Search Results

Search found 8567 results on 343 pages for 'thread safety'.

Page 124/343 | < Previous Page | 120 121 122 123 124 125 126 127 128 129 130 131  | Next Page >

  • Java - How to force resize JCheckBox to prevent clicking the empty space ?

    - by Brad
    When i create a JCheckBox in my Swing application i leave some extra space after its label, so if the JCheckBox label is for example 100 pixels width, i make the JCheckBox 120 pixels for safety. The problem as at runtime, it's not nice that a user can click on the empty space after the JCheckBox label and it can be actually clicked, like this : I wonder if there is a way to resize the JCheckBox at runtime to exactly fit the text inside it, depending on the font type/size used ? This seems fancy a bit, but i like to make things look perfect :)

    Read the article

  • What are the reasons for casting a void pointer?

    - by Maulrus
    I'm learning C++ from scratch, and as such I don't have an expert understanding of C. In C++, you can't cast a void pointer to whatever, and I understand the reasons behind that. However, I know that in C, you can. What are the possible reasons for this? It just seems like it's be a huge hole in type safety, which (to me) seems like a bad thing.

    Read the article

  • Difference among STLPort and SGI STL

    - by Yan Cheng CHEOK
    Recently, I was buzzed by the following problem STL std::string class causes crashes and memory corruption on multi-processor machines while using VC6. I plan to use an alternative STL libraries instead of the one provided by VC6. I came across 2 libraries : STLPort and SGI STL I was wondering what is the difference between the 2. Which one I should use? Which one able to guarantee thread safety? Thanks.

    Read the article

  • Why and what for: java enum

    - by Mat Banik
    Today I was browsing through some question on this site and I found mention of enum being used in singleton pattern and that there are some thread safety benefits to such solution. I never used enums and I have been programing in java for more than couple a years now. And apparently they changed a lot and now they even do full blown support of OOP within them selfs. Now why and what for should I used enum in day to day programing?

    Read the article

  • Building a life-critical System using Agile

    - by Ben Breen
    Looking at the general trend of comments in my question about Building an Aircraft using Agile, the biggest problem other than cost appears to be safety. Do people feel that it is not possible to build a safe system (or prove it is safe) using agile? Doesn’t all the iterative testing mitigate this? Is it likely that a piece of software developed using agile will never be as reliable as counterparts such as waterfall?

    Read the article

  • Downsides to immutable objects in Java?

    - by parkr
    The advantages of immutable objects in Java seem clear: consistent state automatic thread safety simplicity You can favour immutability by using private final fields and constructor injection. But, what are the downsides to favouring immutable objects in Java? i.e. incompatibility with ORM or web presentation tools? Inflexible design? Implementation complexities? Is it possible to design a large-scale system (deep object graph) that predominately uses immutable objects?

    Read the article

  • C# (non-abstract) class to represent paths

    - by user289770
    I'm looking for a C# class that represents a file system path. I would like to use it (instead of strings) as the data type of variables and method arguments (top reasons: type safety, concat-proof, logical comparisons). System.IO.Path provides most of the functionality I want, but it is abstract. System.IO.FileInfo, as I understand, performs IO operations to do its job. I only want a wrapper for the path string. Thanks!

    Read the article

  • Spring Security beginner's question. Build failed

    - by Nitesh Panchal
    Hello, I downloaded all jar files for Spring Security 3.0 and added them to my lib folder in Netbeans 6.8. Then i added Spring framework to my web application and tried to modify applicationContext.xml as given in the pdf that shipped with Spring Security. This is it's code :- <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:security="http://www.springframework.org/schema/security" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/security http://www.springframework.org/schema/security/spring-security-3.0.xsd"> <http auto-config='true'> <intercept-url pattern="/**" access="ROLE_USER" /> </http> <authentication-manager> <authentication-provider> <user-service> <user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" /> <user name="bob" password="bobspassword" authorities="ROLE_USER" /> </user-service> </authentication-provider> </authentication-manager> <!--bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer" p:location="/WEB-INF/jdbc.properties" /> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource" p:driverClassName="${jdbc.driverClassName}" p:url="${jdbc.url}" p:username="${jdbc.username}" p:password="${jdbc.password}" /--> <!-- ADD PERSISTENCE SUPPORT HERE (jpa, hibernate, etc) --> </beans> This is my web.xml :- <?xml version="1.0" encoding="UTF-8"?> <web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <servlet> <servlet-name>dispatcher</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <load-on-startup>2</load-on-startup> </servlet> <servlet-mapping> <servlet-name>dispatcher</servlet-name> <url-pattern>*.htm</url-pattern> </servlet-mapping> <session-config> <session-timeout> 30 </session-timeout> </session-config> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class> org.springframework.web.context.ContextLoaderListener </listener-class> </listener> <listener> <listener-class> org.springframework.web.context.request.RequestContextListener </listener-class> </listener> <filter> <filter-name>springSecurityFilterChain</filter-name> <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class> </filter> <filter-mapping> <filter-name>springSecurityFilterChain</filter-name> <url-pattern>/*</url-pattern> </filter-mapping> <welcome-file-list> <welcome-file>redirect.jsp</welcome-file> </welcome-file-list> </web-app> My web application doesn't compile. I simply keep getting build failed. This is the stacktrace :- INFO: PWC1412: WebModule[/SpringSecurityDemo] ServletContext.log():Initializing Spring root WebApplicationContext INFO: Root WebApplicationContext: initialization started INFO: Refreshing org.springframework.web.context.support.XmlWebApplicationContext@108026d: display name [Root WebApplicationContext]; startup date [Mon Mar 22 18:23:37 PDT 2010]; root of context hierarchy INFO: Loading XML bean definitions from ServletContext resource [/WEB-INF/applicationContext.xml] SEVERE: Context initialization failed org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line 11 in XML document from ServletContext resource [/WEB-INF/applicationContext.xml] is invalid; nested exception is org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'http'. One of '{"http://www.springframework.org/schema/beans":description, "http://www.springframework.org/schema/beans":import, "http://www.springframework.org/schema/beans":alias, "http://www.springframework.org/schema/beans":bean, WC[##other:"http://www.springframework.org/schema/beans"]}' is expected. at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions(XmlBeanDefinitionReader.java:369) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBeanDefinitions(XmlBeanDefinitionReader.java:313) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBeanDefinitions(XmlBeanDefinitionReader.java:290) at org.springframework.beans.factory.support.AbstractBeanDefinitionReader.loadBeanDefinitions(AbstractBeanDefinitionReader.java:142) at org.springframework.beans.factory.support.AbstractBeanDefinitionReader.loadBeanDefinitions(AbstractBeanDefinitionReader.java:158) at org.springframework.web.context.support.XmlWebApplicationContext.loadBeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.loadBeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationContext.refreshBeanFactory(AbstractRefreshableApplicationContext.java:97) at org.springframework.context.support.AbstractApplicationContext.obtainFreshBeanFactory(AbstractApplicationContext.java:411) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:338) at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:251) at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:190) at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:45) at org.apache.catalina.core.StandardContext.contextListenerStart(StandardContext.java:4591) at com.sun.enterprise.web.WebModule.contextListenerStart(WebModule.java:535) at org.apache.catalina.core.StandardContext.start(StandardContext.java:5193) at com.sun.enterprise.web.WebModule.start(WebModule.java:499) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:928) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:912) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:694) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1933) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1605) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:90) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:183) at org.glassfish.deployment.admin.DeployCommand.execute(DeployCommand.java:272) at com.sun.enterprise.v3.admin.CommandRunnerImpl$1.execute(CommandRunnerImpl.java:305) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:320) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:1176) at com.sun.enterprise.v3.admin.CommandRunnerImpl.access$900(CommandRunnerImpl.java:83) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1235) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1224) at com.sun.enterprise.v3.admin.AdminAdapter.doCommand(AdminAdapter.java:365) at com.sun.enterprise.v3.admin.AdminAdapter.service(AdminAdapter.java:204) at com.sun.grizzly.tcp.http11.GrizzlyAdapter.service(GrizzlyAdapter.java:166) at com.sun.enterprise.v3.server.HK2Dispatcher.dispath(HK2Dispatcher.java:100) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:245) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:619) Caused by: org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'http'. One of '{"http://www.springframework.org/schema/beans":description, "http://www.springframework.org/schema/beans":import, "http://www.springframework.org/schema/beans":alias, "http://www.springframework.org/schema/beans":bean, WC[##other:"http://www.springframework.org/schema/beans"]}' is expected. at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.createSAXParseException(ErrorHandlerWrapper.java:195) at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.error(ErrorHandlerWrapper.java:131) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:384) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:318) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator$XSIErrorReporter.reportError(XMLSchemaValidator.java:410) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.reportSchemaError(XMLSchemaValidator.java:3165) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.handleStartElement(XMLSchemaValidator.java:1777) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.startElement(XMLSchemaValidator.java:685) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.scanStartElement(XMLNSDocumentScannerImpl.java:400) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl$FragmentContentDriver.next(XMLDocumentFragmentScannerImpl.java:2747) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl.next(XMLDocumentScannerImpl.java:648) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.next(XMLNSDocumentScannerImpl.java:140) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanDocument(XMLDocumentFragmentScannerImpl.java:510) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:807) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:737) at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(XMLParser.java:107) at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse(DOMParser.java:225) at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse(DocumentBuilderImpl.java:283) at org.springframework.beans.factory.xml.DefaultDocumentLoader.loadDocument(DefaultDocumentLoader.java:78) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions(XmlBeanDefinitionReader.java:361) ... 53 more SEVERE: PWC1306: Startup of context /SpringSecurityDemo failed due to previous errors SEVERE: PWC1305: Exception during cleanup after start failed org.apache.catalina.LifecycleException: PWC2769: Manager has not yet been started at org.apache.catalina.session.StandardManager.stop(StandardManager.java:892) at org.apache.catalina.core.StandardContext.stop(StandardContext.java:5383) at com.sun.enterprise.web.WebModule.stop(WebModule.java:530) at org.apache.catalina.core.StandardContext.start(StandardContext.java:5211) at com.sun.enterprise.web.WebModule.start(WebModule.java:499) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:928) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:912) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:694) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1933) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1605) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:90) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:183) at org.glassfish.deployment.admin.DeployCommand.execute(DeployCommand.java:272) at com.sun.enterprise.v3.admin.CommandRunnerImpl$1.execute(CommandRunnerImpl.java:305) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:320) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:1176) at com.sun.enterprise.v3.admin.CommandRunnerImpl.access$900(CommandRunnerImpl.java:83) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1235) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1224) at com.sun.enterprise.v3.admin.AdminAdapter.doCommand(AdminAdapter.java:365) at com.sun.enterprise.v3.admin.AdminAdapter.service(AdminAdapter.java:204) at com.sun.grizzly.tcp.http11.GrizzlyAdapter.service(GrizzlyAdapter.java:166) at com.sun.enterprise.v3.server.HK2Dispatcher.dispath(HK2Dispatcher.java:100) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:245) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:619) SEVERE: ContainerBase.addChild: start: org.apache.catalina.LifecycleException: org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line 11 in XML document from ServletContext resource [/WEB-INF/applicationContext.xml] is invalid; nested exception is org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'http'. One of '{"http://www.springframework.org/schema/beans":description, "http://www.springframework.org/schema/beans":import, "http://www.springframework.org/schema/beans":alias, "http://www.springframework.org/schema/beans":bean, WC[##other:"http://www.springframework.org/schema/beans"]}' is expected. at org.apache.catalina.core.StandardContext.start(StandardContext.java:5216) at com.sun.enterprise.web.WebModule.start(WebModule.java:499) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:928) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:912) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:694) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1933) at com.sun.enterprise.web.WebContainer.loadWebModule(WebContainer.java:1605) at com.sun.enterprise.web.WebApplication.start(WebApplication.java:90) at org.glassfish.internal.data.EngineRef.start(EngineRef.java:126) at org.glassfish.internal.data.ModuleInfo.start(ModuleInfo.java:241) at org.glassfish.internal.data.ApplicationInfo.start(ApplicationInfo.java:236) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:339) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:183) at org.glassfish.deployment.admin.DeployCommand.execute(DeployCommand.java:272) at com.sun.enterprise.v3.admin.CommandRunnerImpl$1.execute(CommandRunnerImpl.java:305) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:320) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:1176) at com.sun.enterprise.v3.admin.CommandRunnerImpl.access$900(CommandRunnerImpl.java:83) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1235) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1224) at com.sun.enterprise.v3.admin.AdminAdapter.doCommand(AdminAdapter.java:365) at com.sun.enterprise.v3.admin.AdminAdapter.service(AdminAdapter.java:204) at com.sun.grizzly.tcp.http11.GrizzlyAdapter.service(GrizzlyAdapter.java:166) at com.sun.enterprise.v3.server.HK2Dispatcher.dispath(HK2Dispatcher.java:100) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:245) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:619) Caused by: org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line 11 in XML document from ServletContext resource [/WEB-INF/applicationContext.xml] is invalid; nested exception is org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'http'. One of '{"http://www.springframework.org/schema/beans":description, "http://www.springframework.org/schema/beans":import, "http://www.springframework.org/schema/beans":alias, "http://www.springframework.org/schema/beans":bean, WC[##other:"http://www.springframework.org/schema/beans"]}' is expected. at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions(XmlBeanDefinitionReader.java:369) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBeanDefinitions(XmlBeanDefinitionReader.java:313) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBeanDefinitions(XmlBeanDefinitionReader.java:290) at org.springframework.beans.factory.support.AbstractBeanDefinitionReader.loadBeanDefinitions(AbstractBeanDefinitionReader.java:142) at org.springframework.beans.factory.support.AbstractBeanDefinitionReader.loadBeanDefinitions(AbstractBeanDefinitionReader.java:158) at org.springframework.web.context.support.XmlWebApplicationContext.loadBeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.loadBeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationContext.refreshBeanFactory(AbstractRefreshableApplicationContext.java:97) at org.springframework.context.support.AbstractApplicationContext.obtainFreshBeanFactory(AbstractApplicationContext.java:411) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:338) at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:251) at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:190) at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:45) at org.apache.catalina.core.StandardContext.contextListenerStart(StandardContext.java:4591) at com.sun.enterprise.web.WebModule.contextListenerStart(WebModule.java:535) at org.apache.catalina.core.StandardContext.start(StandardContext.java:5193) ... 38 more Caused by: org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'http'. One of '{"http://www.springframework.org/schema/beans":description, "http://www.springframework.org/schema/beans":import, "http://www.springframework.org/schema/beans":alias, "http://www.springframework.org/schema/beans":bean, WC[##other:"http://www.springframework.org/schema/beans"]}' is expected. at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.createSAXParseException(ErrorHandlerWrapper.java:195) at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.error(ErrorHandlerWrapper.java:131) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:384) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:318) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator$XSIErrorReporter.reportError(XMLSchemaValidator.java:410) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.reportSchemaError(XMLSchemaValidator.java:3165) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.handleStartElement(XMLSchemaValidator.java:1777) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.startElement(XMLSchemaValidator.java:685) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.scanStartElement(XMLNSDocumentScannerImpl.java:400) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl$FragmentContentDriver.next(XMLDocumentFragmentScannerImpl.java:2747) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl.next(XMLDocumentScannerImpl.java:648) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.next(XMLNSDocumentScannerImpl.java:140) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanDocument(XMLDocumentFragmentScannerImpl.java:510) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:807) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:737) at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(XMLParser.java:107) at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse(DOMParser.java:225) at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse(DocumentBuilderImpl.java:283) at org.springframework.beans.factory.xml.DefaultDocumentLoader.loadDocument(DefaultDocumentLoader.java:78) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.doLoadBeanDefinitions(XmlBeanDefinitionReader.java:361) ... 53 more

    Read the article

  • Java fatal error, don't know what it means

    - by Thomas King
    It happens at the same place in my code (albeit not the first time the method is executed) but I can't make head or tail of what is wrong. (Doubly so as it's code for a robot). Be most appreciative if someone can give me an idea of what kind of problem it is. I assume it's to do with threading (multi-threaded app) but I don't really know what?!? Worried as deadline for uni project is looming!!! The message: # A fatal error has been detected by the Java Runtime Environment: # SIGSEGV (0xb) at pc=0xb70f0ca7, pid=5065, tid=2145643376 # JRE version: 6.0_15-b03 Java VM: Java HotSpot(TM) Server VM (14.1-b02 mixed mode linux-x86 ) Problematic frame: V [libjvm.so+0x4c9ca7] # An error report file with more information is saved as: /home/thomas/workspace/sir13/hs_err_pid5065.log # If you would like to submit a bug report, please visit: http://java.sun.com/webapps/bugreport/crash.jsp # The log: # A fatal error has been detected by the Java Runtime Environment: # SIGSEGV (0xb) at pc=0xb70f0ca7, pid=5065, tid=2145643376 # JRE version: 6.0_15-b03 Java VM: Java HotSpot(TM) Server VM (14.1-b02 mixed mode linux-x86 ) Problematic frame: V [libjvm.so+0x4c9ca7] # If you would like to submit a bug report, please visit: http://java.sun.com/webapps/bugreport/crash.jsp # --------------- T H R E A D --------------- Current thread (0x0904ec00): JavaThread "CompilerThread1" daemon [_thread_in_native, id=5078, stack(0x7fdbe000,0x7fe3f000)] siginfo:si_signo=SIGSEGV: si_errno=0, si_code=1 (SEGV_MAPERR), si_addr=0x00000004 Registers: EAX=0x00000000, EBX=0xb733d720, ECX=0x000003b4, EDX=0x00000000 ESP=0x7fe3bf30, EBP=0x7fe3bf78, ESI=0x7fe3c250, EDI=0x7e9a7790 EIP=0xb70f0ca7, CR2=0x00000004, EFLAGS=0x00010283 Top of Stack: (sp=0x7fe3bf30) 0x7fe3bf30: 00020008 7ec8de5c 7fe3c250 00000000 0x7fe3bf40: 7f610451 00001803 7e9a7790 000003f5 0x7fe3bf50: 7e920030 7f239910 7f23b349 7f23b348 0x7fe3bf60: 7f550e35 7fe3c250 0000021b b733d720 0x7fe3bf70: 000003bc 7f23db10 7fe3bfc8 b70f0997 0x7fe3bf80: 7fe3c240 7f23db10 00000000 00000002 0x7fe3bf90: 00000000 7fe3c1b0 00000000 00000000 0x7fe3bfa0: 00004000 00000020 7ec88870 00000002 Instructions: (pc=0xb70f0ca7) 0xb70f0c97: 7d 08 8b 87 c8 02 00 00 89 c7 8b 45 c4 8b 14 87 0xb70f0ca7: 8b 42 04 8b 00 85 c0 75 22 8b 4e 04 8b 52 1c 39 Stack: [0x7fdbe000,0x7fe3f000], sp=0x7fe3bf30, free space=503k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) V [libjvm.so+0x4c9ca7] V [libjvm.so+0x4c9997] V [libjvm.so+0x4c6e23] V [libjvm.so+0x25b75f] V [libjvm.so+0x2585df] V [libjvm.so+0x1f2c2f] V [libjvm.so+0x260ceb] V [libjvm.so+0x260609] V [libjvm.so+0x617286] V [libjvm.so+0x6108fe] V [libjvm.so+0x531c4e] C [libpthread.so.0+0x580e] Current CompileTask: C2:133 ! BehaviourLeftUnexplored.action()V (326 bytes) --------------- P R O C E S S --------------- Java Threads: ( = current thread ) 0x08fb5400 JavaThread "DestroyJavaVM" [_thread_blocked, id=5066, stack(0xb6bb0000,0xb6c01000)] 0x09213c00 JavaThread "Thread-4" [_thread_blocked, id=5085, stack(0x7eeaf000,0x7ef00000)] 0x09212c00 JavaThread "Thread-3" [_thread_in_Java, id=5084, stack(0x7f863000,0x7f8b4000)] 0x09206800 JavaThread "AWT-XAWT" daemon [_thread_in_native, id=5083, stack(0x7f8b4000,0x7f905000)] 0x091b7400 JavaThread "Java2D Disposer" daemon [_thread_blocked, id=5082, stack(0x7f93e000,0x7f98f000)] 0x09163c00 JavaThread "Thread-0" [_thread_in_native, id=5081, stack(0x7fc87000,0x7fcd8000)] 0x09050c00 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=5079, stack(0x7fd6d000,0x7fdbe000)] =0x0904ec00 JavaThread "CompilerThread1" daemon [_thread_in_native, id=5078, stack(0x7fdbe000,0x7fe3f000)] 0x0904c000 JavaThread "CompilerThread0" daemon [_thread_blocked, id=5077, stack(0x7fe3f000,0x7fec0000)] 0x0904a800 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=5076, stack(0x7fec0000,0x7ff11000)] 0x09036c00 JavaThread "Finalizer" daemon [_thread_blocked, id=5075, stack(0x7ff57000,0x7ffa8000)] 0x09035400 JavaThread "Reference Handler" daemon [_thread_blocked, id=5074, stack(0x7ffa8000,0x7fff9000)] Other Threads: 0x09031400 VMThread [stack: 0x7fff9000,0x8007a000] [id=5073] 0x09052800 WatcherThread [stack: 0x7fcec000,0x7fd6d000] [id=5080] VM state:not at safepoint (normal execution) VM Mutex/Monitor currently owned by a thread: None Heap PSYoungGen total 46784K, used 32032K [0xae650000, 0xb3440000, 0xb3a50000) eden space 46720K, 68% used [0xae650000,0xb0588f48,0xb13f0000) from space 64K, 95% used [0xb3390000,0xb339f428,0xb33a0000) to space 384K, 0% used [0xb33e0000,0xb33e0000,0xb3440000) PSOldGen total 43008K, used 20872K [0x84650000, 0x87050000, 0xae650000) object space 43008K, 48% used [0x84650000,0x85ab2308,0x87050000) PSPermGen total 16384K, used 5115K [0x80650000, 0x81650000, 0x84650000) object space 16384K, 31% used [0x80650000,0x80b4ec30,0x81650000) Dynamic libraries: 08048000-08052000 r-xp 00000000 08:05 34708 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/bin/java 08052000-08053000 rwxp 00009000 08:05 34708 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/bin/java 08faf000-09220000 rwxp 00000000 00:00 0 [heap] 7e900000-7e9f9000 rwxp 00000000 00:00 0 7e9f9000-7ea00000 ---p 00000000 00:00 0 7ea00000-7ea41000 rwxp 00000000 00:00 0 7ea41000-7eb00000 ---p 00000000 00:00 0 7eb00000-7ebfc000 rwxp 00000000 00:00 0 7ebfc000-7ec00000 ---p 00000000 00:00 0 7ec00000-7ecf7000 rwxp 00000000 00:00 0 7ecf7000-7ed00000 ---p 00000000 00:00 0 7ed00000-7ede7000 rwxp 00000000 00:00 0 7ede7000-7ee00000 ---p 00000000 00:00 0 7eeaf000-7eeb2000 ---p 00000000 00:00 0 7eeb2000-7ef00000 rwxp 00000000 00:00 0 7ef00000-7eff9000 rwxp 00000000 00:00 0 7eff9000-7f000000 ---p 00000000 00:00 0 7f100000-7f1f6000 rwxp 00000000 00:00 0 7f1f6000-7f200000 ---p 00000000 00:00 0 7f200000-7f2fc000 rwxp 00000000 00:00 0 7f2fc000-7f300000 ---p 00000000 00:00 0 7f300000-7f4fe000 rwxp 00000000 00:00 0 7f4fe000-7f500000 ---p 00000000 00:00 0 7f500000-7f5fb000 rwxp 00000000 00:00 0 7f5fb000-7f600000 ---p 00000000 00:00 0 7f600000-7f6f9000 rwxp 00000000 00:00 0 7f6f9000-7f700000 ---p 00000000 00:00 0 7f700000-7f800000 rwxp 00000000 00:00 0 7f830000-7f836000 r-xs 00000000 08:05 241611 /var/cache/fontconfig/945677eb7aeaf62f1d50efc3fb3ec7d8-x86.cache-2 7f836000-7f838000 r-xs 00000000 08:05 241612 /var/cache/fontconfig/99e8ed0e538f840c565b6ed5dad60d56-x86.cache-2 7f838000-7f83b000 r-xs 00000000 08:05 241620 /var/cache/fontconfig/e383d7ea5fbe662a33d9b44caf393297-x86.cache-2 7f83b000-7f846000 r-xs 00000000 08:05 241600 /var/cache/fontconfig/0f34bcd4b6ee430af32735b75db7f02b-x86.cache-2 7f863000-7f866000 ---p 00000000 00:00 0 7f866000-7f8b4000 rwxp 00000000 00:00 0 7f8b4000-7f8b7000 ---p 00000000 00:00 0 7f8b7000-7f905000 rwxp 00000000 00:00 0 7f905000-7f909000 r-xp 00000000 08:05 5012 /usr/lib/libXfixes.so.3.1.0 7f909000-7f90a000 r-xp 00003000 08:05 5012 /usr/lib/libXfixes.so.3.1.0 7f90a000-7f90b000 rwxp 00004000 08:05 5012 /usr/lib/libXfixes.so.3.1.0 7f90b000-7f913000 r-xp 00000000 08:05 5032 /usr/lib/libXrender.so.1.3.0 7f913000-7f914000 r-xp 00007000 08:05 5032 /usr/lib/libXrender.so.1.3.0 7f914000-7f915000 rwxp 00008000 08:05 5032 /usr/lib/libXrender.so.1.3.0 7f915000-7f91e000 r-xp 00000000 08:05 5004 /usr/lib/libXcursor.so.1.0.2 7f91e000-7f91f000 r-xp 00008000 08:05 5004 /usr/lib/libXcursor.so.1.0.2 7f91f000-7f920000 rwxp 00009000 08:05 5004 /usr/lib/libXcursor.so.1.0.2 7f92f000-7f931000 r-xs 00000000 08:05 241622 /var/cache/fontconfig/f24b2111ab8703b4e963115a8cf14259-x86.cache-2 7f931000-7f932000 r-xs 00000000 08:05 241606 /var/cache/fontconfig/4c73fe0c47614734b17d736dbde7580a-x86.cache-2 7f932000-7f936000 r-xs 00000000 08:05 241599 /var/cache/fontconfig/062808c12e6e608270f93bb230aed730-x86.cache-2 7f936000-7f93e000 r-xs 00000000 08:05 241617 /var/cache/fontconfig/d52a8644073d54c13679302ca1180695-x86.cache-2 7f93e000-7f941000 ---p 00000000 00:00 0 7f941000-7f98f000 rwxp 00000000 00:00 0 7f98f000-7fa0e000 r-xp 00000000 08:05 34755 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libfontmanager.so 7fa0e000-7fa19000 rwxp 0007e000 08:05 34755 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libfontmanager.so 7fa19000-7fa1d000 rwxp 00000000 00:00 0 7fa1d000-7fa21000 r-xp 00000000 08:05 5008 /usr/lib/libXdmcp.so.6.0.0 7fa21000-7fa22000 rwxp 00003000 08:05 5008 /usr/lib/libXdmcp.so.6.0.0 7fa22000-7fa3e000 r-xp 00000000 08:05 6029 /usr/lib/libxcb.so.1.1.0 7fa3e000-7fa3f000 r-xp 0001c000 08:05 6029 /usr/lib/libxcb.so.1.1.0 7fa3f000-7fa40000 rwxp 0001d000 08:05 6029 /usr/lib/libxcb.so.1.1.0 7fa40000-7fa42000 r-xp 00000000 08:05 4997 /usr/lib/libXau.so.6.0.0 7fa42000-7fa43000 r-xp 00001000 08:05 4997 /usr/lib/libXau.so.6.0.0 7fa43000-7fa44000 rwxp 00002000 08:05 4997 /usr/lib/libXau.so.6.0.0 7fa44000-7fb6e000 r-xp 00000000 08:05 4991 /usr/lib/libX11.so.6.2.0 7fb6e000-7fb6f000 ---p 0012a000 08:05 4991 /usr/lib/libX11.so.6.2.0 7fb6f000-7fb70000 r-xp 0012a000 08:05 4991 /usr/lib/libX11.so.6.2.0 7fb70000-7fb72000 rwxp 0012b000 08:05 4991 /usr/lib/libX11.so.6.2.0 7fb72000-7fb73000 rwxp 00000000 00:00 0 7fb73000-7fb81000 r-xp 00000000 08:05 5010 /usr/lib/libXext.so.6.4.0 7fb81000-7fb82000 r-xp 0000d000 08:05 5010 /usr/lib/libXext.so.6.4.0 7fb82000-7fb83000 rwxp 0000e000 08:05 5010 /usr/lib/libXext.so.6.4.0 7fb83000-7fb84000 r-xs 00000000 08:05 241614 /var/cache/fontconfig/c05880de57d1f5e948fdfacc138775d9-x86.cache-2 7fb84000-7fb87000 r-xs 00000000 08:05 241613 /var/cache/fontconfig/a755afe4a08bf5b97852ceb7400b47bc-x86.cache-2 7fb87000-7fb8a000 r-xs 00000000 08:05 241608 /var/cache/fontconfig/6d41288fd70b0be22e8c3a91e032eec0-x86.cache-2 7fb8a000-7fb92000 r-xs 00000000 08:05 219560 /var/cache/fontconfig/e13b20fdb08344e0e664864cc2ede53d-x86.cache-2 7fb92000-7fbd5000 r-xp 00000000 08:05 34752 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/xawt/libmawt.so 7fbd5000-7fbd7000 rwxp 00043000 08:05 34752 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/xawt/libmawt.so 7fbd7000-7fbd8000 rwxp 00000000 00:00 0 7fbd8000-7fc5c000 r-xp 00000000 08:05 34750 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libawt.so 7fc5c000-7fc63000 rwxp 00084000 08:05 34750 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libawt.so 7fc63000-7fc87000 rwxp 00000000 00:00 0 7fc87000-7fc8a000 ---p 00000000 00:00 0 7fc8a000-7fcd8000 rwxp 00000000 00:00 0 7fcd8000-7fceb000 r-xp 00000000 08:05 34739 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libnet.so 7fceb000-7fcec000 rwxp 00013000 08:05 34739 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libnet.so 7fcec000-7fced000 ---p 00000000 00:00 0 7fced000-7fd6d000 rwxp 00000000 00:00 0 7fd6d000-7fd70000 ---p 00000000 00:00 0 7fd70000-7fdbe000 rwxp 00000000 00:00 0 7fdbe000-7fdc1000 ---p 00000000 00:00 0 7fdc1000-7fe3f000 rwxp 00000000 00:00 0 7fe3f000-7fe42000 ---p 00000000 00:00 0 7fe42000-7fec0000 rwxp 00000000 00:00 0 7fec0000-7fec3000 ---p 00000000 00:00 0 7fec3000-7ff11000 rwxp 00000000 00:00 0 7ff11000-7ff18000 r-xs 00000000 08:05 134616 /usr/lib/gconv/gconv-modules.cache 7ff18000-7ff57000 r-xp 00000000 08:05 136279 /usr/lib/locale/en_GB.utf8/LC_CTYPE 7ff57000-7ff5a000 ---p 00000000 00:00 0 7ff5a000-7ffa8000 rwxp 00000000 00:00 0 7ffa8000-7ffab000 ---p 00000000 00:00 0 7ffab000-7fff9000 rwxp 00000000 00:00 0 7fff9000-7fffa000 ---p 00000000 00:00 0 7fffa000-800ad000 rwxp 00000000 00:00 0 800ad000-80243000 r-xs 02fb3000 08:05 34883 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/rt.jar 80243000-80244000 ---p 00000000 00:00 0 80244000-802c4000 rwxp 00000000 00:00 0 802c4000-802c5000 ---p 00000000 00:00 0 802c5000-8034d000 rwxp 00000000 00:00 0 8034d000-80365000 rwxp 00000000 00:00 0 80365000-8037a000 rwxp 00000000 00:00 0 8037a000-804b5000 rwxp 00000000 00:00 0 804b5000-804bd000 rwxp 00000000 00:00 0 804bd000-804d5000 rwxp 00000000 00:00 0 804d5000-804ea000 rwxp 00000000 00:00 0 804ea000-80625000 rwxp 00000000 00:00 0 80625000-8064c000 rwxp 00000000 00:00 0 8064c000-8064f000 rwxp 00000000 00:00 0 8064f000-81650000 rwxp 00000000 00:00 0 81650000-84650000 rwxp 00000000 00:00 0 84650000-87050000 rwxp 00000000 00:00 0 87050000-ae650000 rwxp 00000000 00:00 0 ae650000-b3440000 rwxp 00000000 00:00 0 b3440000-b3a50000 rwxp 00000000 00:00 0 b3a50000-b3a52000 r-xs 00000000 08:05 241602 /var/cache/fontconfig/2c5ba8142dffc8bf0377700342b8ca1a-x86.cache-2 b3a52000-b3a5b000 r-xp 00000000 08:05 5018 /usr/lib/libXi.so.6.0.0 b3a5b000-b3a5c000 r-xp 00008000 08:05 5018 /usr/lib/libXi.so.6.0.0 b3a5c000-b3a5d000 rwxp 00009000 08:05 5018 /usr/lib/libXi.so.6.0.0 b3a5d000-b3a66000 rwxp 00000000 00:00 0 b3a66000-b3b1d000 rwxp 00000000 00:00 0 b3b1d000-b3d5d000 rwxp 00000000 00:00 0 b3d5d000-b6b1d000 rwxp 00000000 00:00 0 b6b1d000-b6b2c000 r-xp 00000000 08:05 34735 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libzip.so b6b2c000-b6b2e000 rwxp 0000e000 08:05 34735 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libzip.so b6b2e000-b6b38000 r-xp 00000000 08:05 1042 /lib/tls/i686/cmov/libnss_files-2.10.1.so b6b38000-b6b39000 r-xp 00009000 08:05 1042 /lib/tls/i686/cmov/libnss_files-2.10.1.so b6b39000-b6b3a000 rwxp 0000a000 08:05 1042 /lib/tls/i686/cmov/libnss_files-2.10.1.so b6b3a000-b6b43000 r-xp 00000000 08:05 1055 /lib/tls/i686/cmov/libnss_nis-2.10.1.so b6b43000-b6b44000 r-xp 00008000 08:05 1055 /lib/tls/i686/cmov/libnss_nis-2.10.1.so b6b44000-b6b45000 rwxp 00009000 08:05 1055 /lib/tls/i686/cmov/libnss_nis-2.10.1.so b6b45000-b6b4b000 r-xp 00000000 08:05 1028 /lib/tls/i686/cmov/libnss_compat-2.10.1.so b6b4b000-b6b4c000 r-xp 00005000 08:05 1028 /lib/tls/i686/cmov/libnss_compat-2.10.1.so b6b4c000-b6b4d000 rwxp 00006000 08:05 1028 /lib/tls/i686/cmov/libnss_compat-2.10.1.so b6b4d000-b6b54000 r-xs 00035000 08:05 304369 /home/thomas/workspace/sir13/javaclient/jars/javaclient.jar b6b54000-b6b5c000 rwxs 00000000 08:05 393570 /tmp/hsperfdata_thomas/5065 b6b5c000-b6b6f000 r-xp 00000000 08:05 1020 /lib/tls/i686/cmov/libnsl-2.10.1.so b6b6f000-b6b70000 r-xp 00012000 08:05 1020 /lib/tls/i686/cmov/libnsl-2.10.1.so b6b70000-b6b71000 rwxp 00013000 08:05 1020 /lib/tls/i686/cmov/libnsl-2.10.1.so b6b71000-b6b73000 rwxp 00000000 00:00 0 b6b73000-b6b77000 r-xp 00000000 08:05 5038 /usr/lib/libXtst.so.6.1.0 b6b77000-b6b78000 r-xp 00004000 08:05 5038 /usr/lib/libXtst.so.6.1.0 b6b78000-b6b79000 rwxp 00005000 08:05 5038 /usr/lib/libXtst.so.6.1.0 b6b79000-b6b7f000 r-xp 00000000 08:05 34723 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/native_threads/libhpi.so b6b7f000-b6b80000 rwxp 00006000 08:05 34723 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/native_threads/libhpi.so b6b80000-b6b81000 rwxp 00000000 00:00 0 b6b81000-b6b82000 r-xp 00000000 00:00 0 b6b82000-b6ba5000 r-xp 00000000 08:05 34733 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libjava.so b6ba5000-b6ba7000 rwxp 00023000 08:05 34733 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libjava.so b6ba7000-b6bae000 r-xp 00000000 08:05 1733 /lib/tls/i686/cmov/librt-2.10.1.so b6bae000-b6baf000 r-xp 00006000 08:05 1733 /lib/tls/i686/cmov/librt-2.10.1.so b6baf000-b6bb0000 rwxp 00007000 08:05 1733 /lib/tls/i686/cmov/librt-2.10.1.so b6bb0000-b6bb3000 ---p 00000000 00:00 0 b6bb3000-b6c01000 rwxp 00000000 00:00 0 b6c01000-b6c25000 r-xp 00000000 08:05 1016 /lib/tls/i686/cmov/libm-2.10.1.so b6c25000-b6c26000 r-xp 00023000 08:05 1016 /lib/tls/i686/cmov/libm-2.10.1.so b6c26000-b6c27000 rwxp 00024000 08:05 1016 /lib/tls/i686/cmov/libm-2.10.1.so b6c27000-b72f4000 r-xp 00000000 08:05 34724 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/server/libjvm.so b72f4000-b7341000 rwxp 006cc000 08:05 34724 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/server/libjvm.so b7341000-b7765000 rwxp 00000000 00:00 0 b7765000-b78a3000 r-xp 00000000 08:05 967 /lib/tls/i686/cmov/libc-2.10.1.so b78a3000-b78a4000 ---p 0013e000 08:05 967 /lib/tls/i686/cmov/libc-2.10.1.so b78a4000-b78a6000 r-xp 0013e000 08:05 967 /lib/tls/i686/cmov/libc-2.10.1.so b78a6000-b78a7000 rwxp 00140000 08:05 967 /lib/tls/i686/cmov/libc-2.10.1.so b78a7000-b78aa000 rwxp 00000000 00:00 0 b78aa000-b78ac000 r-xp 00000000 08:05 1014 /lib/tls/i686/cmov/libdl-2.10.1.so b78ac000-b78ad000 r-xp 00001000 08:05 1014 /lib/tls/i686/cmov/libdl-2.10.1.so b78ad000-b78ae000 rwxp 00002000 08:05 1014 /lib/tls/i686/cmov/libdl-2.10.1.so b78ae000-b78b5000 r-xp 00000000 08:05 34734 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/jli/libjli.so b78b5000-b78b7000 rwxp 00006000 08:05 34734 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/jli/libjli.so b78b7000-b78b8000 rwxp 00000000 00:00 0 b78b8000-b78cd000 r-xp 00000000 08:05 1081 /lib/tls/i686/cmov/libpthread-2.10.1.so b78cd000-b78ce000 r-xp 00014000 08:05 1081 /lib/tls/i686/cmov/libpthread-2.10.1.so b78ce000-b78cf000 rwxp 00015000 08:05 1081 /lib/tls/i686/cmov/libpthread-2.10.1.so b78cf000-b78d1000 rwxp 00000000 00:00 0 b78d1000-b78d2000 r-xs 00000000 08:05 161622 /var/cache/fontconfig/4794a0821666d79190d59a36cb4f44b5-x86.cache-2 b78d2000-b78d4000 r-xs 00000000 08:05 241610 /var/cache/fontconfig/7ef2298fde41cc6eeb7af42e48b7d293-x86.cache-2 b78d4000-b78df000 r-xp 00000000 08:05 34732 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libverify.so b78df000-b78e0000 rwxp 0000b000 08:05 34732 /usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/libverify.so b78e0000-b78e2000 rwxp 00000000 00:00 0 b78e2000-b78e3000 r-xp 00000000 00:00 0 [vdso] b78e3000-b78fe000 r-xp 00000000 08:05 64 /lib/ld-2.10.1.so b78fe000-b78ff000 r-xp 0001a000 08:05 64 /lib/ld-2.10.1.so b78ff000-b7900000 rwxp 0001b000 08:05 64 /lib/ld-2.10.1.so bfc33000-bfc48000 rwxp 00000000 00:00 0 [stack] VM Arguments: jvm_args: -Dfile.encoding=UTF-8 java_command: Main Launcher Type: SUN_STANDARD Environment Variables: PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games USERNAME=thomas LD_LIBRARY_PATH=/usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/server:/usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386:/usr/lib/jvm/java-6-sun-1.6.0.15/jre/../lib/i386:/usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386/client:/usr/lib/jvm/java-6-sun-1.6.0.15/jre/lib/i386:/usr/lib/xulrunner-addons:/usr/lib/xulrunner-addons SHELL=/bin/bash DISPLAY=:0.0 Signal Handlers: SIGSEGV: [libjvm.so+0x650690], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGBUS: [libjvm.so+0x650690], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGFPE: [libjvm.so+0x52f580], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGPIPE: [libjvm.so+0x52f580], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGXFSZ: [libjvm.so+0x52f580], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGILL: [libjvm.so+0x52f580], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGUSR1: SIG_DFL, sa_mask[0]=0x00000000, sa_flags=0x00000000 SIGUSR2: [libjvm.so+0x532170], sa_mask[0]=0x00000004, sa_flags=0x10000004 SIGHUP: [libjvm.so+0x531ea0], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGINT: [libjvm.so+0x531ea0], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGTERM: [libjvm.so+0x531ea0], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 SIGQUIT: [libjvm.so+0x531ea0], sa_mask[0]=0x7ffbfeff, sa_flags=0x10000004 --------------- S Y S T E M --------------- OS:squeeze/sid uname:Linux 2.6.31-20-generic #57-Ubuntu SMP Mon Feb 8 09:05:19 UTC 2010 i686 libc:glibc 2.10.1 NPTL 2.10.1 rlimit: STACK 8192k, CORE 0k, NPROC infinity, NOFILE 1024, AS infinity load average:1.07 0.55 0.23 CPU:total 2 (2 cores per cpu, 1 threads per core) family 6 model 15 stepping 13, cmov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3 Memory: 4k page, physical 3095836k(1519972k free), swap 1261060k(1261060k free) vm_info: Java HotSpot(TM) Server VM (14.1-b02) for linux-x86 JRE (1.6.0_15-b03), built on Jul 2 2009 15:49:13 by "java_re" with gcc 3.2.1-7a (J2SE release) time: Mon Mar 22 12:08:40 2010 elapsed time: 21 seconds

    Read the article

  • LWJGL - Eclipse error [on hold]

    - by Zarkopafilis
    When I try to run my lwjgl project, an error pops . Here is the log file: # A fatal error has been detected by the Java Runtime Environment: # EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x6d8fcc0a, pid=5612, tid=900 # JRE version: 6.0_16-b01 Java VM: Java HotSpot(TM) Client VM (14.2-b01 mixed mode windows-x86 ) Problematic frame: V [jvm.dll+0xfcc0a] # If you would like to submit a bug report, please visit: http://java.sun.com/webapps/bugreport/crash.jsp # --------------- T H R E A D --------------- Current thread (0x016b9000): JavaThread "main" [_thread_in_vm, id=900, stack(0x00160000,0x001b0000)] siginfo: ExceptionCode=0xc0000005, reading address 0x00000000 Registers: EAX=0x00000000, EBX=0x00000000, ECX=0x00000006, EDX=0x00000000 ESP=0x001af4d4, EBP=0x001af524, ESI=0x016b9000, EDI=0x016b9110 EIP=0x6d8fcc0a, EFLAGS=0x00010246 Top of Stack: (sp=0x001af4d4) 0x001af4d4: 6da44bd8 016b9110 00000000 001af668 0x001af4e4: ffffffff 22200000 001af620 76ec39c2 0x001af4f4: 001af524 6d801086 0000000b 001afd34 0x001af504: 016b9000 016dd990 016b9000 00000000 0x001af514: 001af5f4 6d9ee000 6d9ef2f0 ffffffff 0x001af524: 001af58c 10008c85 016b9110 00000000 0x001af534: 00000000 000a0554 00000000 00000024 0x001af544: 00000000 00000000 001af6ac 00000000 Instructions: (pc=0x6d8fcc0a) 0x6d8fcbfa: e8 e8 d0 1d 08 00 8b 45 10 c7 45 d8 0b 00 00 00 0x6d8fcc0a: 8b 00 8b 48 08 0f b7 51 26 8b 40 0c 8b 4c 90 20 Stack: [0x00160000,0x001b0000], sp=0x001af4d4, free space=317k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) V [jvm.dll+0xfcc0a] C [lwjgl.dll+0x8c85] C [USER32.dll+0x18876] C [USER32.dll+0x170f4] C [USER32.dll+0x1119e] C [ntdll.dll+0x460ce] C [USER32.dll+0x10e29] C [USER32.dll+0x10e84] C [lwjgl.dll+0x1cf0] j org.lwjgl.opengl.WindowsDisplay.createWindow(Lorg/lwjgl/opengl/DrawableLWJGL;Lorg/lwjgl/opengl/DisplayMode;Ljava/awt/Canvas;II)V+102 j org.lwjgl.opengl.Display.createWindow()V+71 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;Lorg/lwjgl/opengl/Drawable;Lorg/lwjgl/opengl/ContextAttribs;)V+72 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;)V+12 j org.lwjgl.opengl.Display.create()V+7 j zarkopafilis.koding.io.javafx.Main.main([Ljava/lang/String;)V+16 v ~StubRoutines::call_stub V [jvm.dll+0xecf9c] V [jvm.dll+0x1741e1] V [jvm.dll+0xed01d] V [jvm.dll+0xf5be5] V [jvm.dll+0xfd83d] C [javaw.exe+0x2155] C [javaw.exe+0x833e] C [kernel32.dll+0x51154] C [ntdll.dll+0x5b2b9] C [ntdll.dll+0x5b28c] Java frames: (J=compiled Java code, j=interpreted, Vv=VM code) j org.lwjgl.opengl.WindowsDisplay.nCreateWindow(IIIIZZJ)J+0 j org.lwjgl.opengl.WindowsDisplay.createWindow(Lorg/lwjgl/opengl/DrawableLWJGL;Lorg/lwjgl/opengl/DisplayMode;Ljava/awt/Canvas;II)V+102 j org.lwjgl.opengl.Display.createWindow()V+71 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;Lorg/lwjgl/opengl/Drawable;Lorg/lwjgl/opengl/ContextAttribs;)V+72 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;)V+12 j org.lwjgl.opengl.Display.create()V+7 j zarkopafilis.koding.io.javafx.Main.main([Ljava/lang/String;)V+16 v ~StubRoutines::call_stub --------------- P R O C E S S --------------- Java Threads: ( = current thread ) 0x0179a400 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=4460, stack(0x0b900000,0x0b950000)] 0x01795400 JavaThread "CompilerThread0" daemon [_thread_blocked, id=5264, stack(0x0b8b0000,0x0b900000)] 0x01790c00 JavaThread "Attach Listener" daemon [_thread_blocked, id=6080, stack(0x0b860000,0x0b8b0000)] 0x01786400 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=1204, stack(0x0b810000,0x0b860000)] 0x01759c00 JavaThread "Finalizer" daemon [_thread_blocked, id=5772, stack(0x0b7c0000,0x0b810000)] 0x01755000 JavaThread "Reference Handler" daemon [_thread_blocked, id=4696, stack(0x01640000,0x01690000)] =0x016b9000 JavaThread "main" [_thread_in_vm, id=900, stack(0x00160000,0x001b0000)] Other Threads: 0x01751c00 VMThread [stack: 0x015f0000,0x01640000] [id=4052] 0x0179c800 WatcherThread [stack: 0x0b950000,0x0b9a0000] [id=3340] VM state:not at safepoint (normal execution) VM Mutex/Monitor currently owned by a thread: None Heap def new generation total 960K, used 816K [0x037c0000, 0x038c0000, 0x03ca0000) eden space 896K, 91% used [0x037c0000, 0x0388c2c0, 0x038a0000) from space 64K, 0% used [0x038a0000, 0x038a0000, 0x038b0000) to space 64K, 0% used [0x038b0000, 0x038b0000, 0x038c0000) tenured generation total 4096K, used 0K [0x03ca0000, 0x040a0000, 0x077c0000) the space 4096K, 0% used [0x03ca0000, 0x03ca0000, 0x03ca0200, 0x040a0000) compacting perm gen total 12288K, used 2143K [0x077c0000, 0x083c0000, 0x0b7c0000) the space 12288K, 17% used [0x077c0000, 0x079d7e38, 0x079d8000, 0x083c0000) No shared spaces configured. Dynamic libraries: 0x00400000 - 0x00424000 C:\Program Files\Java\jre6\bin\javaw.exe 0x77550000 - 0x7768e000 C:\Windows\SYSTEM32\ntdll.dll 0x75a80000 - 0x75b54000 C:\Windows\system32\kernel32.dll 0x758d0000 - 0x7591b000 C:\Windows\system32\KERNELBASE.dll 0x759e0000 - 0x75a80000 C:\Windows\system32\ADVAPI32.dll 0x76070000 - 0x7611c000 C:\Windows\system32\msvcrt.dll 0x77250000 - 0x77269000 C:\Windows\SYSTEM32\sechost.dll 0x771a0000 - 0x77241000 C:\Windows\system32\RPCRT4.dll 0x76eb0000 - 0x76f79000 C:\Windows\system32\USER32.dll 0x76e60000 - 0x76eae000 C:\Windows\system32\GDI32.dll 0x77770000 - 0x7777a000 C:\Windows\system32\LPK.dll 0x75fd0000 - 0x7606e000 C:\Windows\system32\USP10.dll 0x770b0000 - 0x770cf000 C:\Windows\system32\IMM32.DLL 0x770d0000 - 0x7719c000 C:\Windows\system32\MSCTF.dll 0x7c340000 - 0x7c396000 C:\Program Files\Java\jre6\bin\msvcr71.dll 0x6d800000 - 0x6da8b000 C:\Program Files\Java\jre6\bin\client\jvm.dll 0x73a00000 - 0x73a32000 C:\Windows\system32\WINMM.dll 0x75610000 - 0x7565b000 C:\Windows\system32\apphelp.dll 0x6d7b0000 - 0x6d7bc000 C:\Program Files\Java\jre6\bin\verify.dll 0x6d330000 - 0x6d34f000 C:\Program Files\Java\jre6\bin\java.dll 0x6d290000 - 0x6d298000 C:\Program Files\Java\jre6\bin\hpi.dll 0x776e0000 - 0x776e5000 C:\Windows\system32\PSAPI.DLL 0x6d7f0000 - 0x6d7ff000 C:\Program Files\Java\jre6\bin\zip.dll 0x10000000 - 0x1004c000 C:\Users\theo\Desktop\workspace\JavaFX1\lib\natives\windows\lwjgl.dll 0x5d170000 - 0x5d238000 C:\Windows\system32\OPENGL32.dll 0x6e7b0000 - 0x6e7d2000 C:\Windows\system32\GLU32.dll 0x70620000 - 0x70707000 C:\Windows\system32\DDRAW.dll 0x70610000 - 0x70616000 C:\Windows\system32\DCIMAN32.dll 0x75b60000 - 0x75cfd000 C:\Windows\system32\SETUPAPI.dll 0x759b0000 - 0x759d7000 C:\Windows\system32\CFGMGR32.dll 0x76d70000 - 0x76dff000 C:\Windows\system32\OLEAUT32.dll 0x75db0000 - 0x75f0c000 C:\Windows\system32\ole32.dll 0x758b0000 - 0x758c2000 C:\Windows\system32\DEVOBJ.dll 0x74060000 - 0x74073000 C:\Windows\system32\dwmapi.dll 0x74b60000 - 0x74b69000 C:\Windows\system32\VERSION.dll 0x745f0000 - 0x7478e000 C:\Windows\WinSxS\x86_microsoft.windows.common-controls_6595b64144ccf1df_6.0.7600.16661_none_420fe3fa2b8113bd\COMCTL32.dll 0x75d50000 - 0x75da7000 C:\Windows\system32\SHLWAPI.dll 0x74370000 - 0x743b0000 C:\Windows\system32\uxtheme.dll 0x22200000 - 0x22206000 C:\Program Files\ESET\ESET Smart Security\eplgHooks.dll VM Arguments: jvm_args: -Djava.library.path=C:\Users\theo\Desktop\workspace\JavaFX1\lib\natives\windows -Dfile.encoding=Cp1253 java_command: zarkopafilis.koding.io.javafx.Main Launcher Type: SUN_STANDARD Environment Variables: PATH=C:/Program Files/Java/jre6/bin/client;C:/Program Files/Java/jre6/bin;C:/Program Files/Java/jre6/lib/i386;C:\Perl\site\bin;C:\Perl\bin;C:\Ruby200\bin;C:\Program Files\Common Files\Microsoft Shared\Windows Live;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Windows Live\Shared;C:\Users\theo\Desktop\eclipse; USERNAME=theo OS=Windows_NT PROCESSOR_IDENTIFIER=x86 Family 6 Model 37 Stepping 5, GenuineIntel --------------- S Y S T E M --------------- OS: Windows 7 Build 7600 CPU:total 4 (8 cores per cpu, 2 threads per core) family 6 model 37 stepping 5, cmov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, ht Memory: 4k page, physical 2097151k(1257972k free), swap 4194303k(4194303k free) vm_info: Java HotSpot(TM) Client VM (14.2-b01) for windows-x86 JRE (1.6.0_16-b01), built on Jul 31 2009 11:26:58 by "java_re" with MS VC++ 7.1 time: Wed Oct 23 22:00:12 2013 elapsed time: 0 seconds Code: Display.setDisplayMode(new DisplayMode(800,600)); Display.create();//Error here I am using JDK 6

    Read the article

  • Using Unity – Part 3

    - by nmarun
    The previous blog was about registering and invoking different types dynamically. In this one I’d like to show how Unity manages/disposes the instances – say hello to Lifetime Managers. When a type gets registered, either through the config file or when RegisterType method is explicitly called, the default behavior is that the container uses a transient lifetime manager. In other words, the unity container creates a new instance of the type when Resolve or ResolveAll method is called. Whereas, when you register an existing object using the RegisterInstance method, the container uses a container controlled lifetime manager - a singleton pattern. It does this by storing the reference of the object and that means so as long as the container is ‘alive’, your registered instance does not go out of scope and will be disposed only after the container either goes out of scope or when the code explicitly disposes the container. Let’s see how we can use these and test if something is a singleton or a transient instance. Continuing on the same solution used in the previous blogs, I have made the following changes: First is to add typeAlias elements for TransientLifetimeManager type: 1: <typeAlias alias="transient" type="Microsoft.Practices.Unity.TransientLifetimeManager, Microsoft.Practices.Unity"/> You then need to tell what type(s) you want to be transient by nature: 1: <type type="IProduct" mapTo="Product2"> 2: <lifetime type="transient" /> 3: </type> 4: <!--<type type="IProduct" mapTo="Product2" />--> The lifetime element’s type attribute matches with the alias attribute of the typeAlias element. Now since ‘transient’ is the default behavior, you can have a concise version of the same as line 4 shows. Also note that I’ve changed the mapTo attribute from ‘Product’ to ‘Product2’. I’ve done this to help understand the transient nature of the instance of the type Product2. By making this change, you are basically saying when a type of IProduct needs to be resolved, Unity should create an instance of Product2 by default. 1: public string WriteProductDetails() 2: { 3: return string.Format("Name: {0}<br/>Category: {1}<br/>Mfg Date: {2}<br/>Hash Code: {3}", 4: Name, Category, MfgDate.ToString("MM/dd/yyyy hh:mm:ss tt"), GetHashCode()); 5: } Again, the above change is purely for the purpose of making the example more clear to understand. The display will show the full date and also displays the hash code of the current instance. The GetHashCode() method returns an integer when an instance gets created – a new integer for every instance. When you run the application, you’ll see something like the below: Now when you click on the ‘Get Product2 Instance’ button, you’ll see that the Mfg Date (which is set in the constructor) and the Hash Code are different from the one created on page load. This proves to us that a new instance is created every single time. To make this a singleton, we need to add a type alias for the ContainerControlledLifetimeManager class and then change the type attribute of the lifetime element to singleton. 1: <typeAlias alias="singleton" type="Microsoft.Practices.Unity.ContainerControlledLifetimeManager, Microsoft.Practices.Unity"/> 2: ... 3: <type type="IProduct" mapTo="Product2"> 4: <lifetime type="singleton" /> 5: </type> Running the application now gets me the following output: Click on the button below and you’ll see that the Mfg Date and the Hash code remain unchanged => the unity container is storing the reference the first time it is created and then returns the same instance every time the type needs to be resolved. Digging more deeper into this, Unity provides more than the two lifetime managers. ExternallyControlledLifetimeManager – maintains a weak reference to type mappings and instances. Unity returns the same instance as long as the some code is holding a strong reference to this instance. For this, you need: 1: <typeAlias alias="external" type="Microsoft.Practices.Unity.ExternallyControlledLifetimeManager, Microsoft.Practices.Unity"/> 2: ... 3: <type type="IProduct" mapTo="Product2"> 4: <lifetime type="external" /> 5: </type> PerThreadLifetimeManager – Unity returns a unique instance of an object for each thread – so this effectively is a singleton behavior on a  per-thread basis. 1: <typeAlias alias="perThread" type="Microsoft.Practices.Unity.PerThreadLifetimeManager, Microsoft.Practices.Unity"/> 2: ... 3: <type type="IProduct" mapTo="Product2"> 4: <lifetime type="perThread" /> 5: </type> One thing to note about this is that if you use RegisterInstance method to register an existing object, this instance will be returned for every thread, making this a purely singleton behavior. Needless to say, this type of lifetime management is useful in multi-threaded applications (duh!!). I hope this blog provided some basics on lifetime management of objects resolved in Unity and in the next blog, I’ll talk about Injection. Please see the code used here.

    Read the article

  • Parallelism in .NET – Part 17, Think Continuations, not Callbacks

    - by Reed
    In traditional asynchronous programming, we’d often use a callback to handle notification of a background task’s completion.  The Task class in the Task Parallel Library introduces a cleaner alternative to the traditional callback: continuation tasks. Asynchronous programming methods typically required callback functions.  For example, MSDN’s Asynchronous Delegates Programming Sample shows a class that factorizes a number.  The original method in the example has the following signature: public static bool Factorize(int number, ref int primefactor1, ref int primefactor2) { //... .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, calling this is quite “tricky”, even if we modernize the sample to use lambda expressions via C# 3.0.  Normally, we could call this method like so: int primeFactor1 = 0; int primeFactor2 = 0; bool answer = Factorize(10298312, ref primeFactor1, ref primeFactor2); Console.WriteLine("{0}/{1} [Succeeded {2}]", primeFactor1, primeFactor2, answer); If we want to make this operation run in the background, and report to the console via a callback, things get tricker.  First, we need a delegate definition: public delegate bool AsyncFactorCaller( int number, ref int primefactor1, ref int primefactor2); Then we need to use BeginInvoke to run this method asynchronously: int primeFactor1 = 0; int primeFactor2 = 0; AsyncFactorCaller caller = new AsyncFactorCaller(Factorize); caller.BeginInvoke(10298312, ref primeFactor1, ref primeFactor2, result => { int factor1 = 0; int factor2 = 0; bool answer = caller.EndInvoke(ref factor1, ref factor2, result); Console.WriteLine("{0}/{1} [Succeeded {2}]", factor1, factor2, answer); }, null); This works, but is quite difficult to understand from a conceptual standpoint.  To combat this, the framework added the Event-based Asynchronous Pattern, but it isn’t much easier to understand or author. Using .NET 4’s new Task<T> class and a continuation, we can dramatically simplify the implementation of the above code, as well as make it much more understandable.  We do this via the Task.ContinueWith method.  This method will schedule a new Task upon completion of the original task, and provide the original Task (including its Result if it’s a Task<T>) as an argument.  Using Task, we can eliminate the delegate, and rewrite this code like so: var background = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); background.ContinueWith(task => Console.WriteLine("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result)); This is much simpler to understand, in my opinion.  Here, we’re explicitly asking to start a new task, then continue the task with a resulting task.  In our case, our method used ref parameters (this was from the MSDN Sample), so there is a little bit of extra boiler plate involved, but the code is at least easy to understand. That being said, this isn’t dramatically shorter when compared with our C# 3 port of the MSDN code above.  However, if we were to extend our requirements a bit, we can start to see more advantages to the Task based approach.  For example, supposed we need to report the results in a user interface control instead of reporting it to the Console.  This would be a common operation, but now, we have to think about marshaling our calls back to the user interface.  This is probably going to require calling Control.Invoke or Dispatcher.Invoke within our callback, forcing us to specify a delegate within the delegate.  The maintainability and ease of understanding drops.  However, just as a standard Task can be created with a TaskScheduler that uses the UI synchronization context, so too can we continue a task with a specific context.  There are Task.ContinueWith method overloads which allow you to provide a TaskScheduler.  This means you can schedule the continuation to run on the UI thread, by simply doing: Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }).ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), TaskScheduler.FromCurrentSynchronizationContext()); This is far more understandable than the alternative.  By using Task.ContinueWith in conjunction with TaskScheduler.FromCurrentSynchronizationContext(), we get a simple way to push any work onto a background thread, and update the user interface on the proper UI thread.  This technique works with Windows Presentation Foundation as well as Windows Forms, with no change in methodology.

    Read the article

  • Slow boot on Ubuntu 12.04

    - by Hailwood
    My Ubuntu is booting really slow (Windows is booting faster...). I am using Ubuntu a Dell Inspiron 1545 Pentium(R) Dual-Core CPU T4300 @ 2.10GHz, 4GB Ram, 500GB HDD running Ubuntu 12.04 with gnome-shell 3.4.1. After running dmesg the culprit seems to be this section, in particular the last three lines: [26.557659] ADDRCONF(NETDEV_UP): eth0: link is not ready [26.565414] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.355355] Console: switching to colour frame buffer device 170x48 [27.362346] fb0: radeondrmfb frame buffer device [27.362347] drm: registered panic notifier [27.362357] [drm] Initialized radeon 2.12.0 20080528 for 0000:01:00.0 on minor 0 [27.617435] init: udev-fallback-graphics main process (1049) terminated with status 1 [30.064481] init: plymouth-stop pre-start process (1500) terminated with status 1 [51.708241] CE: hpet increased min_delta_ns to 20113 nsec [59.448029] eth2: no IPv6 routers present But I have no idea how to start debugging this. sudo lshw -C video $ sudo lshw -C video *-display description: VGA compatible controller product: RV710 [Mobility Radeon HD 4300 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 32 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:48 memory:e0000000-efffffff ioport:de00(size=256) memory:f6df0000-f6dfffff memory:f6d00000-f6d1ffff After loading the propriety driver my new dmesg log is below (starting from the first major time gap): [2.983741] EXT4-fs (sda6): mounted filesystem with ordered data mode. Opts: (null) [25.094327] ADDRCONF(NETDEV_UP): eth0: link is not ready [25.119737] udevd[520]: starting version 175 [25.167086] lp: driver loaded but no devices found [25.215341] fglrx: module license 'Proprietary. (C) 2002 - ATI Technologies, Starnberg, GERMANY' taints kernel. [25.215345] Disabling lock debugging due to kernel taint [25.231924] wmi: Mapper loaded [25.318414] lib80211: common routines for IEEE802.11 drivers [25.318418] lib80211_crypt: registered algorithm 'NULL' [25.331631] [fglrx] Maximum main memory to use for locked dma buffers: 3789 MBytes. [25.332095] [fglrx] vendor: 1002 device: 9552 count: 1 [25.334206] [fglrx] ioport: bar 1, base 0xde00, size: 0x100 [25.334229] pci 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [25.334235] pci 0000:01:00.0: setting latency timer to 64 [25.337109] [fglrx] Kernel PAT support is enabled [25.337140] [fglrx] module loaded - fglrx 8.96.4 [Mar 12 2012] with 1 minors [25.342803] Adding 4189180k swap on /dev/sda7. Priority:-1 extents:1 across:4189180k [25.364031] type=1400 audit(1338241723.027:2): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=606 comm="apparmor_parser" [25.364491] type=1400 audit(1338241723.031:3): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=606 comm="apparmor_parser" [25.364760] type=1400 audit(1338241723.031:4): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=606 comm="apparmor_parser" [25.394328] wl 0000:0c:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [25.394343] wl 0000:0c:00.0: setting latency timer to 64 [25.415531] acpi device:36: registered as cooling_device2 [25.416688] input: Video Bus as /devices/LNXSYSTM:00/device:00/PNP0A03:00/device:34/LNXVIDEO:00/input/input6 [25.416795] ACPI: Video Device [VID] (multi-head: yes rom: no post: no) [25.416865] [Firmware Bug]: Duplicate ACPI video bus devices for the same VGA controller, please try module parameter "video.allow_duplicates=1"if the current driver doesn't work. [25.425133] lib80211_crypt: registered algorithm 'TKIP' [25.448058] snd_hda_intel 0000:00:1b.0: PCI INT A -> GSI 21 (level, low) -> IRQ 21 [25.448321] snd_hda_intel 0000:00:1b.0: irq 47 for MSI/MSI-X [25.448353] snd_hda_intel 0000:00:1b.0: setting latency timer to 64 [25.738867] eth1: Broadcom BCM4315 802.11 Hybrid Wireless Controller 5.100.82.38 [25.761213] input: HDA Intel Mic as /devices/pci0000:00/0000:00:1b.0/sound/card0/input7 [25.761406] input: HDA Intel Headphone as /devices/pci0000:00/0000:00:1b.0/sound/card0/input8 [25.783432] dcdbas dcdbas: Dell Systems Management Base Driver (version 5.6.0-3.2) [25.908318] EXT4-fs (sda6): re-mounted. Opts: errors=remount-ro [25.928155] input: Dell WMI hotkeys as /devices/virtual/input/input9 [25.960561] udevd[543]: renamed network interface eth1 to eth2 [26.285688] init: failsafe main process (835) killed by TERM signal [26.396426] input: PS/2 Mouse as /devices/platform/i8042/serio2/input/input10 [26.423108] input: AlpsPS/2 ALPS GlidePoint as /devices/platform/i8042/serio2/input/input11 [26.511297] Bluetooth: Core ver 2.16 [26.511383] NET: Registered protocol family 31 [26.511385] Bluetooth: HCI device and connection manager initialized [26.511388] Bluetooth: HCI socket layer initialized [26.511391] Bluetooth: L2CAP socket layer initialized [26.512079] Bluetooth: SCO socket layer initialized [26.530164] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [26.530168] Bluetooth: BNEP filters: protocol multicast [26.553893] type=1400 audit(1338241724.219:5): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=928 comm="apparmor_parser" [26.554860] Bluetooth: RFCOMM TTY layer initialized [26.554866] Bluetooth: RFCOMM socket layer initialized [26.554868] Bluetooth: RFCOMM ver 1.11 [26.557910] type=1400 audit(1338241724.223:6): apparmor="STATUS" operation="profile_load" name="/usr/lib/lightdm/lightdm/lightdm-guest-session-wrapper" pid=927 comm="apparmor_parser" [26.559166] type=1400 audit(1338241724.223:7): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=928 comm="apparmor_parser" [26.559574] type=1400 audit(1338241724.223:8): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=928 comm="apparmor_parser" [26.575519] type=1400 audit(1338241724.239:9): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/mission-control-5" pid=931 comm="apparmor_parser" [26.581100] type=1400 audit(1338241724.247:10): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/telepathy-*" pid=931 comm="apparmor_parser" [26.582794] type=1400 audit(1338241724.247:11): apparmor="STATUS" operation="profile_load" name="/usr/bin/evince" pid=929 comm="apparmor_parser" [26.605672] ppdev: user-space parallel port driver [27.592475] sky2 0000:09:00.0: eth0: enabling interface [27.604329] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.606962] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.852509] vesafb: mode is 1024x768x32, linelength=4096, pages=0 [27.852513] vesafb: scrolling: redraw [27.852515] vesafb: Truecolor: size=0:8:8:8, shift=0:16:8:0 [27.852523] mtrr: type mismatch for e0000000,400000 old: write-back new: write-combining [27.852527] mtrr: type mismatch for e0000000,200000 old: write-back new: write-combining [27.852531] mtrr: type mismatch for e0000000,100000 old: write-back new: write-combining [27.852534] mtrr: type mismatch for e0000000,80000 old: write-back new: write-combining [27.852538] mtrr: type mismatch for e0000000,40000 old: write-back new: write-combining [27.852541] mtrr: type mismatch for e0000000,20000 old: write-back new: write-combining [27.852544] mtrr: type mismatch for e0000000,10000 old: write-back new: write-combining [27.852548] mtrr: type mismatch for e0000000,8000 old: write-back new: write-combining [27.852551] mtrr: type mismatch for e0000000,4000 old: write-back new: write-combining [27.852554] mtrr: type mismatch for e0000000,2000 old: write-back new: write-combining [27.852558] mtrr: type mismatch for e0000000,1000 old: write-back new: write-combining [27.853154] vesafb: framebuffer at 0xe0000000, mapped to 0xffffc90005580000, using 3072k, total 3072k [27.853405] Console: switching to colour frame buffer device 128x48 [27.853426] fb0: VESA VGA frame buffer device [28.539800] fglrx_pci 0000:01:00.0: irq 48 for MSI/MSI-X [28.540552] [fglrx] Firegl kernel thread PID: 1168 [28.540679] [fglrx] Firegl kernel thread PID: 1169 [28.540789] [fglrx] Firegl kernel thread PID: 1170 [28.540932] [fglrx] IRQ 48 Enabled [29.845620] [fglrx] Gart USWC size:1236 M. [29.845624] [fglrx] Gart cacheable size:489 M. [29.845629] [fglrx] Reserved FB block: Shared offset:0, size:1000000 [29.845632] [fglrx] Reserved FB block: Unshared offset:fc21000, size:3df000 [29.845635] [fglrx] Reserved FB block: Unshared offset:1fffb000, size:5000 [59.700023] eth2: no IPv6 routers present

    Read the article

  • Frameskipping in Android gameloop causing choppy sprites (Open GL ES 2.0)

    - by user22241
    I have written a simple 2d platform game for Android and am wondering how one deals with frame-skipping? Are there any alternatives? Let me explain further. So, my game loop allows for the rendering to be skipped if game updates and rendering do not fit into my fixed time-slice (16.667ms). This allows my game to run at identically perceived speeds on different devices. And this works great, things do run at the same speed. However, when the gameloop skips a render call for even one frame, the sprite glitches. And thinking about it, why wouldn't it? You're seeing a sprite move say, an average of 10 pixels every 1.6 seconds, then suddenly, there is a pause of 3.2ms, and the sprite then appears to jump 20 pixels. When this happens 3 or 4 times in close succession, the result is very ugly and not something I want in my game. Therfore, my question is how does one deal with these 'pauses' and 'jumps' - I've read every article on game loops I can find (see below) and my loops are even based off of code from these articles. The articles specifically mention frame skipping but they don't make any reference to how to deal with visual glitches that result from it. I've attempted various game-loops. My loop must have a mechanism in-place to allow rendering to be skipped to keep game-speed constant across multiple devices (or alternative, if one exists) I've tried interpolation but this doesn't eliminate this specific problem (although it looks like it may mitigate the issue slightly as when it eventually draws the sprite it 'moves it back' between the old and current positions so the 'jump' isn't so big. I've also tried a form of extrapolation which does seem to keep things smooth considerably, but I find it to be next to completely useless because it plays havoc with my collision detection (even when drawing with a 'display only' coordinate - see extrapolation-breaks-collision-detection) I've tried a loop that uses Thread.sleep when drawing / updating completes with time left over, no frame skipping in this one, again fairly smooth, but runs differently on different devices so no good. And I've tried spawning my own, third thread for logic updates, but this, was extremely messy to deal with and the performance really wasn't good. (upon reading tons of forums, most people seem to agree a 2 thread loops ( so UI and GL threads) is safer / easier). Now if I remove frame skipping, then all seems to run nice and smooth, with or without inter/extrapolation. However, this isn't an option because the game then runs at different speeds on different devices as it falls behind from not being able to render fast enough. I'm running logic at 60 Ticks per second and rendering as fast as I can. I've read, as far as I can see every article out there, I've tried the loops from My Secret Garden and Fix your timestep. I've also read: Against the grain deWITTERS Game Loop Plus various other articles on Game-loops. A lot of the others are derived from the above articles or just copied word for word. These are all great, but they don't touch on the issues I'm experiencing. I really have tried everything I can think of over the course of a year to eliminate these glitches to no avail, so any and all help would be appreciated. A couple of examples of my game loops (Code follows): From My Secret Room public void onDrawFrame(GL10 gl) { //Rre-set loop back to 0 to start counting again loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip) { SceneManager.getInstance().getCurrentScene().updateLogic(); nextGameTick += skipTicks; timeCorrection += (1000d / ticksPerSecond) % 1; nextGameTick += timeCorrection; timeCorrection %= 1; loops++; } extrapolation = (float)(System.currentTimeMillis() + skipTicks - nextGameTick) / (float)skipTicks; render(extrapolation); } And from Fix your timestep double t = 0.0; double dt2 = 0.01; double currentTime = System.currentTimeMillis()*0.001; double accumulator = 0.0; double newTime; double frameTime; @Override public void onDrawFrame(GL10 gl) { newTime = System.currentTimeMillis()*0.001; frameTime = newTime - currentTime; if ( frameTime > (dt*5)) //Allow 5 'skips' frameTime = (dt*5); currentTime = newTime; accumulator += frameTime; while ( accumulator >= dt ) { SceneManager.getInstance().getCurrentScene().updateLogic(); previousState = currentState; accumulator -= dt; } interpolation = (float) (accumulator / dt); render(interpolation); }

    Read the article

  • Polite busy-waiting with WRPAUSE on SPARC

    - by Dave
    Unbounded busy-waiting is an poor idea for user-space code, so we typically use spin-then-block strategies when, say, waiting for a lock to be released or some other event. If we're going to spin, even briefly, then we'd prefer to do so in a manner that minimizes performance degradation for other sibling logical processors ("strands") that share compute resources. We want to spin politely and refrain from impeding the progress and performance of other threads — ostensibly doing useful work and making progress — that run on the same core. On a SPARC T4, for instance, 8 strands will share a core, and that core has its own L1 cache and 2 pipelines. On x86 we have the PAUSE instruction, which, naively, can be thought of as a hardware "yield" operator which temporarily surrenders compute resources to threads on sibling strands. Of course this helps avoid intra-core performance interference. On the SPARC T2 our preferred busy-waiting idiom was "RD %CCR,%G0" which is a high-latency no-nop. The T4 provides a dedicated and extremely useful WRPAUSE instruction. The processor architecture manuals are the authoritative source, but briefly, WRPAUSE writes a cycle count into the the PAUSE register, which is ASR27. Barring interrupts, the processor then delays for the requested period. There's no need for the operating system to save the PAUSE register over context switches as it always resets to 0 on traps. Digressing briefly, if you use unbounded spinning then ultimately the kernel will preempt and deschedule your thread if there are other ready threads than are starving. But by using a spin-then-block strategy we can allow other ready threads to run without resorting to involuntary time-slicing, which operates on a long-ish time scale. Generally, that makes your application more responsive. In addition, by blocking voluntarily we give the operating system far more latitude regarding power management. Finally, I should note that while we have OS-level facilities like sched_yield() at our disposal, yielding almost never does what you'd want or naively expect. Returning to WRPAUSE, it's natural to ask how well it works. To help answer that question I wrote a very simple C/pthreads benchmark that launches 8 concurrent threads and binds those threads to processors 0..7. The processors are numbered geographically on the T4, so those threads will all be running on just one core. Unlike the SPARC T2, where logical CPUs 0,1,2 and 3 were assigned to the first pipeline, and CPUs 4,5,6 and 7 were assigned to the 2nd, there's no fixed mapping between CPUs and pipelines in the T4. And in some circumstances when the other 7 logical processors are idling quietly, it's possible for the remaining logical processor to leverage both pipelines. Some number T of the threads will iterate in a tight loop advancing a simple Marsaglia xor-shift pseudo-random number generator. T is a command-line argument. The main thread loops, reporting the aggregate number of PRNG steps performed collectively by those T threads in the last 10 second measurement interval. The other threads (there are 8-T of these) run in a loop busy-waiting concurrently with the T threads. We vary T between 1 and 8 threads, and report on various busy-waiting idioms. The values in the table are the aggregate number of PRNG steps completed by the set of T threads. The unit is millions of iterations per 10 seconds. For the "PRNG step" busy-waiting mode, the busy-waiting threads execute exactly the same code as the T worker threads. We can easily compute the average rate of progress for individual worker threads by dividing the aggregate score by the number of worker threads T. I should note that the PRNG steps are extremely cycle-heavy and access almost no memory, so arguably this microbenchmark is not as representative of "normal" code as it could be. And for the purposes of comparison I included a row in the table that reflects a waiting policy where the waiting threads call poll(NULL,0,1000) and block in the kernel. Obviously this isn't busy-waiting, but the data is interesting for reference. _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } _td { border: 1px green solid; } _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } Aggregate progress T = #worker threads Wait Mechanism for 8-T threadsT=1T=2T=3T=4T=5T=6T=7T=8 Park thread in poll() 32653347334833483348334833483348 no-op 415 831 124316482060249729303349 RD %ccr,%g0 "pause" 14262429269228623013316232553349 PRNG step 412 829 124616702092251029303348 WRPause(8000) 32443361333133483349334833483348 WRPause(4000) 32153308331533223347334833473348 WRPause(1000) 30853199322432513310334833483348 WRPause(500) 29173070315032223270330933483348 WRPause(250) 26942864294930773205338833483348 WRPause(100) 21552469262227902911321433303348

    Read the article

  • Determining the required depth and specifications for a server cabinet

    - by Bingu Bingme
    I'm trying to understand the considerations ("why") that go into determining the specifications ("what") for a rackmount server cabinet, in order to determine what sort of rack I should purchase for my home use. Since this is for home use, I won't be following certain best practices (eg. hot/cold aisle, not even air conditioning) and may be willing to sacrifice in various areas in order to reduce cost and footprint - but please advise if there are safety concerns or other considerations to note. The most basic specs for a server cabinet are the dimensions (external width x external depth x usable height). Width: commonly 600mm or 800mm (if the use case requires extra clearance around the sides, such as if there is lots of cabling). In my case and most common cases, I'm going to stick with 600mm. Height: Select a sufficiently tall rack to fit my equipment. But how much may I stuff into it? Eg, if there is a 15U rack, can I really populate it with 15U of servers, or should I leave 1U at top and bottom for air circulation? Depth: Racks commonly have external depth of 600mm (network equipment), 800mm, 1000mm, or even longer. I'm trying to see how to fit into the 800mm depth. With reference to http://www.server-racks.com/rack-mount-depth.html, I'm hoping to have the front and rear posts mounted ~ 28.5" (72cm) apart, which would leave only 8cm for front space and rear space. How much rear space (from rear posts to back of rack) do I really need? I won't use cable management arms, so can I mount a 72cm depth server since the power, KVM, network cables won't take up much depth? My most important equipment are all < 60cm depth (4U chassis) and should comfortably fit within the 800mm cabinet. The rest of the equipment are very old 1U servers that range from 65-72cm depth. I might still want to make further use of them, or I might discard them since they are so old. Even if the 72cm servers cannot be powered on in an 800mm rack, I should be able to use them as 1U shelves. But, what server depth can I expect to be able to operate? Or am I forced to upgrade to 1000mm depth racks in order to use any servers deeper than 60cm? With reference to best practices for HP racks, some other specs and installation considerations: There aren't any minimum recommendations for clearance on the sides of the rack. It is recommended to leave 48" front clearance. The 48" front clearance is based on 32" chassis depth, 13" to extend the rack rails and mate the inner/outer rails, and 3" for movement. If I don't use such rails (eg, use shelves instead), it should be sufficient to leave front clearance of chassis depth + 3". It is recommended to leave 30" rear clearance "to provide space for servicing the rack". I'm planning to back the rack into a corner of the room, and wheel it slightly out when I need to access the rear. If the wheeling plan is ok, I still need to know how much rear clearance is required for air circulation and ventilation purposes. Castor wheels and stabilising feet. Since I'm backing the rack into a corner of the room, I'll only be able to set the stabilising feet on the front corners. Thoughts on safety? The rack that I'm considering has front glass doors with side ventilation slits and fully perforated rear doors. I'm hoping this will be a good balance between temperature and noise (only ventilation slits facing out the front, while the rear is facing the walls). Or is the sound of high-rpm fans going to escape through the front slits anyway and destroy my sanity?

    Read the article

  • C#: Optional Parameters - Pros and Pitfalls

    - by James Michael Hare
    When Microsoft rolled out Visual Studio 2010 with C# 4, I was very excited to learn how I could apply all the new features and enhancements to help make me and my team more productive developers. Default parameters have been around forever in C++, and were intentionally omitted in Java in favor of using overloading to satisfy that need as it was though that having too many default parameters could introduce code safety issues.  To some extent I can understand that move, as I’ve been bitten by default parameter pitfalls before, but at the same time I feel like Java threw out the baby with the bathwater in that move and I’m glad to see C# now has them. This post briefly discusses the pros and pitfalls of using default parameters.  I’m avoiding saying cons, because I really don’t believe using default parameters is a negative thing, I just think there are things you must watch for and guard against to avoid abuses that can cause code safety issues. Pro: Default Parameters Can Simplify Code Let’s start out with positives.  Consider how much cleaner it is to reduce all the overloads in methods or constructors that simply exist to give the semblance of optional parameters.  For example, we could have a Message class defined which allows for all possible initializations of a Message: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message() 5: : this(string.Empty) 6: { 7: } 8:  9: public Message(string text) 10: : this(text, null) 11: { 12: } 13:  14: public Message(string text, IDictionary<string, string> properties) 15: : this(text, properties, -1) 16: { 17: } 18:  19: public Message(string text, IDictionary<string, string> properties, long timeToLive) 20: { 21: // ... 22: } 23: }   Now consider the same code with default parameters: 1: public class Message 2: { 3: // can either cascade these like this or duplicate the defaults (which can introduce risk) 4: public Message(string text = "", IDictionary<string, string> properties = null, long timeToLive = -1) 5: { 6: // ... 7: } 8: }   Much more clean and concise and no repetitive coding!  In addition, in the past if you wanted to be able to cleanly supply timeToLive and accept the default on text and properties above, you would need to either create another overload, or pass in the defaults explicitly.  With named parameters, though, we can do this easily: 1: var msg = new Message(timeToLive: 100);   Pro: Named Parameters can Improve Readability I must say one of my favorite things with the default parameters addition in C# is the named parameters.  It lets code be a lot easier to understand visually with no comments.  Think how many times you’ve run across a TimeSpan declaration with 4 arguments and wondered if they were passing in days/hours/minutes/seconds or hours/minutes/seconds/milliseconds.  A novice running through your code may wonder what it is.  Named arguments can help resolve the visual ambiguity: 1: // is this days/hours/minutes/seconds (no) or hours/minutes/seconds/milliseconds (yes) 2: var ts = new TimeSpan(1, 2, 3, 4); 3:  4: // this however is visually very explicit 5: var ts = new TimeSpan(days: 1, hours: 2, minutes: 3, seconds: 4);   Or think of the times you’ve run across something passing a Boolean literal and wondered what it was: 1: // what is false here? 2: var sub = CreateSubscriber(hostname, port, false); 3:  4: // aha! Much more visibly clear 5: var sub = CreateSubscriber(hostname, port, isBuffered: false);   Pitfall: Don't Insert new Default Parameters In Between Existing Defaults Now let’s consider a two potential pitfalls.  The first is really an abuse.  It’s not really a fault of the default parameters themselves, but a fault in the use of them.  Let’s consider that Message constructor again with defaults.  Let’s say you want to add a messagePriority to the message and you think this is more important than a timeToLive value, so you decide to put messagePriority before it in the default, this gives you: 1: public class Message 2: { 3: public Message(string text = "", IDictionary<string, string> properties = null, int priority = 5, long timeToLive = -1) 4: { 5: // ... 6: } 7: }   Oh boy have we set ourselves up for failure!  Why?  Think of all the code out there that could already be using the library that already specified the timeToLive, such as this possible call: 1: var msg = new Message(“An error occurred”, myProperties, 1000);   Before this specified a message with a TTL of 1000, now it specifies a message with a priority of 1000 and a time to live of -1 (infinite).  All of this with NO compiler errors or warnings. So the rule to take away is if you are adding new default parameters to a method that’s currently in use, make sure you add them to the end of the list or create a brand new method or overload. Pitfall: Beware of Default Parameters in Inheritance and Interface Implementation Now, the second potential pitfalls has to do with inheritance and interface implementation.  I’ll illustrate with a puzzle: 1: public interface ITag 2: { 3: void WriteTag(string tagName = "ITag"); 4: } 5:  6: public class BaseTag : ITag 7: { 8: public virtual void WriteTag(string tagName = "BaseTag") { Console.WriteLine(tagName); } 9: } 10:  11: public class SubTag : BaseTag 12: { 13: public override void WriteTag(string tagName = "SubTag") { Console.WriteLine(tagName); } 14: } 15:  16: public static class Program 17: { 18: public static void Main() 19: { 20: SubTag subTag = new SubTag(); 21: BaseTag subByBaseTag = subTag; 22: ITag subByInterfaceTag = subTag; 23:  24: // what happens here? 25: subTag.WriteTag(); 26: subByBaseTag.WriteTag(); 27: subByInterfaceTag.WriteTag(); 28: } 29: }   What happens?  Well, even though the object in each case is SubTag whose tag is “SubTag”, you will get: 1: SubTag 2: BaseTag 3: ITag   Why?  Because default parameter are resolved at compile time, not runtime!  This means that the default does not belong to the object being called, but by the reference type it’s being called through.  Since the SubTag instance is being called through an ITag reference, it will use the default specified in ITag. So the moral of the story here is to be very careful how you specify defaults in interfaces or inheritance hierarchies.  I would suggest avoiding repeating them, and instead concentrating on the layer of classes or interfaces you must likely expect your caller to be calling from. For example, if you have a messaging factory that returns an IMessage which can be either an MsmqMessage or JmsMessage, it only makes since to put the defaults at the IMessage level since chances are your user will be using the interface only. So let’s sum up.  In general, I really love default and named parameters in C# 4.0.  I think they’re a great tool to help make your code easier to read and maintain when used correctly. On the plus side, default parameters: Reduce redundant overloading for the sake of providing optional calling structures. Improve readability by being able to name an ambiguous argument. But remember to make sure you: Do not insert new default parameters in the middle of an existing set of default parameters, this may cause unpredictable behavior that may not necessarily throw a syntax error – add to end of list or create new method. Be extremely careful how you use default parameters in inheritance hierarchies and interfaces – choose the most appropriate level to add the defaults based on expected usage. Technorati Tags: C#,.NET,Software,Default Parameters

    Read the article

  • FreeBSD performance tuning. Sysctls, loader.conf, kernel

    - by SaveTheRbtz
    I wanted to share knowledge of tuning FreeBSD via sysctl.conf/loader.conf/KENCONF. It was initially based on Igor Sysoev's (author of nginx) presentation about FreeBSD tuning up to 100,000-200,000 active connections. Tunings are for FreeBSD-CURRENT. Since 7.2 amd64 some of them are tuned well by default. Prior 7.0 some of them are boot only (set via /boot/loader.conf) or does not exist at all. sysctl.conf: # No zero mapping feature # May break wine # (There are also reports about broken samba3) #security.bsd.map_at_zero=0 # If you have really busy webserver with apache13 you may run out of processes #kern.maxproc=10000 # Same for servers with apache2 / Pound #kern.threads.max_threads_per_proc=4096 # Max. backlog size kern.ipc.somaxconn=4096 # Shared memory // 7.2+ can use shared memory > 2Gb kern.ipc.shmmax=2147483648 # Sockets kern.ipc.maxsockets=204800 # Can cause this on older kernels: # http://old.nabble.com/Significant-performance-regression-for-increased-maxsockbuf-on-8.0-RELEASE-tt26745981.html#a26745981 ) kern.ipc.maxsockbuf=10485760 # Mbuf 2k clusters (on amd64 7.2+ 25600 is default) # For such high value vm.kmem_size must be increased to 3G kern.ipc.nmbclusters=262144 # Jumbo pagesize(_SC_PAGESIZE) clusters # Used as general packet storage for jumbo frames # can be monitored via `netstat -m` #kern.ipc.nmbjumbop=262144 # Jumbo 9k/16k clusters # If you are using them #kern.ipc.nmbjumbo9=65536 #kern.ipc.nmbjumbo16=32768 # For lower latency you can decrease scheduler's maximum time slice # default: stathz/10 (~ 13) #kern.sched.slice=1 # Increase max command-line length showed in `ps` (e.g for Tomcat/Java) # Default is PAGE_SIZE / 16 or 256 on x86 # This avoids commands to be presented as [executable] in `ps` # For more info see: http://www.freebsd.org/cgi/query-pr.cgi?pr=120749 kern.ps_arg_cache_limit=4096 # Every socket is a file, so increase them kern.maxfiles=204800 kern.maxfilesperproc=200000 kern.maxvnodes=200000 # On some systems HPET is almost 2 times faster than default ACPI-fast # Useful on systems with lots of clock_gettime / gettimeofday calls # See http://old.nabble.com/ACPI-fast-default-timecounter,-but-HPET-83--faster-td23248172.html # After revision 222222 HPET became default: http://svnweb.freebsd.org/base?view=revision&revision=222222 kern.timecounter.hardware=HPET # Small receive space, only usable on http-server, on file server this # should be increased to 65535 or even more #net.inet.tcp.recvspace=8192 # This is useful on Fat-Long-Pipes #net.inet.tcp.recvbuf_max=10485760 #net.inet.tcp.recvbuf_inc=65535 # Small send space is useful for http servers that serve small files # Autotuned since 7.x net.inet.tcp.sendspace=16384 # This is useful on Fat-Long-Pipes #net.inet.tcp.sendbuf_max=10485760 #net.inet.tcp.sendbuf_inc=65535 # Turn off receive autotuning # You can play with it. #net.inet.tcp.recvbuf_auto=0 #net.inet.tcp.sendbuf_auto=0 # This should be enabled if you going to use big spaces (>64k) # Also timestamp field is useful when using syncookies net.inet.tcp.rfc1323=1 # Turn this off on high-speed, lossless connections (LAN 1Gbit+) # If you set it there is no need in TCP_NODELAY sockopt (see man tcp) net.inet.tcp.delayed_ack=0 # This feature is useful if you are serving data over modems, Gigabit Ethernet, # or even high speed WAN links (or any other link with a high bandwidth delay product), # especially if you are also using window scaling or have configured a large send window. # Automatically disables on small RTT ( http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/tcp_subr.c?#rev1.237 ) # This sysctl was removed in 10-CURRENT: # See: http://www.mail-archive.com/[email protected]/msg06178.html #net.inet.tcp.inflight.enable=0 # TCP slowstart algorithm tunings # We assuming we have very fast clients #net.inet.tcp.slowstart_flightsize=100 #net.inet.tcp.local_slowstart_flightsize=100 # Disable randomizing of ports to avoid false RST # Before usage check SA here www.bsdcan.org/2006/papers/ImprovingTCPIP.pdf # (it's also says that port randomization auto-disables at some conn.rates, but I didn't checked it thou) #net.inet.ip.portrange.randomized=0 # Increase portrange # For outgoing connections only. Good for seed-boxes and ftp servers. net.inet.ip.portrange.first=1024 net.inet.ip.portrange.last=65535 # # stops route cache degregation during a high-bandwidth flood # http://www.freebsd.org/doc/en/books/handbook/securing-freebsd.html #net.inet.ip.rtexpire=2 net.inet.ip.rtminexpire=2 net.inet.ip.rtmaxcache=1024 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # # There is also good example of sysctl.conf with comments: # http://www.thern.org/projects/sysctl.conf # # icmp may NOT rst, helpful for those pesky spoofed # icmp/udp floods that end up taking up your outgoing # bandwidth/ifqueue due to all that outgoing RST traffic. # #net.inet.tcp.icmp_may_rst=0 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # IPv6 Security # For more info see http://www.fosslc.org/drupal/content/security-implications-ipv6 # Disable Node info replies # To see this vulnerability in action run `ping6 -a sglAac ::1` or `ping6 -w ::1` on unprotected node net.inet6.icmp6.nodeinfo=0 # Turn on IPv6 privacy extensions # For more info see proposal http://unix.derkeiler.com/Mailing-Lists/FreeBSD/net/2008-06/msg00103.html net.inet6.ip6.use_tempaddr=1 net.inet6.ip6.prefer_tempaddr=1 # Disable ICMP redirect net.inet6.icmp6.rediraccept=0 # Disable acceptation of RA and auto linklocal generation if you don't use them #net.inet6.ip6.accept_rtadv=0 #net.inet6.ip6.auto_linklocal=0 # Increases default TTL, sometimes useful # Default is 64 net.inet.ip.ttl=128 # Lessen max segment life to conserve resources # ACK waiting time in miliseconds # (default: 30000. RFC from 1979 recommends 120000) net.inet.tcp.msl=5000 # Max bumber of timewait sockets net.inet.tcp.maxtcptw=200000 # Don't use tw on local connections # As of 15 Apr 2009. Igor Sysoev says that nolocaltimewait has some buggy realization. # So disable it or now till get fixed #net.inet.tcp.nolocaltimewait=1 # FIN_WAIT_2 state fast recycle net.inet.tcp.fast_finwait2_recycle=1 # Time before tcp keepalive probe is sent # default is 2 hours (7200000) #net.inet.tcp.keepidle=60000 # Should be increased until net.inet.ip.intr_queue_drops is zero net.inet.ip.intr_queue_maxlen=4096 # Interrupt handling via multiple CPU, but with context switch. # You can play with it. Default is 1; #net.isr.direct=0 # This is for routers only #net.inet.ip.forwarding=1 #net.inet.ip.fastforwarding=1 # This speed ups dummynet when channel isn't saturated net.inet.ip.dummynet.io_fast=1 # Increase dummynet(4) hash #net.inet.ip.dummynet.hash_size=2048 #net.inet.ip.dummynet.max_chain_len # Should be increased when you have A LOT of files on server # (Increase until vfs.ufs.dirhash_mem becomes lower) vfs.ufs.dirhash_maxmem=67108864 # Note from commit http://svn.freebsd.org/base/head@211031 : # For systems with RAID volumes and/or virtualization envirnments, where # read performance is very important, increasing this sysctl tunable to 32 # or even more will demonstratively yield additional performance benefits. vfs.read_max=32 # Explicit Congestion Notification (see http://en.wikipedia.org/wiki/Explicit_Congestion_Notification) net.inet.tcp.ecn.enable=1 # Flowtable - flow caching mechanism # Useful for routers #net.inet.flowtable.enable=1 #net.inet.flowtable.nmbflows=65535 # Extreme polling tuning #kern.polling.burst_max=1000 #kern.polling.each_burst=1000 #kern.polling.reg_frac=100 #kern.polling.user_frac=1 #kern.polling.idle_poll=0 # IPFW dynamic rules and timeouts tuning # Increase dyn_buckets till net.inet.ip.fw.curr_dyn_buckets is lower net.inet.ip.fw.dyn_buckets=65536 net.inet.ip.fw.dyn_max=65536 net.inet.ip.fw.dyn_ack_lifetime=120 net.inet.ip.fw.dyn_syn_lifetime=10 net.inet.ip.fw.dyn_fin_lifetime=2 net.inet.ip.fw.dyn_short_lifetime=10 # Make packets pass firewall only once when using dummynet # i.e. packets going thru pipe are passing out from firewall with accept #net.inet.ip.fw.one_pass=1 # shm_use_phys Wires all shared pages, making them unswappable # Use this to lessen Virtual Memory Manager's work when using Shared Mem. # Useful for databases #kern.ipc.shm_use_phys=1 # ZFS # Enable prefetch. Useful for sequential load type i.e fileserver. # FreeBSD sets vfs.zfs.prefetch_disable to 1 on any i386 systems and # on any amd64 systems with less than 4GB of avaiable memory # For additional info check this nabble thread http://old.nabble.com/Samba-read-speed-performance-tuning-td27964534.html #vfs.zfs.prefetch_disable=0 # On highload servers you may notice following message in dmesg: # "Approaching the limit on PV entries, consider increasing either the # vm.pmap.shpgperproc or the vm.pmap.pv_entry_max tunable" vm.pmap.shpgperproc=2048 loader.conf: # Accept filters for data, http and DNS requests # Useful when your software uses select() instead of kevent/kqueue or when you under DDoS # DNS accf available on 8.0+ accf_data_load="YES" accf_http_load="YES" accf_dns_load="YES" # Async IO system calls aio_load="YES" # Linux specific devices in /dev # As for 8.1 it only /dev/full #lindev_load="YES" # Adds NCQ support in FreeBSD # WARNING! all ad[0-9]+ devices will be renamed to ada[0-9]+ # 8.0+ only #ahci_load="YES" #siis_load="YES" # FreeBSD 8.2+ # New Congestion Control for FreeBSD # http://caia.swin.edu.au/urp/newtcp/tools/cc_chd-readme-0.1.txt # http://www.ietf.org/proceedings/78/slides/iccrg-5.pdf # Initial merge commit message http://www.mail-archive.com/[email protected]/msg31410.html #cc_chd_load="YES" # Increase kernel memory size to 3G. # # Use ONLY if you have KVA_PAGES in kernel configuration, and you have more than 3G RAM # Otherwise panic will happen on next reboot! # # It's required for high buffer sizes: kern.ipc.nmbjumbop, kern.ipc.nmbclusters, etc # Useful on highload stateful firewalls, proxies or ZFS fileservers # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #vm.kmem_size="3G" # If your server has lots of swap (>4Gb) you should increase following value # according to http://lists.freebsd.org/pipermail/freebsd-hackers/2009-October/029616.html # Otherwise you'll be getting errors # "kernel: swap zone exhausted, increase kern.maxswzone" # kern.maxswzone="256M" # Older versions of FreeBSD can't tune maxfiles on the fly #kern.maxfiles="200000" # Useful for databases # Sets maximum data size to 1G # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #kern.maxdsiz="1G" # Maximum buffer size(vfs.maxbufspace) # You can check current one via vfs.bufspace # Should be lowered/upped depending on server's load-type # Usually decreased to preserve kmem # (default is 10% of mem) #kern.maxbcache="512M" # Sendfile buffers # For i386 only #kern.ipc.nsfbufs=10240 # FreeBSD 9+ # HPET "legacy route" support. It should allow HPET to work per-CPU # See http://www.mail-archive.com/[email protected]/msg03603.html #hint.atrtc.0.clock=0 #hint.attimer.0.clock=0 #hint.hpet.0.legacy_route=1 # syncache Hash table tuning net.inet.tcp.syncache.hashsize=1024 net.inet.tcp.syncache.bucketlimit=512 net.inet.tcp.syncache.cachelimit=65536 # Increased hostcache # Later host cache can be viewed via net.inet.tcp.hostcache.list hidden sysctl # Very useful for it's RTT RTTVAR # Must be power of two net.inet.tcp.hostcache.hashsize=65536 # hashsize * bucketlimit (which is 30 by default) # It allocates 255Mb (1966080*136) of RAM net.inet.tcp.hostcache.cachelimit=1966080 # TCP control-block Hash table tuning net.inet.tcp.tcbhashsize=4096 # Disable ipfw deny all # Should be uncommented when there is a chance that # kernel and ipfw binary may be out-of sync on next reboot #net.inet.ip.fw.default_to_accept=1 # # SIFTR (Statistical Information For TCP Research) is a kernel module that # logs a range of statistics on active TCP connections to a log file. # See prerelease notes http://groups.google.com/group/mailing.freebsd.current/browse_thread/thread/b4c18be6cdce76e4 # and man 4 sitfr #siftr_load="YES" # Enable superpages, for 7.2+ only # Also read http://lists.freebsd.org/pipermail/freebsd-hackers/2009-November/030094.html vm.pmap.pg_ps_enabled=1 # Usefull if you are using Intel-Gigabit NIC #hw.em.rxd=4096 #hw.em.txd=4096 #hw.em.rx_process_limit="-1" # Also if you have ALOT interrupts on NIC - play with following parameters # NOTE: You should set them for every NIC #dev.em.0.rx_int_delay: 250 #dev.em.0.tx_int_delay: 250 #dev.em.0.rx_abs_int_delay: 250 #dev.em.0.tx_abs_int_delay: 250 # There is also multithreaded version of em/igb drivers can be found here: # http://people.yandex-team.ru/~wawa/ # # for additional em monitoring and statistics use # sysctl dev.em.0.stats=1 ; dmesg # sysctl dev.em.0.debug=1 ; dmesg # Also after r209242 (-CURRENT) there is a separate sysctl for each stat variable; # Same tunings for igb #hw.igb.rxd=4096 #hw.igb.txd=4096 #hw.igb.rx_process_limit=100 # Some useful netisr tunables. See sysctl net.isr #net.isr.maxthreads=4 #net.isr.defaultqlimit=4096 #net.isr.maxqlimit: 10240 # Bind netisr threads to CPUs #net.isr.bindthreads=1 # # FreeBSD 9.x+ # Increase interface send queue length # See commit message http://svn.freebsd.org/viewvc/base?view=revision&revision=207554 #net.link.ifqmaxlen=1024 # Nicer boot logo =) loader_logo="beastie" And finally here is KERNCONF: # Just some of them, see also # cat /sys/{i386,amd64,}/conf/NOTES # This one useful only on i386 #options KVA_PAGES=512 # You can play with HZ in environments with high interrupt rate (default is 1000) # 100 is for my notebook to prolong it's battery life #options HZ=100 # Polling is goot on network loads with high packet rates and low-end NICs # NB! Do not enable it if you want more than one netisr thread #options DEVICE_POLLING # Eliminate datacopy on socket read-write # To take advantage with zero copy sockets you should have an MTU >= 4k # This req. is only for receiving data. # Read more in man zero_copy_sockets # Also this epic thread on kernel trap: # http://kerneltrap.org/node/6506 # Here Linus says that "anybody that does it that way (FreeBSD) is totally incompetent" #options ZERO_COPY_SOCKETS # Support TCP sign. Used for IPSec options TCP_SIGNATURE # There was stackoverflow found in KAME IPSec stack: # See http://secunia.com/advisories/43995/ # For quick workaround you can use `ipfw add deny proto ipcomp` options IPSEC # This ones can be loaded as modules. They described in loader.conf section #options ACCEPT_FILTER_DATA #options ACCEPT_FILTER_HTTP # Adding ipfw, also can be loaded as modules options IPFIREWALL # On 8.1+ you can disable verbose to see blocked packets on ipfw0 interface. # Also there is no point in compiling verbose into the kernel, because # now there is net.inet.ip.fw.verbose tunable. #options IPFIREWALL_VERBOSE #options IPFIREWALL_VERBOSE_LIMIT=10 options IPFIREWALL_FORWARD # Adding kernel NAT options IPFIREWALL_NAT options LIBALIAS # Traffic shaping options DUMMYNET # Divert, i.e. for userspace NAT options IPDIVERT # This is for OpenBSD's pf firewall device pf device pflog # pf's QoS - ALTQ options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Required for SMP build # Pretty console # Manual can be found here http://forums.freebsd.org/showthread.php?t=6134 #options VESA #options SC_PIXEL_MODE # Disable reboot on Ctrl Alt Del #options SC_DISABLE_REBOOT # Change normal|kernel messages color options SC_NORM_ATTR=(FG_GREEN|BG_BLACK) options SC_KERNEL_CONS_ATTR=(FG_YELLOW|BG_BLACK) # More scroll space options SC_HISTORY_SIZE=8192 # Adding hardware crypto device device crypto device cryptodev # Useful network interfaces device vlan device tap #Virtual Ethernet driver device gre #IP over IP tunneling device if_bridge #Bridge interface device pfsync #synchronization interface for PF device carp #Common Address Redundancy Protocol device enc #IPsec interface device lagg #Link aggregation interface device stf #IPv4-IPv6 port # Also for my notebook, but may be used with Opteron device amdtemp # Same for Intel processors device coretemp # man 4 cpuctl device cpuctl # CPU control pseudo-device # Support for ECMP. More than one route for destination # Works even with default route so one can use it as LB for two ISP # For now code is unstable and panics (panic: rtfree 2) on route deletions. #options RADIX_MPATH # Multicast routing #options MROUTING #options PIM # Debug & DTrace options KDB # Kernel debugger related code options KDB_TRACE # Print a stack trace for a panic options KDTRACE_FRAME # amd64-only(?) options KDTRACE_HOOKS # all architectures - enable general DTrace hooks #options DDB #options DDB_CTF # all architectures - kernel ELF linker loads CTF data # Adaptive spining in lockmgr (8.x+) # See http://www.mail-archive.com/[email protected]/msg10782.html options ADAPTIVE_LOCKMGRS # UTF-8 in console (8.x+) #options TEKEN_UTF8 # FreeBSD 8.1+ # Deadlock resolver thread # For additional information see http://www.mail-archive.com/[email protected]/msg18124.html # (FYI: "resolution" is panic so use with caution) #options DEADLKRES # Increase maximum size of Raw I/O and sendfile(2) readahead #options MAXPHYS=(1024*1024) #options MAXBSIZE=(1024*1024) # For scheduler debug enable following option. # Debug will be available via `kern.sched.stats` sysctl # For more information see http://svnweb.freebsd.org/base/head/sys/conf/NOTES?view=markup #options SCHED_STATS If you are tuning network for maximum performance you may wish to play with ifconfig options like: # You can list all capabilities via `ifconfig -m` ifconfig [-]rxcsum [-]txcsum [-]tso [-]lro mtu In case you've enabled DDB in kernel config, you should edit your /etc/ddb.conf and add something like this to enable automatic reboot (and textdump as bonus): script kdb.enter.panic=textdump set; capture on; show pcpu; bt; ps; alltrace; capture off; call doadump; reset script kdb.enter.default=textdump set; capture on; bt; ps; capture off; call doadump; reset And do not forget to add ddb_enable="YES" to /etc/rc.conf Since FreeBSD 9 you can select to enable/disable flowcontrol on your NIC: # See http://en.wikipedia.org/wiki/Ethernet_flow_control and # http://www.mail-archive.com/[email protected]/msg07927.html for additional info ifconfig bge0 media auto mediaopt flowcontrol PS. Also most of FreeBSD's limits can be monitored by # vmstat -z and # limits PPS. variety of network counters can be monitored via # netstat -s In FreeBSD-9 netstat's -Q option appeared, try following command to display netisr stats # netstat -Q PPPS. also see # man 7 tuning PPPPS. I wanted to thank FreeBSD community, especially author of nginx - Igor Sysoev, nginx-ru@ and FreeBSD-performance@ mailing lists for providing useful information about FreeBSD tuning. FreeBSD WIP * Whats cooking for FreeBSD 7? * Whats cooking for FreeBSD 8? * Whats cooking for FreeBSD 9? So here is the question: What tunings are you using on yours FreeBSD servers? You can also post your /etc/sysctl.conf, /boot/loader.conf, kernel options, etc with description of its' meaning (do not copy-paste from sysctl -d). Don't forget to specify server type (web, smb, gateway, etc) Let's share experience!

    Read the article

  • Use IIS Application Initialization for keeping ASP.NET Apps alive

    - by Rick Strahl
    I've been working quite a bit with Windows Services in the recent months, and well, it turns out that Windows Services are quite a bear to debug, deploy, update and maintain. The process of getting services set up,  debugged and updated is a major chore that has to be extensively documented and or automated specifically. On most projects when a service is built, people end up scrambling for the right 'process' to use for administration. Web app deployment and maintenance on the other hand are common and well understood today, as we are constantly dealing with Web apps. There's plenty of infrastructure and tooling built into Web Tools like Visual Studio to facilitate the process. By comparison Windows Services or anything self-hosted for that matter seems convoluted.In fact, in a recent blog post I mentioned that on a recent project I'd been using self-hosting for SignalR inside of a Windows service, because the application is in fact a 'service' that also needs to send out lots of messages via SignalR. But the reality is that it could just as well be an IIS application with a service component that runs in the background. Either way you look at it, it's either a Windows Service with a built in Web Server, or an IIS application running a Service application, neither of which follows the standard Service or Web App template.Personally I much prefer Web applications. Running inside of IIS I get all the benefits of the IIS platform including service lifetime management (crash and restart), controlled shutdowns, the whole security infrastructure including easy certificate support, hot-swapping of code and the the ability to publish directly to IIS from within Visual Studio with ease.Because of these benefits we set out to move from the self hosted service into an ASP.NET Web app instead.The Missing Link for ASP.NET as a Service: Auto-LoadingI've had moments in the past where I wanted to run a 'service like' application in ASP.NET because when you think about it, it's so much easier to control a Web application remotely. Services are locked into start/stop operations, but if you host inside of a Web app you can write your own ticket and control it from anywhere. In fact nearly 10 years ago I built a background scheduling application that ran inside of ASP.NET and it worked great and it's still running doing its job today.The tricky part for running an app as a service inside of IIS then and now, is how to get IIS and ASP.NET launched so your 'service' stays alive even after an Application Pool reset. 7 years ago I faked it by using a web monitor (my own West Wind Web Monitor app) I was running anyway to monitor my various web sites for uptime, and having the monitor ping my 'service' every 20 seconds to effectively keep ASP.NET alive or fire it back up after a reload. I used a simple scheduler class that also includes some logic for 'self-reloading'. Hacky for sure, but it worked reliably.Luckily today it's much easier and more integrated to get IIS to launch ASP.NET as soon as an Application Pool is started by using the Application Initialization Module. The Application Initialization Module basically allows you to turn on Preloading on the Application Pool and the Site/IIS App, which essentially fires a request through the IIS pipeline as soon as the Application Pool has been launched. This means that effectively your ASP.NET app becomes active immediately, Application_Start is fired making sure your app stays up and running at all times. All the other features like Application Pool recycling and auto-shutdown after idle time still work, but IIS will then always immediately re-launch the application.Getting started with Application InitializationAs of IIS 8 Application Initialization is part of the IIS feature set. For IIS 7 and 7.5 there's a separate download available via Web Platform Installer. Using IIS 8 Application Initialization is an optional install component in Windows or the Windows Server Role Manager: This is an optional component so make sure you explicitly select it.IIS Configuration for Application InitializationInitialization needs to be applied on the Application Pool as well as the IIS Application level. As of IIS 8 these settings can be made through the IIS Administration console.Start with the Application Pool:Here you need to set both the Start Automatically which is always set, and the StartMode which should be set to AlwaysRunning. Both have to be set - the Start Automatically flag is set true by default and controls the starting of the application pool itself while Always Running flag is required in order to launch the application. Without the latter flag set the site settings have no effect.Now on the Site/Application level you can specify whether the site should pre load: Set the Preload Enabled flag to true.At this point ASP.NET apps should auto-load. This is all that's needed to pre-load the site if all you want is to get your site launched automatically.If you want a little more control over the load process you can add a few more settings to your web.config file that allow you to show a static page while the App is starting up. This can be useful if startup is really slow, so rather than displaying blank screen while the user is fiddling their thumbs you can display a static HTML page instead: <system.webServer> <applicationInitialization remapManagedRequestsTo="Startup.htm" skipManagedModules="true"> <add initializationPage="ping.ashx" /> </applicationInitialization> </system.webServer>This allows you to specify a page to execute in a dry run. IIS basically fakes request and pushes it directly into the IIS pipeline without hitting the network. You specify a page and IIS will fake a request to that page in this case ping.ashx which just returns a simple OK string - ie. a fast pipeline request. This request is run immediately after Application Pool restart, and while this request is running and your app is warming up, IIS can display an alternate static page - Startup.htm above. So instead of showing users an empty loading page when clicking a link on your site you can optionally show some sort of static status page that says, "we'll be right back".  I'm not sure if that's such a brilliant idea since this can be pretty disruptive in some cases. Personally I think I prefer letting people wait, but at least get the response they were supposed to get back rather than a random page. But it's there if you need it.Note that the web.config stuff is optional. If you don't provide it IIS hits the default site link (/) and even if there's no matching request at the end of that request it'll still fire the request through the IIS pipeline. Ideally though you want to make sure that an ASP.NET endpoint is hit either with your default page, or by specify the initializationPage to ensure ASP.NET actually gets hit since it's possible for IIS fire unmanaged requests only for static pages (depending how your pipeline is configured).What about AppDomain Restarts?In addition to full Worker Process recycles at the IIS level, ASP.NET also has to deal with AppDomain shutdowns which can occur for a variety of reasons:Files are updated in the BIN folderWeb Deploy to your siteweb.config is changedHard application crashThese operations don't cause the worker process to restart, but they do cause ASP.NET to unload the current AppDomain and start up a new one. Because the features above only apply to Application Pool restarts, AppDomain restarts could also cause your 'ASP.NET service' to stop processing in the background.In order to keep the app running on AppDomain recycles, you can resort to a simple ping in the Application_End event:protected void Application_End() { var client = new WebClient(); var url = App.AdminConfiguration.MonitorHostUrl + "ping.aspx"; client.DownloadString(url); Trace.WriteLine("Application Shut Down Ping: " + url); }which fires any ASP.NET url to the current site at the very end of the pipeline shutdown which in turn ensures that the site immediately starts back up.Manual Configuration in ApplicationHost.configThe above UI corresponds to the following ApplicationHost.config settings. If you're using IIS 7, there's no UI for these flags so you'll have to manually edit them.When you install the Application Initialization component into IIS it should auto-configure the module into ApplicationHost.config. Unfortunately for me, with Mr. Murphy in his best form for me, the module registration did not occur and I had to manually add it.<globalModules> <add name="ApplicationInitializationModule" image="%windir%\System32\inetsrv\warmup.dll" /> </globalModules>Most likely you won't need ever need to add this, but if things are not working it's worth to check if the module is actually registered.Next you need to configure the ApplicationPool and the Web site. The following are the two relevant entries in ApplicationHost.config.<system.applicationHost> <applicationPools> <add name="West Wind West Wind Web Connection" autoStart="true" startMode="AlwaysRunning" managedRuntimeVersion="v4.0" managedPipelineMode="Integrated"> <processModel identityType="LocalSystem" setProfileEnvironment="true" /> </add> </applicationPools> <sites> <site name="Default Web Site" id="1"> <application path="/MPress.Workflow.WebQueueMessageManager" applicationPool="West Wind West Wind Web Connection" preloadEnabled="true"> <virtualDirectory path="/" physicalPath="C:\Clients\…" /> </application> </site> </sites> </system.applicationHost>On the Application Pool make sure to set the autoStart and startMode flags to true and AlwaysRunning respectively. On the site make sure to set the preloadEnabled flag to true.And that's all you should need. You can still set the web.config settings described above as well.ASP.NET as a Service?In the particular application I'm working on currently, we have a queue manager that runs as standalone service that polls a database queue and picks out jobs and processes them on several threads. The service can spin up any number of threads and keep these threads alive in the background while IIS is running doing its own thing. These threads are newly created threads, so they sit completely outside of the IIS thread pool. In order for this service to work all it needs is a long running reference that keeps it alive for the life time of the application.In this particular app there are two components that run in the background on their own threads: A scheduler that runs various scheduled tasks and handles things like picking up emails to send out outside of IIS's scope and the QueueManager. Here's what this looks like in global.asax:public class Global : System.Web.HttpApplication { private static ApplicationScheduler scheduler; private static ServiceLauncher launcher; protected void Application_Start(object sender, EventArgs e) { // Pings the service and ensures it stays alive scheduler = new ApplicationScheduler() { CheckFrequency = 600000 }; scheduler.Start(); launcher = new ServiceLauncher(); launcher.Start(); // register so shutdown is controlled HostingEnvironment.RegisterObject(launcher); }}By keeping these objects around as static instances that are set only once on startup, they survive the lifetime of the application. The code in these classes is essentially unchanged from the Windows Service code except that I could remove the various overrides required for the Windows Service interface (OnStart,OnStop,OnResume etc.). Otherwise the behavior and operation is very similar.In this application ASP.NET serves two purposes: It acts as the host for SignalR and provides the administration interface which allows remote management of the 'service'. I can start and stop the service remotely by shutting down the ApplicationScheduler very easily. I can also very easily feed stats from the queue out directly via a couple of Web requests or (as we do now) through the SignalR service.Registering a Background Object with ASP.NETNotice also the use of the HostingEnvironment.RegisterObject(). This function registers an object with ASP.NET to let it know that it's a background task that should be notified if the AppDomain shuts down. RegisterObject() requires an interface with a Stop() method that's fired and allows your code to respond to a shutdown request. Here's what the IRegisteredObject::Stop() method looks like on the launcher:public void Stop(bool immediate = false) { LogManager.Current.LogInfo("QueueManager Controller Stopped."); Controller.StopProcessing(); Controller.Dispose(); Thread.Sleep(1500); // give background threads some time HostingEnvironment.UnregisterObject(this); }Implementing IRegisterObject should help with reliability on AppDomain shutdowns. Thanks to Justin Van Patten for pointing this out to me on Twitter.RegisterObject() is not required but I would highly recommend implementing it on whatever object controls your background processing to all clean shutdowns when the AppDomain shuts down.Testing it outI'm still in the testing phase with this particular service to see if there are any side effects. But so far it doesn't look like it. With about 50 lines of code I was able to replace the Windows service startup to Web start up - everything else just worked as is. An honorable mention goes to SignalR 2.0's oWin hosting, because with the new oWin based hosting no code changes at all were required, merely a couple of configuration file settings and an assembly directive needed, to point at the SignalR startup class. Sweet!It also seems like SignalR is noticeably faster running inside of IIS compared to self-host. Startup feels faster because of the preload.Starting and Stopping the 'Service'Because the application is running as a Web Server, it's easy to have a Web interface for starting and stopping the services running inside of the service. For our queue manager the SignalR service and front monitoring app has a play and stop button for toggling the queue.If you want more administrative control and have it work more like a Windows Service you can also stop the application pool explicitly from the command line which would be equivalent to stopping and restarting a service.To start and stop from the command line you can use the IIS appCmd tool. To stop:> %windir%\system32\inetsrv\appcmd stop apppool /apppool.name:"Weblog"and to start> %windir%\system32\inetsrv\appcmd start apppool /apppool.name:"Weblog"Note that when you explicitly force the AppPool to stop running either in the UI (on the ApplicationPools page use Start/Stop) or via command line tools, the application pool will not auto-restart immediately. You have to manually start it back up.What's not to like?There are certainly a lot of benefits to running a background service in IIS, but… ASP.NET applications do have more overhead in terms of memory footprint and startup time is a little slower, but generally for server applications this is not a big deal. If the application is stable the service should fire up and stay running indefinitely. A lot of times this kind of service interface can simply be attached to an existing Web application, or if scalability requires be offloaded to its own Web server.Easier to work withBut the ultimate benefit here is that it's much easier to work with a Web app as opposed to a service. While developing I can simply turn off the auto-launch features and launch the service on demand through IIS simply by hitting a page on the site. If I want to shut down an IISRESET -stop will shut down the service easily enough. I can then attach a debugger anywhere I want and this works like any other ASP.NET application. Yes you end up on a background thread for debugging but Visual Studio handles that just fine and if you stay on a single thread this is no different than debugging any other code.SummaryUsing ASP.NET to run background service operations is probably not a super common scenario, but it probably should be something that is considered carefully when building services. Many applications have service like features and with the auto-start functionality of the Application Initialization module, it's easy to build this functionality into ASP.NET. Especially when combined with the notification features of SignalR it becomes very, very easy to create rich services that can also communicate their status easily to the outside world.Whether it's existing applications that need some background processing for scheduling related tasks, or whether you just create a separate site altogether just to host your service it's easy to do and you can leverage the same tool chain you're already using for other Web projects. If you have lots of service projects it's worth considering… give it some thought…© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  SignalR  IIS   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to fix Ogre3d segfault with std::_Rb_tree_insert_and_rebalance ?

    - by Balázs Béla
    Hello all. I'm working on a 3d music visualizer using Ogre3d, basically it's a spectrum analizer, a lot like the old xmms plugin: (http)://www.youtube.com/watch?v=_6NKBiwYN24 It works well, the bars are drawn and updated, there are no framerate issues, but it crashes randomly. Sometimes it can run without problems, finish the song, other times it crashes instantly, other times the music just stops, without a crash. Here is the source code for the main class : https://github.com/balazsbela/OgreVisualizer/blob/master/src/VisualizerApplication.cpp#L221 Also the crashes seem to happen less often when I display the framerate overlay from Ogre samples. Would limiting the framerate help ? The crashes are seemingly random. Is it a performance issue ? Please help me out, I'm quite lost on this one, I also posted on Ogre3d forums but I received no responses. (http)://www.ogre3d.org/forums/viewtopic.php?f=2&t=63207 I also tried stackoverflow: (http)://stackoverflow.com/questions/5050147/how-to-fix-ogre3d-segfault-with-std-rb-tree-insert-and-rebalance Thank you. Backtrace: balazsbela@darknet:~/workspace/OgreVisualizer/Release$ gdb OgreVisualizer core GNU gdb (GDB) 7.2-debian Copyright (C) 2010 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Type "show copying" and "show warranty" for details. This GDB was configured as "i486-linux-gnu". For bug reporting instructions, please see: <http://www.gnu.org/software/gdb/bugs/>... Reading symbols from /home/balazsbela/workspace/OgreVisualizer/Release/OgreVisualizer...done. [New Thread 17705] [New Thread 17702] [New Thread 17703] [New Thread 17700] Reading symbols from /usr/lib/libv4l/v4l1compat.so...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libv4l/v4l1compat.so Reading symbols from /usr/local/lib/libOgreMain.so.1.7.1...done. Loaded symbols for /usr/local/lib/libOgreMain.so.1.7.1 Reading symbols from /usr/lib/libfftw3.so.3...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libfftw3.so.3 Reading symbols from /usr/lib/libSDL_sound-1.0.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libSDL_sound-1.0.so.1 Reading symbols from /usr/lib/libSDL-1.2.so.0...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libSDL-1.2.so.0 Reading symbols from /usr/lib/libSDL_mixer-1.2.so.0...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libSDL_mixer-1.2.so.0 Reading symbols from /usr/lib/libOIS-1.2.0.so...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libOIS-1.2.0.so Reading symbols from /usr/lib/libstdc++.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libstdc++.so.6 Reading symbols from /lib/i686/cmov/libm.so.6...Reading symbols from /usr/lib/debug/lib/i686/cmov/libm-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libm.so.6 Reading symbols from /lib/libgcc_s.so.1...(no debugging symbols found)...done. Loaded symbols for /lib/libgcc_s.so.1 Reading symbols from /lib/i686/cmov/libc.so.6...Reading symbols from /usr/lib/debug/lib/i686/cmov/libc-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libc.so.6 Reading symbols from /lib/i686/cmov/libpthread.so.0...Reading symbols from /usr/lib/debug/lib/i686/cmov/libpthread-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libpthread.so.0 Reading symbols from /usr/local/lib/libv4l1.so.0...done. Loaded symbols for /usr/local/lib/libv4l1.so.0 Reading symbols from /usr/lib/libfreetype.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libfreetype.so.6 Reading symbols from /usr/lib/libSM.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libSM.so.6 Reading symbols from /usr/lib/libICE.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libICE.so.6 Reading symbols from /usr/lib/libX11.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libX11.so.6 Reading symbols from /usr/lib/libXext.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXext.so.6 Reading symbols from /usr/lib/libXt.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXt.so.6 Reading symbols from /usr/lib/libXaw.so.7...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXaw.so.7 Reading symbols from /lib/i686/cmov/libdl.so.2...Reading symbols from /usr/lib/debug/lib/i686/cmov/libdl-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libdl.so.2 Reading symbols from /usr/lib/libboost_thread.so.1.42.0...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libboost_thread.so.1.42.0 Reading symbols from /usr/lib/libboost_date_time.so.1.42.0...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libboost_date_time.so.1.42.0 Reading symbols from /usr/lib/libfreeimage.so.3...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libfreeimage.so.3 Reading symbols from /usr/lib/libzzip-0.so.13...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libzzip-0.so.13 Reading symbols from /usr/lib/libz.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libz.so.1 Reading symbols from /usr/lib/libsmpeg-0.4.so.0...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libsmpeg-0.4.so.0 Reading symbols from /usr/lib/libmikmod.so.2...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libmikmod.so.2 Reading symbols from /usr/lib/libvorbis.so.0...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libvorbis.so.0 Reading symbols from /usr/lib/libvorbisfile.so.3...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libvorbisfile.so.3 Reading symbols from /usr/lib/libFLAC.so.8...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libFLAC.so.8 Reading symbols from /usr/lib/libogg.so.0...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libogg.so.0 Reading symbols from /usr/lib/sse2/libspeex.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/sse2/libspeex.so.1 Reading symbols from /usr/lib/libasound.so.2...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libasound.so.2 Reading symbols from /lib/i686/cmov/librt.so.1...Reading symbols from /usr/lib/debug/lib/i686/cmov/librt-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/librt.so.1 Reading symbols from /usr/lib/libdirectfb-1.2.so.9...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libdirectfb-1.2.so.9 Reading symbols from /usr/lib/libfusion-1.2.so.9...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libfusion-1.2.so.9 Reading symbols from /usr/lib/libdirect-1.2.so.9...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libdirect-1.2.so.9 Reading symbols from /usr/lib/libvga.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libvga.so.1 Reading symbols from /lib/ld-linux.so.2...Reading symbols from /usr/lib/debug/lib/ld-2.11.2.so...done. done. Loaded symbols for /lib/ld-linux.so.2 Reading symbols from /usr/local/lib/libv4l2.so.0...done. Loaded symbols for /usr/local/lib/libv4l2.so.0 Reading symbols from /lib/libuuid.so.1...(no debugging symbols found)...done. Loaded symbols for /lib/libuuid.so.1 Reading symbols from /usr/lib/libxcb.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libxcb.so.1 Reading symbols from /usr/lib/libXmu.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXmu.so.6 Reading symbols from /usr/lib/libXpm.so.4...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXpm.so.4 Reading symbols from /usr/lib/libjpeg.so.62...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libjpeg.so.62 Reading symbols from /usr/lib/libmng.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libmng.so.1 Reading symbols from /usr/lib/libopenjpeg.so.2...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libopenjpeg.so.2 Reading symbols from /lib/libpng12.so.0...(no debugging symbols found)...done. Loaded symbols for /lib/libpng12.so.0 Reading symbols from /usr/lib/libIlmImf.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libIlmImf.so.6 Reading symbols from /usr/lib/libImath.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libImath.so.6 Reading symbols from /usr/lib/libHalf.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libHalf.so.6 Reading symbols from /usr/lib/libIex.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libIex.so.6 Reading symbols from /usr/lib/libIlmThread.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libIlmThread.so.6 Reading symbols from /lib/libx86.so.1...(no debugging symbols found)...done. Loaded symbols for /lib/libx86.so.1 Reading symbols from /usr/local/lib/libv4lconvert.so.0...done. Loaded symbols for /usr/local/lib/libv4lconvert.so.0 Reading symbols from /usr/lib/libXau.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXau.so.6 Reading symbols from /usr/lib/libXdmcp.so.6...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXdmcp.so.6 Reading symbols from /usr/lib/liblcms.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/liblcms.so.1 Reading symbols from /usr/local/lib/OGRE/RenderSystem_GL.so...done. Loaded symbols for /usr/local/lib/OGRE/RenderSystem_GL.so Reading symbols from /usr/lib/libGLU.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libGLU.so.1 Reading symbols from /usr/lib/libGL.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libGL.so.1 Reading symbols from /usr/lib/libXrandr.so.2...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXrandr.so.2 Reading symbols from /usr/lib/libGLcore.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libGLcore.so.1 Reading symbols from /usr/lib/tls/libnvidia-tls.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/tls/libnvidia-tls.so.1 Reading symbols from /usr/lib/libXrender.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXrender.so.1 Reading symbols from /usr/lib/libXcursor.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXcursor.so.1 Reading symbols from /usr/lib/libXfixes.so.3...(no debugging symbols found)...done. Loaded symbols for /usr/lib/libXfixes.so.3 Reading symbols from /lib/i686/cmov/libnss_compat.so.2...Reading symbols from /usr/lib/debug/lib/i686/cmov/libnss_compat-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libnss_compat.so.2 Reading symbols from /lib/i686/cmov/libnsl.so.1...Reading symbols from /usr/lib/debug/lib/i686/cmov/libnsl-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libnsl.so.1 Reading symbols from /lib/i686/cmov/libnss_nis.so.2...Reading symbols from /usr/lib/debug/lib/i686/cmov/libnss_nis-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libnss_nis.so.2 Reading symbols from /lib/i686/cmov/libnss_files.so.2...Reading symbols from /usr/lib/debug/lib/i686/cmov/libnss_files-2.11.2.so...done. done. Loaded symbols for /lib/i686/cmov/libnss_files.so.2 Reading symbols from /usr/lib/alsa-lib/libasound_module_rate_speexrate.so...(no debugging symbols found)...done. Loaded symbols for /usr/lib/alsa-lib/libasound_module_rate_speexrate.so Reading symbols from /usr/lib/sse2/libspeexdsp.so.1...(no debugging symbols found)...done. Loaded symbols for /usr/lib/sse2/libspeexdsp.so.1 Core was generated by `./OgreVisualizer'. Program terminated with signal 11, Segmentation fault. #0 0xb6dc563d in std::_Rb_tree_insert_and_rebalance(bool, std::_Rb_tree_node_base*, std::_Rb_tree_node_base*, std::_Rb_tree_node_base&) () from /usr/lib/libstdc++.so.6 (gdb) bt #0 0xb6dc563d in std::_Rb_tree_insert_and_rebalance(bool, std::_Rb_tree_node_base*, std::_Rb_tree_node_base*, std::_Rb_tree_node_base&) () from /usr/lib/libstdc++.so.6 #1 0xb73bb3c2 in std::_Rb_tree<Ogre::Node*, Ogre::Node*, std::_Identity<Ogre::Node*>, std::less<Ogre::Node*>, Ogre::STLAllocator<Ogre::Node*, Ogre::CategorisedAllocPolicy<(Ogre::MemoryCategory)0> > >::_M_insert_(std::_Rb_tree_node_base const*, std::_Rb_tree_node_base const*, Ogre::Node* const&) () from /usr/local/lib/libOgreMain.so.1.7.1 #2 0xb73b5a52 in _M_insert_unique (this=0xb6157ea0, child=0xb616aff8, forceParentUpdate=false) at /usr/include/c++/4.4/bits/stl_tree.h:1182 #3 insert (this=0xb6157ea0, child=0xb616aff8, forceParentUpdate=false) at /usr/include/c++/4.4/bits/stl_set.h:411 #4 Ogre::Node::requestUpdate (this=0xb6157ea0, child=0xb616aff8, forceParentUpdate=false) at /home/balazsbela/Downloads/ogre_src_v1-7-1/OgreMain/src/OgreNode.cpp:805 #5 0xb73b6a40 in Ogre::Node::needUpdate (this=0xb616aff8, forceParentUpdate=92) at /home/balazsbela/Downloads/ogre_src_v1-7-1/OgreMain/src/OgreNode.cpp:789 #6 0xb73b5038 in Ogre::Node::setScale (this=0x1825c, scale=...) at /home/balazsbela/Downloads/ogre_src_v1-7-1/OgreMain/src/OgreNode.cpp:638 #7 0x0805d306 in VisualizerApplication::adjustNodes (this=0x9cd4808) at ../src/VisualizerApplication.cpp:236 #8 0xb6e867f0 in ?? () from /usr/lib/libSDL_mixer-1.2.so.0 #9 0xb6e8719a in ?? () from /usr/lib/libSDL_mixer-1.2.so.0 #10 0xb6ed9b0d in ?? () from /usr/lib/libSDL-1.2.so.0 #11 0xb6ee185e in ?? () from /usr/lib/libSDL-1.2.so.0 #12 0xb6f2e0bd in ?? () from /usr/lib/libSDL-1.2.so.0 #13 0xb6bc7955 in start_thread (arg=0xb198ab70) at pthread_create.c:300 #14 0xb6ca6e7e in clone () at ../sysdeps/unix/sysv/linux/i386/clone.S:130 (gdb) Ogre.log: (http)://pastie.org/1581790

    Read the article

  • Overview of SOA Diagnostics in 11.1.1.6

    - by ShawnBailey
    What tools are available for diagnosing SOA Suite issues? There are a variety of tools available to help you and Support diagnose SOA Suite issues in 11g but it can be confusing as to which tool is appropriate for a particular situation and what their relationships are. This blog post will introduce the various tools and attempt to clarify what each is for and how they are related. Let's first list the tools we'll be addressing: RDA: Remote Diagnostic Agent DFW: Diagnostic Framework Selective Tracing DMS: Dynamic Monitoring Service ODL: Oracle Diagnostic Logging ADR: Automatic Diagnostics Repository ADRCI: Automatic Diagnostics Repository Command Interpreter WLDF: WebLogic Diagnostic Framework This overview is not mean to be a comprehensive guide on using all of these tools, however, extensive reference materials are included that will provide many more details on their execution. Another point to note is that all of these tools are applicable for Fusion Middleware as a whole but specific products may or may not have implemented features to leverage them. A couple of the tools have a WebLogic Scripting Tool or 'WLST' interface. WLST is a command interface for executing pre-built functions and custom scripts against a domain. A detailed WLST tutorial is beyond the scope of this post but you can find general information here. There are more specific resources in the below sections. In this post when we refer to 'Enterprise Manager' or 'EM' we are referring to Enterprise Manager Fusion Middleware Control. RDA (Remote Diagnostic Agent) RDA is a standalone tool that is used to collect both static configuration and dynamic runtime information from the SOA environment. RDA is generally run manually from the command line against a domain or single server. When opening a new Service Request, including an RDA collection can dramatically decrease the back and forth required to collect logs and configuration information for Support. After installing RDA you configure it to use the SOA Suite module as decribed in the referenced resources. The SOA module includes the Oracle WebLogic Server (WLS) module by default in order to include all of the relevant information for the environment. In addition to this basic configuration there is also an advanced mode where you can set the number of thread dumps for the collections, log files, Incidents, etc. When would you use it? When creating a Service Request or otherwise working with Oracle resources on an issue, capturing environment snapshots to baseline your configuration or to diagnose an issue on your own. How is it related to the other tools? RDA is related to DFW in that it collects the last 10 Incidents from the server by default. In a similar manner, RDA is related to ODL through its collection of the diagnostic logs and these may contain information from Selective Tracing sessions. Examples of what it currently collects: (for details please see the links in the Resources section) Diagnostic Logs (ODL) Diagnostic Framework Incidents (DFW) SOA MDS Deployment Descriptors SOA Repository Summary Statistics Thread Dumps Complete Domain Configuration RDA Resources: Webcast Recording: Using RDA with Oracle SOA Suite 11g Blog Post: Diagnose SOA Suite 11g Issues Using RDA Download RDA How to Collect Analysis Information Using RDA for Oracle SOA Suite 11g Products [ID 1350313.1] How to Collect Analysis Information Using RDA for Oracle SOA Suite and BPEL Process Manager 11g [ID 1352181.1] Getting Started With Remote Diagnostic Agent: Case Study - Oracle WebLogic Server (Video) [ID 1262157.1] top DFW (Diagnostic Framework) DFW provides the ability to collect specific information for a particular problem when that problem occurs. DFW is included with your SOA Suite installation and deployed to the domain. Let's define the components of DFW. Diagnostic Dumps: Specific diagnostic collections that are defined at either the 'system' or product level. Examples would be diagnostic logs or thread dumps. Incident: A collection of Diagnostic Dumps associated with a particular problem Log Conditions: An Oracle Diagnostic Logging event that DFW is configured to listen for. If the event is identified then an Incident will be created. WLDF Watch: The WebLogic Diagnostic Framework or 'WLDF' is not a component of DFW, however, it can be a source of DFW Incident creation through the use of a 'Watch'. WLDF Notification: A Notification is a component of WLDF and is the link between the Watch and DFW. You can configure multiple Notification types in WLDF and associate them with your Watches. 'FMWDFW-notification' is available to you out of the box to allow for DFW notification of Watch execution. Rule: Defines a WLDF Watch or Log Condition for which we want to associate a set of Diagnostic Dumps. When triggered the specified dumps will be collected and added to the Incident Rule Action: Defines the specific Diagnostic Dumps to collect for a particular rule ADR: Automatic Diagnostics Repository; Defined for every server in a domain. This is where Incidents are stored Now let's walk through a simple flow: Oracle Web Services error message OWS-04086 (SOAP Fault) is generated on managed server 1 DFW Log Condition for OWS-04086 evaluates to TRUE DFW creates a new Incident in the ADR for managed server 1 DFW executes the specified Diagnostic Dumps and adds the output to the Incident In this case we'll grab the diagnostic log and thread dump. We might also want to collect the WSDL binding information and SOA audit trail When would you use it? When you want to automatically collect Diagnostic Dumps at a particular time using a trigger or when you want to manually collect the information. In either case it can be readily uploaded to Oracle Support through the Service Request. How is it related to the other tools? DFW generates Incidents which are collections of Diagnostic Dumps. One of the system level Diagonstic Dumps collects the current server diagnostic log which is generated by ODL and can contain information from Selective Tracing sessions. Incidents are included in RDA collections by default and ADRCI is a tool that is used to package an Incident for upload to Oracle Support. In addition, both ODL and DMS can be used to trigger Incident creation through DFW. The conditions and rules for generating Incidents can become quite complicated and the below resources go into more detail. A simpler approach to leveraging at least the Diagnostic Dumps is through WLST (WebLogic Scripting Tool) where there are commands to do the following: Create an Incident Execute a single Diagnostic Dump Describe a Diagnostic Dump List the available Diagnostic Dumps The WLST option offers greater control in what is generated and when. It can be a great help when collecting information for Support. There are overlaps with RDA, however, DFW is geared towards collecting specific runtime information when an issue occurs while existing Incidents are collected by RDA. There are 3 WLDF Watches configured by default in a SOA Suite 11g domain: Stuck Threads, Unchecked Exception and Deadlock. These Watches are enabled by default and will generate Incidents in ADR. They are configured to reset automatically after 30 seconds so they have the potential to create multiple Incidents if these conditions are consistent. The Incidents generated by these Watches will only contain System level Diagnostic Dumps. These same System level Diagnostic Dumps will be included in any application scoped Incident as well. Starting in 11.1.1.6, SOA Suite is including its own set of application scoped Diagnostic Dumps that can be executed from WLST or through a WLDF Watch or Log Condition. These Diagnostic Dumps can be added to an Incident such as in the earlier example using the error code OWS-04086. soa.config: MDS configuration files and deployed-composites.xml soa.composite: All artifacts related to the deployed composite soa.wsdl: Summary of endpoints configured for the composite soa.edn: EDN configuration summary if applicable soa.db: Summary DB information for the SOA repository soa.env: Coherence cluster configuration summary soa.composite.trail: Partial audit trail information for the running composite The current release of RDA has the option to collect the soa.wsdl and soa.composite Diagnostic Dumps. More Diagnostic Dumps for SOA Suite products are planned for future releases along with enhancements to DFW itself. DFW Resources: Webcast Recording: SOA Diagnostics Sessions: Diagnostic Framework Diagnostic Framework Documentation DFW WLST Command Reference Documentation for SOA Diagnostic Dumps in 11.1.1.6 top Selective Tracing Selective Tracing is a facility available starting in version 11.1.1.4 that allows you to increase the logging level for specific loggers and for a specific context. What this means is that you have greater capability to collect needed diagnostic log information in a production environment with reduced overhead. For example, a Selective Tracing session can be executed that only increases the log level for one composite, only one logger, limited to one server in the cluster and for a preset period of time. In an environment where dozens of composites are deployed this can dramatically reduce the volume and overhead of the logging without sacrificing relevance. Selective Tracing can be administered either from Enterprise Manager or through WLST. WLST provides a bit more flexibility in terms of exactly where the tracing is run. When would you use it? When there is an issue in production or another environment that lends itself to filtering by an available context criteria and increasing the log level globally results in too much overhead or irrelevant information. The information is written to the server diagnostic log and is exportable from Enterprise Manager How is it related to the other tools? Selective Tracing output is written to the server diagnostic log. This log can be collected by a system level Diagnostic Dump using DFW or through a default RDA collection. Selective Tracing also heavily leverages ODL fields to determine what to trace and to tag information that is part of a particular tracing session. Available Context Criteria: Application Name Client Address Client Host Composite Name User Name Web Service Name Web Service Port Selective Tracing Resources: Webcast Recording: SOA Diagnostics Session: Using Selective Tracing to Diagnose SOA Suite Issues How to Use Selective Tracing for SOA [ID 1367174.1] Selective Tracing WLST Reference top DMS (Dynamic Monitoring Service) DMS exposes runtime information for monitoring. This information can be monitored in two ways: Through the DMS servlet As exposed MBeans The servlet is deployed by default and can be accessed through http://<host>:<port>/dms/Spy (use administrative credentials to access). The landing page of the servlet shows identical columns of what are known as Noun Types. If you select a Noun Type you will see a table in the right frame that shows the attributes (Sensors) for the Noun Type and the available instances. SOA Suite has several exposed Noun Types that are available for viewing through the Spy servlet. Screenshots of the Spy servlet are available in the Knowledge Base article How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS). Every Noun instance in the runtime is exposed as an MBean instance. As such they are generally available through an MBean browser and available for monitoring through WLDF. You can configure a WLDF Watch to monitor a particular attribute and fire a notification when the threshold is exceeded. A WLDF Watch can use the out of the box DFW notification type to notify DFW to create an Incident. When would you use it? When you want to monitor a metric or set of metrics either manually or through an automated system. When you want to trigger a WLDF Watch based on a metric exposed through DMS. How is it related to the other tools? DMS metrics can be monitored with WLDF Watches which can in turn notify DFW to create an Incident. DMS Resources: How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS) [ID 1368291.1] How to Reset a SOA 11g DMS Metric DMS Documentation top ODL (Oracle Diagnostic Logging) ODL is the primary facility for most Fusion Middleware applications to log what they are doing. Whenever you change a logging level through Enterprise Manager it is ultimately exposed through ODL and written to the server diagnostic log. A notable exception to this is WebLogic Server which uses its own log format / file. ODL logs entries in a consistent, structured way using predefined fields and name/value pairs. Here's an example of a SOA Suite entry: [2012-04-25T12:49:28.083-06:00] [AdminServer] [ERROR] [] [oracle.soa.bpel.engine] [tid: [ACTIVE].ExecuteThread: '1' for queue: 'weblogic.kernel.Default (self-tuning)'] [userId: ] [ecid: 0963fdde7e77631c:-31a6431d:136eaa46cda:-8000-00000000000000b4,0] [errid: 41] [WEBSERVICE_PORT.name: BPELProcess2_pt] [APP: soa-infra] [composite_name: TestProject2] [J2EE_MODULE.name: fabric] [WEBSERVICE.name: bpelprocess1_client_ep] [J2EE_APP.name: soa-infra] Error occured while handling a post operation[[ When would you use it? You'll use ODL almost every time you want to identify and diagnose a problem in the environment. The entries are written to the server diagnostic log. How is it related to the other tools? The server diagnostic logs are collected by DFW and RDA. Selective Tracing writes its information to the diagnostic log as well. Additionally, DFW log conditions are triggered by ODL log events. ODL Resources: ODL Documentation top ADR (Automatic Diagnostics Repository) ADR is not a tool in and of itself but is where DFW stores the Incidents it creates. Every server in the domain has an ADR location which can be found under <SERVER_HOME>/adr. This is referred to the as the ADR 'Base' location. ADR also has what are known as 'Home' locations. Example: You have a domain called 'myDomain' and an associated managed server called 'myServer'. Your admin server is called 'AdminServer'. Your domain home directory is called 'myDomain' and it contains a 'servers' directory. The 'servers' directory contains a directory for the managed server called 'myServer' and here is where you'll find the 'adr' directory which is the ADR 'Base' location for myServer. To get to the ADR 'Home' locations we drill through a few levels: diag/ofm/myDomain/ In an 11.1.1.6 SOA Suite domain you will see 2 directories here, 'myServer' and 'soa-infra'. These are the ADR 'Home' locations. 'myServer' is the 'system' ADR home and contains system level Incidents. 'soa-infra' is the name that SOA Suite used to register with DFW and this ADR home contains SOA Suite related Incidents Each ADR home location contains a series of directories, one of which is called 'incident'. This is where your Incidents are stored. When would you use it? It's a good idea to check on these locations from time to time to see whether a lot of Incidents are being generated. They can be cleaned out by deleting the Incident directories or through the ADRCI tool. If you know that an Incident is of particular interest for an issue you're working with Oracle you can simply zip it up and provide it. How does it relate to the other tools? ADR is obviously very important for DFW since it's where the Incidents are stored. Incidents contain Diagnostic Dumps that may relate to diagnostic logs (ODL) and DMS metrics. The most recent 10 Incident directories are collected by RDA by default and ADRCI relies on the ADR locations to help manage the contents. top ADRCI (Automatic Diagnostics Repository Command Interpreter) ADRCI is a command line tool for packaging and managing Incidents. When would you use it? When purging Incidents from an ADR Home location or when you want to package an Incident along with an offline RDA collection for upload to Oracle Support. How does it relate to the other tools? ADRCI contains a tool called the Incident Packaging System or IPS. This is used to package an Incident for upload to Oracle Support through a Service Request. Starting in 11.1.1.6 IPS will attempt to collect an offline RDA collection and include it with the Incident package. This will only work if Perl is available on the path, otherwise it will give a warning and package only the Incident files. ADRCI Resources: How to Use the Incident Packaging System (IPS) in SOA 11g [ID 1381259.1] ADRCI Documentation top WLDF (WebLogic Diagnostic Framework) WLDF is functionality available in WebLogic Server since version 9. Starting with FMw 11g a link has been added between WLDF and the pre-existing DFW, the WLDF Watch Notification. Let's take a closer look at the flow: There is a need to monitor the performance of your SOA Suite message processing A WLDF Watch is created in the WLS console that will trigger if the average message processing time exceeds 2 seconds. This metric is monitored through a DMS MBean instance. The out of the box DFW Notification (the Notification is called FMWDFW-notification) is added to the Watch. Under the covers this notification is of type JMX. The Watch is triggered when the threshold is exceeded and fires the Notification. DFW has a listener that picks up the Notification and evaluates it according to its rules, etc When it comes to automatic Incident creation, WLDF is a key component with capabilities that will grow over time. When would you use it? When you want to monitor the WLS server log or an MBean metric for some condition and fire a notification when the Watch is triggered. How does it relate to the other tools? WLDF is used to automatically trigger Incident creation through DFW using the DFW Notification. WLDF Resources: How to Monitor Runtime SOA Performance With the Dynamic Monitoring Service (DMS) [ID 1368291.1] How To Script the Creation of a SOA WLDF Watch in 11g [ID 1377986.1] WLDF Documentation top

    Read the article

< Previous Page | 120 121 122 123 124 125 126 127 128 129 130 131  | Next Page >