4j working with the v3. In glassfishv2 there was a "System Classpath" field which you could used in order to point to your log4j.properties file. But in glassfishv3 "System Classpath" is not supported any more. So where i have to put the log4j.properties file on glassfishv3??? Thanks

    Read the article

  • Entity Framework won't SaveChanges on new entity with two-level relationship

    - by Tim Rourke
    I'm building an ASP.NET MVC site using the ADO.NET Entity Framework. I have an entity model that includes these entities, associated by foreign keys: Report(ID, Date, Heading, Report_Type_ID, etc.) SubReport(ID, ReportText, etc.) - one-to-one relationship with Report. ReportSource(ID, Name, Description) - one-to-many relationship with Sub_Report. ReportSourceType(ID, Name, Description) - one-to-many relationship with ReportSource. Contact (ID, Name, Address, etc.) - one-to-one relationship with Report_Source. There is a Create.aspx page for each type of SubReport. The post event method returns a new Sub_Report entity. Before, in my post method, I followed this process: Set the properties for a new Report entity from the page's fields. Set the SubReport entity's specific properties from the page's fields. Set the SubReport entity's Report to the new Report entity created in 1. Given an ID provided by the page, look up the ReportSource and set the Sub_Report entity's ReportSource to the found entity. SaveChanges. This workflow succeeded just fine for a couple of weeks. Then last week something changed and it doesn't work any more. Now instead of the save operation, I get this Exception: UpdateException: "Entities in 'DIR2_5Entities.ReportSourceSet' participate in the 'FK_ReportSources_ReportSourceTypes' relationship. 0 related 'ReportSourceTypes' were found. 1 'Report_Source_Types' is expected." The debug visualizer shows the following: The SubReport's ReportSource is set and loaded, and all of its properties are correct. The Report_Source has a valid ReportSourceType entity attached. In SQL Profiler the prepared SQL statement looks OK. Can anybody point me to what obvious thing I'm missing? TIA Notes: The Report and SubReport are always new entities in this case. The Report entity contains properties common to many types of reports and is used for generic queries. SubReports are specific reports with extra parameters varying by type. There is actually a different entity set for each type of SubReport, but this question applies to all of them, so I use SubReport as a simplified example.

    Read the article

  • MarshalException: CORBA MARSHAL 1398079745 / Could find classes

    - by user302049
    Hi, we did a cleanbuild in netbeans, checked the jdk version and deployed everything at the server but still got the following error. Can somebody help? javax.servlet.ServletException: #{RegistrationController.register}: javax.ejb.EJBException: nested exception is: java.rmi.MarshalException: CORBA MARSHAL 1398079745 Maybe; nested exception is: org.omg.CORBA.MARSHAL: ----------BEGIN server-side stack trace---------- org.omg.CORBA.MARSHAL: vmcid: SUN minor code: 257 completed: at com.sun.corba.ee.impl.logging.ORBUtilSystemException.couldNotFindClass(ORBUtilSystemException.java:9679) at com.sun.corba.ee.impl.logging.ORBUtilSystemException.couldNotFindClass(ORBUtilSystemException.java:9694) at com.sun.corba.ee.impl.encoding.CDRInputStream_1_0.read_value(CDRInputStream_1_0.java:1042) at com.sun.corba.ee.impl.encoding.CDRInputStream_1_0.read_value(CDRInputStream_1_0.java:896) ...

    Read the article

< Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >