Search Results

Search found 9899 results on 396 pages for 'random person'.

Page 122/396 | < Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >

  • Predicting Likelihood of Click with Multiple Presentations

    - by Michel Adar
    When using predictive models to predict the likelihood of an ad or a banner to be clicked on it is common to ignore the fact that the same content may have been presented in the past to the same visitor. While the error may be small if the visitors do not often see repeated content, it may be very significant for sites where visitors come repeatedly. This is a well recognized problem that usually gets handled with presentation thresholds – do not present the same content more than 6 times. Observations and measurements of visitor behavior provide evidence that something better is needed. Observations For a specific visitor, during a single session, for a banner in a not too prominent space, the second presentation of the same content is more likely to be clicked on than the first presentation. The difference can be 30% to 100% higher likelihood for the second presentation when compared to the first. That is, for example, if the first presentation has an average click rate of 1%, the second presentation may have an average CTR of between 1.3% and 2%. After the second presentation the CTR stays more or less the same for a few more presentations. The number of presentations in this plateau seems to vary by the location of the content in the page and by the visual attraction of the content. After these few presentations the CTR starts decaying with a curve that is very well approximated by an exponential decay. For example, the 13th presentation may have 90% the likelihood of the 12th, and the 14th has 90% the likelihood of the 13th. The decay constant seems also to depend on the visibility of the content. Modeling Options Now that we know the empirical data, we can propose modeling techniques that will correctly predict the likelihood of a click. Use presentation number as an input to the predictive model Probably the most straight forward approach is to add the presentation number as an input to the predictive model. While this is certainly a simple solution, it carries with it several problems, among them: If the model learns on each case, repeated non-clicks for the same content will reinforce the belief of the model on the non-clicker disproportionately. That is, the weight of a person that does not click for 200 presentations of an offer may be the same as 100 other people that on average click on the second presentation. The effect of the presentation number is not a customer characteristic or a piece of contextual data about the interaction with the customer, but it is contextual data about the content presented. Models tend to underestimate the effect of the presentation number. For these reasons it is not advisable to use this approach when the average number of presentations of the same content to the same person is above 3, or when there are cases of having the presentation number be very large, in the tens or hundreds. Use presentation number as a partitioning attribute to the predictive model In this approach we essentially build a separate predictive model for each presentation number. This approach overcomes all of the problems in the previous approach, nevertheless, it can be applied only when the volume of data is large enough to have these very specific sub-models converge.

    Read the article

  • SQL SERVER – Weekend Project – Visiting Friend’s Company – Koenig Solutions

    - by pinaldave
    I have decided to do some interesting experiments every weekend and share it next week as a weekend project on the blog. Many times our business lives and personal lives are very separate, however this post will talk about one instance where my two lives connect. This weekend I visited my friend’s company. My friend owns Koenig, so of course I am very interested so see that they are doing well.  I have been very impressed this year, as they have expanded into multiple cities and are offering more and more classes about Business Intelligence, Project Management, networking, and much more. Koenig Solutions originally were a company that focused on training IT professionals – from topics like databases and even English language courses.  As the company grew more popular, Koenig began their blog to keep fans updated, and gradually have added more and more courses. I am very happy for my friend’s success, but as a technology enthusiast I am also pleased with Koenig Solutions’ success.  Whenever anyone in our field improves, the field as a whole does better.  Koenig offers high quality classes on a variety of topics at a variety of levels, so anyone can benefit from browsing this blog. I am a big fan of technology (obviously), and I feel blessed to have gotten in on the “ground floor,” even though there are some people out there who think technology has advanced as far as possible – I believe they will be proven wrong.  And that is why I think companies like Koenig Solutions are so important – they are providing training and support in a quickly growing field, and providing job skills in this tough economy. I believe this particular post really highlights how I, and Koenig, feel about the IT industry.  It is quickly expanding, and job opportunities are sure to abound – but how can the average person get started in this exciting field?  This post emphasizes that knowledge is power – know what interests you in the IT field, get an education, and continue your training even after you’ve gotten your foot in the door. Koenig Solutions provides what I feel is one of the most important services in the modern world – in person training.  They obviously offer many online courses, but you can also set up physical, face-to-face training through their website.  As I mentioned before, they offer a wide variety of classes that cater to nearly every IT skill you can think of.  If you have more specific needs, they also offer one of the best English language training courses.  English is turning into the language of technology, so these courses can ensure that you are keeping up the pace. Koenig Solutions and I agree about how important training can be, and even better – they provide some of the best training around.  We share ideals and I am very happy see the success of my friend. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Training, SQLAuthority Author Visit, T SQL, Technology Tagged: Developer Training

    Read the article

  • Calculate Age using Date Field

    - by BRADINO
    So if you have a database table that has DOB borthdays as date fields, this is an easy way to query that table based on age parameters. The following examples assume that the date of birth date field is dob and the table name is people. Find people who are 30 years old SELECT DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0 AS `age` FROM `people` HAVING `age` = 30 Find people who are 31-42 years old SELECT DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0 AS `age` FROM `people` HAVING `age`>= 31 AND `age` <= 42 Find oldest person SELECT MAX(DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0) AS `age` FROM `people` Find youngest person SELECT MIN(DATE_FORMAT( FROM_DAYS( TO_DAYS( now( ) ) - TO_DAYS( `dob` ) ) , '%Y' ) +0) AS `age` FROM `people`

    Read the article

  • Design Book– Third Section (Implementing the Database)

    - by drsql
    The third section is the primary section that a person who has some decent knowledge and experience doing design will likely really find exciting. Whereas the first half of the book is there for fundamentals, this section is more skills based, and unless you are a walking encyclopedia of SQL Server syntax (and I am not), you have to use some form of reference to discover how to implement different sorts of problems using DDL, including Triggers, Constraints, etc;  Security; Source Control, etc....(read more)

    Read the article

  • Rumor Mill: New Features SQL 11

    - by Mike Femenella
    For those of you that remember the old Mike Myers SNL skit, talk amongst yourselves..I’ll give you a topic: This is purely based on 1 conversation with 1 person from the mothership (Microsoft). SQL 11 is in the works and supposedly includes readable mirrors and in the version beyond that read/write mirrors. Given the name I would assume that release would be (drum roll) 2011 some time. Discuss.

    Read the article

  • SQL SERVER – ColumnStore Index – Batch Mode vs Row Mode

    - by pinaldave
    What do you do when you are in a hurry and hear someone say things which you do not agree or is wrong? Well, let me tell you what I do or what I recently did. I was walking by and heard someone mentioning “Columnstore Index are really great as they are using Batch Mode which makes them seriously fast.” While I was passing by and I heard this statement my first reaction was I thought Columnstore Index can use both – Batch Mode and Row Mode. I stopped by even though I was in a hurry and asked the person if he meant that Columnstore indexes are seriously fast because they use Batch Mode all the time or Batch Mode is one of the reasons for Columnstore Index to be faster. He responded that Columnstore Indexes can run only in Batch Mode. However, I do not like to confront anybody without hearing their complete story. Honestly, I like to do information sharing and avoid confronting as much as possible. There are always ways to communicate the same positively. Well, this is what I did, I quickly pull up my earlier article on Columnstore Index and copied the script to SQL Server Management Studio. I created two versions of the script. 1) Very Large Table 2) Reasonably Small Table. I a query which uses columnstore index on both of the versions. I found very interesting result of the my tests. I saved my tests and sent it to the person who mentioned about that Columnstore Indexes are using Batch Mode only. He immediately acknowledged that indeed he was incorrect in saying that Columnstore Index uses only Batch Mode. What really caught my attention is that he also thanked me for sending him detail email instead of just having argument where he and I both were standing in the corridor and neither have no way to prove any theory. Here is the screenshots of the both the scenarios. 1) Columnstore Index using Batch Mode 2) Columnstore Index using Row Mode Here is the logic behind when Columnstore Index uses Batch Mode and when it uses Row Mode. A batch typically represents about 1000 rows of data. Batch mode processing also uses algorithms that are optimized for the multicore CPUs and increased memory throughput.  Batch mode processing spreads metadata access costs and overhead over all the rows in a batch.  Batch mode processing operates on compressed data when possible leading superior performance. Here is one last point – Columnstore Index can use Batch Mode or Row Mode but Batch Mode processing is only available in Columnstore Index. I hope this statement truly sums up the whole concept. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to get over “Did I lock the door?” syndrome

    - by Boonei
    I am person who always asks myself  ”Did I lock the house door?”,  And I do ask that question when I have almost reached office. I don’t have a bad memory or I am not a “forget it all after a min person”. Infact I have a fantastic memory of things. This problem has been haunting me for a very long time. My wife used to always have a angry face after we had get down from the car. Because after we have walked for about 20 yards I would run back to the car to check if I had locked the car, you see this problem exists for all locked objects. This happens everyday all round the year. Now a days I don’t have the problem ! I did not get the solution from any doctor or any book that that talks about my inner mind. It was a practical advice given by my aunt….. When I told her that I had this problem, she smiled and said its very very easy to get around this. I was stunned. The solution she gave me was simple. After I had locked the door, should hold the lock and look at it for 5 sec and say to myself   “I have locked the door”. Believe me it works like a charm. The reason why it works is my aunt goes to explain, that your mind always thinks twice of important things that we do on our daily life and raises doubts after sometime. The only way to stop is it by looking at it, holding it and telling yourself that its ok and its done. This holds good for all the things that you generally doubt like, did I turn off the AC?, did I turn off the lights in the house when I left?. Just look at it for 5 sec, hold it tell yourself its done. You will not look back. Image credit [Håkan Dahlström]   This article titled,How to get over “Did I lock the door?” syndrome, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Too Many Kittens To Juggle At Once

    - by Bil Simser
    Ahh, the Internet. That crazy, mixed up place where one tweet turns into a conversation between dozens of people and spawns a blogpost. This is the direct result of such an event this morning. It started innocently enough, with this: Then followed up by a blog post by Joel here. In the post, Joel introduces us to the term Business Solutions Architect with mad skillz like InfoPath, Access Services, Excel Services, building Workflows, and SSRS report creation, all while meeting the business needs of users in a SharePoint environment. I somewhat disagreed with Joel that this really wasn’t a new role (at least IMHO) and that a good Architect or BA should really be doing this job. As Joel pointed out when you’re building a SharePoint team this kind of role is often overlooked. Engineers might be able to build workflows but is the right workflow for the right problem? Michael Pisarek wrote about a SharePoint Business Architect a few months ago and it’s a pretty solid assessment. Again, I argue you really shouldn’t be looking for roles that don’t exist and I don’t suggest anyone create roles to hire people to fill them. That’s basically creating a solution looking for problems. Michael’s article does have some great points if you’re lost in the quagmire of SharePoint duties though (and I especially like John Ross’ quote “The coolest shit is worthless if it doesn’t meet business needs”). SharePoinTony summed it up nicely with “SharePoint Solutions knowledge is both lacking and underrated in most environments. Roles help”. Having someone on the team who can dance between a business user and a coder can be difficult. Remember the idea of telling something to someone and them passing it on to the next person. By the time the story comes round the circle it’s a shadow of it’s former self with little resemblance to the original tale. This is very much business requirements as they’re told by the user to a business analyst, written down on paper, read by an architect, tuned into a solution plan, and implemented by a developer. Transformations between what was said, what was heard, what was written down, and what was developed can be distant cousins. Not everyone has the skill of communication and even less have negotiation skills to suit the SharePoint platform. Negotiation is important because not everything can be (or should be) done in SharePoint. Sometimes it’s just not appropriate to build it on the SharePoint platform but someone needs to know enough about the platform and what limitations it might have, then communicate that (and/or negotiate) with a customer or user so it’s not about “You can’t have this” to “Let’s try it this way”. Visualize the possible instead of denying the impossible. So what is the right SharePoint team? My cromag brain came with a fairly simpleton answer (and I’m sure people will just say this is a cop-out). The perfect SharePoint team is just enough people to do the job that know the technology and business problem they’re solving. Bridge the gap between business need and technology platform and you have an architect. Communicate the needs of the business effectively so the entire team understands it and you have a business analyst. Can you get this with full time workers? Maybe but don’t expect miracles out of the gate. Also don’t take a consultant’s word as gospel. Some consultants just don’t have the diversity of the SharePoint platform to be worth their value so be careful. You really need someone who knows enough about SharePoint to be able to validate a consultants knowledge level. This is basically try for any consultant, not just a SharePoint one. Specialization is good and needed. A good, well-balanced SharePoint team is one of people that can solve problems with work with the technology, not against it. Having a top developer is great, but don’t rely on them to solve world hunger if they can’t communicate very well with users. An expert business analyst might be great at gathering requirements so the entire team can understand them, but if it means building 100% custom solutions because they don’t fit inside the SharePoint boundaries isn’t of much value. Just repeat. There is no silver bullet. There is no silver bullet. There is no silver bullet. A few people pointed out Nick Inglis’ article Excluding The Information Professional In SharePoint. It’s a good read too and hits home that maybe some developers and IT pros need some extra help in the information space. If you’re in an organization that needs labels on people, come up with something everyone understands and go with it. If that’s Business Solutions Architect, SharePoint Advisor, or Guy Who Knows A Lot About Portals, make it work for you. We all wish that one person could master all that is SharePoint but we also know that doesn’t scale very well and you quickly get into the hit-by-a-bus syndrome (with the organization coming to a full crawl when the guy or girl goes on vacation, gets sick, or pops out a baby). There are too many gaps in SharePoint knowledge to have any one person know it all and too many kittens to juggle all at once. We like to consider ourselves experts in our field, but trying to tackle too many roles at once and we end up being mediocre jack of all trades, master of none. Don't fall into this pit. It's a deep, dark hole you don't want to try to claw your way out of. Trust me. Been there. Done that. Got the t-shirt. In the end I don’t disagree with Joel. SharePoint is a beast and not something that should be taken on by newbies. If you just read “Teach Yourself SharePoint in 24 Hours” and want to go build your corporate intranet or the next killer business solution with all your new found knowledge plan to pony up consultant dollars a few months later when everything goes to Hell in a handbasket and falls over. I’m not saying don’t build solutions in SharePoint. I’m just saying that building effective ones takes skill like any craft and not something you can just cobble together with a little bit of cursory knowledge. Thanks to *everyone* who participated in this tweet rush. It was fun and educational.

    Read the article

  • Free Webinar on Improving Your Customer Experience with Integrated Channels

    - by divya.malik
    Join Oracle's Regional VP of CRM On Demand- Justin Shriber, Selling Power Magazine's CEO, Gerhard Gschwandtner and IDC Research's Gerrard Murray in an interesting discussion on how to "Integrate Sales Channels to Maximize Revenue & Improve the Customer Experience". You will learn how to: - Build a unified revenue pipeline to shorten sales cycles - Deliver a personalized customer experience and maximize up-sell opportunities - Align sales across all interaction, including online, in person, and via mobile devices - Improve the quality of each and every customer interaction Don't miss the opportunity and register now

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • SQLPeople Interviews Wrap Up January 2011 with Matt Velic

    - by andyleonard
    Introduction Late last year I announced an exciting new endeavor called SQLPeople . At the end of 2010 I announced the 2010 SQLPeople Person of the Year . Check out this interview with Matt Velic! SQLPeople is off to a great start. Thanks to all who have our first month awesome - those willing to share and respond to interview requests and those who are enjoying the interviews! Here's a wrap up of January 2011: January 2011 Interviews Matt Velic Cindy Gross Steve Fibich Tim Mitchell Jeremiah Peschka...(read more)

    Read the article

  • Linux Live USB Media

    <b>Jamie's Random Musings:</b> "It is pretty common these days for laptops, and even desktops, to be able to boot from a USB flash memory drive. So you can save a little time and a little money by converting various Linux distributions ISO images to bootable USB devices, rather than burning them to CD/DVD."

    Read the article

  • SQLPeople Interviews - Michael Coles and Brent Ozar

    - by andyleonard
    Introduction Late last year I announced an exciting new endeavor called SQLPeople . At the end of 2010 I announced the 2010 SQLPeople Person of the Year . More interviews have been posted. Interviews To Date Jamie Thomson Rob Farley Michael Coles Brent Ozar Conclusion I plan to post two or three interviews each week for the forseeable future. SQLPeople is just one of the cool new things I get to do in 2011! :{>...(read more)

    Read the article

  • On Turning 30&hellip;

    - by MOSSLover
    I know I am not a wise old sage like some people in the community.  I just turned 30 however I feel like all my years looking back have changed me.  My collective experiences and thoughts have given me a different perspective on life recently.  Seven months ago my head was in a gutter and since then a lot of things have happened.  I was always the weird kid in the corner reading Star Trek books.  When I was in elementary school I thought that kids would throw me birthday parties out of pity because I was the poor kid who everyone hated.  I am no longer that person.  I realized that during the worst possible period between my 29th and 30th year when I hit rock bottom.  You all know the insane story as I’ve told it two billion times over.  Honestly it was the best thing that ever happened to me in my life time, because many things would not have happened.  My friends came through for me at every given moment people from all over were checking up on me all over the world.  I fell and I landed on a bunch of people it was awesome.  I landed on family and friends who I thought I was never close enough to talk about these things.  They helped me realize I had a ton of unfulfilled dreams.  I got to move to New York City one of the greatest cities in the universe.  I got to do whatever I wanted without judgment from anyone.  I got to meet some great people at a few meetup groups in the past few months.  I got to meet an awesome person that I have been dating for 3 months.  I am trying to run for the 8 billionth time and keep up with it.  I got to go to Europe and next week for the first time New Orleans.  I got renewed for MVP for 2012.  I am grateful for all the people and things in my life.  I understand that sometimes when things seem bad you can always seek friends and family.  They will always help me.  I have to learn to lean on people sometimes just how they occasionally lean on me.  That is the biggest thing I have learned from the decade of 20 to 30.  I hope that 30 to 40 will be the best decade.  I hope that I can continue to grow.  I will catch you all later. Technorati Tags: Turning 30,Wisdom

    Read the article

  • StreamInsight and Reactive Framework Challenge

    In his blogpost Roman from the StreamInsight team asked if we could create a Reactive Framework version of what he had done in the post using StreamInsight.  For those who don’t know, the Reactive Framework or Rx to its friends is a library for composing asynchronous and event-based programs using observable collections in the .Net framework.  Yes, there is some overlap between StreamInsight and the Reactive Extensions but StreamInsight has more flexibility and power in its temporal algebra (Windowing, Alteration of event headers) Well here are two alternate ways of doing what Roman did. The first example is a mix of StreamInsight and Rx var rnd = new Random(); var RandomValue = 0; var interval = Observable.Interval(TimeSpan.FromMilliseconds((Int32)rnd.Next(500,3000))) .Select(i => { RandomValue = rnd.Next(300); return RandomValue; }); Server s = Server.Create("Default"); Microsoft.ComplexEventProcessing.Application a = s.CreateApplication("Rx SI Mischung"); var inputStream = interval.ToPointStream(a, evt => PointEvent.CreateInsert( System.DateTime.Now.ToLocalTime(), new { RandomValue = evt}), AdvanceTimeSettings.IncreasingStartTime, "Rx Sample"); var r = from evt in inputStream select new { runningVal = evt.RandomValue }; foreach (var x in r.ToPointEnumerable().Where(e => e.EventKind != EventKind.Cti)) { Console.WriteLine(x.Payload.ToString()); } This next version though uses the Reactive Extensions Only   var rnd = new Random(); var RandomValue = 0; Observable.Interval(TimeSpan.FromMilliseconds((Int32)rnd.Next(500, 3000))) .Select(i => { RandomValue = rnd.Next(300); return RandomValue; }).Subscribe(Console.WriteLine, () => Console.WriteLine("Completed")); Console.ReadKey();   These are very simple examples but both technologies allow us to do a lot more.  The ICEPObservable() design pattern was reintroduced in StreamInsight 1.1 and the more I use it the more I like it.  It is a very useful pattern when wanting to show StreamInsight samples as is the IEnumerable() pattern.

    Read the article

  • SQL SERVER – A Quick Look at Logging and Ideas around Logging

    - by pinaldave
    This blog post is written in response to the T-SQL Tuesday post on Logging. When someone talks about logging, personally I get lots of ideas about it. I have seen logging as a very generic term. Let me ask you this question first before I continue writing about logging. What is the first thing comes to your mind when you hear word “Logging”? Now ask the same question to the guy standing next to you. I am pretty confident that you will get  a different answer from different people. I decided to do this activity and asked 5 SQL Server person the same question. Question: What is the first thing comes to your mind when you hear the word “Logging”? Strange enough I got a different answer every single time. Let me just list what answer I got from my friends. Let us go over them one by one. Output Clause The very first person replied output clause. Pretty interesting answer to start with. I see what exactly he was thinking. SQL Server 2005 has introduced a new OUTPUT clause. OUTPUT clause has access to inserted and deleted tables (virtual tables) just like triggers. OUTPUT clause can be used to return values to client clause. OUTPUT clause can be used with INSERT, UPDATE, or DELETE to identify the actual rows affected by these statements. Here are some references for Output Clause: OUTPUT Clause Example and Explanation with INSERT, UPDATE, DELETE Reasons for Using Output Clause – Quiz Tips from the SQL Joes 2 Pros Development Series – Output Clause in Simple Examples Error Logs I was expecting someone to mention Error logs when it is about logging. The error log is the most looked place when there is any error either with the application or there is an error with the operating system. I have kept the policy to check my server’s error log every day. The reason is simple – enough time in my career I have figured out that when I am looking at error logs I find something which I was not expecting. There are cases, when I noticed errors in the error log and I fixed them before end user notices it. Other common practices I always tell my DBA friends to do is that when any error happens they should find relevant entries in the error logs and document the same. It is quite possible that they will see the same error in the error log  and able to fix the error based on the knowledge base which they have created. There can be many different kinds of error log files exists in SQL Server as well – 1) SQL Server Error Logs 2) Windows Event Log 3) SQL Server Agent Log 4) SQL Server Profile Log 5) SQL Server Setup Log etc. Here are some references for Error Logs: Recycle Error Log – Create New Log file without Server Restart SQL Error Messages Change Data Capture I got surprised with this answer. I think more than the answer I was surprised by the person who had answered me this one. I always thought he was expert in HTML, JavaScript but I guess, one should never assume about others. Indeed one of the cool logging feature is Change Data Capture. Change Data Capture records INSERTs, UPDATEs, and DELETEs applied to SQL Server tables, and makes a record available of what changed, where, and when, in simple relational ‘change tables’ rather than in an esoteric chopped salad of XML. These change tables contain columns that reflect the column structure of the source table you have chosen to track, along with the metadata needed to understand the changes that have been made. Here are some references for Change Data Capture: Introduction to Change Data Capture (CDC) in SQL Server 2008 Tuning the Performance of Change Data Capture in SQL Server 2008 Download Script of Change Data Capture (CDC) CDC and TRUNCATE – Cannot truncate table because it is published for replication or enabled for Change Data Capture Dynamic Management View (DMV) I like this answer. If asked I would have not come up with DMV right away but in the spirit of the original question, I think DMV does log the data. DMV logs or stores or records the various data and activity on the SQL Server. Dynamic management views return server state information that can be used to monitor the health of a server instance, diagnose problems, and tune performance. One can get plethero of information from DMVs – High Availability Status, Query Executions Details, SQL Server Resources Status etc. Here are some references for Dynamic Management View (DMV): SQL SERVER – Denali – DMV Enhancement – sys.dm_exec_query_stats – New Columns DMV – sys.dm_os_windows_info – Information about Operating System DMV – sys.dm_os_wait_stats Explanation – Wait Type – Day 3 of 28 DMV sys.dm_exec_describe_first_result_set_for_object – Describes the First Result Metadata for the Module Transaction Log Impact Detection Using DMV – dm_tran_database_transactions Log Files I almost flipped with this final answer from my friend. This should be probably the first answer. Yes, indeed log file logs the SQL Server activities. One can write infinite things about log file. SQL Server uses log file with the extension .ldf to manage transactions and maintain database integrity. Log file ensures that valid data is written out to database and system is in a consistent state. Log files are extremely useful in case of the database failures as with the help of full backup file database can be brought in the desired state (point in time recovery is also possible). SQL Server database has three recovery models – 1) Simple, 2) Full and 3) Bulk Logged. Each of the model uses the .ldf file for performing various activities. It is very important to take the backup of the log files (along with full backup) as one never knows when backup of the log file come into the action and save the day! How to Stop Growing Log File Too Big Reduce the Virtual Log Files (VLFs) from LDF file Log File Growing for Model Database – model Database Log File Grew Too Big master Database Log File Grew Too Big SHRINKFILE and TRUNCATE Log File in SQL Server 2008 Can I just say I loved this month’s T-SQL Tuesday Question. It really provoked very interesting conversation around me. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to implement a 2d collision detection for Android

    - by Michael Seun Araromi
    I am making a 2d space shooter using opengl ES. Can someone please show me how to implement a collision detection between the enemy ship and player ship. The code for the two classes are below: Player Ship Class: package com.proandroidgames; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.opengles.GL10; public class SSGoodGuy { public boolean isDestroyed = false; private int damage = 0; private FloatBuffer vertexBuffer; private FloatBuffer textureBuffer; private ByteBuffer indexBuffer; private float vertices[] = { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, }; private float texture[] = { 0.0f, 0.0f, 0.25f, 0.0f, 0.25f, 0.25f, 0.0f, 0.25f, }; private byte indices[] = { 0, 1, 2, 0, 2, 3, }; public void applyDamage(){ damage++; if (damage == SSEngine.PLAYER_SHIELDS){ isDestroyed = true; } } public SSGoodGuy() { ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4); byteBuf.order(ByteOrder.nativeOrder()); vertexBuffer = byteBuf.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); byteBuf = ByteBuffer.allocateDirect(texture.length * 4); byteBuf.order(ByteOrder.nativeOrder()); textureBuffer = byteBuf.asFloatBuffer(); textureBuffer.put(texture); textureBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public void draw(GL10 gl, int[] spriteSheet) { gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]); gl.glFrontFace(GL10.GL_CCW); gl.glEnable(GL10.GL_CULL_FACE); gl.glCullFace(GL10.GL_BACK); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer); gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE, indexBuffer); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glDisable(GL10.GL_CULL_FACE); } } Enemy Ship Class: package com.proandroidgames; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import java.util.Random; import javax.microedition.khronos.opengles.GL10; public class SSEnemy { public float posY = 0f; public float posX = 0f; public float posT = 0f; public float incrementXToTarget = 0f; public float incrementYToTarget = 0f; public int attackDirection = 0; public boolean isDestroyed = false; private int damage = 0; public int enemyType = 0; public boolean isLockedOn = false; public float lockOnPosX = 0f; public float lockOnPosY = 0f; private Random randomPos = new Random(); private FloatBuffer vertexBuffer; private FloatBuffer textureBuffer; private ByteBuffer indexBuffer; private float vertices[] = { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, }; private float texture[] = { 0.0f, 0.0f, 0.25f, 0.0f, 0.25f, 0.25f, 0.0f, 0.25f, }; private byte indices[] = { 0, 1, 2, 0, 2, 3, }; public void applyDamage() { damage++; switch (enemyType) { case SSEngine.TYPE_INTERCEPTOR: if (damage == SSEngine.INTERCEPTOR_SHIELDS) { isDestroyed = true; } break; case SSEngine.TYPE_SCOUT: if (damage == SSEngine.SCOUT_SHIELDS) { isDestroyed = true; } break; case SSEngine.TYPE_WARSHIP: if (damage == SSEngine.WARSHIP_SHIELDS) { isDestroyed = true; } break; } } public SSEnemy(int type, int direction) { enemyType = type; attackDirection = direction; posY = (randomPos.nextFloat() * 4) + 4; switch (attackDirection) { case SSEngine.ATTACK_LEFT: posX = 0; break; case SSEngine.ATTACK_RANDOM: posX = randomPos.nextFloat() * 3; break; case SSEngine.ATTACK_RIGHT: posX = 3; break; } posT = SSEngine.SCOUT_SPEED; ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4); byteBuf.order(ByteOrder.nativeOrder()); vertexBuffer = byteBuf.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); byteBuf = ByteBuffer.allocateDirect(texture.length * 4); byteBuf.order(ByteOrder.nativeOrder()); textureBuffer = byteBuf.asFloatBuffer(); textureBuffer.put(texture); textureBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public float getNextScoutX() { if (attackDirection == SSEngine.ATTACK_LEFT) { return (float) ((SSEngine.BEZIER_X_4 * (posT * posT * posT)) + (SSEngine.BEZIER_X_3 * 3 * (posT * posT) * (1 - posT)) + (SSEngine.BEZIER_X_2 * 3 * posT * ((1 - posT) * (1 - posT))) + (SSEngine.BEZIER_X_1 * ((1 - posT) * (1 - posT) * (1 - posT)))); } else { return (float) ((SSEngine.BEZIER_X_1 * (posT * posT * posT)) + (SSEngine.BEZIER_X_2 * 3 * (posT * posT) * (1 - posT)) + (SSEngine.BEZIER_X_3 * 3 * posT * ((1 - posT) * (1 - posT))) + (SSEngine.BEZIER_X_4 * ((1 - posT) * (1 - posT) * (1 - posT)))); } } public float getNextScoutY() { return (float) ((SSEngine.BEZIER_Y_1 * (posT * posT * posT)) + (SSEngine.BEZIER_Y_2 * 3 * (posT * posT) * (1 - posT)) + (SSEngine.BEZIER_Y_3 * 3 * posT * ((1 - posT) * (1 - posT))) + (SSEngine.BEZIER_Y_4 * ((1 - posT) * (1 - posT) * (1 - posT)))); } public void draw(GL10 gl, int[] spriteSheet) { gl.glBindTexture(GL10.GL_TEXTURE_2D, spriteSheet[0]); gl.glFrontFace(GL10.GL_CCW); gl.glEnable(GL10.GL_CULL_FACE); gl.glCullFace(GL10.GL_BACK); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer); gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE, indexBuffer); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glDisable(GL10.GL_CULL_FACE); } }

    Read the article

  • How to Research Keywords - 2 Sure Fire Ways to Get Buying Keywords

    When you seek information on "how to research keywords" you are told to search out long tail keywords with low competition and good search volume. What they don't tell is how to separate the info seekers from the buyers. Did you know that when a person sets out to search for something online they're either a) looking for information on a specific thing or b) looking to buy the specific thing!

    Read the article

  • Type of Blobs

    - by kaleidoscope
    With the release of Windows Azure November 2009 CTP, now we have two types of blobs. Block Blob - This blob type is in place since PDC 2008 and is optimized for streaming workloads. [Max Size allowed : 200GB] Page Blob - With November 2009 CTP release, a new blob type is added which is optimized for random read / writes called Page Blob. [Max Size allowed : 1TB] More details can be found at: http://geekswithblogs.net/IUnknown/archive/2009/11/16/azure-november-ctp-announced.aspx Amit, S

    Read the article

  • SQLAuthority News Meeting with Allen Bailochan Tuladhar An Unlimited Experience

    Allen TuladharI recently came back from my 9-day trip in Nepal and I must say that this is one of the best trips I had in my lifetime. Allen Bailochan Tuladhar is a wonderful person and an extreme enthusiast for Microsoft Technology. Allen is the Chief Executive Officer of Unlimited Technologies Pvt Ltd., Country Manager [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Multiple classes in a single .cs file - good or bad?

    - by Sergio
    Is it advisable to create multiple classes within a .cs file or should each .cs file have an individual class? For example: public class Items { public class Animal { } public class Person { } public class Object { } } Dodging the fact for a minute that this is a poor example of good architecture, is having more than a single class in a .cs file a code smell?

    Read the article

< Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >