Search Results

Search found 8001 results on 321 pages for 'empty'.

Page 125/321 | < Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >

  • how do I instrospect appengine's datastore models?

    - by python for ever
    in order to dynamically create a form, i have to find the property types of a model's properties at runtime. appengine docs says that Model.properties() will return a dictionary of properties name and their class type. when i use this method in my code, only the name is returned and the classtype value is always empty.

    Read the article

  • &nbsp; is inserted when user control is not visible in ASP.NET

    - by Sergej Andrejev
    Hi, I have a problem I have no idea how to solve. I have a user control wrapped inside update panel which works fine, but when I set userControl.Visible = false AJAX response containts   which generates empty lines in IE 7 and 6. As you can imagine this accupy a lot of space when I have 30 hidden user controls. What should I do to prevent   to be sent with response?

    Read the article

  • Get user IP via comment Form

    - by jasmine
    I have inserted a hidden input in my comment form: $ip = $_SERVER['REMOTE_ADDR']; <input type="hidden" name="c-ip" value="<?php echo $ip; ?>"> With this input, ip column is empty in mysql. What is wrong in input. Thanks in advance

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • SSH X11 not working

    - by azat
    I have a home and work computer, the home computer has a static IP address. If I ssh from my work computer to my home computer, the ssh connection works but X11 applications are not displayed. In my /etc/ssh/sshd_config at home: X11Forwarding yes X11DisplayOffset 10 X11UseLocalhost yes At work I have tried the following commands: xhost + home HOME_IP ssh -X home ssh -X HOME_IP ssh -Y home ssh -Y HOME_IP My /etc/ssh/ssh_config at work: Host * ForwardX11 yes ForwardX11Trusted yes My ~/.ssh/config at work: Host home HostName HOME_IP User azat PreferredAuthentications password ForwardX11 yes My ~/.Xauthority at work: -rw------- 1 azat azat 269 Jun 7 11:25 .Xauthority My ~/.Xauthority at home: -rw------- 1 azat azat 246 Jun 7 19:03 .Xauthority But it doesn't work After I make an ssh connection to home: $ echo $DISPLAY localhost:10.0 $ kate X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. X11 connection rejected because of wrong authentication. kate: cannot connect to X server localhost:10.0 I use iptables at home, but I've allowed port 22. According to what I've read that's all I need. UPD. With -vvv ... debug2: callback start debug2: x11_get_proto: /usr/bin/xauth list :0 2/dev/null debug1: Requesting X11 forwarding with authentication spoofing. debug2: channel 1: request x11-req confirm 1 debug2: client_session2_setup: id 1 debug2: fd 3 setting TCP_NODELAY debug2: channel 1: request pty-req confirm 1 ... When try to launch kate: debug1: client_input_channel_open: ctype x11 rchan 2 win 65536 max 16384 debug1: client_request_x11: request from 127.0.0.1 55486 debug2: fd 8 setting O_NONBLOCK debug3: fd 8 is O_NONBLOCK debug1: channel 2: new [x11] debug1: confirm x11 debug2: X11 connection uses different authentication protocol. X11 connection rejected because of wrong authentication. debug2: X11 rejected 2 i0/o0 debug2: channel 2: read failed debug2: channel 2: close_read debug2: channel 2: input open - drain debug2: channel 2: ibuf empty debug2: channel 2: send eof debug2: channel 2: input drain - closed debug2: channel 2: write failed debug2: channel 2: close_write debug2: channel 2: output open - closed debug2: X11 closed 2 i3/o3 debug2: channel 2: send close debug2: channel 2: rcvd close debug2: channel 2: is dead debug2: channel 2: garbage collecting debug1: channel 2: free: x11, nchannels 3 debug3: channel 2: status: The following connections are open: #1 client-session (t4 r0 i0/0 o0/0 fd 5/6 cc -1) #2 x11 (t7 r2 i3/0 o3/0 fd 8/8 cc -1) # The same as above repeate about 7 times kate: cannot connect to X server localhost:10.0 UPD2 Please provide your Linux distribution & version number. Are you using a default GNOME or KDE environment for X or something else you customized yourself? azat:~$ kded4 -version Qt: 4.7.4 KDE Development Platform: 4.6.5 (4.6.5) KDE Daemon: $Id$ Are you invoking ssh directly on a command line from a terminal window? What terminal are you using? xterm, gnome-terminal, or? How did you start the terminal running in the X environment? From a menu? Hotkey? or ? From terminal emulator `yakuake` Manualy press `Ctrl + N` and write commands Can you run xeyes from the same terminal window where the ssh -X fails? `xeyes` - is not installed But `kate` or another kde app is running Are you invoking the ssh command as the same user that you're logged into the X session as? From the same user UPD3 I also download ssh sources, and using debug2() write why it's report that version is different It see some cookies, and one of them is empty, another is MIT-MAGIC-COOKIE-1

    Read the article

  • What free space thresholds/limits are advisable for 640 GB and 2 TB hard disk drives with ZEVO ZFS on OS X?

    - by Graham Perrin
    Assuming that free space advice for ZEVO will not differ from advice for other modern implementations of ZFS … Question Please, what percentages or amounts of free space are advisable for hard disk drives of the following sizes? 640 GB 2 TB Thoughts A standard answer for modern implementations of ZFS might be "no more than 96 percent full". However if apply that to (say) a single-disk 640 GB dataset where some of the files most commonly used (by VirtualBox) are larger than 15 GB each, then I guess that blocks for those files will become sub optimally spread across the platters with around 26 GB free. I read that in most cases, fragmentation and defragmentation should not be a concern with ZFS. Sill, I like the mental picture of most fragments of a large .vdi in reasonably close proximity to each other. (Do features of ZFS make that wish for proximity too old-fashioned?) Side note: there might arise the question of how to optimise performance after a threshold is 'broken'. If it arises, I'll keep it separate. Background On a 640 GB StoreJet Transcend (product ID 0x2329) in the past I probably went beyond an advisable threshold. Currently the largest file is around 17 GB –  – and I doubt that any .vdi or other file on this disk will grow beyond 40 GB. (Ignore the purple masses, those are bundles of 8 MB band files.) Without HFS Plus: the thresholds of twenty, ten and five percent that I associate with Mobile Time Machine file system need not apply. I currently use ZEVO Community Edition 1.1.1 with Mountain Lion, OS X 10.8.2, but I'd like answers to be not too version-specific. References, chronological order ZFS Block Allocation (Jeff Bonwick's Blog) (2006-11-04) Space Maps (Jeff Bonwick's Blog) (2007-09-13) Doubling Exchange Performance (Bizarre ! Vous avez dit Bizarre ?) (2010-03-11) … So to solve this problem, what went in 2010/Q1 software release is multifold. The most important thing is: we increased the threshold at which we switched from 'first fit' (go fast) to 'best fit' (pack tight) from 70% full to 96% full. With TB drives, each slab is at least 5GB and 4% is still 200MB plenty of space and no need to do anything radical before that. This gave us the biggest bang. Second, instead of trying to reuse the same primary slabs until it failed an allocation we decided to stop giving the primary slab this preferential threatment as soon as the biggest allocation that could be satisfied by a slab was down to 128K (metaslab_df_alloc_threshold). At that point we were ready to switch to another slab that had more free space. We also decided to reduce the SMO bonus. Before, a slab that was 50% empty was preferred over slabs that had never been used. In order to foster more write aggregation, we reduced the threshold to 33% empty. This means that a random write workload now spread to more slabs where each one will have larger amount of free space leading to more write aggregation. Finally we also saw that slab loading was contributing to lower performance and implemented a slab prefetch mechanism to reduce down time associated with that operation. The conjunction of all these changes lead to 50% improved OLTP and 70% reduced variability from run to run … OLTP Improvements in Sun Storage 7000 2010.Q1 (Performance Profiles) (2010-03-11) Alasdair on Everything » ZFS runs really slowly when free disk usage goes above 80% (2010-07-18) where commentary includes: … OpenSolaris has changed this in onnv revision 11146 … [CFT] Improved ZFS metaslab code (faster write speed) (2010-08-22)

    Read the article

  • Can't send commands via SSH to Juniper firewalls

    - by Massimo
    I have some Juniper SSG firewalls which I need to manage, and I'd like to be able to send commands to them from some monitoring scripts. I configured SSH access using public keys, and I'm able to automatically login to the firewalls. When I run SSH interactively, everything works fine: $ssh <firewall IP> FIREWALL-> <command> <command output> FIREWALL-> exit Connection to <firewall IP> closed. $ But when I try to run the command from the command line, it doesn't work: $ssh <firewall IP> <command> $ This, of course, works fine when sending a command to a remote Linux box: $ssh <linux box IP> <command> <command output> $ Why is this happening? What is the difference between running SSH interactively and specifying the command to run on the SSH command line? Update: It also works fine with a Cisco router. Only these Juniper firewalls seem to behave this way. From the debug output from SSH, it looks like the connection gets established correctly, but the Juniper box replies with an EOF when sending the command, while instead the Linux box replies with the actual command output: Linux: debug1: Authentication succeeded (publickey). debug1: channel 0: new [client-session] debug2: channel 0: send open debug1: Entering interactive session. debug2: callback start debug2: client_session2_setup: id 0 debug1: Sending command: uptime debug2: channel 0: request exec confirm 0 debug2: callback done debug2: channel 0: open confirm rwindow 0 rmax 32768 debug2: channel 0: rcvd adjust 131072 debug1: client_input_channel_req: channel 0 rtype exit-status reply 0 16:44:44 up 25 days, 1:06, 3 users, load average: 0.08, 0.02, 0.01 debug2: channel 0: rcvd eof debug2: channel 0: output open -> drain debug2: channel 0: obuf empty debug2: channel 0: close_write debug2: channel 0: output drain -> closed debug2: channel 0: rcvd close debug2: channel 0: close_read debug2: channel 0: input open -> closed debug2: channel 0: almost dead debug2: channel 0: gc: notify user debug2: channel 0: gc: user detached debug2: channel 0: send close debug2: channel 0: is dead debug2: channel 0: garbage collecting debug1: channel 0: free: client-session, nchannels 1 debug1: Transferred: stdin 0, stdout 0, stderr 0 bytes in 0.1 seconds debug1: Bytes per second: stdin 0.0, stdout 0.0, stderr 0.0 debug1: Exit status 0 Juniper: debug1: Authentication succeeded (publickey). debug1: channel 0: new [client-session] debug2: channel 0: send open debug1: Entering interactive session. debug2: callback start debug2: client_session2_setup: id 0 debug1: Sending environment. debug1: Sending env LANG = en_US.UTF-8 debug2: channel 0: request env confirm 0 debug1: Sending command: get system debug2: channel 0: request exec confirm 0 debug2: callback done debug2: channel 0: open confirm rwindow 2048 rmax 1024 debug2: channel 0: rcvd eof debug2: channel 0: output open -> drain debug2: channel 0: obuf empty debug2: channel 0: close_write debug2: channel 0: output drain -> closed debug1: client_input_channel_req: channel 0 rtype exit-status reply 0 debug2: channel 0: rcvd close debug2: channel 0: close_read debug2: channel 0: input open -> closed debug2: channel 0: almost dead debug2: channel 0: gc: notify user debug2: channel 0: gc: user detached debug2: channel 0: send close debug2: channel 0: is dead debug2: channel 0: garbage collecting debug1: channel 0: free: client-session, nchannels 1 debug1: Transferred: stdin 0, stdout 0, stderr 0 bytes in 0.2 seconds debug1: Bytes per second: stdin 0.0, stdout 0.0, stderr 0.0 debug1: Exit status 1

    Read the article

  • "Can't create table" when having to many partitions

    - by Chris
    I am currently having a problem I dont understand. Wherever I look it says mySQL (5.5) / InnoDB doesnt have a table limit. I wanted to test the InnoDB compression and was about to create an empty copy of an existing table and ran into the following problem. this one works: CREATE TABLE `hsc` ( LOTS OF STUFF ) ENGINE=InnoDB CHARSET=utf8 PARTITION BY RANGE (pid) SUBPARTITION BY HASH (cons) SUBPARTITIONS 2 (PARTITION hsc_p0 VALUES LESS THAN (10000) , PARTITION hsc_p1 VALUES LESS THAN (20000) , PARTITION hsc_p2 VALUES LESS THAN (30000) , PARTITION hsc_p3 VALUES LESS THAN (40000) , PARTITION hsc_p4 VALUES LESS THAN (50000) , PARTITION hsc_p40 VALUES LESS THAN (4000000) ); this one doesn't: CREATE TABLE `hsc` ( LOTS OF STUFF ) ENGINE=InnoDB CHARSET=utf8 PARTITION BY RANGE (pid) SUBPARTITION BY HASH (cons) SUBPARTITIONS 2 (PARTITION hsc_p0 VALUES LESS THAN (10000) , PARTITION hsc_p1 VALUES LESS THAN (20000) , PARTITION hsc_p2 VALUES LESS THAN (30000) , PARTITION hsc_p3 VALUES LESS THAN (40000) , PARTITION hsc_p4 VALUES LESS THAN (50000) , PARTITION hsc_p5 VALUES LESS THAN (75000) , PARTITION hsc_p6 VALUES LESS THAN (100000) , PARTITION hsc_p7 VALUES LESS THAN (125000) , PARTITION hsc_p8 VALUES LESS THAN (150000) , PARTITION hsc_p9 VALUES LESS THAN (175000) , PARTITION hsc_p40 VALUES LESS THAN (4000000) ); ERROR 1005 (HY000): Can't create table 'hsc' (errno: 1) Its reproducable by removing the number of partitions and adding them again. it does not have to do anything with the name of the table as i tried various names. there is also enough empty space on the HDD. /dev/simfs 230G 26G 192G 12% /var/lib/mysql.mnt There should be no limit on the partitions http://dev.mysql.com/doc/refman/5.5/en/partitioning-limitations.html Maximum number of partitions. The maximum possible number of partitions for a given table (that does not use the NDB storage engine) is 1024. This number includes subpartitions. i have increased both open_files show variables where variable_name LIKE '%open_files%'; +-------------------+-------+ | Variable_name | Value | +-------------------+-------+ | innodb_open_files | 512 | | open_files_limit | 1536 | +-------------------+-------+ No change. Any clues where should I start looking? UPDATE: the whole thing is running in an openvz environment. i saw in users_beancounters that the numflock was a problem, so i increased it. but the problem still persists. maybe this helps: ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 515011 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 10240 cpu time (seconds, -t) unlimited max user processes (-u) 515011 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited cat /proc/user_beancounters Version: 2.5 uid resource held maxheld barrier limit failcnt 200: kmemsize 9309653 13357056 14372700 14790164 0 lockedpages 0 1008 2048 2048 0 privvmpages 675424 686528 1048576 1572864 0 shmpages 33 673 21504 21504 0 dummy 0 0 9223372036854775807 9223372036854775807 0 numproc 49 90 240 240 0 physpages 243761 246945 0 9223372036854775807 0 vmguarpages 0 0 1048576 1048576 0 oomguarpages 81672 83305 1048576 1048576 0 numtcpsock 6 8 360 360 0 numflock 175 188 512 512 8 numpty 1 9 16 16 0 numsiginfo 0 48 256 256 0 tcpsndbuf 104640 263912 1720320 2703360 0 tcprcvbuf 98304 131072 1720320 2703360 0 othersockbuf 32368 89304 1126080 2097152 0 dgramrcvbuf 0 2312 262144 262144 0 numothersock 19 28 360 360 0 dcachesize 2285052 3624426 3409920 3624960 0 numfile 616 870 9312 9312 0 dummy 0 0 9223372036854775807 9223372036854775807 0 dummy 0 0 9223372036854775807 9223372036854775807 0 dummy 0 0 9223372036854775807 9223372036854775807 0 numiptent 24 24 128 128 0

    Read the article

  • How can I recover an ext4 filesystem corrupted after a fsck?

    - by Regan
    I have an ext4 filesystem on luks over software raid5. The filesystem was operating "just fine" for several years when I was beginning to run out of space. I had a 9T volume on 6x2T drives. I began upgrading to 3T drives by doing the mdadm fail, remove, add, rebuild, repeat process until I had a larger array. I then grew the luks container, and then when I unmounted and tried to resize2fs I was given the message the filesystem was dirty and needed e2fsck. Without thinking I just did e2fsck -y /dev/mapper/candybox and it began spewing all kinds of inode being removed type messages (can't remember exactly) I killed e2fsck and tried to remount the filesystem to backup data I was concerned about. When trying to mount at this point I get: # mount /dev/mapper/candybox /candybox mount: wrong fs type, bad option, bad superblock on /dev/mapper/candybox, missing codepage or helper program, or other error In some cases useful info is found in syslog - try dmesg | tail or so Looking back at my older logs I noticed the filesystem was giving this error each time the machine booted: kernel: [79137.275531] EXT4-fs (dm-2): warning: mounting fs with errors, running e2fsck is recommended So shame on me for not paying attention :( I then tried to mount using every backup superblock (one after another) and each attempt left this in my log: EXT4-fs (dm-2): ext4_check_descriptors: Checksum for group 0 failed (26534!=65440) EXT4-fs (dm-2): ext4_check_descriptors: Checksum for group 1 failed (38021!=36729) EXT4-fs (dm-2): ext4_check_descriptors: Checksum for group 2 failed (18336!=39845) ... EXT4-fs (dm-2): ext4_check_descriptors: Checksum for group 11911 failed (28743!=44098) BUG: soft lockup - CPU#0 stuck for 23s! [mount:2939] Attempts to restart e2fsck results in: # e2fsck /dev/mapper/candybox e2fsck 1.41.14 (22-Dec-2010) e2fsck: Group descriptors look bad... trying backup blocks... candy: recovering journal e2fsck: unable to set superblock flags on candy At this point, I decided it best to order some more drives and make an image using ddrescue Now two weeks later I have an image of the luks partition in a .img file. # ls -lh total 14T -rw-r--r-- 1 root root 14T Oct 25 01:57 candybox.img -rw-r--r-- 1 root root 271 Oct 20 14:32 candybox.logfile After numerous attempts using everything I could find online I could not coerce e2fsck to do anything on the image, so I used mkfs.ext4 -L candy candybox.img -m 0 -S and I was able to mount the dirty filesystem readonly without the journal and recover 960G of data. It gave all kinds of errors of various directories not existing and so forth but I was able to get some stuff. Which gave me some hope! I then ran e2fsck again and it had to recreate the root inode and gave a massive list of correcting group counts, I accepted the root inode creation and said no to everything else, leaving a completely empty filesystem. Re-ran again and said yes to all questions with the same result but now a "clean" but empty filesystem. extundelete gives me 0 recoverable inodes found. And now I'm stuck again, I can't come up with any other methods other than dropping to something like photorec which will give me an absolute mess with how large the filesystem was. I'm willing to re-copy the image from the original array and start over, if I can get any suggestions or ideas on a way to get more of my files back. I wish I could give more detailed logs of the commands that have run, but the output is long scrolled passed except for what gets logged to syslog and my memory is not as detailed due to the timeframe this has occurred over. Any help is greatly appreciated!

    Read the article

  • 1600+ 'postfix-queue' processes - OK to have this many?

    - by atomicguava
    I have a Plesk 9.5.4 CentOS server running Postfix. I had been having massive problems with the mailq being full of 'double-bounce' email messages containing errors relating to 'Queue File Write Error', but I believe these are now fixed thanks to this thread. My new problem is that when I run top, I can see lots of processes called 'postfix-queue' and have fairly high load: top - 13:59:44 up 6 days, 21:14, 1 user, load average: 2.33, 2.19, 1.96 Tasks: 1743 total, 1 running, 1742 sleeping, 0 stopped, 0 zombie Cpu(s): 5.1%us, 8.8%sy, 0.0%ni, 85.3%id, 0.8%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 3145728k total, 1950640k used, 1195088k free, 0k buffers Swap: 0k total, 0k used, 0k free, 0k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1324 apache 16 0 344m 33m 5664 S 21.7 1.1 0:03.17 httpd 32443 apache 15 0 350m 36m 6864 S 14.4 1.2 0:13.83 httpd 1678 root 15 0 13948 2568 952 R 2.0 0.1 0:00.37 top 1890 mysql 15 0 689m 318m 7600 S 1.0 10.4 219:45.23 mysqld 1394 apache 15 0 352m 41m 5972 S 0.7 1.3 0:03.91 httpd 1369 apache 15 0 344m 33m 5444 S 0.3 1.1 0:02.03 httpd 1592 apache 15 0 349m 37m 5912 S 0.3 1.2 0:02.52 httpd 1633 apache 15 0 336m 20m 1828 S 0.3 0.7 0:00.01 httpd 1952 root 19 0 335m 28m 10m S 0.3 0.9 1:35.41 httpd 1 root 15 0 10304 732 612 S 0.0 0.0 0:04.41 init 1034 mhandler 15 0 11520 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1036 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1041 mhandler 17 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1043 mhandler 15 0 11512 1116 860 S 0.0 0.0 0:00.00 postfix-queue 1063 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1068 mhandler 15 0 11516 1128 860 S 0.0 0.0 0:00.00 postfix-queue 1071 mhandler 17 0 11512 1152 884 S 0.0 0.0 0:00.00 postfix-queue 1072 mhandler 15 0 11512 1116 860 S 0.0 0.0 0:00.00 postfix-queue 1081 mhandler 16 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1082 mhandler 15 0 11512 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1089 popuser 15 0 33892 1972 1200 S 0.0 0.1 0:00.02 pop3d 1116 mhandler 16 0 11516 1164 884 S 0.0 0.0 0:00.00 postfix-queue 1117 mhandler 15 0 11516 1124 860 S 0.0 0.0 0:00.00 postfix-queue 1120 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1121 mhandler 15 0 11512 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1130 mhandler 17 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1131 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1149 root 17 -4 12572 680 356 S 0.0 0.0 0:00.00 udevd 1181 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1183 mhandler 15 0 11512 1116 860 S 0.0 0.0 0:00.00 postfix-queue 1224 mhandler 16 0 11516 1160 884 S 0.0 0.0 0:00.00 postfix-queue 1225 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1228 apache 15 0 345m 34m 5472 S 0.0 1.1 0:04.64 httpd 1241 mhandler 16 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1242 mhandler 15 0 11512 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1251 mhandler 17 0 11516 1156 884 S 0.0 0.0 0:00.00 postfix-queue 1252 mhandler 15 0 11516 1120 860 S 0.0 0.0 0:00.00 postfix-queue 1258 apache 15 0 349m 37m 5444 S 0.0 1.2 0:01.28 httpd When I run ps -Al | grep -c postfix-queue it returns 1618! My question is this: is this normal or is there something else going wrong with Postfix? Right now, if I run mailq it is empty, and qshape deferred / qshape active are empty too. Thanks in advance for your help.

    Read the article

  • The dynamic Type in C# Simplifies COM Member Access from Visual FoxPro

    - by Rick Strahl
    I’ve written quite a bit about Visual FoxPro interoperating with .NET in the past both for ASP.NET interacting with Visual FoxPro COM objects as well as Visual FoxPro calling into .NET code via COM Interop. COM Interop with Visual FoxPro has a number of problems but one of them at least got a lot easier with the introduction of dynamic type support in .NET. One of the biggest problems with COM interop has been that it’s been really difficult to pass dynamic objects from FoxPro to .NET and get them properly typed. The only way that any strong typing can occur in .NET for FoxPro components is via COM type library exports of Visual FoxPro components. Due to limitations in Visual FoxPro’s type library support as well as the dynamic nature of the Visual FoxPro language where few things are or can be described in the form of a COM type library, a lot of useful interaction between FoxPro and .NET required the use of messy Reflection code in .NET. Reflection is .NET’s base interface to runtime type discovery and dynamic execution of code without requiring strong typing. In FoxPro terms it’s similar to EVALUATE() functionality albeit with a much more complex API and corresponiding syntax. The Reflection APIs are fairly powerful, but they are rather awkward to use and require a lot of code. Even with the creation of wrapper utility classes for common EVAL() style Reflection functionality dynamically access COM objects passed to .NET often is pretty tedious and ugly. Let’s look at a simple example. In the following code I use some FoxPro code to dynamically create an object in code and then pass this object to .NET. An alternative to this might also be to create a new object on the fly by using SCATTER NAME on a database record. How the object is created is inconsequential, other than the fact that it’s not defined as a COM object – it’s a pure FoxPro object that is passed to .NET. Here’s the code: *** Create .NET COM InstanceloNet = CREATEOBJECT('DotNetCom.DotNetComPublisher') *** Create a Customer Object Instance (factory method) loCustomer = GetCustomer() loCustomer.Name = "Rick Strahl" loCustomer.Company = "West Wind Technologies" loCustomer.creditLimit = 9999999999.99 loCustomer.Address.StreetAddress = "32 Kaiea Place" loCustomer.Address.Phone = "808 579-8342" loCustomer.Address.Email = "[email protected]" *** Pass Fox Object and echo back values ? loNet.PassRecordObject(loObject) RETURN FUNCTION GetCustomer LOCAL loCustomer, loAddress loCustomer = CREATEOBJECT("EMPTY") ADDPROPERTY(loCustomer,"Name","") ADDPROPERTY(loCustomer,"Company","") ADDPROPERTY(loCUstomer,"CreditLimit",0.00) ADDPROPERTY(loCustomer,"Entered",DATETIME()) loAddress = CREATEOBJECT("Empty") ADDPROPERTY(loAddress,"StreetAddress","") ADDPROPERTY(loAddress,"Phone","") ADDPROPERTY(loAddress,"Email","") ADDPROPERTY(loCustomer,"Address",loAddress) RETURN loCustomer ENDFUNC Now prior to .NET 4.0 you’d have to access this object passed to .NET via Reflection and the method code to do this would looks something like this in the .NET component: public string PassRecordObject(object FoxObject) { // *** using raw Reflection string Company = (string) FoxObject.GetType().InvokeMember( "Company", BindingFlags.GetProperty,null, FoxObject,null); // using the easier ComUtils wrappers string Name = (string) ComUtils.GetProperty(FoxObject,"Name"); // Getting Address object – then getting child properties object Address = ComUtils.GetProperty(FoxObject,"Address");    string Street = (string) ComUtils.GetProperty(FoxObject,"StreetAddress"); // using ComUtils 'Ex' functions you can use . Syntax     string StreetAddress = (string) ComUtils.GetPropertyEx(FoxObject,"AddressStreetAddress"); return Name + Environment.NewLine + Company + Environment.NewLine + StreetAddress + Environment.NewLine + " FOX"; } Note that the FoxObject is passed in as type object which has no specific type. Since the object doesn’t exist in .NET as a type signature the object is passed without any specific type information as plain non-descript object. To retrieve a property the Reflection APIs like Type.InvokeMember or Type.GetProperty().GetValue() etc. need to be used. I made this code a little simpler by using the Reflection Wrappers I mentioned earlier but even with those ComUtils calls the code is pretty ugly requiring passing the objects for each call and casting each element. Using .NET 4.0 Dynamic Typing makes this Code a lot cleaner Enter .NET 4.0 and the dynamic type. Replacing the input parameter to the .NET method from type object to dynamic makes the code to access the FoxPro component inside of .NET much more natural: public string PassRecordObjectDynamic(dynamic FoxObject) { // *** using raw Reflection string Company = FoxObject.Company; // *** using the easier ComUtils class string Name = FoxObject.Name; // *** using ComUtils 'ex' functions to use . Syntax string Address = FoxObject.Address.StreetAddress; return Name + Environment.NewLine + Company + Environment.NewLine + Address + Environment.NewLine + " FOX"; } As you can see the parameter is of type dynamic which as the name implies performs Reflection lookups and evaluation on the fly so all the Reflection code in the last example goes away. The code can use regular object ‘.’ syntax to reference each of the members of the object. You can access properties and call methods this way using natural object language. Also note that all the type casts that were required in the Reflection code go away – dynamic types like var can infer the type to cast to based on the target assignment. As long as the type can be inferred by the compiler at compile time (ie. the left side of the expression is strongly typed) no explicit casts are required. Note that although you get to use plain object syntax in the code above you don’t get Intellisense in Visual Studio because the type is dynamic and thus has no hard type definition in .NET . The above example calls a .NET Component from VFP, but it also works the other way around. Another frequent scenario is an .NET code calling into a FoxPro COM object that returns a dynamic result. Assume you have a FoxPro COM object returns a FoxPro Cursor Record as an object: DEFINE CLASS FoxData AS SESSION OlePublic cAppStartPath = "" FUNCTION INIT THIS.cAppStartPath = ADDBS( JustPath(Application.ServerName) ) SET PATH TO ( THIS.cAppStartpath ) ENDFUNC FUNCTION GetRecord(lnPk) LOCAL loCustomer SELECT * FROM tt_Cust WHERE pk = lnPk ; INTO CURSOR TCustomer IF _TALLY < 1 RETURN NULL ENDIF SCATTER NAME loCustomer MEMO RETURN loCustomer ENDFUNC ENDDEFINE If you call this from a .NET application you can now retrieve this data via COM Interop and cast the result as dynamic to simplify the data access of the dynamic FoxPro type that was created on the fly: int pk = 0; int.TryParse(Request.QueryString["id"],out pk); // Create Fox COM Object with Com Callable Wrapper FoxData foxData = new FoxData(); dynamic foxRecord = foxData.GetRecord(pk); string company = foxRecord.Company; DateTime entered = foxRecord.Entered; This code looks simple and natural as it should be – heck you could write code like this in days long gone by in scripting languages like ASP classic for example. Compared to the Reflection code that previously was necessary to run similar code this is much easier to write, understand and maintain. For COM interop and Visual FoxPro operation dynamic type support in .NET 4.0 is a huge improvement and certainly makes it much easier to deal with FoxPro code that calls into .NET. Regardless of whether you’re using COM for calling Visual FoxPro objects from .NET (ASP.NET calling a COM component and getting a dynamic result returned) or whether FoxPro code is calling into a .NET COM component from a FoxPro desktop application. At one point or another FoxPro likely ends up passing complex dynamic data to .NET and for this the dynamic typing makes coding much cleaner and more readable without having to create custom Reflection wrappers. As a bonus the dynamic runtime that underlies the dynamic type is fairly efficient in terms of making Reflection calls especially if members are repeatedly accessed. © Rick Strahl, West Wind Technologies, 2005-2010Posted in COM  FoxPro  .NET  CSharp  

    Read the article

  • C#: System.Collections.Concurrent.ConcurrentQueue vs. Queue

    - by James Michael Hare
    I love new toys, so of course when .NET 4.0 came out I felt like the proverbial kid in the candy store!  Now, some people get all excited about the IDE and it’s new features or about changes to WPF and Silver Light and yes, those are all very fine and grand.  But me, I get all excited about things that tend to affect my life on the backside of development.  That’s why when I heard there were going to be concurrent container implementations in the latest version of .NET I was salivating like Pavlov’s dog at the dinner bell. They seem so simple, really, that one could easily overlook them.  Essentially they are implementations of containers (many that mirror the generic collections, others are new) that have either been optimized with very efficient, limited, or no locking but are still completely thread safe -- and I just had to see what kind of an improvement that would translate into. Since part of my job as a solutions architect here where I work is to help design, develop, and maintain the systems that process tons of requests each second, the thought of extremely efficient thread-safe containers was extremely appealing.  Of course, they also rolled out a whole parallel development framework which I won’t get into in this post but will cover bits and pieces of as time goes by. This time, I was mainly curious as to how well these new concurrent containers would perform compared to areas in our code where we manually synchronize them using lock or some other mechanism.  So I set about to run a processing test with a series of producers and consumers that would be either processing a traditional System.Collections.Generic.Queue or a System.Collection.Concurrent.ConcurrentQueue. Now, I wanted to keep the code as common as possible to make sure that the only variance was the container, so I created a test Producer and a test Consumer.  The test Producer takes an Action<string> delegate which is responsible for taking a string and placing it on whichever queue we’re testing in a thread-safe manner: 1: internal class Producer 2: { 3: public int Iterations { get; set; } 4: public Action<string> ProduceDelegate { get; set; } 5: 6: public void Produce() 7: { 8: for (int i = 0; i < Iterations; i++) 9: { 10: ProduceDelegate(“Hello”); 11: } 12: } 13: } Then likewise, I created a consumer that took a Func<string> that would read from whichever queue we’re testing and return either the string if data exists or null if not.  Then, if the item doesn’t exist, it will do a 10 ms wait before testing again.  Once all the producers are done and join the main thread, a flag will be set in each of the consumers to tell them once the queue is empty they can shut down since no other data is coming: 1: internal class Consumer 2: { 3: public Func<string> ConsumeDelegate { get; set; } 4: public bool HaltWhenEmpty { get; set; } 5: 6: public void Consume() 7: { 8: bool processing = true; 9: 10: while (processing) 11: { 12: string result = ConsumeDelegate(); 13: 14: if(result == null) 15: { 16: if (HaltWhenEmpty) 17: { 18: processing = false; 19: } 20: else 21: { 22: Thread.Sleep(TimeSpan.FromMilliseconds(10)); 23: } 24: } 25: else 26: { 27: DoWork(); // do something non-trivial so consumers lag behind a bit 28: } 29: } 30: } 31: } Okay, now that we’ve done that, we can launch threads of varying numbers using lambdas for each different method of production/consumption.  First let's look at the lambdas for a typical System.Collections.Generics.Queue with locking: 1: // lambda for putting to typical Queue with locking... 2: var productionDelegate = s => 3: { 4: lock (_mutex) 5: { 6: _mutexQueue.Enqueue(s); 7: } 8: }; 9:  10: // and lambda for typical getting from Queue with locking... 11: var consumptionDelegate = () => 12: { 13: lock (_mutex) 14: { 15: if (_mutexQueue.Count > 0) 16: { 17: return _mutexQueue.Dequeue(); 18: } 19: } 20: return null; 21: }; Nothing new or interesting here.  Just typical locks on an internal object instance.  Now let's look at using a ConcurrentQueue from the System.Collections.Concurrent library: 1: // lambda for putting to a ConcurrentQueue, notice it needs no locking! 2: var productionDelegate = s => 3: { 4: _concurrentQueue.Enqueue(s); 5: }; 6:  7: // lambda for getting from a ConcurrentQueue, once again, no locking required. 8: var consumptionDelegate = () => 9: { 10: string s; 11: return _concurrentQueue.TryDequeue(out s) ? s : null; 12: }; So I pass each of these lambdas and the number of producer and consumers threads to launch and take a look at the timing results.  Basically I’m timing from the time all threads start and begin producing/consuming to the time that all threads rejoin.  I won't bore you with the test code, basically it just launches code that creates the producers and consumers and launches them in their own threads, then waits for them all to rejoin.  The following are the timings from the start of all threads to the Join() on all threads completing.  The producers create 10,000,000 items evenly between themselves and then when all producers are done they trigger the consumers to stop once the queue is empty. These are the results in milliseconds from the ordinary Queue with locking: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 4284 5153 4226 4554.33 4: 10 10 4044 3831 5010 4295.00 5: 100 100 5497 5378 5612 5495.67 6: 1000 1000 24234 25409 27160 25601.00 And the following are the results in milliseconds from the ConcurrentQueue with no locking necessary: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 3647 3643 3718 3669.33 4: 10 10 2311 2136 2142 2196.33 5: 100 100 2480 2416 2190 2362.00 6: 1000 1000 7289 6897 7061 7082.33 Note that even though obviously 2000 threads is quite extreme, the concurrent queue actually scales really well, whereas the traditional queue with simple locking scales much more poorly. I love the new concurrent collections, they look so much simpler without littering your code with the locking logic, and they perform much better.  All in all, a great new toy to add to your arsenal of multi-threaded processing!

    Read the article

  • Week in Geek: 4chan Falls Victim to DDoS Attack Edition

    - by Asian Angel
    This week we learned how to tweak the low battery action on a Windows 7 laptop, access an eBook collection anywhere in the world, “extend iPad battery life, batch resize photos, & sync massive music collections”, went on a reign of destruction with Snow Crusher, and had fun decorating our desktops with abstract icon collections. Photo by pasukaru76. Random Geek Links We have included extra news article goodness to help you catch up on any developments that you may have missed during the holiday break this past week. Note: The three 27C3 articles listed here represent three different presentations at the 27th Chaos Communication Congress hacker conference. 4chan victim of DDoS as FBI investigates role in PayPal attack Users of 4chan may have gotten a taste of their own medicine after the site was knocked offline by a DDoS attack from an unknown origin early Thursday morning. Report: FBI seizes server in probe of WikiLeaks attacks The FBI has seized a server in Texas as part of its hunt for the groups behind the pro-WikiLeaks denial-of-service attacks launched in December against PayPal, Visa, MasterCard, and others. Mozilla exposes older user-account database Mozilla has disabled 44,000 older user accounts for its Firefox add-ons site after a security researcher found part of a database of the account information on a publicly available server. Data breach affects 4.9 million Honda customers Japanese automaker Honda has put some 2.2 million customers in the United States on a security breach alert after a database containing information on the owners and their cars was hacked. Chinese Trojan discovered in Android games An Android-based Trojan called “Geinimi” has been discovered in the wild and the Trojan is capable of sending personal information to remote servers and exhibits botnet-like behavior. 27C3 presentation claims many mobiles vulnerable to SMS attacks According to security experts, an ‘SMS of death’ threatens to disable many current Sony Ericsson, Samsung, Motorola, Micromax and LG mobiles. 27C3: GSM cell phones even easier to tap Security researchers have demonstrated how open source software on a number of revamped, entry-level cell phones can decrypt and record mobile phone calls in the GSM network. 27C3: danger lurks in PDF documents Security researcher Julia Wolf has pointed out numerous, previously hardly known, security problems in connection with Adobe’s PDF standard. Critical update for WordPress A critical update has been made available for WordPress in the form of version 3.0.4. The update fixes a security bug in WordPress’s KSES library. McAfee Labs Predicts Geolocation, Mobile Devices and Apple Will Top the List of Targets for Emerging Threats in 2011 The list comprises 2010’s most buzzed about platforms and services, including Google’s Android, Apple’s iPhone, foursquare, Google TV and the Mac OS X platform, which are all expected to become major targets for cybercriminals. McAfee Labs also predicts that politically motivated attacks will be on the rise. Windows Phone 7 piracy materializes with FreeMarketplace A proof-of-concept application, FreeMarketplace, that allows any Windows Phone 7 application to be downloaded and installed free of charge has been developed. Empty email accounts, and some bad buzz for Hotmail In the past few days, a number of Hotmail users have been complaining about a rather disconcerting issue: their Hotmail accounts, some up to 10 years old, appear completely empty.  No emails, no folders, nothing, just what appears to be a new account. Reports: Nintendo warns of 3DS risk for kids Nintendo has reportedly issued a warning that the 3DS, its eagerly awaited glasses-free 3D portable gaming device, should not be used by children under 6 when the gadget is in 3D-viewing mode. Google eyes ‘cloaking’ as next antispam target Google plans to take a closer look at the practice of “cloaking,” or presenting one look to a Googlebot crawling one’s site while presenting another look to users. Facebook, Twitter stock trading drawing SEC eye? The high degree of investor interest in shares of hot Silicon Valley companies that aren’t yet publicly traded–like Facebook, Twitter, LinkedIn, and Zynga–may be leading to scrutiny from the U.S. Securities and Exchange Commission (SEC). Random TinyHacker Links Photo by jcraveiro. Exciting Software Set for Release in 2011 A few bloggers from great websites such as How-To Geek, Guiding Tech and 7 Tutorials took the time to sit down and talk about their software wishes for 2011. Take the time to read it and share… Wikileaks Infopr0n An infographic detailing the quest to plug WikiLeaks. The New York Times Guide to Mobile Apps A growing collection of all mobile app coverage by the New York Times as well as lists of favorite apps from Times writers. 7,000,000,000 (Video) A fascinating look at the world’s population via National Geographic Magazine. Super User Questions Check out the great answers to these hot questions from Super User. How to use a Personal computer as a Linux web server for development purposes? How to link processing power of old computers together? Free virtualization tool for testing suspicious files? Why do some actions not work with Remote Desktop? What is the simplest way to send a large batch of pictures to a distant friend or colleague? How-To Geek Weekly Article Recap Had a busy week and need to get caught up on your HTG reading? Then sit back and relax while enjoying these hot posts full of how-to roundup goodness. The 50 Best How-To Geek Windows Articles of 2010 The 20 Best How-To Geek Explainer Topics for 2010 The 20 Best How-To Geek Linux Articles of 2010 How to Search Just the Site You’re Viewing Using Google Search Ask the Readers: Backing Your Files Up – Local Storage versus the Cloud One Year Ago on How-To Geek Need more how-to geekiness for your weekend? Then look through this great batch of articles from one year ago that focus on dual-booting and O.S. installation goodness. Dual Boot Your Pre-Installed Windows 7 Computer with Vista Dual Boot Your Pre-Installed Windows 7 Computer with XP How To Setup a USB Flash Drive to Install Windows 7 Dual Boot Your Pre-Installed Windows 7 Computer with Ubuntu Easily Install Ubuntu Linux with Windows Using the Wubi Installer The Geek Note We hope that you and your families have had a terrific holiday break as everyone prepares to return to work and school this week. Remember to keep those great tips coming in to us at [email protected]! Photo by pjbeardsley. Latest Features How-To Geek ETC The 20 Best How-To Geek Linux Articles of 2010 The 50 Best How-To Geek Windows Articles of 2010 The 20 Best How-To Geek Explainer Topics for 2010 How to Disable Caps Lock Key in Windows 7 or Vista How to Use the Avira Rescue CD to Clean Your Infected PC The Complete List of iPad Tips, Tricks, and Tutorials Tune Pop Enhances Android Music Notifications Another Busy Night in Gotham City Wallpaper Classic Super Mario Brothers Theme for Chrome and Iron Experimental Firefox Builds Put Tabs on the Title Bar (Available for Download) Android Trojan Found in the Wild Chaos, Panic, and Disorder Wallpaper

    Read the article

  • ASP.NET and WIF: Showing custom profile username as User.Identity.Name

    - by DigiMortal
    I am building ASP.NET MVC application that uses external services to authenticate users. For ASP.NET users are fully authenticated when they are redirected back from external service. In system they are logically authenticated when they have created user profiles. In this posting I will show you how to force ASP.NET MVC controller actions to demand existence of custom user profiles. Using external authentication sources with AppFabric Suppose you want to be user-friendly and you don’t force users to keep in mind another username/password when they visit your site. You can accept logins from different popular sites like Windows Live, Facebook, Yahoo, Google and many more. If user has account in some of these services then he or she can use his or her account to log in to your site. If you have community site then you usually have support for user profiles too. Some of these providers give you some information about users and other don’t. So only thing in common you get from all those providers is some unique ID that identifies user in service uniquely. Image above shows you how new user joins your site. Existing users who already have profile are directed to users homepage after they are authenticated. You can read more about how to solve semi-authorized users problem from my blog posting ASP.NET MVC: Using ProfileRequiredAttribute to restrict access to pages. The other problem is related to usernames that we don’t get from all identity providers. Why is IIdentity.Name sometimes empty? The problem is described more specifically in my blog posting Identifying AppFabric Access Control Service users uniquely. Shortly the problem is that not all providers have claim called http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name. The following diagram illustrates what happens when user got token from AppFabric ACS and was redirected to your site. Now, when user was authenticated using Windows Live ID then we don’t have name claim in token and that’s why User.Identity.Name is empty. Okay, we can force nameidentifier to be used as name (we can do it in web.config file) but we have user profiles and we want username from profile to be shown when username is asked. Modifying name claim Now let’s force IClaimsIdentity to use username from our user profiles. You can read more about my profiles topic from my blog posting ASP.NET MVC: Using ProfileRequiredAttribute to restrict access to pages and you can find some useful extension methods for claims identity from my blog posting Identifying AppFabric Access Control Service users uniquely. Here is what we do to set User.Identity.Name: we will check if user has profile, if user has profile we will check if User.Identity.Name matches the name given by profile, if names does not match then probably identity provider returned some name for user, we will remove name claim and recreate it with correct username, we will add new name claim to claims collection. All this stuff happens in Application_AuthorizeRequest event of our web application. The code is here. protected void Application_AuthorizeRequest() {     if (string.IsNullOrEmpty(User.Identity.Name))     {         var identity = User.Identity;         var profile = identity.GetProfile();         if (profile != null)         {             if (profile.UserName != identity.Name)             {                 identity.RemoveName();                   var claim = new Claim("http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name", profile.UserName);                 var claimsIdentity = (IClaimsIdentity)identity;                 claimsIdentity.Claims.Add(claim);             }         }     } } RemoveName extension method is simple – it looks for name claims of IClaimsIdentity claims collection and removes them. public static void RemoveName(this IIdentity identity) {     if (identity == null)         return;       var claimsIndentity = identity as ClaimsIdentity;     if (claimsIndentity == null)         return;       for (var i = claimsIndentity.Claims.Count - 1; i >= 0; i--)     {         var claim = claimsIndentity.Claims[i];         if (claim.ClaimType == "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name")             claimsIndentity.Claims.RemoveAt(i);     } } And we are done. Now User.Identity.Name returns the username from user profile and you can use it to show username of current user everywhere in your site. Conclusion Mixing AppFabric Access Control Service and Windows Identity Foundation with custom authorization logic is not impossible but a little bit tricky. This posting finishes my little series about AppFabric ACS and WIF for this time and hopefully you found some useful tricks, tips, hacks and code pieces you can use in your own applications.

    Read the article

  • How to pass XML to DB using XMLTYPE

    - by James Taylor
    Probably not a common use case but I have seen it pop up from time to time. The question how do I pass XML from a queue or web service and insert it into a DB table using XMLTYPE.In this example I create a basic table with the field PAYLOAD of type XMLTYPE. I then take the full XML payload of the web service and insert it into that database for auditing purposes.I use SOA Suite 11.1.1.2 using composite and mediator to link the web service with the DB adapter.1. Insert Database Objects Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --Create XML_EXAMPLE_TBL Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} CREATE TABLE XML_EXAMPLE_TBL (PAYLOAD XMLTYPE); Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --Create procedure LOAD_TEST_XML Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} CREATE or REPLACE PROCEDURE load_test_xml (xmlFile in CLOB) IS   BEGIN     INSERT INTO xml_example_tbl (payload) VALUES (XMLTYPE(xmlFile));   --Handle the exceptions EXCEPTION   WHEN OTHERS THEN     raise_application_error(-20101, 'Exception occurred in loadPurchaseOrder procedure :'||SQLERRM || ' **** ' || xmlFile ); END load_test_xml; / 2. Creating New SOA Project TestXMLTYPE in JDeveloperIn JDeveloper either create a new Application or open an existing Application you want to put this work.Under File -> New -> SOA Tier -> SOA Project   Provide a name for the Project, e.g. TestXMLType Choose Empty Composite When selected Empty Composite click Finish.3. Create Database Connection to Stored ProcedureA Blank composite will be displayed. From the Component Palette drag a Database Adapter to the  External References panel. and configure the Database Adapter Wizard to connect to the DB procedure created above.Provide a service name InsertXML Select a Database connection where you installed the table and procedure above. If it doesn't exist create a new one. Select Call a Stored Procedure or Function then click NextChoose the schema you installed your Procedure in step 1 and query for the LOAD_TEST_XML procedure.Click Next for the remaining screens until you get to the end, then click Finish to complete the database adapter wizard.4. Create the Web Service InterfaceDownload this sample schema that will be used as the input for the web service. It does not matter what schema you use this solution will work with any. Feel free to use your own if required. singleString.xsd Drag from the component palette the Web Service to the Exposed Services panel on the component.Provide a name InvokeXMLLoad for the service, and click the cog icon.Click the magnify glass for the URL to browse to the location where you downloaded the xml schema above.  Import the schema file by selecting the import schema iconBrowse to the location to where you downloaded the singleString.xsd above.Click OK for the Import Schema File, then select the singleString node of the imported schema.Accept all the defaults until you get back to the Web Service wizard screen. The click OK. This step has created a WSDL based on the schema we downloaded earlier.Your composite should now look something like this now.5. Create the Mediator Routing Rules Drag a Mediator component into the middle of the Composite called ComponentsGive the name of Route, and accept the defaultsLink the services up to the Mediator by connecting the reference points so your Composite looks like this.6. Perform Translations between Web Service and the Database Adapter.From the Composite double click the Route Mediator to show the Map Plan. Select the transformation icon to create the XSLT translation file.Choose Create New Mapper File and accept the defaults.From the Component Palette drag the get-content-as-string component into the middle of the translation file.Your translation file should look something like thisNow we need to map the root element of the source 'singleString' to the XMLTYPE of the database adapter, applying the function get-content-as-string.To do this drag the element singleString to the left side of the function get-content-as-string and drag the right side of the get-content-as-string to the XMLFILE element of the database adapter so the mapping looks like this. You have now completed the SOA Component you can now save your work, deploy and test.When you deploy I have assumed that you have the correct database configurations in the WebLogic Console based on the connection you setup connecting to the Stored Procedure. 7. Testing the ApplicationOpen Enterprise Manager and navigate to the TestXMLTYPE Composite and click the Test button. Load some dummy variables in the Input Arguments and click the 'Test Web Service' buttonOnce completed you can run a SQL statement to check the install. In this instance I have just used JDeveloper and opened a SQL WorksheetSQL Statement Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} select * from xml_example_tbl; Result, you should see the full payload in the result.

    Read the article

  • Creating a multi-column rollover image gallery with HTML 5

    - by nikolaosk
    I know it has been a while since I blogged about HTML 5. I have two posts in this blog about HTML 5. You can find them here and here.I am creating a small content website (only text,images and a contact form) for a friend of mine.He wanted to create a rollover gallery.The whole concept is that we have some small thumbnails on a page, the user hovers over them and they appear enlarged on a designated container/placeholder on a page. I am trying not to use Javascript scripts when I am using effects on a web page and this is what I will be doing in this post.  Well some people will say that HTML 5 is not supported in all browsers. That is true but most of the modern browsers support most of its recommendations. For people who still use IE6 some hacks must be devised.Well to be totally honest I cannot understand why anyone at this day and time is using IE 6.0.That really is beyond me.Well, the point of having a web browser is to be able to ENJOY the great experience that the WE? offers today.  Two very nice sites that show you what features and specifications are implemented by various browsers and their versions are http://caniuse.com/ and http://html5test.com/. At this times Chrome seems to support most of HTML 5 specifications.Another excellent way to find out if the browser supports HTML 5 and CSS 3 features is to use the Javascript lightweight library Modernizr.In this hands-on example I will be using Expression Web 4.0.This application is not a free application. You can use any HTML editor you like.You can use Visual Studio 2012 Express edition. You can download it here. In order to be absolutely clear this is not (and could not be ) a detailed tutorial on HTML 5. There are other great resources for that.Navigate to the excellent interactive tutorials of W3School.Another excellent resource is HTML 5 Doctor.For the people who are not convinced yet that they should invest time and resources on becoming experts on HTML 5 I should point out that HTML 5 websites will be ranked higher than others. Search engines will be able to locate better the content of our site and its relevance/importance since it is using semantic tags. Let's move now to the actual hands-on example. In this case (since I am mad Liverpool supporter) I will create a rollover image gallery of Liverpool F.C legends. I create a folder in my desktop. I name it Liverpool Gallery.Then I create two subfolders in it, large-images (I place the large images in there) and thumbs (I place the small images in there).Then I create an empty .html file called LiverpoolLegends.html and an empty .css file called style.css.Please have a look at the HTML Markup that I typed in my fancy editor package below<!doctype html><html lang="en"><head><title>Liverpool Legends Gallery</title><meta charset="utf-8"><link rel="stylesheet" type="text/css" href="style.css"></head><body><header><h1>A page dedicated to Liverpool Legends</h1><h2>Do hover over the images with the mouse to see the full picture</h2></header><ul id="column1"><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/john-barnes.jpg" alt=""><img class="large" src="large-images/john-barnes-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/ian-rush.jpg" alt=""><img class="large" src="large-images/ian-rush-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/graeme-souness.jpg" alt=""><img class="large" src="large-images/graeme-souness-large.jpg" alt=""></a></li></ul><ul id="column2"><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/steven-gerrard.jpg" alt=""><img class="large" src="large-images/steven-gerrard-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/kenny-dalglish.jpg" alt=""><img class="large" src="large-images/kenny-dalglish-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/robbie-fowler.jpg" alt=""><img class="large" src="large-images/robbie-fowler-large.jpg" alt=""></a></li></ul><ul id="column3"><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/alan-hansen.jpg" alt=""><img class="large" src="large-images/alan-hansen-large.jpg" alt=""></a></li><li><a href="http://weblogs.asp.net/controlpanel/blogs/posteditor.aspx?SelectedNavItem=Posts§ionid=1153&postid=8927200#"><img src="thumbs/michael-owen.jpg" alt=""><img class="large" src="large-images/michael-owen-large.jpg" alt=""></a></li></ul></body></html> It is very easy to follow the markup. Please have a look at the new doctype and the new semantic tag <header>. I have 3 columns and I place my images in there.There is a class called "large".I will use this class in my CSS code to hide the large image when the mouse is not on (hover) an image Make sure you validate your HTML 5 page in the validator found hereHave a look at the CSS code below that makes it all happen.img { border:none;}#column1 { position: absolute; top: 30; left: 100; }li { margin: 15px; list-style-type:none;}#column1 a img.large {  position: absolute; top: 0; left:700px; visibility: hidden;}#column1 a:hover { background: white;}#column1 a:hover img.large { visibility:visible;}#column2 { position: absolute; top: 30; left: 195px; }li { margin: 5px; list-style-type:none;}#column2 a img.large { position: absolute; top: 0; left:510px; margin-left:0; visibility: hidden;}#column2 a:hover { background: white;}#column2 a:hover img.large { visibility:visible;}#column3 { position: absolute; top: 30; left: 400px; width:108px;}li { margin: 5px; list-style-type:none;}#column3 a img.large { width: 260px; height:260px; position: absolute; top: 0; left:315px; margin-left:0; visibility: hidden;}#column3 a:hover { background: white;}#column3 a:hover img.large { visibility:visible;}?n the first line of the CSS code I set the images to have no border.Then I place the first column in the page and then remove the bullets from the list elements.Then I use the large CSS class to create a position for the large image and hide it.Finally when the hover event takes place I make the image visible.I repeat the process for the next two columns. I have tested the page with IE 10 and the latest versions of Opera,Chrome and Firefox.Feel free to style your HTML 5 gallery any way you want through the magic of CSS.I did not bother adding background colors and borders because that was beyond the scope of this post. Hope it helps!!!!

    Read the article

  • Handling HumanTask attachments in Oracle BPM 11g PS4FP+ (I)

    - by ccasares
    Adding attachments to a HumanTask is a feature that exists in Oracle HWF (Human Workflow) since 10g. However, in 11g there have been many improvements on this feature and this entry will try to summarize them. Oracle BPM 11g 11.1.1.5.1 (aka PS4 Feature Pack or PS4FP) introduced two great features: Ability to link attachments at a Task scope or at a Process scope: "Task" attachments are only visible within the scope (lifetime) of a task. This means that, initially, any member of the assignment pattern of the Human Task will be able to handle (add, review or remove) attachments. However, once the task is completed, subsequent human tasks will not have access to them. This does not mean those attachments got lost. Once the human task is completed, attachments can be retrieved in order to, i.e., check them in to a Content Server or to inject them to a new and different human task. Aside note: a "re-initiated" human task will inherit comments and attachments, along with history and -optionally- payload. See here for more info. "Process" attachments are visible within the scope of the process. This means that subsequent human tasks in the same process instance will have access to them. Ability to use Oracle WebCenter Content (previously known as "Oracle UCM") as the backend for the attachments instead of using HWF database backend. This feature adds all content server document lifecycle capabilities to HWF attachments (versioning, RBAC, metadata management, etc). As of today, only Oracle WCC is supported. However, Oracle BPM Suite does include a license of Oracle WCC for the solely usage of document management within BPM scope. Here are some code samples that leverage the above features. Retrieving uploaded attachments -Non UCM- Non UCM attachments (default ones or those that have existed from 10g, and are stored "as-is" in HWK database backend) can be retrieved after the completion of the Human Task. Firstly, we need to know whether any attachment has been effectively uploaded to the human task. There are two ways to find it out: Through an XPath function: Checking the execData/attachment[] structure. For example: Once we are sure one ore more attachments were uploaded to the Human Task, we want to get them. In this example, by "get" I mean to get the attachment name and the payload of the file. Aside note: Oracle HWF lets you to upload two kind of [non-UCM] attachments: a desktop document and a Web URL. This example focuses just on the desktop document one. In order to "retrieve" an uploaded Web URL, you can get it directly from the execData/attachment[] structure. Attachment content (payload) is retrieved through the getTaskAttachmentContents() XPath function: This example shows how to retrieve as many attachments as those had been uploaded to the Human Task and write them to the server using the File Adapter service. The sample process excerpt is as follows:  A dummy UserTask using "HumanTask1" Human Task followed by a Embedded Subprocess that will retrieve the attachments (we're assuming at least one attachment is uploaded): and once retrieved, we will write each of them back to a file in the server using a File Adapter service: In detail: We've defined an XSD structure that will hold the attachments (both name and payload): Then, we can create a BusinessObject based on such element (attachmentCollection) and create a variable (named attachmentBPM) of such BusinessObject type. We will also need to keep a copy of the HumanTask output's execData structure. Therefore we need to create a variable of type TaskExecutionData... ...and copy the HumanTask output execData to it: Now we get into the embedded subprocess that will retrieve the attachments' payload. First, and using an XSLT transformation, we feed the attachmentBPM variable with the name of each attachment and setting an empty value to the payload: Please note that we're using the XSLT for-each node to create as many target structures as necessary. Also note that we're setting an Empty text to the payload variable. The reason for this is to make sure the <payload></payload> tag gets created. This is needed when we map the payload to the XML variable later. Aside note: We are assuming that we're retrieving non-UCM attachments. However in real life you might want to check the type of attachment you're handling. The execData/attachment[]/storageType contains the values "UCM" for UCM type attachments, "TASK" for non-UCM ones or "URL" for Web URL ones. Those values are part of the "Ext.Com.Oracle.Xmlns.Bpel.Workflow.Task.StorageTypeEnum" enumeration. Once we have fed the attachmentsBPM structure and so it now contains the name of each of the attachments, it is time to iterate through it and get the payload. Therefore we will use a new embedded subprocess of type MultiInstance, that will iterate over the attachmentsBPM/attachment[] element: In every iteration we will use a Script activity to map the corresponding payload element with the result of the XPath function getTaskAttachmentContents(). Please, note how the target array element is indexed with the loopCounter predefined variable, so that we make sure we're feeding the right element during the array iteration:  The XPath function used looks as follows: hwf:getTaskAttachmentContents(bpmn:getDataObject('UserTask1LocalExecData')/ns1:systemAttributes/ns1:taskId, bpmn:getDataObject('attachmentsBPM')/ns:attachment[bpmn:getActivityInstanceAttribute('SUBPROCESS3067107484296', 'loopCounter')]/ns:fileName)  where the input parameters are: taskId of the just completed Human Task attachment name we're retrieving the payload from array index (loopCounter predefined variable)  Aside note: The reason whereby we're iterating the execData/attachment[] structure through embedded subprocess and not, i.e., using XSLT and for-each nodes, is mostly because the getTaskAttachmentContents() XPath function is currently not available in XSLT mappings. So all this example might be considered as a workaround until this gets fixed/enhanced in future releases. Once this embedded subprocess ends, we will have all attachments (name + payload) in the attachmentsBPM variable, which is the main goal of this sample. But in order to test everything runs fine, we finish the sample writing each attachment to a file. To that end we include a final embedded subprocess to concurrently iterate through each attachmentsBPM/attachment[] element: On each iteration we will use a Service activity that invokes a File Adapter write service. In here we have two important parameters to set. First, the payload itself. The file adapter awaits binary data in base64 format (string). We have to map it using XPath (Simple mapping doesn't recognize a String as a base64-binary valid target):  Second, we must set the target filename using the Service Properties dialog box:  Again, note how we're making use of the loopCounter index variable to get the right element within the embedded subprocess iteration. Handling UCM attachments will be part of a different and upcoming blog entry. Once I finish will all posts on this matter, I will upload the whole sample project to java.net.

    Read the article

  • C#/.NET Little Wonders: Using &lsquo;default&rsquo; to Get Default Values

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Today’s little wonder is another of those small items that can help a lot in certain situations, especially when writing generics.  In particular, it is useful in determining what the default value of a given type would be. The Problem: what’s the default value for a generic type? There comes a time when you’re writing generic code where you may want to set an item of a given generic type.  Seems simple enough, right?  We’ll let’s see! Let’s say we want to query a Dictionary<TKey, TValue> for a given key and get back the value, but if the key doesn’t exist, we’d like a default value instead of throwing an exception. So, for example, we might have a the following dictionary defined: 1: var lookup = new Dictionary<int, string> 2: { 3: { 1, "Apple" }, 4: { 2, "Orange" }, 5: { 3, "Banana" }, 6: { 4, "Pear" }, 7: { 9, "Peach" } 8: }; And using those definitions, perhaps we want to do something like this: 1: // assume a default 2: string value = "Unknown"; 3:  4: // if the item exists in dictionary, get its value 5: if (lookup.ContainsKey(5)) 6: { 7: value = lookup[5]; 8: } But that’s inefficient, because then we’re double-hashing (once for ContainsKey() and once for the indexer).  Well, to avoid the double-hashing, we could use TryGetValue() instead: 1: string value; 2:  3: // if key exists, value will be put in value, if not default it 4: if (!lookup.TryGetValue(5, out value)) 5: { 6: value = "Unknown"; 7: } But the “flow” of using of TryGetValue() can get clunky at times when you just want to assign either the value or a default to a variable.  Essentially it’s 3-ish lines (depending on formatting) for 1 assignment.  So perhaps instead we’d like to write an extension method to support a cleaner interface that will return a default if the item isn’t found: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } 17:  So this creates an extension method on Dictionary<TKey, TValue> that will attempt to get a value using the given key, and will return the defaultIfNotFound as a stand-in if the key does not exist. This code compiles, fine, but what if we would like to go one step further and allow them to specify a default if not found, or accept the default for the type?  Obviously, we could overload the method to take the default or not, but that would be duplicated code and a bit heavy for just specifying a default.  It seems reasonable that we could set the not found value to be either the default for the type, or the specified value. So what if we defaulted the type to null? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = null) // ... No, this won’t work, because only reference types (and Nullable<T> wrapped types due to syntactical sugar) can be assigned to null.  So what about a calling parameterless constructor? 1: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 2: TKey key, TValue defaultIfNotFound = new TValue()) // ... No, this won’t work either for several reasons.  First, we’d expect a reference type to return null, not an “empty” instance.  Secondly, not all reference types have a parameter-less constructor (string for example does not).  And finally, a constructor cannot be determined at compile-time, while default values can. The Solution: default(T) – returns the default value for type T Many of us know the default keyword for its uses in switch statements as the default case.  But it has another use as well: it can return us the default value for a given type.  And since it generates the same defaults that default field initialization uses, it can be determined at compile-time as well. For example: 1: var x = default(int); // x is 0 2:  3: var y = default(bool); // y is false 4:  5: var z = default(string); // z is null 6:  7: var t = default(TimeSpan); // t is a TimeSpan with Ticks == 0 8:  9: var n = default(int?); // n is a Nullable<int> with HasValue == false Notice that for numeric types the default is 0, and for reference types the default is null.  In addition, for struct types, the value is a default-constructed struct – which simply means a struct where every field has their default value (hence 0 Ticks for TimeSpan, etc.). So using this, we could modify our code to this: 1: public static class DictionaryExtensions 2: { 3: public static TValue GetValueOrDefault<TKey, TValue>(this Dictionary<TKey, TValue> dict, 4: TKey key, TValue defaultIfNotFound = default(TValue)) 5: { 6: TValue value; 7:  8: // value will be the result or the default for TValue 9: if (!dict.TryGetValue(key, out value)) 10: { 11: value = defaultIfNotFound; 12: } 13:  14: return value; 15: } 16: } Now, if defaultIfNotFound is unspecified, it will use default(TValue) which will be the default value for whatever value type the dictionary holds.  So let’s consider how we could use this: 1: lookup.GetValueOrDefault(1); // returns “Apple” 2:  3: lookup.GetValueOrDefault(5); // returns null 4:  5: lookup.GetValueOrDefault(5, “Unknown”); // returns “Unknown” 6:  Again, do not confuse a parameter-less constructor with the default value for a type.  Remember that the default value for any type is the compile-time default for any instance of that type (0 for numeric, false for bool, null for reference types, and struct will all default fields for struct).  Consider the difference: 1: // both zero 2: int i1 = default(int); 3: int i2 = new int(); 4:  5: // both “zeroed” structs 6: var dt1 = default(DateTime); 7: var dt2 = new DateTime(); 8:  9: // sb1 is null, sb2 is an “empty” string builder 10: var sb1 = default(StringBuilder()); 11: var sb2 = new StringBuilder(); So in the above code, notice that the value types all resolve the same whether using default or parameter-less construction.  This is because a value type is never null (even Nullable<T> wrapped types are never “null” in a reference sense), they will just by default contain fields with all default values. However, for reference types, the default is null and not a constructed instance.  Also it should be noted that not all classes have parameter-less constructors (string, for instance, doesn’t have one – and doesn’t need one). Summary Whenever you need to get the default value for a type, especially a generic type, consider using the default keyword.  This handy word will give you the default value for the given type at compile-time, which can then be used for initialization, optional parameters, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,default

    Read the article

  • Prevent your Silverlight XAP file from caching in your browser.

    - by mbcrump
    If you work with Silverlight daily then you have run into this problem. Your XAP file has been cached in your browser and you have to empty your browser cache to resolve it. If your using Google Chrome then you typically do the following: Go to Options –> Clear Browsing History –> Empty the Cache and finally click Clear Browsing data. As you can see, this is a lot of unnecessary steps. It is even worse when you have a customer that says, “I can’t see the new features you just implemented!” and you realize it’s a cached xap problem.  I have been struggling with a way to prevent my XAP file from caching inside of a browser for a while now and decided to implement the following solution. If the Visual Studio Debugger is attached then add a unique query string to the source param to force the XAP file to be refreshed. If the Visual Studio Debugger is not attached then add the source param as Visual Studio generates it. This is also in case I forget to remove the above code in my production environment. I want the ASP.NET code to be inline with my .ASPX page. (I do not want a separate code behind .cs page or .vb page attached to the .aspx page.) Below is an example of the hosting code generated when you create a new Silverlight project. As a quick refresher, the hard coded param name = “source” specifies the location of your XAP file.  <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/SilverlightApplication2.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We are going to use a little bit of inline ASP.NET to generate the param name = source dynamically to prevent the XAP file from caching. Lets look at the completed solution: <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) //Debugger Attached - Refresh the XAP file. param = "<param name=\"source\" value=\"" + strSourceFile + "?" + DateTime.Now.Ticks + "\" />"; else { //Production Mode param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; } Response.Write(param); %> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We add the location to our XAP file to strSourceFile and if the debugger is attached then it will append DateTime.Now.Ticks to the XAP file source and force the browser to download the .XAP. If you view the page source of your Silverlight Application then you can verify it worked properly by looking at the param name = “source” tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap?634299001187160148" /> If the debugger is not attached then it will use the standard source tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap"/> At this point you may be asking, How do I prevent my XAP file from being cached on my production app? Well, you have two easy options: 1) I really don’t recommend this approach but you can force the XAP to be refreshed everytime with the following code snippet.  <param name="source" value="ClientBin/SilverlightApplication2.xap?<%=Guid.NewGuid().ToString() %>"/> NOTE: You could also substitute the “Guid.NewGuid().ToString() for anything that create a random field. (I used DateTime.Now.Ticks earlier). 2) Another solution that I like even better involves checking the XAP Creation Date and appending it to the param name = source. This method was described by Lars Holm Jenson. <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; else { string xappath = HttpContext.Current.Server.MapPath(@"") + @"\" + strSourceFile; DateTime xapCreationDate = System.IO.File.GetLastWriteTime(xappath); param = "<param name=\"source\" value=\"" + strSourceFile + "?ignore=" + xapCreationDate.ToString() + "\" />"; } Response.Write(param); %> As you can see, this problem has been solved. It will work with all web browsers and stubborn proxy servers that are caching your .XAP. If you enjoyed this article then check out my blog for others like this. You may also want to subscribe to my blog or follow me on Twitter.   Subscribe to my feed

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Set Context User Principal for Customized Authentication in SignalR

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/05/27/set-context-user-principal-for-customized-authentication-in-signalr.aspxCurrently I'm working on a single page application project which is built on AngularJS and ASP.NET WebAPI. When I need to implement some features that needs real-time communication and push notifications from server side I decided to use SignalR. SignalR is a project currently developed by Microsoft to build web-based, read-time communication application. You can find it here. With a lot of introductions and guides it's not a difficult task to use SignalR with ASP.NET WebAPI and AngularJS. I followed this and this even though it's based on SignalR 1. But when I tried to implement the authentication for my SignalR I was struggled 2 days and finally I got a solution by myself. This might not be the best one but it actually solved all my problem.   In many articles it's said that you don't need to worry about the authentication of SignalR since it uses the web application authentication. For example if your web application utilizes form authentication, SignalR will use the user principal your web application authentication module resolved, check if the principal exist and authenticated. But in my solution my ASP.NET WebAPI, which is hosting SignalR as well, utilizes OAuth Bearer authentication. So when the SignalR connection was established the context user principal was empty. So I need to authentication and pass the principal by myself.   Firstly I need to create a class which delivered from "AuthorizeAttribute", that will takes the responsible for authenticate when SignalR connection established and any method was invoked. 1: public class QueryStringBearerAuthorizeAttribute : AuthorizeAttribute 2: { 3: public override bool AuthorizeHubConnection(HubDescriptor hubDescriptor, IRequest request) 4: { 5: } 6:  7: public override bool AuthorizeHubMethodInvocation(IHubIncomingInvokerContext hubIncomingInvokerContext, bool appliesToMethod) 8: { 9: } 10: } The method "AuthorizeHubConnection" will be invoked when any SignalR connection was established. And here I'm going to retrieve the Bearer token from query string, try to decrypt and recover the login user's claims. 1: public override bool AuthorizeHubConnection(HubDescriptor hubDescriptor, IRequest request) 2: { 3: var dataProtectionProvider = new DpapiDataProtectionProvider(); 4: var secureDataFormat = new TicketDataFormat(dataProtectionProvider.Create()); 5: // authenticate by using bearer token in query string 6: var token = request.QueryString.Get(WebApiConfig.AuthenticationType); 7: var ticket = secureDataFormat.Unprotect(token); 8: if (ticket != null && ticket.Identity != null && ticket.Identity.IsAuthenticated) 9: { 10: // set the authenticated user principal into environment so that it can be used in the future 11: request.Environment["server.User"] = new ClaimsPrincipal(ticket.Identity); 12: return true; 13: } 14: else 15: { 16: return false; 17: } 18: } In the code above I created "TicketDataFormat" instance, which must be same as the one I used to generate the Bearer token when user logged in. Then I retrieve the token from request query string and unprotect it. If I got a valid ticket with identity and it's authenticated this means it's a valid token. Then I pass the user principal into request's environment property which can be used in nearly future. Since my website was built in AngularJS so the SignalR client was in pure JavaScript, and it's not support to set customized HTTP headers in SignalR JavaScript client, I have to pass the Bearer token through request query string. This is not a restriction of SignalR, but a restriction of WebSocket. For security reason WebSocket doesn't allow client to set customized HTTP headers from browser. Next, I need to implement the authentication logic in method "AuthorizeHubMethodInvocation" which will be invoked when any SignalR method was invoked. 1: public override bool AuthorizeHubMethodInvocation(IHubIncomingInvokerContext hubIncomingInvokerContext, bool appliesToMethod) 2: { 3: var connectionId = hubIncomingInvokerContext.Hub.Context.ConnectionId; 4: // check the authenticated user principal from environment 5: var environment = hubIncomingInvokerContext.Hub.Context.Request.Environment; 6: var principal = environment["server.User"] as ClaimsPrincipal; 7: if (principal != null && principal.Identity != null && principal.Identity.IsAuthenticated) 8: { 9: // create a new HubCallerContext instance with the principal generated from token 10: // and replace the current context so that in hubs we can retrieve current user identity 11: hubIncomingInvokerContext.Hub.Context = new HubCallerContext(new ServerRequest(environment), connectionId); 12: return true; 13: } 14: else 15: { 16: return false; 17: } 18: } Since I had passed the user principal into request environment in previous method, I can simply check if it exists and valid. If so, what I need is to pass the principal into context so that SignalR hub can use. Since the "User" property is all read-only in "hubIncomingInvokerContext", I have to create a new "ServerRequest" instance with principal assigned, and set to "hubIncomingInvokerContext.Hub.Context". After that, we can retrieve the principal in my Hubs through "Context.User" as below. 1: public class DefaultHub : Hub 2: { 3: public object Initialize(string host, string service, JObject payload) 4: { 5: var connectionId = Context.ConnectionId; 6: ... ... 7: var domain = string.Empty; 8: var identity = Context.User.Identity as ClaimsIdentity; 9: if (identity != null) 10: { 11: var claim = identity.FindFirst("Domain"); 12: if (claim != null) 13: { 14: domain = claim.Value; 15: } 16: } 17: ... ... 18: } 19: } Finally I just need to add my "QueryStringBearerAuthorizeAttribute" into the SignalR pipeline. 1: app.Map("/signalr", map => 2: { 3: // Setup the CORS middleware to run before SignalR. 4: // By default this will allow all origins. You can 5: // configure the set of origins and/or http verbs by 6: // providing a cors options with a different policy. 7: map.UseCors(CorsOptions.AllowAll); 8: var hubConfiguration = new HubConfiguration 9: { 10: // You can enable JSONP by uncommenting line below. 11: // JSONP requests are insecure but some older browsers (and some 12: // versions of IE) require JSONP to work cross domain 13: // EnableJSONP = true 14: EnableJavaScriptProxies = false 15: }; 16: // Require authentication for all hubs 17: var authorizer = new QueryStringBearerAuthorizeAttribute(); 18: var module = new AuthorizeModule(authorizer, authorizer); 19: GlobalHost.HubPipeline.AddModule(module); 20: // Run the SignalR pipeline. We're not using MapSignalR 21: // since this branch already runs under the "/signalr" path. 22: map.RunSignalR(hubConfiguration); 23: }); On the client side should pass the Bearer token through query string before I started the connection as below. 1: self.connection = $.hubConnection(signalrEndpoint); 2: self.proxy = self.connection.createHubProxy(hubName); 3: self.proxy.on(notifyEventName, function (event, payload) { 4: options.handler(event, payload); 5: }); 6: // add the authentication token to query string 7: // we cannot use http headers since web socket protocol doesn't support 8: self.connection.qs = { Bearer: AuthService.getToken() }; 9: // connection to hub 10: self.connection.start(); Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • How do I restrict concurrent statistics gathering to a small set of tables from a single schema?

    - by Maria Colgan
    I got an interesting question from one of my colleagues in the performance team last week about how to restrict a concurrent statistics gather to a small subset of tables from one schema, rather than the entire schema. I thought I would share the solution we came up with because it was rather elegant, and took advantage of concurrent statistics gathering, incremental statistics, and the not so well known “obj_filter_list” parameter in DBMS_STATS.GATHER_SCHEMA_STATS procedure. You should note that the solution outline below with “obj_filter_list” still applies, even when concurrent statistics gathering and/or incremental statistics gathering is disabled. The reason my colleague had asked the question in the first place was because he wanted to enable incremental statistics for 5 large partitioned tables in one schema. The first time you gather statistics after you enable incremental statistics on a table, you have to gather statistics for all of the existing partitions so that a synopsis may be created for them. If the partitioned table in question is large and contains a lot of partition, this could take a considerable amount of time. Since my colleague only had the Exadata environment at his disposal overnight, he wanted to re-gather statistics on 5 partition tables as quickly as possible to ensure that it all finished before morning. Prior to Oracle Database 11g Release 2, the only way to do this would have been to write a script with an individual DBMS_STATS.GATHER_TABLE_STATS command for each partition, in each of the 5 tables, as well as another one to gather global statistics on the table. Then, run each script in a separate session and manually manage how many of this session could run concurrently. Since each table has over one thousand partitions that would definitely be a daunting task and would most likely keep my colleague up all night! In Oracle Database 11g Release 2 we can take advantage of concurrent statistics gathering, which enables us to gather statistics on multiple tables in a schema (or database), and multiple (sub)partitions within a table concurrently. By using concurrent statistics gathering we no longer have to run individual statistics gathering commands for each partition. Oracle will automatically create a statistics gathering job for each partition, and one for the global statistics on each partitioned table. With the use of concurrent statistics, our script can now be simplified to just five DBMS_STATS.GATHER_TABLE_STATS commands, one for each table. This approach would work just fine but we really wanted to get this down to just one command. So how can we do that? You may be wondering why we didn’t just use the DBMS_STATS.GATHER_SCHEMA_STATS procedure with the OPTION parameter set to ‘GATHER STALE’. Unfortunately the statistics on the 5 partitioned tables were not stale and enabling incremental statistics does not mark the existing statistics stale. Plus how would we limit the schema statistics gather to just the 5 partitioned tables? So we went to ask one of the statistics developers if there was an alternative way. The developer told us the advantage of the “obj_filter_list” parameter in DBMS_STATS.GATHER_SCHEMA_STATS procedure. The “obj_filter_list” parameter allows you to specify a list of objects that you want to gather statistics on within a schema or database. The parameter takes a collection of type DBMS_STATS.OBJECTTAB. Each entry in the collection has 5 feilds; the schema name or the object owner, the object type (i.e., ‘TABLE’ or ‘INDEX’), object name, partition name, and subpartition name. You don't have to specify all five fields for each entry. Empty fields in an entry are treated as if it is a wildcard field (similar to ‘*’ character in LIKE predicates). Each entry corresponds to one set of filter conditions on the objects. If you have more than one entry, an object is qualified for statistics gathering as long as it satisfies the filter conditions in one entry. You first must create the collection of objects, and then gather statistics for the specified collection. It’s probably easier to explain this with an example. I’m using the SH sample schema but needed a couple of additional partitioned table tables to get recreate my colleagues scenario of 5 partitioned tables. So I created SALES2, SALES3, and COSTS2 as copies of the SALES and COSTS table respectively (setup.sql). I also deleted statistics on all of the tables in the SH schema beforehand to more easily demonstrate our approach. Step 0. Delete the statistics on the tables in the SH schema. Step 1. Enable concurrent statistics gathering. Remember, this has to be done at the global level. Step 2. Enable incremental statistics for the 5 partitioned tables. Step 3. Create the DBMS_STATS.OBJECTTAB and pass it to the DBMS_STATS.GATHER_SCHEMA_STATS command. Here, you will notice that we defined two variables of DBMS_STATS.OBJECTTAB type. The first, filter_lst, will be used to pass the list of tables we want to gather statistics on, and will be the value passed to the obj_filter_list parameter. The second, obj_lst, will be used to capture the list of tables that have had statistics gathered on them by this command, and will be the value passed to the objlist parameter. In Oracle Database 11g Release 2, you need to specify the objlist parameter in order to get the obj_filter_list parameter to work correctly due to bug 14539274. Will also needed to define the number of objects we would supply in the obj_filter_list. In our case we ere specifying 5 tables (filter_lst.extend(5)). Finally, we need to specify the owner name and object name for each of the objects in the list. Once the list definition is complete we can issue the DBMS_STATS.GATHER_SCHEMA_STATS command. Step 4. Confirm statistics were gathered on the 5 partitioned tables. Here are a couple of other things to keep in mind when specifying the entries for the  obj_filter_list parameter. If a field in the entry is empty, i.e., null, it means there is no condition on this field. In the above example , suppose you remove the statement Obj_filter_lst(1).ownname := ‘SH’; You will get the same result since when you have specified gather_schema_stats so there is no need to further specify ownname in the obj_filter_lst. All of the names in the entry are normalized, i.e., uppercased if they are not double quoted. So in the above example, it is OK to use Obj_filter_lst(1).objname := ‘sales’;. However if you have a table called ‘MyTab’ instead of ‘MYTAB’, then you need to specify Obj_filter_lst(1).objname := ‘”MyTab”’; As I said before, although we have illustrated the usage of the obj_filter_list parameter for partitioned tables, with concurrent and incremental statistics gathering turned on, the obj_filter_list parameter is generally applicable to any gather_database_stats, gather_dictionary_stats and gather_schema_stats command. You can get a copy of the script I used to generate this post here. +Maria Colgan

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

< Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >