Search Results

Search found 21184 results on 848 pages for 'oracle vm templates'.

Page 123/848 | < Previous Page | 119 120 121 122 123 124 125 126 127 128 129 130  | Next Page >

  • Webcast: The Power to Translate is Now Inside Oracle WebCenter Sites

    - by kellsey.ruppel
    The Power to Translate is Now Inside Oracle WebCenter Sites You are invited to a special preview of the Lingotek Inside Oracle WebCenter Sites solution which will be showcased at Collaborate in Las Vegas later in April. Register Now! Now it's easy to quickly translate your content directly from Oracle WebCenter Sites using the new Lingotek - Inside for Oracle WebCenter Sites integration. Your users will be able to access translated content, nominate content for translation, and even offer to translate content themselves. Lingotek - Inside Integration: Content identified and seamlessly viewable within Lingotek Workbench. Translation Completed by: Machine and Translation Memory Community Volunteers, Crowdsourcing Professional Translators Translated Content Automatically Saved. Content within Oracle WebCenter Sites: Related Secured Routed Through Workflows Publish to Intranets, Web Sites, Applications Oracle WebCenter Sites Web Experience Management Enables marketers and business users to easily create and manage contextually relevant, social, and interactive online experiences across multiple channels on a global scale. Drive customer acquisition, brand loyalty, and business success Optimize customer engagement across Web, mobile, and social channels Manage large-scale, multichannel global online presence with integration to enterprise applications Register Now! You'll hear from the experts how this can be done. Free 30 Minute Webinar Date: Tues, Apr 17thTime: 8:00am MST, 3pm GMT and 4pm CET Win a Kindle Fire Register before April 6th for a chance to win a Amazon Kindle Fire! Presenter: Rob Vandenberg, President and CEO of Lingotek, drives the vision while leading the charge to change the future of translation. Rob is a well-known technology industry veteran, and his expertise and knowledge surrounding translation, localization, and internationalization materials, software products, and web content serves as an immeasurable asset to customers needs and requirements. Rob is a frequent industry speaker and panelist . Presenter: Andrew PalmerOracleEMEA Alliances DirectorWebCenter Sites System RequirementsPC-based attendeesRequired: Windows® 7, Vista, XP or 2003 ServerMacintosh®-based attendeesRequired: Mac OS® X 10.5 or newer

    Read the article

  • Oracle(R) Buys Pre-Paid Software Assets From eServGlobal

    - by Paulo Folgado
    Oracle to Deliver Scalable Carrier-Grade Pre-Paid Solution Based on Open, Flexible IT-Based Platform News Facts ·        Oracle has agreed to acquire certain pre-paid assets of eServGlobal, a provider of advanced IT-based, pre-paid charging solutions for the communications industry. ·        eServGlobal's Universal Service Platform (USP) includes a pre-paid charging application, a network-services platform and a messaging gateway. The ChargingMax, NumberMax, uVOMS, MessageMax, PromoMax Express and Social Relationship Management software currently supports more than 25 tier-one customers including the world's largest IT-based installation of pre-paid services. ·        The combination of Oracle Communications Billing and Revenue Management and the USP applications is expected to accelerate the shift from network- to IT-based pre-paid systems by providing the first convergent, open IT-based platform from a leading business software and hardware systems company. ·        Customers are expected to benefit from traditional carrier-grade, pre-paid service authorization with IT-grade flexibility that supports any service or network, is easier to deploy and maintain and delivers an overall lower total cost of ownership. ·        The transaction is expected to close in the second half of this year. Supporting Quote ·        "The majority of mobile phone users worldwide use pre-paid plans, and that number is growing exponentially. Oracle Communications applications combined with the pre-paid software assets from eServGlobal will provide our customers with highly available and scalable carrier-grade, pre-paid software on an open, convergent platform. This will enable our customers to deliver traditional pre-paid voice services and easily introduce hybrid pre-paid and post-paid plans with targeted pricing, promotions and service bundles that include voice, data and network services," said Liam Maxwell, vice president of products, Oracle Communications. Supporting Resources About Oracle and eServGlobal USP General Presentation FAQ

    Read the article

  • Dynamic endpoint binding in Oracle SOA Suite by Cattle Crew

    - by JuergenKress
    Why is dynamic endpoint binding needed? Sometimes a BPEL process instance has to determine at run-time which implementation of a web service interface is to be called. We’ll show you how to achieve that using dynamic endpoint binding. Let’s imagine the following scenario: we’re running a car rental agency called RYLC (Rent Your Legacy Car) which operates different locations. The process of renting a car is basically identical for all locations except for the determination which cars are currently available. This is depicted in the following diagram: There are three different implementations of the GetAvailableCars service. But how can we achieve calling them dynamically at run-time using Oracle SOA Suite? How to dynamically set the service endpoint There are just a couple of implementation steps we need to perform to enable dynamic endpoint binding: create a new SOA project in JDeveloper add a CarRental BPEL process add an external reference to the GetAvailableCars service within the composite create a DVM file containing the URI’s by which the services for the different locations can be accessed set the endpointURI property on the Invoke component calling the GetAvailableCars service (value is taken from the DVM file) Read the complete article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Technorati Tags: Cattle crew,SOA binding,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Oracle Social @ OpenWorld

    - by me
     Hi there -  Wanna know what going on at Oracle OpenWorld and Social?  Here are the hot tips!  Do you want to see  the Oracle Social Engagement Center in action ? You can explore the power of social publishing (Vitrue)  and the live social  monitoring (Collective Intellect) of  the Social Buzz around OpenWorld.Let's see if you appear in the Tweeter stream . Visit us  at Moscone South main entrance (foursquare place)  and meet  the Oracle Social Geeks  @Radu43, @peterreiser, @dankmbp and team. Are you a  social developer  and want to discover Oracle Social Network (OSN) ? cool - you can still  join the OSN Developers Challenge , take the OSN technical preview tour and meet our WebCenter evangelists Jake (@theappslab) and @noelportugal. Do you want to meet the Oracle Social Geeks and have some fun?  Then join us at the Social Plaza @ Oracle OpenWorld event on Tuesday, October 2, Noon–8:00 p.m. at the  Mint Plaza, Fifth Street between Mission and Market. cu you all at #oow

    Read the article

  • Oracle Endeca Information Discovery 3.1 is Now Available

    - by p.anda
    Oracle Endeca Information Discovery (OEID) 3.1 is a major release that incorporates significant new self-service discovery capabilities for business users. These include agile data mashup, extended support for unstructured analytics, and an even tighter integration with Oracle BI This release is available for download from: Oracle Delivery Cloud Oracle Technology Network Some of the what's new highlights ... Self-service data mashup... enables access to a wider variety of personal and trusted enterprise data sources. Blend multiple data sets in a single app. Agile discovery dashboards... allows users to easily create, configure, and securely share discovery dashboards with intelligent defaults, intuitive wizards and drag-and-drop configuration. Deeper unstructured analysis ... enables users to enrich text using term extraction and whitelist tagging while the data is live. Enhanced integration with OBI... provides easier wizards for data selection and enables OBI Server as a self-service data source. Enterprise-class data discovery... offers faster performance, a trusted data connection library, improved auditing and increased data connectivity for Hadoop, web content and Oracle Data Integrator. Find out more ... visit the OEID Overview page to download the What's New and related Data Sheet PDF documents. Have questions or want to share details for Oracle Endeca Information Discovery?  The MOS Communities is a great first stop to visit and you can stop-by at MOS OEID Community.

    Read the article

  • Oracle releases ADF Mobile with Java ME CDC for iOS and Android

    - by hinkmond
    Finally. Oracle has released a new product that I've worked on for a while now. Oracle ADF Mobile is available for iOS and Android bringing Java ME CDC technology to iPhones and Android devices all over the world. Woot! Java. On iPhone and Android. Yeah, it's like that. See: Java and HTML5 on SmartPhones Here's a quote: Oracle announced the availability of Oracle ADF Mobile – a framework the enables the development of hybrid applications for mobile devices. Oracle ADF Mobile uses Java and HTML5 and enables developers to develop a single application that installs and runs on both iOS and Android systems. Java - Application logic is developed with the Java language. Oracle brings a lightweight Java VM embedded with each application so you can develop all your business logic in the platform neutral language you know and love! (Yes, even iOS!) Gosh, you'd think it was a big deal. Well, it was! So, go download yours today! Hinkmond

    Read the article

  • 8 Reasons to Attend Oracle OpenWorld 2012

    - by kgee
    Every year, the Oracle Hardware team recognizes the unique buzz that accompanies the season of OpenWorld. During the late nights kept possible by the grace of caffeine combined with the stress and eagerness for the event to run smoothly, we like to remind ourselves of why all our hard work is going to pay off. So, now that we've registered, here are some of our top reasons that we’re excited for Oracle OpenWorld 2012: The KeynotesJust to name a few...Larry Ellison, Mark Hurd, Thomas Kurian, John Fowler and many more are speaking live. We're expecting to walk away from the keynotes with a new frame of reference on a vast array of hot topics. NetworkingWhether it's through means of the OpenWorld Lounges, social media, or bars and cafes around Moscone Center, we'll be surrounded by people who are experts in the hardware field. Hardware SessionsThere are enough sessions to satisfy every Oracle hardware knowledge need. Hardware Experts in GeneralSo many experts that we wish we could be in two places at once sometimes. Pearl Jam & Kings of LeonRock out with these two legendary bands at the Oracle Appreciation Event! Oracle Music FestivalJoss Stone, Macy Gray, the Hives, and Jimmy Cliff will be welcome escapes at the end of each day at OpenWorld, and are just a couple more reasons these all nighters before OpenWorld are worth it. ORACLE TEAM USA and the America's Cup trophyAfter the sailors take on San Francisco Bay for Fleet Week, we’ll be soliciting them for autographs and taking pictures with them at OpenWorld. Location, Location, LocationThe Moscone Center is beautiful and in the best location in San Francisco. We know the OpenWorld hype will get to us sometimes, and it's nice to know that we have pretty much everything San Francisco has to offer at our finger tips. Why are you excited for #OOW? Tell us why!

    Read the article

  • Upgrading Oracle Siebel CRM Application Without Downtime

    - by Doug Reid
    Oracle’s Siebel Customer Relationship Management (CRM) software helps organizations differentiate their businesses to achieve top- and bottom-line growth. Siebel CRM delivers comprehensive solutions that are tailored to more than 20 different industries. As Siebel CRM implementations have evolved into mission critical, operational business processes that must operate 24/7, companies are finding it increasingly difficult to afford the downtime typically required to perform an in-place upgrade. Without these upgrades, businesses loose out on critical new features and functionality. With Oracle GoldenGate, customers don’t have to choose between upgrades and outages. Oracle GoldenGate allows Siebel CRM customers to perform upgrades with zero downtime. Now Siebel customers can always take advantages of the latest innovations in customer relationship management without having to worry about potential lost revenue due to downtime. Oracle GoldenGate provides three different deployment models for Siebel CRM zero downtime upgrades that are designed to meet differing customer requirements. These range from a basic unidirectional model, which is designed to work out-of-the-box, to the most sophisticated active-active model for phased migrations. If you have mission-critical Siebel CRM implementations I recommend that you watch the screencast below to learn how you can begin taking advantage of all the latest Siebel enhancements without having any downtime. This screencast is also available on Oracle Media Network and Oracle's YouTube channel. For even more details I recommend reading the whitepaper Upgrading Siebel CRM with Zero Downtime .

    Read the article

  • Engineered Systems: Oracle schlägt drei Fliegen mit einer Klappe

    - by A&C Redaktion
    Die News aus dem Partnergeschäft von Oracle sorgen für Schlagzeilen im Magazin ChannelPartner. Über den neuen Fokus auf Engineered Systems und die SMB Appliances heißt es dort, so könne Oracle „drei Fliegen mit einer Klappe schlagen“: Erstens wird früheren Sun Hardware-Resellern der Einstieg ins Software-Geschäft erleichtert, zweitens bieten die Appliances neue Möglichkeiten für den Mittelstand und drittens bekräftigt die Strategie das zweistufige Channel-Modell. Dazu Silvia Kaske, Senior Director Channel Sales & Alliances Oracle Deutschland: "Wir stärken weltweit den Channel, weil das SMB-Geschäft zunehmend anzieht." Neben der durchaus positiven Wertung der Channel-Strategie bietet der Artikel einen anschaulichen Überblich darüber, was Engineered Systems eigentlich sind. Außerdem werden die Einsatzmöglichkeiten (Big Data, Mobile Computing, Cloud etc.) und Angebote von Oracle in diesem Bereich dargestellt und diskutiert. Das Highlight hierbei ist – wen wundert’s – die Oracle Database Appliance. Mit dem Portfolio wächst natürlich auch die Zahl der Spezialisierungen. Logisch, findet Silvia Kaske: "Endkunden erwarten keine Generalisten, sondern Spezialisten. Nur mit einem klaren Fokus wird der Partner erfolgreich sein". Hier geht’s zum vollständigen CP-Artikel unter dem Titel „Oracle lockt Channel mit SMB-Appliances“.

    Read the article

  • The Oracle Platform

    - by Naresh Persaud
    Today’s enterprises typically create identity management infrastructures using ad-hoc, multiple point solutions. Relying on point solutions introduces complexity and high cost of ownership leading many organizations to rethink this approach. In a recent worldwide study of 160 companies conducted by Aberdeen Research, there was a discernible shift in this trend as businesses are now looking to move away from the point solution approach from multiple vendors and adopt an integrated platform approach. By deploying a comprehensive identity and access management strategy using a single platform, companies are saving as much as 48% in IT costs, while reducing audit deficiencies by nearly 35%. According to Aberdeen's research, choosing an integrated suite or “platform” of solutions for Identity Management from a single vendor can have many advantages over choosing “point solutions” from multiple vendors. The Oracle Identity Management Platform is uniquely designed to offer several compelling benefits to our customers.  Shared Services: Instead of separate solutions for - Administration, Authentication, Authorization, Audit and so on–  Oracle Identity Management offers a set of share services that allows these services to be consumed by each component in the stack and by developers of new applications  Actionable Intelligence: The most compelling benefit of the Oracle platform is ” Actionable intelligence” which means if there is a compliance violation, the same platform can fix it. And If a user is logging in from an un-trusted device or we detect an attack and act proactively on that information. Suite Interoperability: With the oracle platform the components all connect and integrated with each other. So if an organization purchase the platform for provisioning and wants to manage access, then the same platform can offer access management which leads to cost savings. Extensible and Configurable: With point solutions – you typically get limited ability to extend the tool to address custom requirements. But with the Oracle platform all of the components have a common way to extend the UI and behavior Find out more about the Oracle Platform approach in this presentation. Platform approach-series-the oracleplatform-final View more PowerPoint from OracleIDM

    Read the article

  • Financial institutions build predictive models using Oracle R Enterprise to speed model deployment

    - by Mark Hornick
    See the Oracle press release, Financial Institutions Leverage Metadata Driven Modeling Capability Built on the Oracle R Enterprise Platform to Accelerate Model Deployment and Streamline Governance for a description where a "unified environment for analytics data management and model lifecycle management brings the power and flexibility of the open source R statistical platform, delivered via the in-database Oracle R Enterprise engine to support open standards compliance." Through its integration with Oracle R Enterprise, Oracle Financial Services Analytical Applications provides "productivity, management, and governance benefits to financial institutions, including the ability to: Centrally manage and control models in a single, enterprise model repository, allowing for consistent management and application of security and IT governance policies across enterprise assets Reuse models and rapidly integrate with applications by exposing models as services Accelerate development with seeded models and common modeling and statistical techniques available out-of-the-box Cut risk and speed model deployment by testing and tuning models with production data while working within a safe sandbox Support compliance with regulatory requirements by carrying out comprehensive stress testing, which captures the effects of adverse risk events that are not estimated by standard statistical and business models. This approach supplements the modeling process and supports compliance with the Pillar I and the Internal Capital Adequacy Assessment Process stress testing requirements of the Basel II Accord Improve performance by deploying and running models co-resident with data. Oracle R Enterprise engines run in database, virtually eliminating the need to move data to and from client machines, thereby reducing latency and improving security"

    Read the article

  • Partner Webcast - Oracle Taleo Cloud Service - 12 Dec 2012

    - by Thanos
    Talent Intelligence is the insight companies need to unlock the power of their most critical asset – their people. CEOs are charged with driving growth, and the one ingredient to growth that’s common across all industries and regions - both in good economic times and in bad – is people. In every economic environment, Talent Intelligence is a company’s biggest lever for driving growth, innovation and customer success. Oracle Taleo Cloud Service provides a comprehensive suite of SaaS products that help companies manage their investment in people by improving their Talent Intelligence. The Oracle Taleo Cloud Service enables enterprises and midsize businesses to recruit top talent, align that talent to key goals, manage performance, develop and compensate top performers, and turn today's best performers into tomorrow's leaders. Join us to find out more about the industry's broadest cloud-based talent management platform. Agenda: Oracle HCM Footprint Taleo value proposition Taleo quick tour Why invest in Taleo resources Demonstrating Taleo Q&A REGISTER NOW Delivery Format This FREE online LIVE eSeminar will be delivered over the Web. Registrations received less than 24 hours prior to start time may not receive confirmation to attend. Duration: 1 hour For any questions please contact us at [email protected]. Visit our ISV Migration Center blog Or Follow us @oracleimc to learn more on Oracle Technologies, upcoming partner webcasts and events. Existing content available YouTube - SlideShare - Oracle Mix.

    Read the article

  • User "oracle" unable to start or stop listeners

    - by user12620111
    Recently ran into a problem where user "oracle" was unable to start or stop listeners: oracle$ srvctl stop listener PRCR-1065 : Failed to stop resource ora.LISTENER.lsnr CRS-0245:  User doesn't have enough privilege to perform the operation CRS-0245:  User doesn't have enough privilege to perform the operation PRCR-1065 : Failed to stop resource ora.LISTENER_IB.lsnr CRS-0245:  User doesn't have enough privilege to perform the operation CRS-0245:  User doesn't have enough privilege to perform the operation The system is currently "fixed":oracle$ srvctl start listeneroracle$ srvctl status listenerListener LISTENER is enabledListener LISTENER is running on node(s): etc9cn02,etc9cn01Listener LISTENER_IB is enabledListener LISTENER_IB is running on node(s): etc9cn02,etc9cn01oracle$ srvctl stop listeneroracle$ srvctl status listenerListener LISTENER is enabledListener LISTENER is not runningListener LISTENER_IB is enabledListener LISTENER_IB is not runningoracle$ srvctl start listenerHow it was "fixed":Before:# crsctl status resource ora.LISTENER.lsnr -p | grep ACL=ACL=owner:root:rwx,pgrp:root:r-x,other::r--# crsctl status resource ora.LISTENER_IB.lsnr -p | grep ACL=ACL=owner:root:rwx,pgrp:root:r-x,other::r--"Fix":# crsctl setperm resource ora.LISTENER.lsnr -o oracle# crsctl setperm resource ora.LISTENER.lsnr -g oinstall# crsctl setperm resource ora.LISTENER_IB.lsnr -g oinstall# crsctl setperm resource ora.LISTENER_IB.lsnr -o oracleAfter:# crsctl status resource ora.LISTENER.lsnr -p | grep ACL=ACL=owner:oracle:rwx,pgrp:oinstall:r-x,other::r--# crsctl status resource ora.LISTENER_IB.lsnr -p | grep ACL=ACL=owner:oracle:rwx,pgrp:oinstall:r-x,other::r--I may never know how the system got into this state.

    Read the article

  • Oracle as a Service in the Cloud

    - by Jason Williamson
    This should really be a Tweet, but I guess I'm writing a bit more. In theme of data migration and legacy modernization, I am seeing more and more of a push to consolidate data sources, especially from non-oracle to oracle in an effort to save dollars. From a modernization perspective, this fits in quite well. We are able to migrate things like Terradata, Sybase and DB2 and put that all into an Oracle database and then provide that as a OaaS (Oracle as a Service) Cloud offering. This seems to be a growing trend, and not unlike the cool RDS Amazon Database cloud being built on Oracle as well. We again find ourselves back in the similar theme of migration, however. The target technology sounds like a winner (COBOL to Java/SOA...DB2/Datacom/Adabas to Oracle) but the age-old problem of how to get there still persists. It it not trivial to migrate large amounts of pre-relational or "devolved" relational data. To do this, we again must revert back to a tight roadmap to migration and leverage the growing tools and services that we have. I'm working on a couple of new sections and chapters for a book that Tom and Prakash and I are writing around Database Migration and Consolidation. I'll share some snipits shortly.

    Read the article

  • Sell More, Know More, Grow More with Oracle Sales Cloud - Webcast Oct 22nd

    - by Richard Lefebvre
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Today’s sales reps spend 78 percent of their time searching for information and only 22 percent selling. This inefficiency is costing you, your reps, and every prospect that stands to benefit from your products.  Join Oracle’s Thomas Kurian and Doug Clemmans as they explain: • How today’s sales processes have rendered many CRM systems obsolete • The secrets to smarter selling, leveraging mobile, social, and big data • How Oracle Sales Cloud enables smarter selling—as proven by Oracle’s own implementation of the solution Oracle experts will demo Oracle Sales Cloud to show you smarter selling in action. With Oracle Sales Cloud, reps sell more, managers know more, and companies grow more.  Date: Tuesday, October 22, 2013 Time: 18.00 CEST / 05.00 pm BST Free of Charge - Register here /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Now Available:Oracle Utilities Customer Care & Billing Version 2.4.0 SP1

    - by Roxana Babiciu
    We are pleased to announce the general availability of Oracle Utilities Customer Care & Billing 2.4.0 SP1. Key Features & Benefits: Oracle Utilities Customer Care & Billing 2.4.0 SP1 includes several base enhancements and a new licensable module called Customer Program Management. Key base enhancements in this release are: Configuration Migration Assistant (Additional Migration Plans) – Configuration Migration Assistant (CMA) was introduced in Oracle Utilities Application Framework V4.2.0 to supersede the ConfigLab facility. Oracle Utilities Customer Care and Billing now has a large number of migration plans to support migrating administration objects between environments. Encryption – Ability to configure encryption for fields that store sensitive data such as credit card numbers, bank account numbers, social security numbers, and MICR ID. Single Euro Payments Area (SEPA) Direct Debit – Functionality for configuring recurring direct debit payments in accordance with the Single Euro Payments Area (SEPA) initiative. Usage Enhancement for Bill Print – Allows additional information to be captured on a usage request to support billing when meter reads are not obtained from Oracle Utilities Customer Care & Billing but from a meter data management system (e.g. Oracle Utilities Meter Data Management). Preferences Portal – Communication preference zones allowing utilities to track customers’ preferred communication channels for various types of notifications or communications (e.g. phone, SMS, email). More information can be found on OPN!

    Read the article

  • Oracle at the biggest career fair in Germany - Absolventenkongress Cologne

    - by Tim Koekkoek
    On the 28th and 29th of November the annual Absolventenkongress was held in Cologne and Oracle was there! The Absolventenkongress in Cologne is the biggest student and graduate career fair in Germany with around 13,000 people attending every year. Oracle was well presented with Senior Managers, Recruiters and Talent Consultants coming over from Spain, Ireland, Switzerland, the Netherlands and of course Germany. At our stand, candidates from all kinds of backgrounds came to talk to us about their careers and their plans for the future. Being able to talk directly to individuals who could potentially be their next manager, was a great experience for the candidates! Overall the fair has been a highly successful experience for Oracle and we hope to welcome some people we met during the fair soon as new Oracle employees! If you were unable to attend, but you are still interested in joining Oracle, please have a look at our Facebook page and have the chance to win a Meet & Greet with our sales managers in the Potsdam office. For all of our vacancies please have a look at http://campus.oracle.com.

    Read the article

  • Oracle Weblogic 12c for New Projects–Webcast November 7th 2013

    - by JuergenKress
    Fast-growing organizations need to stay agile in the face of changing customer, business or market requirements. Oracle WebLogic Server 12c is the industry's best application server platform that allows you to quickly develop and deploy reliable, secure, scalable and manageable enterprise Java EE applications. WebLogic Server Java EE applications are based on standardized, modular components. WebLogic Server provides a complete set of services for those modules and handles many details of application behavior automatically, without requiring programming. New project applications are created by Java programmers, Web designers, and application assemblers. Programmers and designers create modules that implement the business and presentation logic for the application. Application assemblers assemble the modules into applications that are ready to deploy on WebLogic Server. Build and run high-performance enterprise applications and services with Oracle WebLogic Server 12c, available in three editions to meet the needs of traditional and cloud IT environments. Join us, in this webcast, as we will show you how WebLogic Server 12c helps you building and deploying enterprise Java EE applications with support for new features for lowering cost of operations, improving performance, enhancing scalability. Agenda Oracle WebLogic Server Introduction Application Development on WebLogic Using Java EE Overview of the Application Deployment Process Monitoring Application Performance Q&A November 07th, 2013   9am UTC/11am EET REGISTER NOW WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: education,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • How to connect to Oracle DB via ODBC

    - by Mat
    I am attempting to connect to a remote Oracle DB via ODBC. I am totally inexperienced and fail to connect. What I have installed: Oracle 'ODBC Driver for RDB' A program I want to connect from (Altova Mapforce, an ETL) What I do: Under Administrative tools I open the Windows "ODBC Data Source Administrator I click 'Add..' and select the Oracle ODBC Driver The Window 'Oracle RDB Driver Setup' opens. I fill in: Data source name: free choice Description: I leave blank Transport: I choose TCP/IP Server: I input the IP address of the server Service: I leave 'generic' UserID: I enter the user name (that belongs to the password I have) Attach Statement: no idea what do do here?? Upon choosing 'OK', the 'Oracle RDB ODBC Driver Connect' opens and I am prompted the password. I enter the password and the connection fails. Questions Do I need further programs on my computer, e.g. the Oracle client of Instant client? I am never prompted the port of the server - isn't this relevant? I am never prompted SID - isn't this relevant? I connected from SQL developer easily - it prompted only server IP, port, username, password and SID.

    Read the article

  • Oracle support note for Leap Second Hang problem that may result into 100% CPU utilization in Linux environment

    - by Anand Akela
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} On or around July 1, 2012, Oracle has become aware of an issue on Linux distributions resulting from the introduction of the leap second; this is causing problems for some customers.  Leap seconds may be introduced at the end of June or December in a calendar year, like 2012, as necessary to maintain time standards. Servers hosting Oracle products which are clients of an NTP server (Network Time Protocol) may be particularly susceptible to this issue as the NTP server is updated. Linux distributions which may be affected include Oracle Enterprise Linux, Red Hat Enterprise Linux, Oracle VM and Oracle Unbreakable Enterprise Kernel. Asianux 2 and 3, based on RHEL 4 and 5, may also be affected. One report of correction to high agent CPU using Note 1472421.1 on SLES11 has also been reported. Not all customers will be affected, but those, who are affected, may observe higher than normal CPU consumption on their Linux environments where JVM's are utilized.  In Oracle Enterprise Manager ( EM ) , this problem can manifest itself as high CPU consumption with the EM Agent process (which runs on a JVM in EM 12c, for instance).  It is possible that the OMS is also affected. We would advise customers to review the description of this problem in MOS Note 1472651.1 and take action if they observe that their environment is affected. Contributed by Andrew Bulloch , Director, Application Systems Management Products

    Read the article

  • Install Control Center Agent on Oracle Application Server

    - by qianqian.wu
    Control Center Agent (CCA) The Control Center Agent is the OWB component that runs the Template Mappings in the Oracle Containers for J2EE (OC4J) server; also referred to as the J2EE Runtime. The Control Center Agent provides a Java-based runtime environment that can be installed on Oracle and non-Oracle database hosts. The Control Center Agent provides fundamental infrastructure for the heterogeneous, Code Template-based mapping support and Web services-related features of OWB in this release. In Oracle Warehouse Builder 11gR2 the Control Center Agent, by default will run in the built-in OC4J that is bundled in the Oracle Home. Besides that, you also have ability to install the Control Center Agent in an Oracle Application Server install. In this article, you will find step-by-step instructions how to install the Control Center Agent on an Oracle Application Server instance. The instructions cover the following tasks: Task 1: Install and Configure the Application Server Task 2: Deploy the Control Center Agent to the Application Server Task 3: Optional Configuration Tasks   Task 1: Install and Configure the Application Server Before configuring the Application Server, you need to install it from Oracle Application Server CD-ROM, or by downloading the installation program from Oracle Technology Network (OTN). Once the installation is completed, you are ready to configure the Application Server. The purpose of the configuration task is to make sure the Control Center Agent ear file can be deployed and runs in the Application Server successfully. The essential configuration tasks are outlined below: · Modify the OC4J Startup Script · Set up Control Center Agent Server Side Logging · Set up Audit Table Data Source · Copy ct_permissions.properties File · Set up Security Roles for Control Center Agent · Create JMS Queues · Install JDBC Drivers to OC4J Modify the OC4J Startup Script The OC4J startup script “opmn.xml” is located in Application Server configuration directory, $AS_HOME/opmn/conf. $AS_HOME stands for the root home directory of the application server. Open the file opmn.xml in a text editor, and alter the contents of the file as displayed in the following sample. You need to make sure that: The MaxPerSize is set to 128M. This is to ensure that you allocate enough PermGen space to OC4J to run Control Center Agent. This will prevent java.lang.OutOfMemoryError when running the agent. The Python.path sets the path for the Python library files used by the Control Center Agent: jython_lib.zip and jython_owblib.jar. These two files are in the $OWB_HOME/owb/lib/int directory, where $OWB_HOME is the directory where owb is installed. · The km_security_needed determines whether restrictions will be applied to the kinds of operating system commands allowed to be executed by the OWB Code Template script executed by Control Center Agent. Setting km_security_needed to “true” enforces such restriction while setting it to “false” removes such restrictions. Set up Control Center Agent Server Side Logging Ensure that you are in the Application Server configuration directory, $AS_HOME/j2ee/home/config. Open the file j2ee-logging.xml in a text editor and add the following lines to the log handler section. The jrt-internal-log-handler is the handler used by Control Center Agent runtime logger to create log files. Then add the following entry into the loggers section to create the logger for Control Center Agent runtime auditing. Set up Audit Table Data Source To enable Audit Table logging, a managed data source and connection pool need to be set up before Control Center Agent deployment. Ensure that you are in the Application Server configuration directory, $AS_HOME/j2ee/home/config. Open the file data-sources.xml in a text editor. Define the audit data source shown below in the file, <managed-data-source name="AuditDS" connection-pool-name="OWBSYS Audit   Connection Pool" jndi-name="jdbc/AuditDS"/> <connection-pool name="OWBSYS Audit Connection Pool">   <connection-factory factory-class="oracle.jdbc.pool.OracleDataSource"     user="owbsys_audit" password="owbsys_audit"     url="jdbc:oracle:thin:@//localhost:1521/ORCL"/> </connection-pool> Copy ct_permissions.properties File The ct_permissions.properties can be obtained from $OWB_HOME /owb/jrt/config/ directory. You need to copy the file to $AS_HOME/j2ee/home/config directory.This properties file takes effect when the setting km-security is set to true in Control Center Agent. By default the ALLOWED_CMD is commented out in ct_permissions.properties file. This prevents all system command from being invoked from scripts executed in Control Center Agent (when km-security is set to true). To allow certain system commands to be invoked, ALLOWED_CMD needs to be uncommented out, and the system commands (allowed to be invoked) need to be added to the ALLOWED_CMD. Set up Security Roles for Control Center Agent You can set up the Control Center Agent security roles through Oracle Enterprise Manager. In a web browser, navigate to Enterprise Manager Homepage (e.g. http://hostname:8889/em). 1. Log in using the oc4jadmin credentials. After the Cluster Topology page is loaded, click home (the OC4J instance). This takes you to the home page of the OC4J instance. On the OC4J home screen, click the Administration tab. On the Administration Tasks screen, expand Security. Click the task icon next to Security Providers. 2. On Security Providers page click on the button “Instance Level Security”. On Instance Level Security page, go to “Realms” tab. You will see a row for the default realm “jazn.com” in the results table. It has a “Roles” column and a “Users” column. Click on the number in “Roles” column. In the “Roles” page it will display all the roles available for the realm. Click on “Create” button to create a new role “OWB_J2EE_ EXECUTOR”. 3. On the Add Role screen, enter Name OWB_J2EE_EXECUTOR, and click OK. 4. Follow the same steps as before, and create a new role “OWB_J2EE_OPERATOR”. 5. Assign role “oc4j-administrators” and “OWB_J2EE_EXECUTOR” to the role “OWB_J2EE_OPERATOR” by moving these roles from “Available Roles” and click “OK” to save. 6. Go back to Instance Level Security page and create a new role “OWB_J2EE_ADMINISTRATOR”. 7. Assign roles “OWB_J2EE_ OPERATOR” and “OWB_J2EE_EXECUTOR” to the role “OWB_J2EE_ ADMINISTRATOR” by moving these roles from “Available Roles” and click “OK” to save. 8.Go back to Instance Level Security page. This time, click on the number in “Users” column for the realm “jazn.com”. In the “Users” page, it shows all the users defined for this realm. Locate the user “oc4jadmin” in the results table and click on it. 9. Assign the roles “OWB_J2EE_ADMINISTRATOR” and “oc4j-app-administrators” to this user by moving the role from the “Available Roles” selection box to “Selected Roles” box and click “Apply” to save. 10. Go back to Instance Level Security page and create a new role “OWB_INTERNAL_USERS”, assign no user or role to this role. Simply click “OK” to create this role. Now you have finished creating the security roles required for Control Center Agent. Create JMS Queues You need to create two JMS queues for Control Center Agent: owbQueue and abort_owbQueue. 1. Now go to OC4J home Page. On the OC4J home screen, click the Administration tab. On the Administration Tasks screen, expand Services and then expand Enterprise Messaging Service. Click the task icon next to JMS Destinations. 2. On JMS Destinations page, click “Create New” button to create a new JMS queue. On Add Destination page, choose “Queue” as Destination Type. Put “owbQueue” as Destination Name. Select “In Memory Persistence Only” as the Persistence Type and put “jms/owbQueue” as JNDI Location and click on “OK” to finish. 3. Follow the same instruction as above to create the owb_abortQueue. Now you have finished creating the JMS queues required for Control Center Agent. Install JDBC Drivers to OC4J In order to execute Code Templates using commercial databases other than Oracle, e.g. DB2, SQL Server etc, the corresponding jdbc driver files need to be added to $AS_HOME/j2ee/home/applib directory. 1. To install other JDBC drivers to OC4J, first obtain the .jar file containing the JDBC driver. All the external JDBC drivers .jar files can be found in the directory: $OWB_HOME/owb/lib/ext/. For DB2, the files needed are db2jcc.jar and db2jcc_license_cu.jar. For SQL Server the file is sqljdbc.jar. For sunopsis JDBC drivers, the file needed is snpsxmlo.jar. 2. Copy the required JDBC driver file into the directory $AS_HOME/j2ee/home/applib. Now you have finished the Application Server configuration. To make the configuration to take an effect, you need to restart the Application Server.   Task 2: Deploy the Control Center Agent to the Application Server Now you can deploy the Control Center Agent to the Application Server. In a web browser, navigate to Enterprise Manager Homepage (e.g. http://hostname:8889/em). 1. Log in using the oc4jadmin credentials. After the Cluster Topology page is loaded, click home (the OC4J instance). This takes you to the home page of the OC4J instance. On the OC4J home screen, click the Applications tab. Click Deploy to begin deploying Control Center Agent. 2. On the Deploy: Select Archive screen, under Archive, select Archive is present on local host. Upload the archive to the server where Application Server Control is running. Click Browse and locate the jrt.ear file in the $OWB_HOME/owb/jrt/applications directory. Under Deployment Plan, select Automatically create a new deployment plan. Click Next. 3. Wait for the ear file to be uploaded to Application Server. On the Deploy: Application Attributes screen, enter Application Name jrt, and Context Root jrt. Leave the other attributes at their default values. Click Next. 4. On Deploy: Deployment Settings screen, leave all attributes at their default values, and click Deploy. This will take about 1 minute or so and when the application is deployed successfully, a confirmation message will be displayed. Now the Control Center Agent is started automatically. Go back to OC4J home page and click on Applications tab to make sure the deployed application jrt is showing in the applications list.   Task 3: Optional Configuration Tasks The optional configuration tasks contain: · Secure Control Center Agent Web Service · Setting the PATH Environment Variable Secure Control Center Agent Web Service If you want to use JRTWebService with a secure website, you need to do the following steps, 1. Create a file “secure-web-site.xml” in the $AS_HOME/j2ee/home/config directory. The file can be obtained from $OWB_HOME/owb/jrt/config directory. A sample secure-web-site.xml is shown as below. We need to modify the “protocol” to “https”, and “secure” to “true”, also choose an port as the secure http port. Also we need to add the entry “ssl-config” in the file. Remember to use the absolute path for the key store file. 2. Modify the file “server.xml” that is located at $AS_HOME/j2ee/home/config directory. Then add the <web-site> element in the file for the secure-web-site. 3. Create a key store file “serverkeystore.jks” in the $AS_HOME/j2ee/home/config directory. The file can be obtained from $OWB_HOME/owb/jrt/config directory. After the three files are altered, restart the application server. Now you can access the JRTWebService in SSL way through https://hostname:4443/jrt/webservice. Setting the PATH Environment Variable Sometimes, some system commands such as linux ls, sh etc, can not be executed successfully during the script execution due to they are not found in PATH. To ensure they work normally, you can setup the environment variable PATH. Let’s navigate to the Enterprise Manager Homepage. 1. Go to OC4J home screen and click the Administration tab. Expand Administration Tasks, then expand Properties. Click the task icon next to Server Properties. 2. On the Server Properties screen, scroll down to Environment Variables section. Under Environment Variables, click Add Another Row. Enter PATH in Name, and fill Value with directories that contain the system commands. Click Apply.   After you work through this article, I believe you have developed a deeper understanding of the Control Center Agent installation process, and you can apply this knowledge in other installation plan such as Control Center Agent installation on Standalone OC4J.

    Read the article

  • Excel Template Teaser

    - by Tim Dexter
    In lieu of some official documentation I'm in the process of putting together some posts on the new 10.1.3.4.1 Excel templates. No more HTML, maskerading as Excel; far more flexibility than Excel Analyzer and no need to write complex XSL templates to create the same output. Multi sheet outputs with macros and embeddable XSL commands are here. Their capabilities are pretty extensive and I have not worked on them for a few years since I helped put them together for EBS FSG users, so Im back on the learning curve. Let me say up front, there is no template builder, its a completely manual process to build them but, the results can be fantastic and provide yet another 'superstar' opportunity for you. The templates can take hierarchical XML data and walk the structure much like an RTF template. They use named cells/ranges and a hidden sheet to provide the rendering engine the hooks to drop the data in. As a taster heres the data and output I worked with on my first effort: <EMPLOYEES> <LIST_G_DEPT> <G_DEPT> <DEPARTMENT_ID>10</DEPARTMENT_ID> <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME> <LIST_G_EMP> <G_EMP> <EMPLOYEE_ID>200</EMPLOYEE_ID> <EMP_NAME>Jennifer Whalen</EMP_NAME> <EMAIL>JWHALEN</EMAIL> <PHONE_NUMBER>515.123.4444</PHONE_NUMBER> <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE> <SALARY>4400</SALARY> </G_EMP> </LIST_G_EMP> <TOTAL_EMPS>1</TOTAL_EMPS> <TOTAL_SALARY>4400</TOTAL_SALARY> <AVG_SALARY>4400</AVG_SALARY> <MAX_SALARY>4400</MAX_SALARY> <MIN_SALARY>4400</MIN_SALARY> </G_DEPT> ... </LIST_G_DEPT> </EMPLOYEES> Structured XML coming from a data template, check out the data template progression post. I can then generate the following binary XLS file. There are few cool things to notice in this output. DEPARTMENT-EMPLOYEE master detail output. Not easy to do in the Excel analyzer. Date formatting - this is using an Excel function. Remember BIP generates XML dates in the canonical format. I have formatted the other data in the template using native Excel functionality Salary Total - although in the data I have calculated this in the template Conditional formatting - this is handled by Excel based on the incoming data Bursting department data across sheets and using the department name for the sheet name. This alone is worth the wait! there's more, but this is surely enough to whet your appetite. These new templates are already tucked away in EBS R12 under controlled release by the GL team and have now come to the BIEE and standalone releases in the 10.1.3.4.1+ rollup patch. For the rest of you, its going to be a bit of a waiting game for the relevant teams to uptake the latest BIP release. Look out for more soon with some explanation of how they work and how to put them together!

    Read the article

  • Cheetah with Cherrypy: how to load base templates, and do so automatically on change during developm

    - by Heikki Toivonen
    I am working on a cherrypy+cheetah app and would like to improve the development experience. I have everything working when I manually compile templates beforehand. However, during development I'd rather just load the templates every time they are referenced so that I don't need to kill and restart my application. I have a couple of issues I am facing: If I have templates inheriting from base templates, I get import errors (can't find base templates). I think I had this actually working during my experiments, but unfortunately didn't save it and now I can't make it work. Suppose I get 1. working, how do make it so that edits even in base templates get picked up without restart. Below is my sample application that should demonstrate the problems. The directory structure is as follows: t.py templates/ base.tmpl index.tmpl t.py: import sys import cherrypy from Cheetah.Template import Template class T: def __init__(self, foo): self.foo = foo @cherrypy.expose def index(self): return Template(file='templates/index.tmpl', searchList=[{'foo': self.foo}]).respond() cherrypy.quickstart(T(sys.argv[1])) base.tmpl: #def body This is the body from the base #end def This is the base doc index.tmpl: #from templates.base import base #extends base #def body $base.body(self) This is the extended body #end def This is from index Run it like this: python t.py Something

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

< Previous Page | 119 120 121 122 123 124 125 126 127 128 129 130  | Next Page >