Search Results

Search found 18191 results on 728 pages for 'single board'.

Page 122/728 | < Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >

  • Best Practices For Database Consolidation On Exadata - New Whitepapers

    - by Javier Puerta
     Best Practices For Database Consolidation On Exadata Database Machine (Nov. 2011) Consolidation can minimize idle resources, maximize efficiency, and lower costs when you host multiple schemas, applications or databases on a target system. Consolidation is a core enabler for deploying Oracle database on public and private clouds.This paper provides the Exadata Database Machine (Exadata) consolidation best practices to setup and manage systems and applications for maximum stability and availability:Download here Oracle Exadata Database Machine Consolidation: Segregating Databases and Roles (Sep. 2011) This paper is focused on the aspects of segregating databases from each other in a platform consolidation environment on an Oracle Exadata Database Machine. Platform consolidation is the consolidation of multiple databases on to a single Oracle Exadata Database Machine. When multiple databases are consolidated on a single Database Machine, it may be necessary to isolate certain database components or functions in order to meet business requirements and provide best practices for a secure consolidation. In this paper we outline the use of Oracle Exadata database-scoped security to securely separate database management and provide a detailed case study that illustrates the best practices. Download here

    Read the article

  • Wednesday at OpenWorld: Identity Management

    - by Tanu Sood
    Divide and conquer! Yes, divide and conquer today at Oracle OpenWorld with your colleagues to make the most of all things Identity Management since there’s a lot going on. Here’ the line-up for today: Wednesday, October 3, 2012 CON9458: End End-User-Managed Passwords and Increase Security with Oracle Enterprise Single Sign-On Plus 10:15 a.m. – 11:15 a.m., Moscone West 3008 Most customers have a broad variety of applications (internal, external, web, client server, host etc) and single sign-on systems that extend to some, but not all systems. This session will focus on how customers are using enterprise single sign-on can help extend single sign-on to virtually any application, without costly application modification while laying a foundation that will enable integration with a broader identity management platform. CON9494: Sun2Oracle: Identity Management Platform Transformation 11:45 a.m. – 12:45 p.m., Moscone West 3008 Sun customers are actively defining strategies for how they will modernize their identity deployments. Learn how customers like Avea and SuperValu are leveraging their Sun investment, evaluating areas of expansion/improvement and building momentum. CON9631: Entitlement-centric Access to SOA and Cloud Services 11:45 a.m. – 12:45 p.m., Marriott Marquis, Salon 7 How do you enforce that a junior trader can submit 10 trades/day, with a total value of $5M, if market volatility is low? How can hide sensitive patient information from clerical workers but make it visible to specialists as long as consent has been given or there is an emergency? In this session, Uberether and HerbaLife take the stage with Oracle to demonstrate how you can enforce such entitlements on a service not just within your intranet but also right at the perimeter. CON3957 - Delivering Secure Wi-Fi on the Tube as an Olympics Legacy from London 2012 11:45 a.m. – 12:45 p.m., Moscone West 3003 In this session, Virgin Media, the U.K.’s first combined provider of broadband, TV, mobile, and home phone services, shares how it is providing free secure Wi-Fi services to the London Underground, using Oracle Virtual Directory and Oracle Entitlements Server, leveraging back-end legacy systems that were never designed to be externalized. As an Olympics 2012 legacy, the Oracle architecture will form a platform to be consumed by other Virgin Media services such as video on demand. CON9493: Identity Management and the Cloud 1:15 p.m. – 2:15 p.m., Moscone West 3008 Security is the number one barrier to cloud service adoption.  Not so for industry leading companies like SaskTel, ConAgra foods and UPMC. This session will explore how these organizations are using Oracle Identity with cloud services and how some are offering identity management as a cloud service. CON9624: Real-Time External Authorization for Middleware, Applications, and Databases 3:30 p.m. – 4:30 p.m., Moscone West 3008 As organizations seek to grant access to broader and more diverse user populations, the importance of centrally defined and applied authorization policies become critical; both to identify who has access to what and to improve the end user experience.  This session will explore how customers are using attribute and role-based access to achieve these goals. CON9625: Taking Control of WebCenter Security 5:00 p.m. – 6:00 p.m., Moscone West 3008 Many organizations are extending WebCenter in a business to business scenario requiring secure identification and authorization of business partners and their users. Leveraging LADWP’s use case, this session will focus on how customers are leveraging, securing and providing access control to Oracle WebCenter portal and mobile solutions. EVENTS: Identity Management Customer Advisory Board 2:30 p.m. – 3:30 p.m., Four Seasons – Yerba Buena Room This invitation-only event is designed exclusively for Customer Advisory Board (CAB) members to provide product strategy and roadmap updates. Identity Management Meet & Greet Networking Event 3:30 p.m. – 4:30 p.m., Meeting Session 4:30 p.m. – 5:30 p.m., Cocktail Reception Yerba Buena Room, Four Seasons Hotel, 757 Market Street, San Francisco The CAB meeting will be immediately followed by an open Meet & Greet event hosted by Oracle Identity Management executives and product management team. Do take this opportunity to network with your peers and connect with the Identity Management customers. For a complete listing, refer to the Focus on Identity Management document. And as always, you can find us on @oracleidm on twitter and FaceBook. Use #oow and #idm to join in the conversation.

    Read the article

  • How do I prove or disprove "god" objects are wrong?

    - by honestduane
    Problem Summary: Long story short, I inherited a code base and an development team I am not allowed to replace and the use of God Objects is a big issue. Going forward, I want to have us re-factor things but I am getting push-back from the teams who want to do everything with God Objects "because its easier" and this means I would not be allowed to re-factor. I pushed back citing my years of dev experience, that I'm the new boss who was hired to know these things, etc, and so did the third party offshore companies account sales rep, and this is now at the executive level and my meeting is tomorrow and I want to go in with a lot of technical ammo to advocate best practices because I feel it will be cheaper in the long run (And I personally feel that is what the third party is worried about) for the company. My issue is from a technical level, I know its good long term but I'm having trouble with the ultra short term and 6 months term, and while its something I "know" I cant prove it with references and cited resources outside of one person (Robert C. Martin, aka Uncle Bob), as that is what I am being asked to do as I have been told having data from one person and only one person (Robert C Martin) is not good enough of an argument. Question: What are some resources I can cite directly (Title, year published, page number, quote) by well known experts in the field that explicitly say this use of "God" Objects/Classes/Systems is bad (or good, since we are looking for the most technically valid solution)? Research I have already done: I have a number of books here and I have searched their indexes for the use of the words "god object" and "god class". I found that oddly its almost never used and the copy of the GoF book I have for example, never uses it (At least according to the index in front of me) but I have found it in 2 books per the below, but I want more I can use. I checked the Wikipedia page for "God Object" and its currently a stub with little reference links so although I personally agree with that it says, It doesn't have much I can use in an environment where personal experience is not considered valid. The book cited is also considered too old to be valid by the people I am debating these technical points with as the argument they are making is that "it was once thought to be bad but nobody could prove it, and now modern software says "god" objects are good to use". I personally believe that this statement is incorrect, but I want to prove the truth, whatever it is. In Robert C Martin's "Agile Principles, Patterns, and Practices in C#" (ISBN: 0-13-185725-8, hardcover) where on page 266 it states "Everybody knows that god classes are a bad idea. We don't want to concentrate all the intelligence of a system into a single object or a single function. One of the goals of OOD is the partitioning and distribution of behavior into many classes and many function." -- And then goes on to say sometimes its better to use God Classes anyway sometimes (Citing micro-controllers as an example). In Robert C Martin's "Clean Code: A Handbook of Agile Software Craftsmanship" page 136 (And only this page) talks about the "God class" and calls it out as a prime example of a violation of the "classes should be small" rule he uses to promote the Single Responsibility Principle" starting on on page 138. The problem I have is all my references and citations come from the same person (Robert C. Martin), and am from the same single person/source. I am being told that because he is just one guy, my desire to not use "God Classes" is invalid and not accepted as a standard best practice in the software industry. Is this true? Am I doing things wrong from a technical perspective by trying to keep to the teaching of Uncle Bob? God Objects and Object Oriented Programming and Design: The more I think of this the more I think this is more something you learn when you study OOP and its never explicitly called out; Its implicit to good design is my thinking (Feel free to correct me, please, as I want to learn), The problem is I "know" this, but but not everybody does, so in this case its not considered a valid argument because I am effectively calling it out as universal truth when in fact most people are statistically ignorant of it since statistically most people are not programmers. Conclusion: I am at a loss on what to search for to get the best additional results to cite, since they are making a technical claim and I want to know the truth and be able to prove it with citations like a real engineer/scientist, even if I am biased against god objects due to my personal experience with code that used them. Any assistance or citations would be deeply appreciated.

    Read the article

  • Implementing a "state-machine" logic for methods required by an object in C++

    - by user827992
    What I have: 1 hypothetical object/class + other classes and related methods that gives me functionality. What I want: linking this object to 0 to N methods in realtime on request when an event is triggered Each event is related to a single method or a class, so a single event does not necessarily mean "connect this 1 method only" but can also mean "connect all the methods from that class or a group of methods" Avoiding linked lists because I have to browse the entire list to know what methods are linked, because this does not ensure me that the linked methods are kept in a particular order (let's say an alphabetic order by their names or classes), and also because this involve a massive amount of pointers usage. Example: I have an object Employee Jon, Jon acquires knowledge and forgets things pretty easily, so his skills may vary during a period of time, I'm responsible for what Jon can add or remove from his CV, how can I implement this logic?

    Read the article

  • Generic and type safe I/O model in any language

    - by Eduardo León
    I am looking for an I/O model, in any programming language, that is generic and type safe. By genericity, I mean there should not be separate functions for performing the same operations on different devices (read_file, read_socket, read_terminal). Instead, a single read operation works on all read-able devices, a single write operation works on all write-able devices, and so on. By type safety, I mean operations that do not make sense should not even be expressible in first place. Using the read operation on a non-read-able device ought to cause a type error at compile time, similarly for using the write operation on a non-write-able device, and so on. Is there any generic and type safe I/O model?

    Read the article

  • SQL SERVER – What is Incremental Statistics? – Performance improvements in SQL Server 2014 – Part 1

    - by Pinal Dave
    This is the first part of the series Incremental Statistics. Here is the index of the complete series. What is Incremental Statistics? – Performance improvements in SQL Server 2014 – Part 1 Simple Example of Incremental Statistics – Performance improvements in SQL Server 2014 – Part 2 DMV to Identify Incremental Statistics – Performance improvements in SQL Server 2014 – Part 3 Statistics are considered one of the most important aspects of SQL Server Performance Tuning. You might have often heard the phrase, with related to performance tuning. “Update Statistics before you take any other steps to tune performance”. Honestly, I have said above statement many times and many times, I have personally updated statistics before I start to do any performance tuning exercise. You may agree or disagree to the point, but there is no denial that Statistics play an extremely vital role in the performance tuning. SQL Server 2014 has a new feature called Incremental Statistics. I have been playing with this feature for quite a while and I find that very interesting. After spending some time with this feature, I decided to write about this subject over here. New in SQL Server 2014 – Incremental Statistics Well, it seems like lots of people wants to start using SQL Server 2014′s new feature of Incremetnal Statistics. However, let us understand what actually this feature does and how it can help. I will try to simplify this feature first before I start working on the demo code. Code for all versions of SQL Server Here is the code which you can execute on all versions of SQL Server and it will update the statistics of your table. The keyword which you should pay attention is WITH FULLSCAN. It will scan the entire table and build brand new statistics for you which your SQL Server Performance Tuning engine can use for better estimation of your execution plan. UPDATE STATISTICS TableName(StatisticsName) WITH FULLSCAN Who should learn about this? Why? If you are using partitions in your database, you should consider about implementing this feature. Otherwise, this feature is pretty much not applicable to you. Well, if you are using single partition and your table data is in a single place, you still have to update your statistics the same way you have been doing. If you are using multiple partitions, this may be a very useful feature for you. In most cases, users have multiple partitions because they have lots of data in their table. Each partition will have data which belongs to itself. Now it is very common that each partition are populated separately in SQL Server. Real World Example For example, if your table contains data which is related to sales, you will have plenty of entries in your table. It will be a good idea to divide the partition into multiple filegroups for example, you can divide this table into 3 semesters or 4 quarters or even 12 months. Let us assume that we have divided our table into 12 different partitions. Now for the month of January, our first partition will be populated and for the month of February our second partition will be populated. Now assume, that you have plenty of the data in your first and second partition. Now the month of March has just started and your third partition has started to populate. Due to some reason, if you want to update your statistics, what will you do? In SQL Server 2012 and earlier version You will just use the code of WITH FULLSCAN and update the entire table. That means even though you have only data in third partition you will still update the entire table. This will be VERY resource intensive process as you will be updating the statistics of the partition 1 and 2 where data has not changed at all. In SQL Server 2014 You will just update the partition of Partition 3. There is a special syntax where you can now specify which partition you want to update now. The impact of this is that it is smartly merging the new data with old statistics and update the entire statistics without doing FULLSCAN of your entire table. This has a huge impact on performance. Remember that the new feature in SQL Server 2014 does not change anything besides the capability to update a single partition. However, there is one feature which is indeed attractive. Previously, when table data were changed 20% at that time, statistics update were triggered. However, now the same threshold is applicable to a single partition. That means if your partition faces 20% data, change it will also trigger partition level statistics update which, when merged to your final statistics will give you better performance. In summary If you are not using a partition, this feature is not applicable to you. If you are using a partition, this feature can be very helpful to you. Tomorrow: We will see working code of SQL Server 2014 Incremental Statistics. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SQL Statistics, Statistics

    Read the article

  • Coding different states in Adventure Games

    - by Cardin
    I'm planning out an adventure game, and can't figure out what's the right way to implement the behaviour of a level depending on state of story progression. My single-player game features a huge world where the player has to interact with people in a town at various points in the game. However, depending on story progression, different things would be presented to the player, for e.g. the Guild Leader will change locations from the town square to various locations around the city; Doors would only unlock at certain times of the day after finishing a particular routine; Different cut-screen/trigger events happen only after a particular milestone has been reached. I naively thought of using a switch{} statement initially to decide what the NPC should say or which he could be found at, and making quest objectives interact-able only after checking a global game_state variable's condition. But I realised I would quickly run into a lot of different game states and switch-cases in order to change the behaviour of an object. That switch statement would also be massively hard to debug, and I guess it might also be hard to use in a level editor. So I thought, instead of having a single object with multiple states, maybe I should have multiple instances of the same object, with a single state. That way, if I use something like a level editor, I can put an instance of the NPC at all the different locations he could ever appear at, and also an instance for each conversation state he has. But that means there'll be a lot of inactive, invisible game objects floating around the level, which might be trouble for memory, or simply hard to see in a level editor, i don't know. Or simply, make an identical, but separate level for each game state. This feels the cleanest and bug-free way to do things, but it feels like massive manual work making sure each version of the level is really identical to each other. All my methods feel so inefficient, so to recap my question, is there a better or standardised way to implement behaviour of a level depending on state of story progression? PS: I don't have a level editor yet - thinking of using something like JME SDK or making my own.

    Read the article

  • What's wrong with JavaScript

    - by ts01
    There is a lot of buzz around Dart recently, often questioning Google motivations and utility of Dart as replacement for JavaScript. I was searching for rationale of creating Dart rather than investing more effort in ECMAScript. In well known leaked mail its author is saying that Javascript has historical baggage that cannot be solved without a clean break. But there is only one concrete example given (apart of performance concerns) of "fundamental language problems", which is an existence of a single Number primitive So, my questions are: How an existence of a single Number primitive can be a "fundamental problem"? Are there other known "fundamental problems" in JavaScript?

    Read the article

  • Dual Monitor results in 'greyed' windows

    - by paula
    This occurs in Maverick and Natty. Single screen is fine, mirror of single screen is fine. If the mirror box is unchecked and the second monitor is turned on to extend the desktop then all windows are greyed out (like they do when a process has timed out and is unresponsive) and pop up menus are greyed out but icons, panels and background are fine and the windows do operate (just can't see them well enough to use) I have a D620 with intel graphics. This machine did work with dual monitors at some time in the past, however I have been using another machine, a D630 with nvidia and it works fine. Yes, there have been any number of updates. I also upgraded from Maverick to Natty to see if it would go away. No joy. Also, the D620 has a dual boot windows system and the windows xp system works fine with daul monitors There is a forum thread that goes into more detail and there are a number of users experiencing this problem. Thread: greyed out windows Thanks for reading paula_ke

    Read the article

  • *DX11, HLSL* - Colour as 4 floats or one UINT

    - by Paul
    With the DX11 pipeline, would it be much quicker for the vertex buffer to pass one single UINT with one byte per channel to the input assembler, as opposed to three floats? Then the vertex shader would convert the four bytes to four floats, which I guess is the required colour format for the pipeline. In this instance, colour accuracy isn't an issue. The vertex buffer would need to be updated many times per frame, so using a single UINT and saving 12 bytes for every vertex could well be worth it: quicker uploads to vram and also less memory used. But the cost is the extra shader work for every vertex to convert each 8 bits of the input UNIT into a float. Anyone have an idea if it might be worth doing? Or, is it possible for the pipeline to be set to just internally use a four-byte colour format? The swap chain buffer has been initialised as DXGI_FORMAT_R8G8B8A8_UNORM, so ultimately that's how the colour will be written. Thanks!

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • MDM for Tax Authorities

    - by david.butler(at)oracle.com
    In last week’s MDM blog, we discussed MDM in the Public Sector. I want to continue that thread. After all, no industry faces tougher data quality problems than governmental organizations, and few industries suffer more significant down side consequences to poor operations than local, state and federal governments. One key challenge area is taxation. Tax Authorities face a multitude of IT challenges. Firstly, the data used in tax calculations is increasing in volume and complexity. They must improve service by introducing multi-channel contact centers and self-service capabilities. Security concerns necessitate increasingly sophisticated data protection procedures. And cost constraints are driving Tax Authorities to rely on off-the-shelf software for many of their functional areas. Compounding these issues is the fact that the IT architectures in operation at most revenue and collections agencies are very complex. They typically include multiple, disparate operational and analytical systems across which the sum total of data about individual constituents is fragmented. To make matters more complicated, taxation is not carried out by a single jurisdiction, and often sources of income including employers, investments and other sources of taxable income and deductions must also be tracked and shared among tax authorities. Collectively, these systems are involved in tax assessment and collections, risk analysis, scoring, tracking, auditing and investigation case management. The Problem of Constituent Data Management The infrastructure described above makes it very difficult to create a consolidated representation of a given party. Differing formats and data models mean that a constituent may be represented in one way in one system and in a different way in another. Individual records are frequently inaccurate, incomplete, out of date and/or inconsistent with other records relating to the same constituent. When constituent data must be aggregated and scored, information within each system must be rationalized and normalized so the agency can produce a constituent information file (CIF) that provides a single source of truth about that party. If information about that constituent changes, each system in turn must be updated. There have been many attempts to solve this problem with technology: from consolidating transactional systems to conducting manual systems integration projects and superimposing layers of business intelligence and analytics. All these approaches can be successful in solving a portion of the problem at a specific point in time, but without an enterprise perspective, anything gained is quickly lost again. Oracle Constituent Data Mastering for Tax Authorities: A Single View of the Constituent Oracle has a flexible and long-term solution to the problem of securely integrating and managing constituent data. The Oracle Solution for mastering Constituent Data for Tax Authorities is based on two core product offerings: Oracle Customer Hub and – optionally – Oracle Application Integration Architecture (AIA). Customer Hub is a master data management (MDM) product that centralizes, de-duplicates, and enriches constituent data. It unifies fragmented information without disrupting existing business processes or IT investments. Role based data access and privacy rules guarantee maximum security and privacy. Data is continuously and automatically synchronized with all source systems. With the Oracle Customer Hub managing the master constituent identity, every department can capture transaction activity against the same record, improving reporting accuracy, employee productivity, reliability of constituent analytics, and day-to-day constituent relationships. Oracle Application Integration Architecture provides a collection of core pre-built processes to support out of the box Master Data Governance across Oracle Customer Hub, Siebel CRM, and Oracle E-Business Suite. It also provides a framework to enable MDM integrations with other Oracle and non-Oracle applications. Oracle AIA removes some of the key inhibitors to implementing a service-oriented architecture (SOA) by providing a pre-built SOA-based middleware foundation as well as industry-optimized service oriented applications, all built around a SOA governance model that encourages effective design and reuse. I encourage you to read Oracle Solution for Mastering Constituents Data for Public Sector – Tax Authorities by Roberto Negro. It is an outstanding whitepaper that describes how the Oracle MDM solution allows you to create a unified, reconciled source of high-quality constituent data and gain an accurate single view of each constituent. This foundation enables you to lower the costs associated with data quality and integration and create a tax organization that is efficient, secure and constituent-centric. Also, don’t forget the upcoming webcast on Thursday, February 10th: Deliver Improved Services to Citizens at Lower Cost to your Organization Our Guest Speaker is Ruben Spekle, from Capgemini. He will also provide insight into Public Sector Master Data Management and Case Management implementations including one that was executed for a Dutch Government Agency. If you are interested in how governmental organizations from around the world are using MDM to advance their cause, click here to register for the webcast.

    Read the article

  • Sign on Experience with Office 365

    - by Sahil Malik
    SharePoint 2010 Training: more information Office 365 offers two types of identities: · Microsoft Online Services cloud IDs (Cloud Identity): This is the default identity Microsoft provides you, requires no additional setup, you sign up for Office 365 and you are provided a credential. You can sign in using forms based authentication, the password policy etc. for which is stored in the cloud with the Office 365 service. The advantage obviously is no additional setup headache. The disadvantage? Yet another password to remember, and no hope of authenticated single sign on integration using this cloud identity with other services at least in the current version. · Federated IDs (Federated Identity): In companies with on-premises Active Directory, users can sign into Office 365 services using their Active Directory credentials. The corporate Active Directory authenticates the users, and stores and controls the password policy. The advantage here is plenty of single sign on possibilities and better user experience. The downside, more Read full article ....

    Read the article

  • What&rsquo;s new in RadChart for 2010 Q1 (Silverlight / WPF)

    Greetings, RadChart fans! It is with great pleasure that I present this short highlight of our accomplishments for the Q1 release :). Weve worked very hard to make the best silverlight and WPF charting product even better. Here is some of what we did during the past few months.   1) Zooming&Scrolling and the new sampling engine: Without a doubt one of the most important things we did. This new feature allows you to bind your chart to a very large set of data with blazing performance. Dont take my word for it give it a try!   2) New Smart Label Positioning and Spider-like labels feature: This new feature really helps with very busy graphs. You can play with the different settings we offer in this example.   3) Sorting and Filtering. Much like our RadGridview control the chart now allows you to sort and filter your data out of the box with a single line of code!   4) Legend improvements Weve also been paying attention to those of you who wanted a much improved legend. It is now possible to customize the look and feel of legend items and legend position with a single click.   5) Custom palette brushes. You have told us that you want to easily customize all palette colors using a single clean API from both XAML and code behind. The new custom palette brushes API does exactly that.   There are numerous other improvements as well, as much improved themes, performance optimizations and other features that we did. If you want to dig in further check the release notes and changes and backwards compatibility topics.   Feel free to share the pains and gains of working with RadChart. Our team is always open to receiving constructive feedback and beer :-)Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Using branchs for a mini project or module of project: Good practice?

    - by TheLQ
    In my repo I have 3 closely related mini projects: 1 server and 2 clients. They are all quite small (<3 files each). Since they are so small and so closely related I just dropped them in folders in one single repo. However now that I know I can't clone a single directory in my VCS of choice (Mercurial), I'm considering splitting them up. However I'm confused about general best practice: Is it okay to put different small projects in different branches, or should they all go in different repos? I'm currently leaning towards branching since I can't easily splice out the file history of the different projects but then your using a feature in a way it wasn't meant to be used.

    Read the article

  • Gerrit, git and reviewing whole branch

    - by liori
    I'm now learning Gerrit (which is the first code review tool I use). Gerrit requires a reviewed change to consist of a single commit. My feature branch has about 10 commits. The gerrit-prefered way is to squash those 10 commits into a single one. However this way if the commit will be merged into the target branch, the internal history of that feature branch will be lost. For example, I won't be able to use git-bisect to bisect into those commits. Am I right? I am a little bit worried about this state of things. What is the rationale for this choice? Is there any way of doing this in Gerrit without losing history?

    Read the article

  • Commands in Task-It - Part 2

    Download Source Code NOTE: To run the source code provided you will need the recently released versions of Silverlight 4 and VisualStudio 2010, as well as WCF RIA Services. After downloading the source code be sure to set Commands2.Web as the StartUp Project and Default.aspx as the StartPage. In my last post, Commands in Task-It - Part 1, we looked at a very simple solution that demonstrated how a single command instance (SaveCommand) could be bound to two UI controls, a Button and a RadTreeViewItem. In this example we'll get more complex, binding a single command instance (MoveToCommand) will be bound to multiple RadMenuItems in a RadContextMenu that is tied to a RadGridView. This time we'll also set a separate CommandParameter on each RadMenuItem, so when the command is invoked, we will be able to use that parameter to determine what to do next. The user interface This screen ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • A big flat text file or a HTML site for language documentation?

    - by Bad Sector
    A project of mine is a small embeddable Tcl-like scripting language, LIL. While i'm mostly making it for my own use, i think it is interesting enough for others to use, so i want it to have a nice (but not very "wordy") documentation. So far i'm using a single flat readme.txt file. It explains the language's syntax, features, standard functions, how to use the C API, etc. Also it is easy to scan and read in almost every environment out there, from basic text-only terminals to full-fledged high-end graphical desktop environments. However, while i tried to keep things nicely formatted (as much as this is possible in plain text), i still think that being a big (and growing) wall of text, it isn't as easy on the eyes as it could be. Also i feel that sometimes i'm not writing as much as i want in order to avoid expanding the text too much. So i thought i could use another project of mine, QuHelp, which is basically a help site generator for sites like this one with a sidebar that provides a tree of topics/subtopics and offline full text search. With this i can use HTML to format the documentation and if i use QuHelp for some other project that uses LIL, i can import LIL's documentation as part of the other project's documentation. However converting the existing documentation to QuHelp/HTML isn't a small task, especially when it comes to functions (i'll need to put more detail on them than what currently exists in the readme.txt file). Also it loses the wide range of availability that it currently has (even if QuHelp's generated code degrades gracefully down to console-only web browsers, plain text is readable from everywhere, including from popular editors such as Vim and Emacs - i had someone once telling me that he likes LIL's documentation because it is readable without leaving his editor). So, my question is simply this: should i keep the documentation as it is now in the form of a single readme.txt file or should i convert it to something like the site i mentioned above? There is also the option to do both, but i'm not sure if i'll be able to always keep them in sync or if it is worth the effort. After asking around in IRC i've got mixed answers: some liked the wide availability of the single text file, others said that it is looks as bad as a man page (personally i don't mind that - i can read man pages just fine - but other people might have issues reading them). What do you think?

    Read the article

  • How to use Google Analytics to track a development and production versions of the same site on different servers?

    - by Abe
    I have a website with two versions, one for production and one for development (testing new features). All of the code is under version control and the websites are on separate servers. Currently, I have the same Google Analytics Tracking code used on both sites. Since the code is under version control, it would be ideal to either have an if I am on production, use this code; else if on development server use that code clause. But I suspect that Google makes it easier to do something like this. I see that there are many ways to configure a GA tracking code, e.g. "a single domain" vs. "multiple top level domains". But it is not clear to me how to set this up. Also, if tracking code configured for a single domain has been on the development server, have I been picking up traffic to both sites, or does GA just ignore the second domain that I haven't registered?

    Read the article

  • Tuxedo Load Balancing

    - by Todd Little
    A question I often receive is how does Tuxedo perform load balancing.  This is often asked by customers that see an imbalance in the number of requests handled by servers offering a specific service. First of all let me say that Tuxedo really does load or request optimization instead of load balancing.  What I mean by that is that Tuxedo doesn't attempt to ensure that all servers offering a specific service get the same number of requests, but instead attempts to ensure that requests are processed in the least amount of time.   Simple round robin "load balancing" can be employed to ensure that all servers for a particular service are given the same number of requests.  But the question I ask is, "to what benefit"?  Instead Tuxedo scans the queues (which may or may not correspond to servers based upon SSSQ - Single Server Single Queue or MSSQ - Multiple Server Single Queue) to determine on which queue a request should be placed.  The scan is always performed in the same order and during the scan if a queue is empty the request is immediately placed on that queue and request routing is done.  However, should all the queues be busy, meaning that requests are currently being processed, Tuxedo chooses the queue with the least amount of "work" queued to it where work is the sum of all the requests queued weighted by their "load" value as defined in the UBBCONFIG file.  What this means is that under light loads, only the first few queues (servers) process all the requests as an empty queue is often found before reaching the end of the scan.  Thus the first few servers in the queue handle most of the requests.  While this sounds non-optimal, in fact it capitalizes on the underlying operating systems and hardware behavior to produce the best possible performance.  Round Robin scheduling would spread the requests across all the available servers and thus require all of them to be in memory, and likely not share much in the way of hardware or memory caches.  Tuxedo's system maximizes the various caches and thus optimizes overall performance.  Hopefully this makes sense and now explains why you may see a few servers handling most of the requests.  Under heavy load, meaning enough load to keep all servers that can handle a request busy, you should see a relatively equal number of requests processed.  Next post I'll try and cover how this applies to servers in a clustered (MP) environment because the load balancing there is a little more complicated. Regards,Todd LittleOracle Tuxedo Chief Architect

    Read the article

  • How should I make searching a relational database more efficient?

    - by Travis J
    This is in the scope of a web application. I have a database which has a few nested relations. There is a feature which depicts the history of a large chain of relations. It is essentially a data analysis feature. The issue is that in order to search, a large object graph must be loaded - the loading time for this object graph is not quick enough to be viable. The problem is that without loading the whole graph it makes searching from a single string nearly impossible. In order to search, explicit fields must be specified and the search data supplied. Is there a design pattern for exposing the data in a way which facilitates a single string search instead of having to explicitly define parameters?

    Read the article

  • Xorg.conf (nvidia) Second Monitor getting settings of first

    - by HennyH
    I've been spending the weekend (and some time before that) trying to set up my Korean QHD270 and Benq G2222HDL monitors with Ubuntu 13.10. With the nouveau drivers install both monitor function perfectly fine. After installing the nvidia drivers the Benq works but the QHD270 does not. Now, after days of struggling I managed to get the QHD270 to work following a mixture of blogs, particularly; this one and learnitwithme. Now, unfortunatly my G2222HDL does not work. I fixed the QHD270 by supplying a custom EDID, my xorg.conf looks like so (excluding keyboard and mouse): Section "ServerLayout" Identifier "Layout0" Screen "Default Screen" 0 0 InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" EndSection Section "Monitor" Identifier "Configured Monitor" EndSection Section "Device" Identifier "Configured Video Device" Driver "nvidia" Option "CustomEDID" "DFP:/etc/X11/edid-shimian.bin" EndSection Section "Screen" Identifier "Default Screen" Device "Configured Video Device" Monitor "Configured Monitor" EndSection Now, I tried defining a new Device,Monitor and Screen then in ServerLayout adding Screen "Second Screen" RightOf "Default Screen", but after doing so neither monitor worked. Hoping to fix the issue using a GUI based tool I opened up NVIDIA X Server Settings, which shows my current layout as: It seems that something is being output to the monitor, as suggested by my print screen: Any help would be greatly appreciated. Output of xrandr: Screen 0: minimum 8 x 8, current 5120 x 1440, maximum 16384 x 16384 DVI-I-0 disconnected (normal left inverted right x axis y axis) DVI-I-1 connected primary 2560x1440+0+0 (normal left inverted right x axis y axis) 597mm x 336mm 2560x1440 60.0*+ HDMI-0 disconnected (normal left inverted right x axis y axis) DP-0 disconnected (normal left inverted right x axis y axis) DVI-D-0 connected 2560x1440+2560+0 (normal left inverted right x axis y axis) 597mm x 336mm 2560x1440 60.0*+ DP-1 disconnected (normal left inverted right x axis y axis) And an extract from my log file (perhaps this is relevant?) [ 7.862] (--) NVIDIA(0): Valid display device(s) on GeForce GTX 680 at PCI:2:0:0 [ 7.862] (--) NVIDIA(0): CRT-0 [ 7.862] (--) NVIDIA(0): ACB QHD270 (DFP-0) (boot, connected) [ 7.862] (--) NVIDIA(0): DFP-1 [ 7.862] (--) NVIDIA(0): DFP-2 [ 7.862] (--) NVIDIA(0): DFP-3 [ 7.862] (--) NVIDIA(0): DFP-4 [ 7.862] (--) NVIDIA(0): CRT-0: 400.0 MHz maximum pixel clock [ 7.862] (--) NVIDIA(0): ACB QHD270 (DFP-0): 330.0 MHz maximum pixel clock [ 7.862] (--) NVIDIA(0): ACB QHD270 (DFP-0): Internal Dual Link TMDS [ 7.862] (--) NVIDIA(0): DFP-1: 165.0 MHz maximum pixel clock [ 7.862] (--) NVIDIA(0): DFP-1: Internal Single Link TMDS [ 7.862] (--) NVIDIA(0): DFP-2: 165.0 MHz maximum pixel clock [ 7.862] (--) NVIDIA(0): DFP-2: Internal Single Link TMDS [ 7.862] (--) NVIDIA(0): DFP-3: 330.0 MHz maximum pixel clock [ 7.862] (--) NVIDIA(0): DFP-3: Internal Single Link TMDS [ 7.862] (--) NVIDIA(0): DFP-4: 960.0 MHz maximum pixel clock [ 7.862] (--) NVIDIA(0): DFP-4: Internal DisplayPort

    Read the article

  • EM12c Release 4: Database as a Service Enhancements

    - by Adeesh Fulay
    Oracle Enterprise Manager 12.1.0.4 (or simply put EM12c R4) is the latest update to the product. As previous versions, this release provides tons of enhancements and bug fixes, attributing to improved stability and quality. One of the areas that is most exciting and has seen tremendous growth in the last few years is that of Database as a Service. EM12c R4 provides a significant update to Database as a Service. The key themes are: Comprehensive Database Service Catalog (includes single instance, RAC, and Data Guard) Additional Storage Options for Snap Clone (includes support for Database feature CloneDB) Improved Rapid Start Kits Extensible Metering and Chargeback Miscellaneous Enhancements 1. Comprehensive Database Service Catalog Before we get deep into implementation of a service catalog, lets first understand what it is and what benefits it provides. Per ITIL, a service catalog is an exhaustive list of IT services that an organization provides or offers to its employees or customers. Service catalogs have been widely popular in the space of cloud computing, primarily as the medium to provide standardized and pre-approved service definitions. There is already some good collateral out there that talks about Oracle database service catalogs. The two whitepapers i recommend reading are: Service Catalogs: Defining Standardized Database Service High Availability Best Practices for Database Consolidation: The Foundation for Database as a Service [Oracle MAA] EM12c comes with an out-of-the-box service catalog and self service portal since release 1. For the customers, it provides the following benefits: Present a collection of standardized database service definitions, Define standardized pools of hardware and software for provisioning, Role based access to cater to different class of users, Automated procedures to provision the predefined database definitions, Setup chargeback plans based on service tiers and database configuration sizes, etc Starting Release 4, the scope of services offered via the service catalog has been expanded to include databases with varying levels of availability - Single Instance (SI) or Real Application Clusters (RAC) databases with multiple data guard based standby databases. Some salient points of the data guard integration: Standby pools can now be defined across different datacenters or within the same datacenter as the primary (this helps in modelling the concept of near and far DR sites) The standby databases can be single instance, RAC, or RAC One Node databases Multiple standby databases can be provisioned, where the maximum limit is determined by the version of database software The standby databases can be in either mount or read only (requires active data guard option) mode All database versions 10g to 12c supported (as certified with EM 12c) All 3 protection modes can be used - Maximum availability, performance, security Log apply can be set to sync or async along with the required apply lag The different service levels or service tiers are popularly represented using metals - Platinum, Gold, Silver, Bronze, and so on. The Oracle MAA whitepaper (referenced above) calls out the various service tiers as defined by Oracle's best practices, but customers can choose any logical combinations from the table below:  Primary  Standby [1 or more]  EM 12cR4  SI  -  SI  SI  RAC -  RAC SI  RAC RAC  RON -  RON RON where RON = RAC One Node is supported via custom post-scripts in the service template A sample service catalog would look like the image below. Here we have defined 4 service levels, which have been deployed across 2 data centers, and have 3 standardized sizes. Again, it is important to note that this is just an example to get the creative juices flowing. I imagine each customer would come up with their own catalog based on the application requirements, their RTO/RPO goals, and the product licenses they own. In the screenwatch titled 'Build Service Catalog using EM12c DBaaS', I walk through the complete steps required to setup this sample service catalog in EM12c. 2. Additional Storage Options for Snap Clone In my previous blog posts, i have described the snap clone feature in detail. Essentially, it provides a storage agnostic, self service, rapid, and space efficient approach to solving your data cloning problems. The net benefit is that you get incredible amounts of storage savings (on average 90%) all while cloning databases in a matter of minutes. Space and Time, two things enterprises would love to save on. This feature has been designed with the goal of providing data cloning capabilities while protecting your existing investments in server, storage, and software. With this in mind, we have pursued with the dual solution approach of Hardware and Software. In the hardware approach, we connect directly to your storage appliances and perform all low level actions required to rapidly clone your databases. While in the software approach, we use an intermediate software layer to talk to any storage vendor or any storage configuration to perform the same low level actions. Thus delivering the benefits of database thin cloning, without requiring you to drastically changing the infrastructure or IT's operating style. In release 4, we expand the scope of options supported by snap clone with the addition of database CloneDB. While CloneDB is not a new feature, it was first introduced in 11.2.0.2 patchset, it has over the years become more stable and mature. CloneDB leverages a combination of Direct NFS (or dNFS) feature of the database, RMAN image copies, sparse files, and copy-on-write technology to create thin clones of databases from existing backups in a matter of minutes. It essentially has all the traits that we want to present to our customers via the snap clone feature. For more information on cloneDB, i highly recommend reading the following sources: Blog by Tim Hall: Direct NFS (DNFS) CloneDB in Oracle Database 11g Release 2 Oracle OpenWorld Presentation by Cern: Efficient Database Cloning using Direct NFS and CloneDB The advantages of the new CloneDB integration with EM12c Snap Clone are: Space and time savings Ease of setup - no additional software is required other than the Oracle database binary Works on all platforms Reduce the dependence on storage administrators Cloning process fully orchestrated by EM12c, and delivered to developers/DBAs/QA Testers via the self service portal Uses dNFS to delivers better performance, availability, and scalability over kernel NFS Complete lifecycle of the clones managed by EM12c - performance, configuration, etc 3. Improved Rapid Start Kits DBaaS deployments tend to be complex and its setup requires a series of steps. These steps are typically performed across different users and different UIs. The Rapid Start Kit provides a single command solution to setup Database as a Service (DBaaS) and Pluggable Database as a Service (PDBaaS). One command creates all the Cloud artifacts like Roles, Administrators, Credentials, Database Profiles, PaaS Infrastructure Zone, Database Pools and Service Templates. Once the Rapid Start Kit has been successfully executed, requests can be made to provision databases and PDBs from the self service portal. Rapid start kit can create complex topologies involving multiple zones, pools and service templates. It also supports standby databases and use of RMAN image backups. The Rapid Start Kit in reality is a simple emcli script which takes a bunch of xml files as input and executes the complete automation in a matter of seconds. On a full rack Exadata, it took only 40 seconds to setup PDBaaS end-to-end. This kit works for both Oracle's engineered systems like Exadata, SuperCluster, etc and also on commodity hardware. One can draw parallel to the Exadata One Command script, which again takes a bunch of inputs from the administrators and then runs a simple script that configures everything from network to provisioning the DB software. Steps to use the kit: The kit can be found under the SSA plug-in directory on the OMS: EM_BASE/oracle/MW/plugins/oracle.sysman.ssa.oms.plugin_12.1.0.8.0/dbaas/setup It can be run from this default location or from any server which has emcli client installed For most scenarios, you would use the script dbaas/setup/database_cloud_setup.py For Exadata, special integration is provided to reduce the number of inputs even further. The script to use for this scenario would be dbaas/setup/exadata_cloud_setup.py The database_cloud_setup.py script takes two inputs: Cloud boundary xml: This file defines the cloud topology in terms of the zones and pools along with host names, oracle home locations or container database names that would be used as infrastructure for provisioning database services. This file is optional in case of Exadata, as the boundary is well know via the Exadata system target available in EM. Input xml: This file captures inputs for users, roles, profiles, service templates, etc. Essentially, all inputs required to define the DB services and other settings of the self service portal. Once all the xml files have been prepared, invoke the script as follows for PDBaaS: emcli @database_cloud_setup.py -pdbaas -cloud_boundary=/tmp/my_boundary.xml -cloud_input=/tmp/pdb_inputs.xml          The script will prompt for passwords a few times for key users like sysman, cloud admin, SSA admin, etc. Once complete, you can simply log into EM as the self service user and request for databases from the portal. More information available in the Rapid Start Kit chapter in Cloud Administration Guide.  4. Extensible Metering and Chargeback  Last but not the least, Metering and Chargeback in release 4 has been made extensible in all possible regards. The new extensibility features allow customer, partners, system integrators, etc to : Extend chargeback to any target type managed in EM Promote any metric in EM as a chargeback entity Extend list of charge items via metric or configuration extensions Model abstract entities like no. of backup requests, job executions, support requests, etc  A slew of emcli verbs have also been added that allows administrators to create, edit, delete, import/export charge plans, and assign cost centers all via the command line. More information available in the Chargeback API chapter in Cloud Administration Guide. 5. Miscellaneous Enhancements There are other miscellaneous, yet important, enhancements that are worth a mention. These mostly have been asked by customers like you. These are: Custom naming of DB Services Self service users can provide custom names for DB SID, DB service, schemas, and tablespaces Every custom name is validated for uniqueness in EM 'Create like' of Service Templates Now creating variants of a service template is only a click away. This would be vital when you publish service templates to represent different database sizes or service levels. Profile viewer View the details of a profile like datafile, control files, snapshot ids, export/import files, etc prior to its selection in the service template Cleanup automation - for failed and successful requests Single emcli command to cleanup all remnant artifacts of a failed request Cleanup can be performed on a per request bases or by the entire pool As an extension, you can also delete successful requests Improved delete user workflow Allows administrators to reassign cloud resources to another user or delete all of them Support for multiple tablespaces for schema as a service In addition to multiple schemas, user can also specify multiple tablespaces per request I hope this was a good introduction to the new Database as a Service enhancements in EM12c R4. I encourage you to explore many of these new and existing features and give us feedback. Good luck! References: Cloud Management Page on OTN Cloud Administration Guide [Documentation] -- Adeesh Fulay (@adeeshf)

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 2

    - by Simon Cooper
    Before we look any further at the CLR metadata, we need a quick diversion to understand how the metadata is actually stored. Encoding table information As an example, we'll have a look at a row in the TypeDef table. According to the spec, each TypeDef consists of the following: Flags specifying various properties of the class, including visibility. The name of the type. The namespace of the type. What type this type extends. The field list of this type. The method list of this type. How is all this data actually represented? Offset & RID encoding Most assemblies don't need to use a 4 byte value to specify heap offsets and RIDs everywhere, however we can't hard-code every offset and RID to be 2 bytes long as there could conceivably be more than 65535 items in a heap or more than 65535 fields or types defined in an assembly. So heap offsets and RIDs are only represented in the full 4 bytes if it is required; in the header information at the top of the #~ stream are 3 bits indicating if the #Strings, #GUID, or #Blob heaps use 2 or 4 bytes (the #US stream is not accessed from metadata), and the rowcount of each table. If the rowcount for a particular table is greater than 65535 then all RIDs referencing that table throughout the metadata use 4 bytes, else only 2 bytes are used. Coded tokens Not every field in a table row references a single predefined table. For example, in the TypeDef extends field, a type can extend another TypeDef (a type in the same assembly), a TypeRef (a type in a different assembly), or a TypeSpec (an instantiation of a generic type). A token would have to be used to let us specify the table along with the RID. Tokens are always 4 bytes long; again, this is rather wasteful of space. Cutting the RID down to 2 bytes would make each token 3 bytes long, which isn't really an optimum size for computers to read from memory or disk. However, every use of a token in the metadata tables can only point to a limited subset of the metadata tables. For the extends field, we only need to be able to specify one of 3 tables, which we can do using 2 bits: 0x0: TypeDef 0x1: TypeRef 0x2: TypeSpec We could therefore compress the 4-byte token that would otherwise be needed into a coded token of type TypeDefOrRef. For each type of coded token, the least significant bits encode the table the token points to, and the rest of the bits encode the RID within that table. We can work out whether each type of coded token needs 2 or 4 bytes to represent it by working out whether the maximum RID of every table that the coded token type can point to will fit in the space available. The space available for the RID depends on the type of coded token; a TypeOrMethodDef coded token only needs 1 bit to specify the table, leaving 15 bits available for the RID before a 4-byte representation is needed, whereas a HasCustomAttribute coded token can point to one of 18 different tables, and so needs 5 bits to specify the table, only leaving 11 bits for the RID before 4 bytes are needed to represent that coded token type. For example, a 2-byte TypeDefOrRef coded token with the value 0x0321 has the following bit pattern: 0 3 2 1 0000 0011 0010 0001 The first two bits specify the table - TypeRef; the other bits specify the RID. Because we've used the first two bits, we've got to shift everything along two bits: 000000 1100 1000 This gives us a RID of 0xc8. If any one of the TypeDef, TypeRef or TypeSpec tables had more than 16383 rows (2^14 - 1), then 4 bytes would need to be used to represent all TypeDefOrRef coded tokens throughout the metadata tables. Lists The third representation we need to consider is 1-to-many references; each TypeDef refers to a list of FieldDef and MethodDef belonging to that type. If we were to specify every FieldDef and MethodDef individually then each TypeDef would be very large and a variable size, which isn't ideal. There is a way of specifying a list of references without explicitly specifying every item; if we order the MethodDef and FieldDef tables by the owning type, then the field list and method list in a TypeDef only have to be a single RID pointing at the first FieldDef or MethodDef belonging to that type; the end of the list can be inferred by the field list and method list RIDs of the next row in the TypeDef table. Going back to the TypeDef If we have a look back at the definition of a TypeDef, we end up with the following reprensentation for each row: Flags - always 4 bytes Name - a #Strings heap offset. Namespace - a #Strings heap offset. Extends - a TypeDefOrRef coded token. FieldList - a single RID to the FieldDef table. MethodList - a single RID to the MethodDef table. So, depending on the number of entries in the heaps and tables within the assembly, the rows in the TypeDef table can be as small as 14 bytes, or as large as 24 bytes. Now we've had a look at how information is encoded within the metadata tables, in the next post we can see how they are arranged on disk.

    Read the article

  • Combined Likelihood Models

    - by Lukas Vermeer
    In a series of posts on this blog we have already described a flexible approach to recording events, a technique to create analytical models for reporting, a method that uses the same principles to generate extremely powerful facet based predictions and a waterfall strategy that can be used to blend multiple (possibly facet based) models for increased accuracy. This latest, and also last, addition to this sequence of increasing modeling complexity will illustrate an advanced approach to amalgamate models, taking us to a whole new level of predictive modeling and analytical insights; combination models predicting likelihoods using multiple child models. The method described here is far from trivial. We therefore would not recommend you apply these techniques in an initial implementation of Oracle Real-Time Decisions. In most cases, basic RTD models or the approaches described before will provide more than enough predictive accuracy and analytical insight. The following is intended as an example of how more advanced models could be constructed if implementation results warrant the increased implementation and design effort. Keep implemented statistics simple! Combining likelihoods Because facet based predictions are based on metadata attributes of the choices selected, it is possible to generate such predictions for more than one attribute of a choice. We can predict the likelihood of acceptance for a particular product based on the product category (e.g. ‘toys’), as well as based on the color of the product (e.g. ‘pink’). Of course, these two predictions may be completely different (the customer may well prefer toys, but dislike pink products) and we will have to somehow combine these two separate predictions to determine an overall likelihood of acceptance for the choice. Perhaps the simplest way to combine multiple predicted likelihoods into one is to calculate the average (or perhaps maximum or minimum) likelihood. However, this would completely forgo the fact that some facets may have a far more pronounced effect on the overall likelihood than others (e.g. customers may consider the product category more important than its color). We could opt for calculating some sort of weighted average, but this would require us to specify up front the relative importance of the different facets involved. This approach would also be unresponsive to changing consumer behavior in these preferences (e.g. product price bracket may become more important to consumers as a result of economic shifts). Preferably, we would want Oracle Real-Time Decisions to learn, act upon and tell us about, the correlations between the different facet models and the overall likelihood of acceptance. This additional level of predictive modeling, where a single supermodel (no pun intended) combines the output of several (facet based) models into a single prediction, is what we call a combined likelihood model. Facet Based Scores As an example, we have implemented three different facet based models (as described earlier) in a simple RTD inline service. These models will allow us to generate predictions for likelihood of acceptance for each product based on three different metadata fields: Category, Price Bracket and Product Color. We will use an Analytical Scores entity to store these different scores so we can easily pass them between different functions. A simple function, creatively named Compute Analytical Scores, will compute for each choice the different facet scores and return an Analytical Scores entity that is stored on the choice itself. For each score, a choice attribute referring to this entity is also added to be returned to the client to facilitate testing. One Offer To Predict Them All In order to combine the different facet based predictions into one single likelihood for each product, we will need a supermodel which can predict the likelihood of acceptance, based on the outcomes of the facet models. This model will not need to consider any of the attributes of the session, because they are already represented in the outcomes of the underlying facet models. For the same reason, the supermodel will not need to learn separately for each product, because the specific combination of facets for this product are also already represented in the output of the underlying models. In other words, instead of learning how session attributes influence acceptance of a particular product, we will learn how the outcomes of facet based models for a particular product influence acceptance at a higher level. We will therefore be using a single All Offers choice to represent all offers in our combined likelihood predictions. This choice has no attribute values configured, no scores and not a single eligibility rule; nor is it ever intended to be returned to a client. The All Offers choice is to be used exclusively by the Combined Likelihood Acceptance model to predict the likelihood of acceptance for all choices; based solely on the output of the facet based models defined earlier. The Switcheroo In Oracle Real-Time Decisions, models can only learn based on attributes stored on the session. Therefore, just before generating a combined prediction for a given choice, we will temporarily copy the facet based scores—stored on the choice earlier as an Analytical Scores entity—to the session. The code for the Predict Combined Likelihood Event function is outlined below. // set session attribute to contain facet based scores. // (this is the only input for the combined model) session().setAnalyticalScores(choice.getAnalyticalScores); // predict likelihood of acceptance for All Offers choice. CombinedLikelihoodChoice c = CombinedLikelihood.getChoice("AllOffers"); Double la = CombinedLikelihoodAcceptance.getChoiceEventLikelihoods(c, "Accepted"); // clear session attribute of facet based scores. session().setAnalyticalScores(null); // return likelihood. return la; This sleight of hand will allow the Combined Likelihood Acceptance model to predict the likelihood of acceptance for the All Offers choice using these choice specific scores. After the prediction is made, we will clear the Analytical Scores session attribute to ensure it does not pollute any of the other (facet) models. To guarantee our combined likelihood model will learn based on the facet based scores—and is not distracted by the other session attributes—we will configure the model to exclude any other inputs, save for the instance of the Analytical Scores session attribute, on the model attributes tab. Recording Events In order for the combined likelihood model to learn correctly, we must ensure that the Analytical Scores session attribute is set correctly at the moment RTD records any events related to a particular choice. We apply essentially the same switching technique as before in a Record Combined Likelihood Event function. // set session attribute to contain facet based scores // (this is the only input for the combined model). session().setAnalyticalScores(choice.getAnalyticalScores); // record input event against All Offers choice. CombinedLikelihood.getChoice("AllOffers").recordEvent(event); // force learn at this moment using the Internal Dock entry point. Application.getPredictor().learn(InternalLearn.modelArray, session(), session(), Application.currentTimeMillis()); // clear session attribute of facet based scores. session().setAnalyticalScores(null); In this example, Internal Learn is a special informant configured as the learn location for the combined likelihood model. The informant itself has no particular configuration and does nothing in itself; it is used only to force the model to learn at the exact instant we have set the Analytical Scores session attribute to the correct values. Reporting Results After running a few thousand (artificially skewed) simulated sessions on our ILS, the Decision Center reporting shows some interesting results. In this case, these results reflect perfectly the bias we ourselves had introduced in our tests. In practice, we would obviously use a wider range of customer attributes and expect to see some more unexpected outcomes. The facetted model for categories has clearly picked up on the that fact our simulated youngsters have little interest in purchasing the one red-hot vehicle our ILS had on offer. Also, it would seem that customer age is an excellent predictor for the acceptance of pink products. Looking at the key drivers for the All Offers choice we can see the relative importance of the different facets to the prediction of overall likelihood. The comparative importance of the category facet for overall prediction might, in part, be explained by the clear preference of younger customers for toys over other product types; as evident from the report on the predictiveness of customer age for offer category acceptance. Conclusion Oracle Real-Time Decisions' flexible decisioning framework allows for the construction of exceptionally elaborate prediction models that facilitate powerful targeting, but nonetheless provide insightful reporting. Although few customers will have a direct need for such a sophisticated solution architecture, it is encouraging to see that this lies within the realm of the possible with RTD; and this with limited configuration and customization required. There are obviously numerous other ways in which the predictive and reporting capabilities of Oracle Real-Time Decisions can be expanded upon to tailor to individual customers needs. We will not be able to elaborate on them all on this blog; and finding the right approach for any given problem is often more difficult than implementing the solution. Nevertheless, we hope that these last few posts have given you enough of an understanding of the power of the RTD framework and its models; so that you can take some of these ideas and improve upon your own strategy. As always, if you have any questions about the above—or any Oracle Real-Time Decisions design challenges you might face—please do not hesitate to contact us; via the comments below, social media or directly at Oracle. We are completely multi-channel and would be more than glad to help. :-)

    Read the article

< Previous Page | 118 119 120 121 122 123 124 125 126 127 128 129  | Next Page >