Search Results

Search found 48844 results on 1954 pages for 'first steps'.

Page 128/1954 | < Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >

  • Fixing unbootable installation on LVM root from Desktop LiveCD

    - by intuited
    I just did an installation from the 10.10 Desktop LiveCD, making the root volume an LVM LV. Apparently this is not supported; I managed it by taking these steps before starting the GUI installer app: installing the lvm2 package on the running system creating an LVM-type partition on the system hard drive creating a physical volume, a volume group and a root LV using the LVM tools. I also created a second LV for /var; this I don't think is relevant. creating a filesystem (ext4) on each of the two LVs. After taking these steps, the GUI installer offered the two LVs as installation targets; I gladly accepted, also putting /boot on a primary partition separate from the LVM partition. Installation seemed to go smoothly, and I've verified that both the root and var volumes do contain acceptable-looking directory structures. However, booting fails; if I understood correctly what happened, I was dropped into a busybox running in the initrd filesystem. Although I haven't worked through the entirety of the grub2 docs yet, it looks like the entry that tries to boot my new system is correct: menuentry 'Ubuntu, with Linux 2.6.35-22-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod part_msdos insmod ext2 set root='(hd0,msdos3)' search --no-floppy --fs-uuid --set $UUID_OF_BOOT_FILESYSTEM linux /vmlinuz-2.6.35-22-generic root=/dev/mapper/$LVM_VOLUME_GROUP-root ro quiet splash initrd /initrd.img-2.6.35-22-generic } Note that $VARS are replaced in the actual grub.cfg with their corresponding values. I rebooted back into the livecd and have unpacked the initrd image into a temp directory. It looks like the initrd image lacks LVM functionality. For example, if I'm reading /usr/share/initramfs-tools/hooks/lvm2 (installed with lvm2 on the livecd-booted system, not present on the installed one) correctly, an lvm executable should be situated in /sbin; that is not the case. What's the best way to remedy this situation? I realize that it would be easier to just use the alternate install CD, which apparently supports LVM, but I don't want to wait for it to download and then have to reinstall.

    Read the article

  • SQL SERVER – Import CSV into Database – Transferring File Content into a Database Table using CSVexpress

    - by pinaldave
    One of the most common data integration tasks I run into is a desire to move data from a file into a database table.  Generally the user is familiar with his data, the structure of the file, and the database table, but is unfamiliar with data integration tools and therefore views this task as something that is difficult.  What these users really need is a point and click approach that minimizes the learning curve for the data integration tool.  This is what CSVexpress (www.CSVexpress.com) is all about!  It is based on expressor Studio, a data integration tool I’ve been reviewing over the last several months. With CSVexpress, moving data between data sources can be as simple as providing the database connection details, describing the structure of the incoming and outgoing data and then connecting two pre-programmed operators.   There’s no need to learn the intricacies of the data integration tool or to write code.  Let’s look at an example. Suppose I have a comma separated value data file with data similar to the following, which is a listing of terminated employees that includes their hiring and termination date, department, job description, and final salary. EMP_ID,STRT_DATE,END_DATE,JOB_ID,DEPT_ID,SALARY 102,13-JAN-93,24-JUL-98 17:00,Programmer,60,"$85,000" 101,21-SEP-89,27-OCT-93 17:00,Account Representative,110,"$65,000" 103,28-OCT-93,15-MAR-97 17:00,Account Manager,110,"$75,000" 304,17-FEB-96,19-DEC-99 17:00,Marketing,20,"$45,000" 333,24-MAR-98,31-DEC-99 17:00,Data Entry Clerk,50,"$35,000" 100,17-SEP-87,17-JUN-93 17:00,Administrative Assistant,90,"$40,000" 334,24-MAR-98,31-DEC-98 17:00,Sales Representative,80,"$40,000" 400,01-JAN-99,31-DEC-99 17:00,Sales Manager,80,"$55,000" Notice the concise format used for the date values, the fact that the termination date includes both date and time information, and that the salary is clearly identified as money by the dollar sign and digit grouping.  In moving this data to a database table I want to express the dates using a format that includes the century since it’s obvious that this listing could include employees who left the company in both the 20th and 21st centuries, and I want the salary to be stored as a decimal value without the currency symbol and grouping character.  Most data integration tools would require coding within a transformation operation to effect these changes, but not expressor Studio.  Directives for these modifications are included in the description of the incoming data. Besides starting the expressor Studio tool and opening a project, the first step is to create connection artifacts, which describe to expressor where data is stored.  For this example, two connection artifacts are required: a file connection, which encapsulates the file system location of my file; and a database connection, which encapsulates the database connection information.  With expressor Studio, I use wizards to create these artifacts. First click New Connection > File Connection in the Home tab of expressor Studio’s ribbon bar, which starts the File Connection wizard.  In the first window, I enter the path to the directory that contains the input file.  Note that the file connection artifact only specifies the file system location, not the name of the file. Then I click Next and enter a meaningful name for this connection artifact; clicking Finish closes the wizard and saves the artifact. To create the Database Connection artifact, I must know the location of, or instance name, of the target database and have the credentials of an account with sufficient privileges to write to the target table.  To use expressor Studio’s features to the fullest, this account should also have the authority to create a table. I click the New Connection > Database Connection in the Home tab of expressor Studio’s ribbon bar, which starts the Database Connection wizard.  expressor Studio includes high-performance drivers for many relational database management systems, so I can simply make a selection from the “Supplied database drivers” drop down control.  If my desired RDBMS isn’t listed, I can optionally use an existing ODBC DSN by selecting the “Existing DSN” radio button. In the following window, I enter the connection details.  With Microsoft SQL Server, I may choose to use Windows Authentication rather than rather than account credentials.  After clicking Next, I enter a meaningful name for this connection artifact and clicking Finish closes the wizard and saves the artifact. Now I create a schema artifact, which describes the structure of the file data.  When expressor reads a file, all data fields are typed as strings.  In some use cases this may be exactly what is needed and there is no need to edit the schema artifact.  But in this example, editing the schema artifact will be used to specify how the data should be transformed; that is, reformat the dates to include century designations, change the employee and job ID’s to integers, and convert the salary to a decimal value. Again a wizard is used to create the schema artifact.  I click New Schema > Delimited Schema in the Home tab of expressor Studio’s ribbon bar, which starts the Database Connection wizard.  In the first window, I click Get Data from File, which then displays a listing of the file connections in the project.  When I click on the file connection I previously created, a browse window opens to this file system location; I then select the file and click Open, which imports 10 lines from the file into the wizard. I now view the file’s content and confirm that the appropriate delimiter characters are selected in the “Field Delimiter” and “Record Delimiter” drop down controls; then I click Next. Since the input file includes a header row, I can easily indicate that fields in the file should be identified through the corresponding header value by clicking “Set All Names from Selected Row. “ Alternatively, I could enter a different identifier into the Field Details > Name text box.  I click Next and enter a meaningful name for this schema artifact; clicking Finish closes the wizard and saves the artifact. Now I open the schema artifact in the schema editor.  When I first view the schema’s content, I note that the types of all attributes in the Semantic Type (the right-hand panel) are strings and that the attribute names are the same as the field names in the data file.  To change an attribute’s name and type, I highlight the attribute and click Edit in the Attributes grouping on the Schema > Edit tab of the editor’s ribbon bar.  This opens the Edit Attribute window; I can change the attribute name and select the desired type from the “Data type” drop down control.  In this example, I change the name of each attribute to the name of the corresponding database table column (EmployeeID, StartingDate, TerminationDate, JobDescription, DepartmentID, and FinalSalary).  Then for the EmployeeID and DepartmentID attributes, I select Integer as the data type, for the StartingDate and TerminationDate attributes, I select Datetime as the data type, and for the FinalSalary attribute, I select the Decimal type. But I can do much more in the schema editor.  For the datetime attributes, I can set a constraint that ensures that the data adheres to some predetermined specifications; a starting date must be later than January 1, 1980 (the date on which the company began operations) and a termination date must be earlier than 11:59 PM on December 31, 1999.  I simply select the appropriate constraint and enter the value (1980-01-01 00:00 as the starting date and 1999-12-31 11:59 as the termination date). As a last step in setting up these datetime conversions, I edit the mapping, describing the format of each datetime type in the source file. I highlight the mapping line for the StartingDate attribute and click Edit Mapping in the Mappings grouping on the Schema > Edit tab of the editor’s ribbon bar.  This opens the Edit Mapping window in which I either enter, or select, a format that describes how the datetime values are represented in the file.  Note the use of Y01 as the syntax for the year.  This syntax is the indicator to expressor Studio to derive the century by setting any year later than 01 to the 20th century and any year before 01 to the 21st century.  As each datetime value is read from the file, the year values are transformed into century and year values. For the TerminationDate attribute, my format also indicates that the datetime value includes hours and minutes. And now to the Salary attribute. I open its mapping and in the Edit Mapping window select the Currency tab and the “Use currency” check box.  This indicates that the file data will include the dollar sign (or in Europe the Pound or Euro sign), which should be removed. And on the Grouping tab, I select the “Use grouping” checkbox and enter 3 into the “Group size” text box, a comma into the “Grouping character” text box, and a decimal point into the “Decimal separator” character text box. These entries allow the string to be properly converted into a decimal value. By making these entries into the schema that describes my input file, I’ve specified how I want the data transformed prior to writing to the database table and completely removed the requirement for coding within the data integration application itself. Assembling the data integration application is simple.  Onto the canvas I drag the Read File and Write Table operators, connecting the output of the Read File operator to the input of the Write Table operator. Next, I select the Read File operator and its Properties panel opens on the right-hand side of expressor Studio.  For each property, I can select an appropriate entry from the corresponding drop down control.  Clicking on the button to the right of the “File name” text box opens the file system location specified in the file connection artifact, allowing me to select the appropriate input file.  I indicate also that the first row in the file, the header row, should be skipped, and that any record that fails one of the datetime constraints should be skipped. I then select the Write Table operator and in its Properties panel specify the database connection, normal for the “Mode,” and the “Truncate” and “Create Missing Table” options.  If my target table does not yet exist, expressor will create the table using the information encapsulated in the schema artifact assigned to the operator. The last task needed to complete the application is to create the schema artifact used by the Write Table operator.  This is extremely easy as another wizard is capable of using the schema artifact assigned to the Read Table operator to create a schema artifact for the Write Table operator.  In the Write Table Properties panel, I click the drop down control to the right of the “Schema” property and select “New Table Schema from Upstream Output…” from the drop down menu. The wizard first displays the table description and in its second screen asks me to select the database connection artifact that specifies the RDBMS in which the target table will exist.  The wizard then connects to the RDBMS and retrieves a list of database schemas from which I make a selection.  The fourth screen gives me the opportunity to fine tune the table’s description.  In this example, I set the width of the JobDescription column to a maximum of 40 characters and select money as the type of the LastSalary column.  I also provide the name for the table. This completes development of the application.  The entire application was created through the use of wizards and the required data transformations specified through simple constraints and specifications rather than through coding.  To develop this application, I only needed a basic understanding of expressor Studio, a level of expertise that can be gained by working through a few introductory tutorials.  expressor Studio is as close to a point and click data integration tool as one could want and I urge you to try this product if you have a need to move data between files or from files to database tables. Check out CSVexpress in more detail.  It offers a few basic video tutorials and a preview of expressor Studio 3.5, which will support the reading and writing of data into Salesforce.com. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Keyboard locking up in Visual Studio 2010

    - by Jim Wang
    One of the initiatives I’m involved with on the ASP.NET and Visual Studio teams is the Tactical Test Team (TTT), which is a group of testers who dedicate a portion of their time to roaming around and testing different parts of the product.  What this generally translates to is a day and a bit a week helping out with areas of the product that have been flagged as risky, or tackling problems that span both ASP.NET and Visual Studio.  There is also a separate component of this effort outside of TTT which is to help with customer scenarios and design. I enjoy being on TTT because it allows me the opportunity to look at the entire product and gain expertise in a wide range of areas.  This week, I’m looking at Visual Studio 2010 performance problems, and this gem with the keyboard in Visual Studio locking up ended up catching my attention. First of all, here’s a link to one of the many Connect bugs describing the problem: Microsoft Connect I like this problem because it really highlights the challenges of reproducing customer bugs.  There aren’t any clear steps provided here, and I don’t know a lot about your environment: not just the basics like our OS version, but also what third party plug-ins or antivirus software you might be running that might contribute to the problem.  In this case, my gut tells me that there is more than one bug here, just by the sheer volume of reports.  Here’s another thread where users talk about it: Microsoft Connect The volume and different configurations are staggering.  From a customer perspective, this is a very clear cut case of basic functionality not working in the product, but from our perspective, it’s hard to find something reproducible: even customers don’t quite agree on what causes the problem (installing ReSharper seems to cause a problem…or does it?). So this then, is the start of a QA investigation. If anybody has isolated repro steps (just comment on this post) that they can provide this will immensely help us nail down the issue(s), but I’ll be doing a multi-part series on my progress and methodologies as I look into the problem.

    Read the article

  • Iterative Conversion

    - by stuart ramage
    Question Received: I am toying with the idea of migrating the current information first and the remainder of the history at a later date. I have heard that the conversion tool copes with this, but haven't found any information on how it does. Answer: The Toolkit will support iterative conversions as long as the original master data key tables (the CK_* tables) are not cleared down from Staging (the already converted Transactional Data would need to be cleared down) and the Production instance being migrated into is actually Production (we have migrated into a pre-prod instance in the past and then unloaded this and loaded it into the real PROD instance, but this will not work for your situation. You need to be migrating directly into your intended environment). In this case the migration tool will still know all about the original keys and the generated keys for the primary objects (Account, SA, etc.) and as such it will be able to link the data converted as part of a second pass onto these entities. It should be noted that this may result in the original opening balances potentially being displayed with an incorrect value (if we are talking about Financial Transactions) and also that care will have to be taken to ensure that all related objects are aligned (eg. A Bill must have a set to bill segments, meter reads and a financial transactions, and these entities cannot exist independantly). It should also be noted that subsequent runs of the conversion tool would need to be 'trimmed' to ensure that they are only doing work on the objects affected. You would not want to revalidate and migrate all Person, Account, SA, SA/SP, SP and Premise details since this information has already been processed, but you would definitely want to run the affected transactional record validation and keygen processes. There is no real "hard-and-fast" rule around this processing since is it specific to each implmentations needs, but the majority of the effort required should be detailed in the Conversion Tool section of the online help (under Adminstration/ The Conversion Tool). The major rule is to ensure that you only run the steps and validation/keygen steps that you need and do not do a complete rerun for your subsequent conversion.

    Read the article

  • Why does integrity check fail for the 12.04.1 Alternate ISO?

    - by mghg
    I have followed various recommendations from the Ubuntu Documentation to create a bootable Ubuntu USB flash drive using the 12.04.1 Alternate install ISO-file for 64-bit PC. But the integrity test of the USB stick has failed and I do not see why. These are the steps I have made: Download of the 12.04.1 Alternate install ISO-file for 64-bit PC (ubuntu-12.04.1-alternate-amd64.iso) from http://releases.ubuntu.com/12.04.1/, as well as the MD5, SHA-1 and SHA-256 hash files and related PGP signatures Verification of the data integrity of the ISO-file using the MD5, SHA-1 and SHA-256 hash files, after having verified the hash files using the related PGP signature files (see e.g. https://help.ubuntu.com/community/HowToSHA256SUM and https://help.ubuntu.com/community/VerifyIsoHowto) Creation of a bootable USB stick using Ubuntu's Startup Disk Creator program (see http://www.ubuntu.com/download/help/create-a-usb-stick-on-ubuntu) Boot of my computer using the newly made 12.04.1 Alternate install on USB stick Selection of the option "Check disc for defects" (see https://help.ubuntu.com/community/Installation/CDIntegrityCheck) Steps 1, 2, 3 and 4 went without any problem or error messages. However, step 5 ended with an error message entitled "Integrity test failed" and with the following content: The ./install/netboot/ubuntu-installer/amd64/pxelinux.cfg/default file failed the MD5 checksum verification. Your CD-ROM or this file may have been corrupted. I have experienced the same (might only be similar since I have no exact notes) error message in previous attempts using the 12.04 (i.e. not the maintenance release) Alternate install ISO-file. I have in these cases tried to install anyway and have so far not experienced any problems to my knowledge. Is failed integrity check described above a serious error? What is the solution? Or can it be ignored without further problems?

    Read the article

  • MPI Project Template for VS2010

    If you are developing MS MPI applications with Visual Studio 2010, you are probably tired of following some tedious steps for every new C++ project that you create, similar to the following:1. In Solution Explorer, right-click YourProjectName, then click Properties to open the Property Pages dialog box.2. Expand Configuration Properties and then under VC++ Directories place the cursor at the beginning of the list that appears in the Include Directories text box and then specify the location of the MS MPI C header files, followed by a semicolon, e.g.C:\Program Files\Microsoft HPC Pack 2008 SDK\Include;3. Still under Configuration Properties and under VC++ Directories place the cursor at the beginning of the list that appears in the Library Directories text box and then specify the location of the Microsoft HPC Pack 2008 SDK library file, followed by a semicolon, e.g.if you want to build/debug 32bit application:C:\Program Files\Microsoft HPC Pack 2008 SDK\Lib\i386;if you want to build/debug 64bit application:C:\Program Files\Microsoft HPC Pack 2008 SDK\Lib\amd64;4. Under Configuration Properties and then under Linker, select Input and place the cursor at the beginning of the list that appears in the Additional Dependencies text box and then type the name of the MS MPI library, i.e.msmpi.lib;5. In the code file#include "mpi.h"6. To debug the MPI project you have just setup, under Configuration Properties select Debugging and then switch the Debugger to launch combo value from Local Windows Debugger to MPI Cluster Debugger.Wouldn't it be great if at C++ project creation time you could choose an MPI Project Template that included the steps/configurations above? If you answered "yes", I have good news for you courtesy of a developer on our team (Qing). Feel free to download from Visual Studio gallery the MPI Project Template. Comments about this post welcome at the original blog.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • SQLAuthority News – 2 Whitepapers Announced – AlwaysOn Architecture Guide: Building a High Availability and Disaster Recovery Solution

    - by pinaldave
    Understanding AlwaysOn Architecture is extremely important when building a solution with failover clusters and availability groups. Microsoft has just released two very important white papers related to this subject. Both the white papers are written by top experts in industry and have been reviewed by excellent panel of experts. Every time I talk with various organizations who are adopting the SQL Server 2012 they are always excited with the concept of the new feature AlwaysOn. One of the requests I often here is the related to detailed documentations which can help enterprises to build a robust high availability and disaster recovery solution. I believe following two white paper now satisfies the request. AlwaysOn Architecture Guide: Building a High Availability and Disaster Recovery Solution by Using AlwaysOn Availability Groups SQL Server 2012 AlwaysOn Availability Groups provides a unified high availability and disaster recovery (HADR) solution. This paper details the key topology requirements of this specific design pattern on important concepts like quorum configuration considerations, steps required to build the environment, and a workflow that shows how to handle a disaster recovery. AlwaysOn Architecture Guide: Building a High Availability and Disaster Recovery Solution by Using Failover Cluster Instances and Availability Groups SQL Server 2012 AlwaysOn Failover Cluster Instances (FCI) and AlwaysOn Availability Groups provide a comprehensive high availability and disaster recovery solution. This paper details the key topology requirements of this specific design pattern on important concepts like asymmetric storage considerations, quorum model selection, quorum votes, steps required to build the environment, and a workflow. If you are not going to implement AlwaysOn feature, this two Whitepapers are still a great reference material to review as it will give you complete idea regarding what it takes to implement AlwaysOn architecture and what kind of efforts needed. One should at least bookmark above two white papers for future reference. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, T SQL, Technology Tagged: AlwaysOn

    Read the article

  • Running ADF Essentials in Tomcat

    - by Rodrigues, Raphael
    Oracle released a few days ago ADF Essentials, which is a free version of its Oracle ADF Framework. Oracle ADF Essentials can run on the Glassfish Application Server, well explained by Shay here  . Glassfish is also certified to run ADF Essentials Application. However, It could be possible to run ADF Essentials Applications in a Java EE Container. So, I’ll describe the steps to run the ADF Faces Rich Client demo application into a Tomcat 7. Before we start, you should download the files: • Apache Tomcat 7 : http://tomcat.apache.org/download-70.cgi • Oracle ADF Essentials 11.1.2.3 : http://www.oracle.com/technetwork/developer-tools/adf/downloads/index.html • Oracle ADF Faces Components Demo 11.1.2.3: http://www.oracle.com/technetwork/developer-tools/adf/downloads/index.html Steps: 1. Extract your tomcat 7. In my case, I choose D:\ apache-tomcat-7.0.29 2. Extract ADF Essentials zip file inside the %TOMCAT_HOME%\lib 3. Put the rcf-dvt-demo.war file inside the %TOMCAT_HOME%\webapps 4. Open the file %TOMCAT_HOME%\bin\catalina.bat (or .sh if you’re in linux environment) and add in the end of the line ‘set JAVA_OPTS=%JAVA_OPTS% %LOGGING_CONFIG%’ this -Xms1024m -Xmx1024m If you don’t do this, probably when you start you’ll see a OutOfMemory error. 5. Here is the little trick, tomcat does not come with jsf jar’s, so you have to put there. So, I went to the Oracle Jdeveloper 11.1.2 instalation and search for this files: • jsf-api.jar • jsf-impl.jar • glassfish.jstl_1.2.0.1.jar 6. You’re ready to start tomcat in %TOMCAT_HOME%\bin\startup.bat If everything is fine, you will be able to open your favourite browser and type http://localhost:8080/rcf-dvt-demo/faces/index.jspx

    Read the article

  • Keyboard locking up in Visual Studio 2010, Part 2

    - by Jim Wang
    Last week I posted about looking into the keyboard locking up issue in Visual Studio.  So far it looks like not a lot of people have replied to provide concrete repro steps, which confirms my suspicion that this is somewhat of a random issue. So at this point, I have a couple of choices.  I can either wait for somebody in the community to provide a repro of the problem that I can reliably run into, or I can do the work myself. I’m going to do both, so while I’m waiting for more possible bug reports, I’m going to write a tool that models the behavior of a typical Visual Studio user and use that to hopefully isolate the problem. I’ve chosen to go with this path since given the information in the bug reports, it seems people hit the issue with many different configurations in many different scenarios.  This means that me sitting down without any solid repro steps is likely not going to be a good use of time.  Instead, I’m going to go with a model-based testing approach where I will define a series of actions that a user in VS can do, and then proceed to run my model.  I’ll let you guys know how this works out for isolating bugs :) I’m using an internal tool for the model engine and AutoIt for the UI automation (I want something lightweight for a one-off).  One of the challenges will be getting feedback: AutoIt is great at driving, but not so great at understanding what success and failure means.

    Read the article

  • OCS 2007 Access Edge Server Certificate issue

    - by BWCA
    We are currently building additional OCS 2007 R2 Access Edge Servers to handle additional capacity.  We ran into a SSL certificate issue when we were setting up the servers. Before running the steps to Deploy an Edge Server, we successfully imported our SSL certificate that we use for external access on all of the new servers.  After successfully completing the first three Deploy Edge Server steps one one of the new servers, we started working on Step 4: Configure Certificates for the Edge Server.  After selecting Assign an existing certificate from the common tasks list and clicking Next to select a certificate, there were no certificates listed as shown below.   The first thing we did was to use the Certificates mmc snap-in to review the SSL certificate information.  We noticed in the General tab that Windows does not have enough information to verify this certificate and in the Certification Path that the issuer of this certificate could not be found for the SSL certificate that we imported successfully earlier.     While troubleshooting, we learned that we could not access the URL for the certificate’s CRL to download the CRL file due to restrictive firewall rules between the new OCS 2007 R2 Access Edge Servers and the Internet. After modifying the firewall rules, we were able to download the CRL file and when we reran Step 4 to assign an existing certificate, the certificate was listed.

    Read the article

  • Why do I need lib64 on my 32 bit machine?

    - by Tim
    I am trying to install Oracle on my 32-bit machine that runs Ubuntu 10.4. I am following install Oracle on Ubuntu tutorial. At the very first step there is a requirement to manually install library libstdc++5. Author does 2 steps: download libstdc++5_3.3.6-17ubuntu1_amd64.deb from here download ia32-libs_2.7ubuntu6.1_amd64.deb from here As you may have probably noticed these 2 files contain an "_amd64" postfix, which pointed me out that author is using 64-bit amd processor. Each of these files author copied to /usr/lib64 and /usr/lib32 folders correspondingly and simply make soft links libstdc++.so.5 in both folders. Since I am running 32-bit machine I have simply downloaded those 2 files without "_amd64" postfix. Unexpectedly for me I have also found 2 lib folders in my /usr folder: /usr/lib64 and /usr/lib. So here is my problem: I do not understand which files and where do I have to copy: 1) Do I have to make the same steps as the author has done, i.e. download files with "_amd64" postfixes and place them in my /usr/lib64 and /usr/lib folders? 2) Or do I have to use libraries without "_amd64" postfix? And one more question: why do I have /usr/lib64 at all?

    Read the article

  • Problem to install Apache 2.4.2 in Ubuntu 12.04

    - by Michael
    I followed these steps to install Apache 2.4.2 in Ubuntu 12.04, but it seems Apache is not installed, here's what I did (I followed the steps in this site http://www.discusswire.com/apache-2-4-installation-ubuntu/): sudo apt-get install build-essential sudo apt-get build-dep apache2 wget http://apache.mirrors.pair.com/httpd/httpd-2.4.2.tar.gz tar -xzvf httpd-2.4.2.tar.gz && cd httpd-2.4.2 sudo ./configure --prefix=/usr/local/apache2 --enable-mods-shared=all --enable-deflate --enable-proxy --enable-proxy-balancer --enable-proxy-http --with-mpm=prefork sudo make sudo make install when I tried to start by issuing sudo /usr/local/apache2/bin/apachectl start at terminal, I got the following warning: "AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1. Set the 'ServerName' directive globally to suppress this message" and when I typed top at terminal, the apache is not there. I also tried to go to http://localhost/ or 127.0.0.1 or even 127.0.1.1 it showed "Can't establish connection to server ..." message. ps: I checked the error log and it showed "[Fri Jul 27 15:49:00.703901 2012] [proxy_balancer:emerg] [pid 20781] AH01177: Failed to lookup provider 'shm' for 'slotmem': is mod_slotmem_shm loaded?? [Fri Jul 27 15:49:00.704083 2012] [:emerg] [pid 20781] AH00020: Configuration Failed, exiting" What I'm missing? Thanks Michael

    Read the article

  • Designing application flow

    - by Umesh Awasthi
    I am creating a web application in java where I need to mock the following flow. When user trigger a certain process (add product to cart), I need to pass through following steps Need to see in HTTP Session if user is logged in. Check HTTP Session if shopping cart is there If user exist in HTTP Session and his/her cart do not exist in HTTP Session Get user cart from the database. add item to cart and save it to HTTP session and update cart in DB. If cart does not exist in DB, create new cart and and save in it HTTP Session. Though I missed a lot of use cases here (do not want question length to increase a lot), but most of the flow will be same as I described in above steps. My flow will start from the Controller and will go towards Service Layer and than ends up in the DAO layer. Since there will be a lot of use cases where I need to check HTTP session and based on that need to call Service layer, I was planning to add a Facade layer which should be responsible to do this for me like checking Session and interacting with Service layer. Please suggest if this is a valid approach or any other best approach can be implemented here? One more point where I am confused is how to handle HTTP session in facade layer? do I need to pass HTTP session object each time I call my Facade or any other approach can be used here?

    Read the article

  • SonicAgile Now with Dropbox Integration

    - by Stephen.Walther
    SonicAgile, our free Agile Project Management Tool, now integrates with Dropbox. You can upload files such as logos, videos, and documentation, and associate the files with stories and epics. Before you can take advantage of this new feature, you need to get a Dropbox account. You can get a free Dropbox account that contains up to 2 Gigabytes of data. See the pricing here: https://www.dropbox.com/pricing Connecting with Dropbox You only need to connect your SonicAgile project to Dropbox once. Follow these steps: Login/Register at http://SonicAgile.com Click the Settings link to navigate to Project Settings. Select the Files tab (the last tab). Click the connect link to connect to Dropbox. After you complete these steps, a new folder is created in your Dropbox at Apps\SonicAgile. All of your SonicAgile files are stored here. Uploading Files to SonicAgile After your SonicAgile project is connected to Dropbox, a new Files tab appears for every story. You can upload files under the Files tab by clicking the upload file link. When files are uploaded, the files are stored on your Dropbox under the Apps\SonicAgile folder. Be aware that anyone who is a member of your project – all of your team members – can upload, delete, and view any Dropbox files associated with any story in your project. Everyone in your project should have access to all of the information needed to complete the project successfully.  This is the Agile way of doing things. Summary I hope you like the new Dropbox integration! I think you’ll find that it is really useful to be able to attach files to your work items. Use the comments section below to let me know what you think.

    Read the article

  • Announcement: Oracle Database Appliance 2.4 patch update now available

    - by uwes
    The Oracle Database Appliance 2.4 patch is now available from My Oracle Support (MOS).  If you search for the Oracle Database Appliance 2.4.0.0.0 Kit under Patches it will display the newly uploaded bundles. The patch highlights include: Normal redundancy (double-mirroring) option providing 6TB of usable storage Enhanced Diagnostics - Trace File Analyzer and ODACHK Also, if you review the README, you may see content that says:        "The grid infrastructure and database patching, both are rolling upgradable. During our patching, we patch the node 1 first and when completed, we patch the node 2." I would like to clarify that the 'infrastructure' updates (OS, Firmware, ILOM, etc) will require a  short downtime of the ODA while it is applied.  When you update the grid infrastructure (--gi), the appliance manager verifies that the infrastructure was updated so you cannot just patch the GI without first updating the infrastructure. The high level update patch steps include (but not limited to): Download patch update to your ODA The --infra (infrastructure) is updated and ODA Databases are down and the ODA is/may be rebooted ODA and GI/Databases are restarted Issue the command to update the Grid Infrastructure/databases (The order of the steps are completed automatically and you cannot control when the nodes are brought up and down during the patching) Node 1 -- shutdown databases and GI Node 1 -- patch GI/database Node 1 -- bring up databases and GI Node 2 -- shutdown databases and GI Node 2 -- patch GI/database Node 2 -- bring up databases and GI A replay from Friday's with Sohan on the 2.4 release can be found here.  The PDF of the presentation is here. The Data Sheet, WP, and 2.4 Configurator are available on the ODA OTN site.

    Read the article

  • Why doesn't Unity's OnCollisionEnter give me surface normals, and what's the most reliable way to get them?

    - by michael.bartnett
    Unity's on collision event gives you a Collision object that gives you some information about the collision that happened (including a list of ContactPoints with hit normals). But what you don't get is surface normals for the collider that you hit. Here's a screenshot to illustrate. The red line is from ContactPoint.normal and the blue line is from RaycastHit.normal. Is this an instance of Unity hiding information to provide a simplified API? Or do standard 3D realtime collision detection techniques just not collect this information? And for the second part of the question, what's a surefire and relatively efficient way to get a surface normal for a collision? I know that raycasting gives you surface normals, but it seems I need to do several raycasts to accomplish this for all scenarios (maybe a contact point/normal combination misses the collider on the first cast, or maybe you need to do some average of all the contact points' normals to get the best result). My current method: Back up the Collision.contacts[0].point along its hit normal Raycast down the negated hit normal for float.MaxValue, on Collision.collider If that fails, repeat steps 1 and 2 with the non-negated normal If that fails, try steps 1 to 3 with Collision.contacts[1] Repeat 4 until successful or until all contact points exhausted. Give up, return Vector3.zero. This seems to catch everything, but all those raycasts make me queasy, and I'm not sure how to test that this works for enough cases. Is there a better way?

    Read the article

  • HTML5 Development for Dummies

    - by Geertjan
    What's HTML5 all about and what does it actually mean, concretely, to develop HTML5 applications? NetBeans IDE 7.3 provides something called "Project Easel", which is a bundling of HTML5-related tools into a coherent toolset. Within a matter of hours, you'll know everything you need to know about what all this is about if you follow the steps below.  Get A Solid Overview. Start by viewing this screencast from JavaOne 2012 (click the media link on the right side once you've clicked the link below, a downloadable MP4 file is also available there):https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4038That is an awesome way to get you in the right mindframe for what HTML5 is and how it fits into the programming world, together with a very cool and entertaining demo, presented by JB Brock. He starts with about three slides and then does a super awesome demo that puts you into the picture very quickly. Understand How HTML5 Relates To Java EE. Now here's a very cool follow up to the above, again demo-driven (click the media links on the right side once you've clicked the link below):https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4737David Konecny takes the Affable Bean project created via the NetBeans E-commerce Tutorial and creates an HTML5 front end for it! I.e., you are shown how HTML5 can provide a different front end, as an alternative to JSF. Why would you do that? Well, that's explained in David's session, as well as in JB Brock's session, i.e., choose the right technology for the right situation. Sometimes HTML5 might make sense, other times JSF might make sense. Follow The NetBeans Screencasts. To revise and firm up everything you've learned from the above two JavaOne sessions, watch two screencasts by Ken Ganfield, part 1, Getting Started with HTML5 and part 2, Working with JavaScript in HTML5 Applications. In particular, you'll learn how NetBeans IDE provides tools to thoroughly cover the needs of HTML5 developers. Having taken the above three steps, you now have a thorough background, together with an understanding of the tools and procedures needed for creating your own HTML5 applications.

    Read the article

  • Installing Oracle Event Processing 11g by Antoney Reynolds

    - by JuergenKress
    Earlier this month I was involved in organizing the Monument Family History Day. It was certainly a complex event, with dozens of presenters, guides and 100s of visitors. So with that experience of a complex event under my belt I decided to refresh my acquaintance with Oracle Event Processing (CEP). CEP has a developer side based on Eclipse and a runtime environment. Server install The server install is very straightforward (documentation). It is recommended to use the JRockit JDK with CEP so the steps to set up a working CEP server environment are: Download required software JRockit - I used Oracle “JRockit 6 - R28.2.5” which includes “JRockit Mission Control 4.1” and “JRockit Real Time 4.1”. Oracle Event Processor - I used “Complex Event Processing Release 11gR1 (11.1.1.6.0)” Install JRockit Run the JRockit installer, the download is an executable binary that just needs to be marked as executable. Install CEP Unzip the downloaded file Run the CEP installer, the unzipped file is an executable binary that may need to be marked as executable. Choose a custom install and add the examples if needed. It is not recommended to add the examples to a production environment but they can be helpful in development. Developer Install The developer install requires several steps (documentation). A developer install needs access to the software for the server install, although JRockit isn’t necessary for development use. Read the full article by Antony Reynolds. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress,CEP,Reynolds

    Read the article

  • USB drives not recognized all of a sudden

    - by Siddharth
    I have tried most of the advice on askubuntu and other sites, usb_storage enable to fdisk -l. But I am unable to find steps to get it working again. lsusb results Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 002: ID 413c:3012 Dell Computer Corp. Optical Wheel Mouse Bus 005 Device 002: ID 413c:2105 Dell Computer Corp. Model L100 Keyboard Bus 001 Device 005: ID 8564:1000 dmseg | tail reports [ 69.567948] usb 1-4: USB disconnect, device number 4 [ 74.084041] usb 1-6: new high-speed USB device number 5 using ehci_hcd [ 74.240484] Initializing USB Mass Storage driver... [ 74.256033] scsi5 : usb-storage 1-6:1.0 [ 74.256145] usbcore: registered new interface driver usb-storage [ 74.256147] USB Mass Storage support registered. [ 74.257290] usbcore: deregistering interface driver usb-storage fdisk -l reports Device Boot Start End Blocks Id System /dev/sda1 * 2048 972656639 486327296 83 Linux /dev/sda2 972658686 976771071 2056193 5 Extended /dev/sda5 972658688 976771071 2056192 82 Linux swap / Solaris I think I need steps to install and get usb_storage module working. Edit : I tried sudo modprobe -v usb-storage reports sudo modprobe -v usb-storage insmod /lib/modules/3.2.0-48-generic-pae/kernel/drivers/usb/storage/usb-storage.ko Still no usb driver mounted. Nor does a device show up in /dev. Any step by step process to debug and fix this will be really helpful. Thanks.

    Read the article

  • How to install Oracle Database 11g Express Edition on Ubuntu 12.10?

    - by Praneeth Pj
    I installed the Oracle database following the steps mentioned in this blog. Downloaded 11g express edition Created a new user oracle under the group dba. Following steps are executed using this. Unzipped oracle-xe-11.2.0-1.0.x86_64.rpm.zip and then converted the rpm to the Ubuntu package by running: sudo alien --scripts -d oracle-xe-11.2.0-1.0.x86_64.rpm Created /sbin/chkconfig file and added the entries as specified there. Created /etc/sysctl.d/60-oracle.conf and added the entries as specified in the same link as above. Running the commands: ln -s /usr/bin/awk /bin/awk mkdir /var/lock/subsys touch /var/lock/subsys/listener .deb generated in step 3: sudo dpkg --install oracle-xe_11.2.0-2_amd64.deb Left the default values as it is: sudo /etc/init.d/oracle-xe configure Set the following env variables in ~/.bashrc file: export ORACLE_HOME=/u01/app/oracle/product/11.2.0/xe export ORACLE_SID=XE export NLS_LANG=`$ORACLE_HOME/bin/nls_lang.sh` export ORACLE_BASE=/u01/app/oracle export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH export PATH=$ORACLE_HOME/bin:$PATH Running the commands: chown -R oracle:dba /var/tmp/.oracle chmod -R 755 /var/tmp/.oracle chown -R oracle:dba /tmp/.oracle chmod -R 755 /tmp/.oracle Starting Oracle Database 11g Express Edition instance: sudo service oracle-xe start sqlplus / as sysdba and got the following: SQL*Plus: Release 11.2.0.2.0 Production on Thu Jan 3 09:41:58 2013 Copyright (c) 1982, 2011, Oracle. All rights reserved. Connected to an idle instance. Now when exectuting any SQL statements on SQLplus, I end up with the following error: SQL> select * from dual; select * from dual * ERROR at line 1: ORA-01034: ORACLE not available Process ID: 0 Session ID: 0 Serial number: 0 I have increased the swap memory as specified here $ free -m total used free shared buffers cached Mem: 3901 3428 473 0 182 1988 -/+ buffers/cache: 1258 2643 Swap: 5066 0 5066

    Read the article

  • Hybrid USB Install Method - netboot and iso

    - by Samus Arin
    I was following the steps here ("Preparing Files for USB Memory Stick Booting") https://help.ubuntu.com/10.04/installation-guide/i386/boot-usb-files.html to create a installation usb drive for 12.1. The very first paragraph of the article states "The second is to also copy a CD image onto the USB stick and use that as a source for packages, possibly in combination with a mirror." However, the only instructions mentioned regarding an iso image is to simply copy one somewhere on the drive (after its been made bootable and syslinux, vmlinuz and initrd.gz installed/copied): "you should now copy an Ubuntu ISO image onto the stick." I thought it strange there where no configuration steps for "pointing" the kernel to the iso (like a line in syslinux.cfg or a boot: option or something), but went ahead with the install anyway. I don't think the iso was used at all, it appeared that all the OS files where downloaded during the install process. Therefore, I was wondering if anyone knew how to use this local iso image in this particular installation technique (I know the image can be installed with dd, but thats a different technique), b/c I need to reinstall (I installed unity, but it's wayy to much for my little Atom based netbook) ? Thank you.

    Read the article

  • Using Exception Handler in an ADF Task Flow

    - by anmprs
    Problem Statement: Exception thrown in a task flow gets wrapped in an exception that gives an unintelligible error message to the user. Figure 1 Solution 1. Over-writing the error message with a user-friendly error message. Figure 2 Steps to code 1. Generating an exception: Write a method that throws an exception and drop it in the task flow.2. Adding an Exception Handler: Write a method (example below) to overwrite the Error in the bean or data control and drop the method in the task flow. Figure 3 This method is marked as the Exception Handler by Right-Click on method > Mark Activity> Exception Handler or by the button that is displayed in this screenshot Figure 4 The Final task flow should look like this. This will overwrite the exception with the error message in figure 2. Note: There is no need for a control flow between the two method calls (as shown below). Figure 5 Solution 2: Re-Routing the task flow to display an error page Figure 6 Steps to code 1. This is the same as step 1 of solution 1.2. Adding an Exception Handler: The Exception handler is not always a method; in this case it is implemented on a task flow return.  The task flow looks like this. Figure 7 In the figure below you will notice that the task flow return points to a control flow ‘error’ in the calling task flow. Figure 8 This control flow in turn goes to a view ‘error.jsff’ which contains the error message that one wishes to display.  This can be seen in the figure below. (‘withErrorHandling’ is a  call to the task flow in figure 7) Figure 9

    Read the article

  • EM12c Release 4: Database as a Service Enhancements

    - by Adeesh Fulay
    Oracle Enterprise Manager 12.1.0.4 (or simply put EM12c R4) is the latest update to the product. As previous versions, this release provides tons of enhancements and bug fixes, attributing to improved stability and quality. One of the areas that is most exciting and has seen tremendous growth in the last few years is that of Database as a Service. EM12c R4 provides a significant update to Database as a Service. The key themes are: Comprehensive Database Service Catalog (includes single instance, RAC, and Data Guard) Additional Storage Options for Snap Clone (includes support for Database feature CloneDB) Improved Rapid Start Kits Extensible Metering and Chargeback Miscellaneous Enhancements 1. Comprehensive Database Service Catalog Before we get deep into implementation of a service catalog, lets first understand what it is and what benefits it provides. Per ITIL, a service catalog is an exhaustive list of IT services that an organization provides or offers to its employees or customers. Service catalogs have been widely popular in the space of cloud computing, primarily as the medium to provide standardized and pre-approved service definitions. There is already some good collateral out there that talks about Oracle database service catalogs. The two whitepapers i recommend reading are: Service Catalogs: Defining Standardized Database Service High Availability Best Practices for Database Consolidation: The Foundation for Database as a Service [Oracle MAA] EM12c comes with an out-of-the-box service catalog and self service portal since release 1. For the customers, it provides the following benefits: Present a collection of standardized database service definitions, Define standardized pools of hardware and software for provisioning, Role based access to cater to different class of users, Automated procedures to provision the predefined database definitions, Setup chargeback plans based on service tiers and database configuration sizes, etc Starting Release 4, the scope of services offered via the service catalog has been expanded to include databases with varying levels of availability - Single Instance (SI) or Real Application Clusters (RAC) databases with multiple data guard based standby databases. Some salient points of the data guard integration: Standby pools can now be defined across different datacenters or within the same datacenter as the primary (this helps in modelling the concept of near and far DR sites) The standby databases can be single instance, RAC, or RAC One Node databases Multiple standby databases can be provisioned, where the maximum limit is determined by the version of database software The standby databases can be in either mount or read only (requires active data guard option) mode All database versions 10g to 12c supported (as certified with EM 12c) All 3 protection modes can be used - Maximum availability, performance, security Log apply can be set to sync or async along with the required apply lag The different service levels or service tiers are popularly represented using metals - Platinum, Gold, Silver, Bronze, and so on. The Oracle MAA whitepaper (referenced above) calls out the various service tiers as defined by Oracle's best practices, but customers can choose any logical combinations from the table below:  Primary  Standby [1 or more]  EM 12cR4  SI  -  SI  SI  RAC -  RAC SI  RAC RAC  RON -  RON RON where RON = RAC One Node is supported via custom post-scripts in the service template A sample service catalog would look like the image below. Here we have defined 4 service levels, which have been deployed across 2 data centers, and have 3 standardized sizes. Again, it is important to note that this is just an example to get the creative juices flowing. I imagine each customer would come up with their own catalog based on the application requirements, their RTO/RPO goals, and the product licenses they own. In the screenwatch titled 'Build Service Catalog using EM12c DBaaS', I walk through the complete steps required to setup this sample service catalog in EM12c. 2. Additional Storage Options for Snap Clone In my previous blog posts, i have described the snap clone feature in detail. Essentially, it provides a storage agnostic, self service, rapid, and space efficient approach to solving your data cloning problems. The net benefit is that you get incredible amounts of storage savings (on average 90%) all while cloning databases in a matter of minutes. Space and Time, two things enterprises would love to save on. This feature has been designed with the goal of providing data cloning capabilities while protecting your existing investments in server, storage, and software. With this in mind, we have pursued with the dual solution approach of Hardware and Software. In the hardware approach, we connect directly to your storage appliances and perform all low level actions required to rapidly clone your databases. While in the software approach, we use an intermediate software layer to talk to any storage vendor or any storage configuration to perform the same low level actions. Thus delivering the benefits of database thin cloning, without requiring you to drastically changing the infrastructure or IT's operating style. In release 4, we expand the scope of options supported by snap clone with the addition of database CloneDB. While CloneDB is not a new feature, it was first introduced in 11.2.0.2 patchset, it has over the years become more stable and mature. CloneDB leverages a combination of Direct NFS (or dNFS) feature of the database, RMAN image copies, sparse files, and copy-on-write technology to create thin clones of databases from existing backups in a matter of minutes. It essentially has all the traits that we want to present to our customers via the snap clone feature. For more information on cloneDB, i highly recommend reading the following sources: Blog by Tim Hall: Direct NFS (DNFS) CloneDB in Oracle Database 11g Release 2 Oracle OpenWorld Presentation by Cern: Efficient Database Cloning using Direct NFS and CloneDB The advantages of the new CloneDB integration with EM12c Snap Clone are: Space and time savings Ease of setup - no additional software is required other than the Oracle database binary Works on all platforms Reduce the dependence on storage administrators Cloning process fully orchestrated by EM12c, and delivered to developers/DBAs/QA Testers via the self service portal Uses dNFS to delivers better performance, availability, and scalability over kernel NFS Complete lifecycle of the clones managed by EM12c - performance, configuration, etc 3. Improved Rapid Start Kits DBaaS deployments tend to be complex and its setup requires a series of steps. These steps are typically performed across different users and different UIs. The Rapid Start Kit provides a single command solution to setup Database as a Service (DBaaS) and Pluggable Database as a Service (PDBaaS). One command creates all the Cloud artifacts like Roles, Administrators, Credentials, Database Profiles, PaaS Infrastructure Zone, Database Pools and Service Templates. Once the Rapid Start Kit has been successfully executed, requests can be made to provision databases and PDBs from the self service portal. Rapid start kit can create complex topologies involving multiple zones, pools and service templates. It also supports standby databases and use of RMAN image backups. The Rapid Start Kit in reality is a simple emcli script which takes a bunch of xml files as input and executes the complete automation in a matter of seconds. On a full rack Exadata, it took only 40 seconds to setup PDBaaS end-to-end. This kit works for both Oracle's engineered systems like Exadata, SuperCluster, etc and also on commodity hardware. One can draw parallel to the Exadata One Command script, which again takes a bunch of inputs from the administrators and then runs a simple script that configures everything from network to provisioning the DB software. Steps to use the kit: The kit can be found under the SSA plug-in directory on the OMS: EM_BASE/oracle/MW/plugins/oracle.sysman.ssa.oms.plugin_12.1.0.8.0/dbaas/setup It can be run from this default location or from any server which has emcli client installed For most scenarios, you would use the script dbaas/setup/database_cloud_setup.py For Exadata, special integration is provided to reduce the number of inputs even further. The script to use for this scenario would be dbaas/setup/exadata_cloud_setup.py The database_cloud_setup.py script takes two inputs: Cloud boundary xml: This file defines the cloud topology in terms of the zones and pools along with host names, oracle home locations or container database names that would be used as infrastructure for provisioning database services. This file is optional in case of Exadata, as the boundary is well know via the Exadata system target available in EM. Input xml: This file captures inputs for users, roles, profiles, service templates, etc. Essentially, all inputs required to define the DB services and other settings of the self service portal. Once all the xml files have been prepared, invoke the script as follows for PDBaaS: emcli @database_cloud_setup.py -pdbaas -cloud_boundary=/tmp/my_boundary.xml -cloud_input=/tmp/pdb_inputs.xml          The script will prompt for passwords a few times for key users like sysman, cloud admin, SSA admin, etc. Once complete, you can simply log into EM as the self service user and request for databases from the portal. More information available in the Rapid Start Kit chapter in Cloud Administration Guide.  4. Extensible Metering and Chargeback  Last but not the least, Metering and Chargeback in release 4 has been made extensible in all possible regards. The new extensibility features allow customer, partners, system integrators, etc to : Extend chargeback to any target type managed in EM Promote any metric in EM as a chargeback entity Extend list of charge items via metric or configuration extensions Model abstract entities like no. of backup requests, job executions, support requests, etc  A slew of emcli verbs have also been added that allows administrators to create, edit, delete, import/export charge plans, and assign cost centers all via the command line. More information available in the Chargeback API chapter in Cloud Administration Guide. 5. Miscellaneous Enhancements There are other miscellaneous, yet important, enhancements that are worth a mention. These mostly have been asked by customers like you. These are: Custom naming of DB Services Self service users can provide custom names for DB SID, DB service, schemas, and tablespaces Every custom name is validated for uniqueness in EM 'Create like' of Service Templates Now creating variants of a service template is only a click away. This would be vital when you publish service templates to represent different database sizes or service levels. Profile viewer View the details of a profile like datafile, control files, snapshot ids, export/import files, etc prior to its selection in the service template Cleanup automation - for failed and successful requests Single emcli command to cleanup all remnant artifacts of a failed request Cleanup can be performed on a per request bases or by the entire pool As an extension, you can also delete successful requests Improved delete user workflow Allows administrators to reassign cloud resources to another user or delete all of them Support for multiple tablespaces for schema as a service In addition to multiple schemas, user can also specify multiple tablespaces per request I hope this was a good introduction to the new Database as a Service enhancements in EM12c R4. I encourage you to explore many of these new and existing features and give us feedback. Good luck! References: Cloud Management Page on OTN Cloud Administration Guide [Documentation] -- Adeesh Fulay (@adeeshf)

    Read the article

  • Beta Testing Begins for New MySQL 5.6 Developer and DBA Certification Exams

    - by Brandye Barrington
    Be among the first to earn one of Oracle's new MySQL certifications. Exams for the Oracle Certified Professional, MySQL 5.6 Developer (OCP) and Oracle Certified Professional, MySQL 5.6 Database Administrator OCP) certifications are now in beta testing, are are thus available at a greatly discounted rate of $50 USD. Explore the Oracle Certification exam pages below, which share a wealth of details, including preparation steps, exam objectives, number of questions, time allotments, and pricing.  MySQL 5.6 Developer (exam 1Z1-882) MySQL 5.6 Database Administrator (exam 1Z1-883) START TODAYExam appointments are available now. Easily register online by taking the following steps: STEP 1: Go to pearsonvue.com/oracle. STEP 2: Select exam 1Z1-882 (for developers) or exam 1Z1-883 (for DBAs). These new OCP credentials raise the bar for MySQL Certified Developers and Database Administrators. Start today and be among the first to be awarded the new Oracle MySQL 5.6 certifications. QUICK LINKS Oracle Certified Professional, MySQL 5.6 Developer - certification track | exam | VIDEO (2:54) Oracle Certified Professional, MySQL 5.6 Database Administrator - certification track | exam | VIDEO (3:00) Oracle MySQL 5.6 Certification Launch Learn More: Beta Testing Registration for exam: Pearson VUE

    Read the article

< Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >