Search Results

Search found 7442 results on 298 pages for 'dynamic allocation'.

Page 123/298 | < Previous Page | 119 120 121 122 123 124 125 126 127 128 129 130  | Next Page >

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Internal Mutation of Persistent Data Structures

    - by Greg Ros
    To clarify, when I mean use the terms persistent and immutable on a data structure, I mean that: The state of the data structure remains unchanged for its lifetime. It always holds the same data, and the same operations always produce the same results. The data structure allows Add, Remove, and similar methods that return new objects of its kind, modified as instructed, that may or may not share some of the data of the original object. However, while a data structure may seem to the user as persistent, it may do other things under the hood. To be sure, all data structures are, internally, at least somewhere, based on mutable storage. If I were to base a persistent vector on an array, and copy it whenever Add is invoked, it would still be persistent, as long as I modify only locally created arrays. However, sometimes, you can greatly increase performance by mutating a data structure under the hood. In more, say, insidious, dangerous, and destructive ways. Ways that might leave the abstraction untouched, not letting the user know anything has changed about the data structure, but being critical in the implementation level. For example, let's say that we have a class called ArrayVector implemented using an array. Whenever you invoke Add, you get a ArrayVector build on top of a newly allocated array that has an additional item. A sequence of such updates will involve n array copies and allocations. Here is an illustration: However, let's say we implement a lazy mechanism that stores all sorts of updates -- such as Add, Set, and others in a queue. In this case, each update requires constant time (adding an item to a queue), and no array allocation is involved. When a user tries to get an item in the array, all the queued modifications are applied under the hood, requiring a single array allocation and copy (since we know exactly what data the final array will hold, and how big it will be). Future get operations will be performed on an empty cache, so they will take a single operation. But in order to implement this, we need to 'switch' or mutate the internal array to the new one, and empty the cache -- a very dangerous action. However, considering that in many circumstances (most updates are going to occur in sequence, after all), this can save a lot of time and memory, it might be worth it -- you will need to ensure exclusive access to the internal state, of course. This isn't a question about the efficacy of such a data structure. It's a more general question. Is it ever acceptable to mutate the internal state of a supposedly persistent or immutable object in destructive and dangerous ways? Does performance justify it? Would you still be able to call it immutable? Oh, and could you implement this sort of laziness without mutating the data structure in the specified fashion?

    Read the article

  • Memory read/write access efficiency

    - by wolfPack88
    I've heard conflicting information from different sources, and I'm not really sure which one to believe. As such, I'll post what I understand and ask for corrections. Let's say I want to use a 2D matrix. There are three ways that I can do this (at least that I know of). 1: int i; char **matrix; matrix = malloc(50 * sizeof(char *)); for(i = 0; i < 50; i++) matrix[i] = malloc(50); 2: int i; int rowSize = 50; int pointerSize = 50 * sizeof(char *); int dataSize = 50 * 50; char **matrix; matrix = malloc(dataSize + pointerSize); char *pData = matrix + pointerSize - rowSize; for(i = 0; i < 50; i++) { pData += rowSize; matrix[i] = pData; } 3: //instead of accessing matrix[i][j] here, we would access matrix[i * 50 + j] char *matrix = malloc(50 * 50); In terms of memory usage, my understanding is that 3 is the most efficient, 2 is next, and 1 is least efficient, for the reasons below: 3: There is only one pointer and one allocation, and therefore, minimal overhead. 2: Once again, there is only one allocation, but there are now 51 pointers. This means there is 50 * sizeof(char *) more overhead. 1: There are 51 allocations and 51 pointers, causing the most overhead of all options. In terms of performance, once again my understanding is that 3 is the most efficient, 2 is next, and 1 is least efficient. Reasons being: 3: Only one memory access is needed. We will have to do a multiplication and an addition as opposed to two additions (as in the case of a pointer to a pointer), but memory access is slow enough that this doesn't matter. 2: We need two memory accesses; once to get a char *, and then to the appropriate char. Only two additions are performed here (once to get to the correct char * pointer from the original memory location, and once to get to the correct char variable from wherever the char * points to), so multiplication (which is slower than addition) is not required. However, on modern CPUs, multiplication is faster than memory access, so this point is moot. 1: Same issues as 2, but now the memory isn't contiguous. This causes cache misses and extra page table lookups, making it the least efficient of the lot. First and foremost: Is this correct? Second: Is there an option 4 that I am missing that would be even more efficient?

    Read the article

  • Issues with LVM partition size in Server 13.04

    - by Michael
    I am new to ubuntu and a little confused about how hard drive partitions and LVM works. I remember setting up Ubuntu server 13.04 and telling to to use 1TB of a 3TB server. Well I have maxed that out with blu-ray rips and want the rest of the drive for space. On log-in it says: System load: 2.24 Processes: 179 Usage of /: 88.7% of 912.89GB Users logged in: 0 Memory usage: 6% IP address for p5p1: 192.168.0.100 Swap usage: 0% => / is using 88.7% of 912.89GB lvdisplay outputs: --- Logical volume --- LV Path /dev/DeathStar-vg/root LV Name root VG Name DeathStar-vg LV Write Access read/write LV Creation host, time DeathStar, 2013-05-18 22:21:11 -0400 LV Status available # open 1 LV Size 2.70 TiB Current LE 707789 Segments 2 Allocation inherit Read ahead sectors auto - currently set to 256 Block device 252:0 --- Logical volume --- LV Path /dev/DeathStar-vg/swap_1 LV Name swap_1 VG Name DeathStar-vg LV Write Access read/write LV Creation host, time DeathStar, 2013-05-18 22:21:11 -0400 LV Status available # open 2 LV Size 3.75 GiB Current LE 959 Segments 1 Allocation inherit Read ahead sectors auto - currently set to 256 Block device 252:1 vgdisplay outputs: VG Name DeathStar-vg System ID Format lvm2 Metadata Areas 1 Metadata Sequence No 4 VG Access read/write VG Status resizable MAX LV 0 Cur LV 2 Open LV 2 Max PV 0 Cur PV 1 Act PV 1 VG Size 2.73 TiB PE Size 4.00 MiB Total PE 715335 Alloc PE / Size 708748 / 2.70 TiB Free PE / Size 6587 / 25.73 GiB df outputs: Filesystem 1K-blocks Used Available Use% Mounted on /dev/mapper/DeathStar--vg-root 957238932 848972636 59634696 94% / none 4 0 4 0% /sys/fs/cgroup udev 1864716 4 1864712 1% /dev tmpfs 374968 1060 373908 1% /run none 5120 4 5116 1% /run/lock none 1874824 148 1874676 1% /run/shm none 102400 24 102376 1% /run/user /dev/sda2 234153 56477 165184 26% /boot And fdisk /dev/sda -l outputs: Disk /dev/sda: 3000.6 GB, 3000592982016 bytes 255 heads, 63 sectors/track, 364801 cylinders, total 5860533168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sda1 1 4294967295 2147483647+ ee GPT Partition 1 does not start on physical sector boundary. I just don't know what to make of all this and am not sure how I can make it use all 2.73TBs. Thanks in advance for any help. EDIT-- Yes I did make changes to the LVM Config, but it didnt do anything. As requested, output of parted -l /dev/sda Model: ATA WDC WD30EFRX-68A (scsi) Disk /dev/sda: 3001GB Sector size (logical/physical): 512B/4096B Partition Table: gpt Number Start End Size File system Name Flags 1 1049kB 2097kB 1049kB bios_grub 2 2097kB 258MB 256MB ext2 3 258MB 3001GB 3000GB lvm Model: ATA WDC WD30EFRX-68A (scsi) Disk /dev/sdb: 3001GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags Model: Linux device-mapper (linear) (dm) Disk /dev/mapper/DeathStar--vg-swap_1: 4022MB Sector size (logical/physical): 512B/4096B Partition Table: loop Number Start End Size File system Flags 1 0.00B 4022MB 4022MB linux-swap(v1) Model: Linux device-mapper (linear) (dm) Disk /dev/mapper/DeathStar--vg-root: 2969GB Sector size (logical/physical): 512B/4096B Partition Table: loop Number Start End Size File system Flags 1 0.00B 2969GB 2969GB ext4

    Read the article

  • I get GL_INVALID_VALUE after calling glTexSubImage2D

    - by user892644
    I am trying to figure out why my texture allocation does not work. Here is the code: glTexStorage2D(GL_TEXTURE_2D, 2, GL_RGBA8, 2048, 2048); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 2048, 2048, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV, &BitMap[0]); glTexSubImage2D returns GL_INVALID_VALUE but the maximum texture allowed is 16384x16384 on my card. The source of the image is 16bit (Red 5, Green 6, Blue 5).

    Read the article

  • Temporary Object Caching Explained

    - by Paul White
    SQL Server 2005 onward caches temporary tables and table variables referenced in stored procedures for reuse, reducing contention on tempdb allocation structures and catalogue tables.  A number of things can prevent this caching (none of which are allowed when working with table variables): Named constraints (bad idea anyway, since concurrent executions can cause a name collision) DDL after creation (though what is considered DDL is interesting) Creation using dynamic SQL Table created in a...(read more)

    Read the article

  • SQL Server Memory Manager Changes in Denali

    - by SQLOS Team
    The next version of SQL Server will contain significant changes to the memory manager component.  The memory manager component has been rewritten for Denali.  In the previous versions of SQL Server there were two distinct memory managers.  There was one memory manager which handled allocation sizes of 8k or less and another for greater than 8k.  For Denali there will be one memory manager for all allocation sizes.   The majority of the changes will be transparent to the end user.  However, some changes will be visible to the user.  These are listed below: ·         The ‘max server memory’ configuration option has new lower limits.  Specifically, 32-bit versions of SQL Server will have a lower limit of 64 MB.  The 64-bit versions will have a lower limit of 128 MB. ·         All memory allocations by SQL Server components will observe the ‘max server memory’ configuration option.  In previous SQL versions only the 8k allocations were limited the ‘max server memory’ configuration option.  Allocations larger than 8k weren’t constrained. ·         DMVs which refer to memory manager internals have been modified.  This includes adding or removing columns and changing column names. ·         The memory manager configuration messages in the error log have minor changes. ·         DBCC memorystatus output has been changed. ·         Address Windowing Extensions (AWE) has been deprecated.   In the next blog post I will discuss the changes to the memory manager DMVs in greater detail.  In future blog posts I will discuss the other changes in greater detail.  

    Read the article

  • What Instruments Does a Web Based Project Management System Offer Us?

    Nowadays, in order to successfully manage various and complex projects, a project owner has access to a multitude of web based software covering key areas of focus such as scheduling, cost control, budget management, resource allocation, documentation and communication. Managing projects becomes time and resource saving also maximizing collaboration between team members that, in certain situations must stay connected to the partial outcomes.

    Read the article

  • Samsung crée F2FS, un nouveau système de fichiers open source pour mémoire Flash qui sera intégré au noyau Linux

    Samsung crée F2FS son nouveau système de fichiers open source pour mémoire flash qui sera intégré au noyau Linux Samsung a mis au point un nouveau système de fichiers destiné aux supports de stockage flash. Les systèmes de fichiers anciens qui sont actuellement utilisés pour le stockage sur les mémoires flash NAND très répandues sur les terminaux mobiles présentent des limites assez importantes. Certains constructeurs de smartphones comme RIM ou encore Sharp ont été obligés de se tourner vers le système de fichiers propriétaire Extended File Allocation Table (exFAT) de Microsoft contre payement de redevances.

    Read the article

  • Primefaces TreeView node expansion

    - by Boiler Bill
    Being new to primefaces, I have been researching a way to have TreeView in dynamic mode update a separate tab pane given the id on Node expansion. This works great for node selection with the "update" attribute. Can it work the same way on Node Expansion was well? Here is my code that works when a node is selected: <p:tree id="tree" dynamic="true" var="node" cache="true" update="details" value="#{treeBean.root}" rendered="#{treeBean.root != null}" styleClass="inventoryTree" nodeExpandListener="#{treeBean.onNodeExpand}" nodeSelectListener="#{treeBean.onNodeSelect}">

    Read the article

  • Specify the search path for DllImport in .NET

    - by Stefan
    Is there a way to specify the paths to be searched for a given assembly that is imported with DllImport? [DllImport("MyDll.dll")] static extern void Func(); This will search for the dll in the app dir and in the PATH environment variable. But at times the dll will be placed elsewhere. Can this information be specified in app.config or manifest file to avoid dynamic loading and dynamic invocation?

    Read the article

  • asp.net hover menu item

    - by WtFudgE
    When I hover on a static menu item that has a dynamic menu, the hover styles are in effect but once I start navigating the dynamic menu the static menu item goes back to the non-hover styles. Does anyone know how to make them stick until I stop ''using' that menu? I tried the 'selected' static menu item styles but that doesn't work - if I use them, even when I stop navigating the menu the last selected static menu item will display the selected style - after using the menu I want the styles to revert to the normal styles....

    Read the article

  • Is there a measurestring equivalent in Silverlight xaml?

    - by Roy
    What I am trying to accomplish: Create a dynamic bubble that expands on height and width depending on the text in the bubble. What I researched so far: In an so article they described the measurestring to figure out the exact width or height so dynamic changes in the .cs to the width and height can be accomplished. Is there something like this in Silverlight? Is my only option to utilize the myTxt.Text.length and then change the myGrid.height and myGrid.width to leave wasted space to accommodate all cases?

    Read the article

  • Asp.net MVC VirtualPathProvider views parse error

    - by madcapnmckay
    Hi, I am working on a plugin system for Asp.net MVC 2. I have a dll containing controllers and views as embedded resources. I scan the plugin dlls for controller using StructureMap and I then can pull them out and instantiate them when requested. This works fine. I then have a VirtualPathProvider which I adapted from this post public class AssemblyResourceProvider : VirtualPathProvider { protected virtual string WidgetDirectory { get { return "~/bin"; } } private bool IsAppResourcePath(string virtualPath) { var checkPath = VirtualPathUtility.ToAppRelative(virtualPath); return checkPath.StartsWith(WidgetDirectory, StringComparison.InvariantCultureIgnoreCase); } public override bool FileExists(string virtualPath) { return (IsAppResourcePath(virtualPath) || base.FileExists(virtualPath)); } public override VirtualFile GetFile(string virtualPath) { return IsAppResourcePath(virtualPath) ? new AssemblyResourceVirtualFile(virtualPath) : base.GetFile(virtualPath); } public override CacheDependency GetCacheDependency(string virtualPath, IEnumerable virtualPathDependencies, DateTime utcStart) { return IsAppResourcePath(virtualPath) ? null : base.GetCacheDependency(virtualPath, virtualPathDependencies, utcStart); } } internal class AssemblyResourceVirtualFile : VirtualFile { private readonly string path; public AssemblyResourceVirtualFile(string virtualPath) : base(virtualPath) { path = VirtualPathUtility.ToAppRelative(virtualPath); } public override Stream Open() { var parts = path.Split('/'); var resourceName = Path.GetFileName(path); var apath = HttpContext.Current.Server.MapPath(Path.GetDirectoryName(path)); var assembly = Assembly.LoadFile(apath); return assembly != null ? assembly.GetManifestResourceStream(assembly.GetManifestResourceNames().SingleOrDefault(s => string.Compare(s, resourceName, true) == 0)) : null; } } The VPP seems to be working fine also. The view is found and is pulled out into a stream. I then receive a parse error Could not load type 'System.Web.Mvc.ViewUserControl<dynamic>'. which I can't find mentioned in any previous example of pluggable views. Why would my view not compile at this stage? Thanks for any help, Ian EDIT: Getting closer to an answer but not quite clear why things aren't compiling. Based on the comments I checked the versions and everything is in V2, I believe dynamic was brought in at V2 so this is fine. I don't even have V3 installed so it can't be that. I have however got the view to render, if I remove the <dynamic> altogether. So a VPP works but only if the view is not strongly typed or dynamic This makes sense for the strongly typed scenario as the type is in the dynamically loaded dll so the viewengine will not be aware of it, even though the dll is in the bin. Is there a way to load types at app start? Considering having a go with MEF instead of my bespoke Structuremap solution. What do you think?

    Read the article

  • Opening link in new window

    - by kedar kamthe
    I am working on a CMS site that uses dynamic navigation. There is one link on the site that I would like to be able to open in a new window. However, since this is a dynamic environment I can't add the standard, target="_blank" to the link. so how can i open the link in new window without using jquery ?

    Read the article

  • ctypes for static libraries?

    - by Begbie00
    Hi all - I'm attempting to write a Python wrapper for poker-eval, a c static library. All the documentation I can find on ctypes indicates that it works on shared/dynamic libraries. Is there a ctypes for static libraries? I know about cython, but should I use that or recompile the poker-eval into a dynamic library so that I can use ctypes? Thanks, Mike

    Read the article

  • pathinfo vs fnmatch

    - by zaf
    There was a small debate regarding the speed of fnmatch over pathinfo here : http://stackoverflow.com/questions/2692536/how-to-check-if-file-is-php I wasn't totally convinced so decided to benchmark the two functions. Using dynamic and static paths showed that pathinfo was faster. Is my benchmarking logic and conclusion valid? I include a sample of the results which are in seconds for 100,000 iterations on my machine : dynamic path pathinfo 3.79311800003 fnmatch 5.10071492195 x1.34 static path pathinfo 1.03921294212 fnmatch 2.37709188461 x2.29 Code: <pre> <?php $iterations=100000; // Benchmark with dynamic file path print("dynamic path\n"); $i=$iterations; $t1=microtime(true); while($i-->0){ $f='/'.uniqid().'/'.uniqid().'/'.uniqid().'/'.uniqid().'.php'; if(pathinfo($f,PATHINFO_EXTENSION)=='php') $d=uniqid(); } $t2=microtime(true) - $t1; print("pathinfo $t2\n"); $i=$iterations; $t1=microtime(true); while($i-->0){ $f='/'.uniqid().'/'.uniqid().'/'.uniqid().'/'.uniqid().'.php'; if(fnmatch('*.php',$f)) $d=uniqid(); } $t3 = microtime(true) - $t1; print("fnmatch $t3\n"); print('x'.round($t3/$t2,2)."\n\n"); // Benchmark with static file path print("static path\n"); $f='/'.uniqid().'/'.uniqid().'/'.uniqid().'/'.uniqid().'.php'; $i=$iterations; $t1=microtime(true); while($i-->0) if(pathinfo($f,PATHINFO_EXTENSION)=='php') $d=uniqid(); $t2=microtime(true) - $t1; print("pathinfo $t2\n"); $i=$iterations; $t1=microtime(true); while($i-->0) if(fnmatch('*.php',$f)) $d=uniqid(); $t3=microtime(true) - $t1; print("fnmatch $t3\n"); print('x'.round($t3/$t2,2)."\n\n"); ?> </pre>

    Read the article

  • Symfony2 - PdfBundle not working

    - by ElPiter
    Using Symfony2 and PdfBundle to generate dynamically PDF files, I don't get to generate the files indeed. Following documentation instructions, I have set up all the bundle thing: autoload.php: 'Ps' => __DIR__.'/../vendor/bundles', 'PHPPdf' => __DIR__.'/../vendor/PHPPdf/lib', 'Imagine' => array(__DIR__.'/../vendor/PHPPdf/lib', __DIR__.'/../vendor/PHPPdf/lib/vendor/Imagine/lib'), 'Zend' => __DIR__.'/../vendor/PHPPdf/lib/vendor/Zend/library', 'ZendPdf' => __DIR__.'/../vendor/PHPPdf/lib/vendor/ZendPdf/library', AppKernel.php: ... new Ps\PdfBundle\PsPdfBundle(), ... I guess all the setting up is correctly configured, as I am not getting any "library not found" nor anything on that way... So, after all that, I am doing this in the controller: ... use Ps\PdfBundle\Annotation\Pdf; ... /** * @Pdf() * @Route ("/pdf", name="_pdf") * @Template() */ public function generateInvoicePDFAction($name = 'Pedro') { return $this->render('AcmeStoreBundle:Shop:generateInvoice.pdf.twig', array( 'name' => $name, )); } And having this twig file: <pdf> <dynamic-page> Hello {{ name }}! </dynamic-page> </pdf> Well. Somehow, what I just get in my page is just the normal html generated as if it was a normal Response rendering. The Pdf() annotation is supposed to give the "special" behavior of creating the PDF file instead of rendering normal HTML. So, having the above code, when I request the route http://www.mysite.com/*...*/pdf, all what I get is the following HTML rendered: <pdf> <dynamic-page> Hello Pedro! </dynamic-page> </pdf> (so a blank HTML page with just the words Hello Pedro! on it. Any clue? Am I doing anything wrong? Is it mandatory to have the alternative *.html.twig apart from the *.pdf.twig version? I don't think so... :(

    Read the article

  • Hibernate mapping to object that already exists

    - by teehoo
    I have two classes, ServiceType and ServiceRequest. Every ServiceRequest must specify what kind of ServiceType it is. All ServiceType's are predefined in the database, and ServiceRequest is created at runtime by the client. Here are my .hbm files: <hibernate-mapping> <class dynamic-insert="false" dynamic-update="false" mutable="true" name="xxx.model.entity.ServiceRequest" optimistic-lock="version" polymorphism="implicit" select-before-update="false"> <id column="USER_ID" name="id"> <generator class="native"/> </id> <property name="quantity"> <column name="quantity" not-null="true"/> </property> <many-to-one cascade="all" class="xxx.model.entity.ServiceType" column="service_type" name="serviceType" not-null="false" unique="false"/> </class> </hibernate-mapping> and <hibernate-mapping> <class dynamic-insert="false" dynamic-update="false" mutable="true" name="xxx.model.entity.ServiceType" optimistic-lock="version" polymorphism="implicit" select-before-update="false"> <id column="USER_ID" name="id"> <generator class="native"/> </id> <property name="description"> <column name="description" not-null="false"/> </property> <property name="cost"> <column name="cost" not-null="true"/> </property> <property name="enabled"> <column name="enabled" not-null="true"/> </property> </class> </hibernate-mapping> When I run this, I get com.mysql.jdbc.exceptions.MySQLIntegrityConstraintViolationException: Cannot add or update a child row: a foreign key constraint fails I think my problem is that when I create a new ServiceRequest object, ServiceType is one of its properties, and therefore when I'm saving ServiceRequest to the database, Hibernate attempts to insert the ServiceType object once again, and finds that it is already exists. If this is the case, how do I make it so that Hibernate points to the exists ServiceType instead of trying to insert it again?

    Read the article

  • Mocking a Wcf ServiceContract

    - by Michael
    I want to mock a ServiceContract. The problem is that Moq (and Castle Dynamic-Proxy) copies the attributes from the interface to the dynamic proxy which Wcf don't like. Wcf sais: The ServiceContractAttribute should only be define on either the interface or the implementation, not both.

    Read the article

  • Search in static pages

    - by Shyju
    I have an ASP web application which has pages with static content as well as dynamic content(data from database). I want to implement a search feature in the site.I Can do this with the dynamic data easily by framing the select query based on the search keys and pull data from the tables,But i would like to know how can i implement the search with the static pages ?

    Read the article

  • How are DynamicResources built?

    - by miguel
    Are dynamic resources truly dynamic? If I define a DynamicResource, I realise that an expression is created (where?) that is not translated into a resource until runtime, however, What I do not understans is whether this dynamicresouce, once built, is now "Static" For instance, if I create a context menu via a dynamicresource, are the menuitems which are created at runtime on access then static, even if they are bound?

    Read the article

< Previous Page | 119 120 121 122 123 124 125 126 127 128 129 130  | Next Page >