Search Results

Search found 2476 results on 100 pages for 'aaron james'.

Page 13/100 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Random Movement in a Fixed Container

    - by James Barracca
    I'm looking to create something that can move randomly inside of a fixed div container. I love the way the object moves in this example that I found searching this website... http://jsfiddle.net/Xw29r/15/ The code on the jsfiddle contains the following: $(document).ready(function(){ animateDiv(); }); function makeNewPosition(){ // Get viewport dimensions (remove the dimension of the div) var h = $(window).height() - 50; var w = $(window).width() - 50; var nh = Math.floor(Math.random() * h); var nw = Math.floor(Math.random() * w); return [nh,nw]; } function animateDiv(){ var newq = makeNewPosition(); var oldq = $('.a').offset(); var speed = calcSpeed([oldq.top, oldq.left], newq); $('.a').animate({ top: newq[0], left: newq[1] }, speed, function(){ animateDiv(); }); }; function calcSpeed(prev, next) { var x = Math.abs(prev[1] - next[1]); var y = Math.abs(prev[0] - next[0]); var greatest = x > y ? x : y; var speedModifier = 0.1; var speed = Math.ceil(greatest/speedModifier); return speed; }? CSS: div.a { width: 50px; height:50px; background-color:red; position:fixed; }? However, I don't believe the code above constricts that object at all. I need my object to move randomly inside of a container that is let's say for now... 1200px in width and 500px in height. Can someone steer me in the right direction? I'm super new to coding so I'm having a hard time finding an answer on my own. Thanks so much! James

    Read the article

  • WebLogic Server Virtual Developer Day and Upcoming Developer Webcasts

    - by james.bayer
    We have a series of Virtual Developer Days for WebLogic for different geographies coming up as well as developer-oriented webcasts focusing on building a sample application with popular modern technologies.  The first one is Feb 1st, 2011 for North America, but there are others coming up through mid-March as well.  Check them out and register below. Virtual Developer Days for WebLogic AMER Conference begins: February 1, 2011 at 9:30am PST EUROPE/RUSSIA Conference begins: Thursday Feb 10, 2011 - 9:30 a.m. UK Time / 10:30 a.m. CET INDIA Conference begins: Thursday Feb 17, 2011 -  9:30am India time Register here for the Virtual Developer Day in your geography.   WebLogic Developer Webcasts Watch this brief video to learn more about the developer webcasts where we’ll build an application over several weeks focusing on different features like JPA, Data Grids, JMS, JAX-RS and more.  Register here for the WebLogic developer webcasts.

    Read the article

  • C#: System.Collections.Concurrent.ConcurrentQueue vs. Queue

    - by James Michael Hare
    I love new toys, so of course when .NET 4.0 came out I felt like the proverbial kid in the candy store!  Now, some people get all excited about the IDE and it’s new features or about changes to WPF and Silver Light and yes, those are all very fine and grand.  But me, I get all excited about things that tend to affect my life on the backside of development.  That’s why when I heard there were going to be concurrent container implementations in the latest version of .NET I was salivating like Pavlov’s dog at the dinner bell. They seem so simple, really, that one could easily overlook them.  Essentially they are implementations of containers (many that mirror the generic collections, others are new) that have either been optimized with very efficient, limited, or no locking but are still completely thread safe -- and I just had to see what kind of an improvement that would translate into. Since part of my job as a solutions architect here where I work is to help design, develop, and maintain the systems that process tons of requests each second, the thought of extremely efficient thread-safe containers was extremely appealing.  Of course, they also rolled out a whole parallel development framework which I won’t get into in this post but will cover bits and pieces of as time goes by. This time, I was mainly curious as to how well these new concurrent containers would perform compared to areas in our code where we manually synchronize them using lock or some other mechanism.  So I set about to run a processing test with a series of producers and consumers that would be either processing a traditional System.Collections.Generic.Queue or a System.Collection.Concurrent.ConcurrentQueue. Now, I wanted to keep the code as common as possible to make sure that the only variance was the container, so I created a test Producer and a test Consumer.  The test Producer takes an Action<string> delegate which is responsible for taking a string and placing it on whichever queue we’re testing in a thread-safe manner: 1: internal class Producer 2: { 3: public int Iterations { get; set; } 4: public Action<string> ProduceDelegate { get; set; } 5: 6: public void Produce() 7: { 8: for (int i = 0; i < Iterations; i++) 9: { 10: ProduceDelegate(“Hello”); 11: } 12: } 13: } Then likewise, I created a consumer that took a Func<string> that would read from whichever queue we’re testing and return either the string if data exists or null if not.  Then, if the item doesn’t exist, it will do a 10 ms wait before testing again.  Once all the producers are done and join the main thread, a flag will be set in each of the consumers to tell them once the queue is empty they can shut down since no other data is coming: 1: internal class Consumer 2: { 3: public Func<string> ConsumeDelegate { get; set; } 4: public bool HaltWhenEmpty { get; set; } 5: 6: public void Consume() 7: { 8: bool processing = true; 9: 10: while (processing) 11: { 12: string result = ConsumeDelegate(); 13: 14: if(result == null) 15: { 16: if (HaltWhenEmpty) 17: { 18: processing = false; 19: } 20: else 21: { 22: Thread.Sleep(TimeSpan.FromMilliseconds(10)); 23: } 24: } 25: else 26: { 27: DoWork(); // do something non-trivial so consumers lag behind a bit 28: } 29: } 30: } 31: } Okay, now that we’ve done that, we can launch threads of varying numbers using lambdas for each different method of production/consumption.  First let's look at the lambdas for a typical System.Collections.Generics.Queue with locking: 1: // lambda for putting to typical Queue with locking... 2: var productionDelegate = s => 3: { 4: lock (_mutex) 5: { 6: _mutexQueue.Enqueue(s); 7: } 8: }; 9:  10: // and lambda for typical getting from Queue with locking... 11: var consumptionDelegate = () => 12: { 13: lock (_mutex) 14: { 15: if (_mutexQueue.Count > 0) 16: { 17: return _mutexQueue.Dequeue(); 18: } 19: } 20: return null; 21: }; Nothing new or interesting here.  Just typical locks on an internal object instance.  Now let's look at using a ConcurrentQueue from the System.Collections.Concurrent library: 1: // lambda for putting to a ConcurrentQueue, notice it needs no locking! 2: var productionDelegate = s => 3: { 4: _concurrentQueue.Enqueue(s); 5: }; 6:  7: // lambda for getting from a ConcurrentQueue, once again, no locking required. 8: var consumptionDelegate = () => 9: { 10: string s; 11: return _concurrentQueue.TryDequeue(out s) ? s : null; 12: }; So I pass each of these lambdas and the number of producer and consumers threads to launch and take a look at the timing results.  Basically I’m timing from the time all threads start and begin producing/consuming to the time that all threads rejoin.  I won't bore you with the test code, basically it just launches code that creates the producers and consumers and launches them in their own threads, then waits for them all to rejoin.  The following are the timings from the start of all threads to the Join() on all threads completing.  The producers create 10,000,000 items evenly between themselves and then when all producers are done they trigger the consumers to stop once the queue is empty. These are the results in milliseconds from the ordinary Queue with locking: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 4284 5153 4226 4554.33 4: 10 10 4044 3831 5010 4295.00 5: 100 100 5497 5378 5612 5495.67 6: 1000 1000 24234 25409 27160 25601.00 And the following are the results in milliseconds from the ConcurrentQueue with no locking necessary: 1: Consumers Producers 1 2 3 Time (ms) 2: ---------- ---------- ------ ------ ------ --------- 3: 1 1 3647 3643 3718 3669.33 4: 10 10 2311 2136 2142 2196.33 5: 100 100 2480 2416 2190 2362.00 6: 1000 1000 7289 6897 7061 7082.33 Note that even though obviously 2000 threads is quite extreme, the concurrent queue actually scales really well, whereas the traditional queue with simple locking scales much more poorly. I love the new concurrent collections, they look so much simpler without littering your code with the locking logic, and they perform much better.  All in all, a great new toy to add to your arsenal of multi-threaded processing!

    Read the article

  • error: a NUL byte in commit log message not allowed [migrated]

    - by James
    I'm trying to commit some files in my Git repository, and I'm receiving this error. This all started when I ran git rm -rf folder and git rm -rf file and tried to commit the changes. I've since been able to commit and push without these files being deleted from my remote repository, however I'm now completely stuck. The full error is: error: a NUL byte in commit log message not allowed. fatal: failed to write commit object What can I do to fix this? My Google-fu has let me down on this one. Edit: I've just checked out these deleted files, and attempted to commit again, but it's still giving me the same error. Has my Git repo been corrupted or something?

    Read the article

  • Agile Development

    - by James Oloo Onyango
    Alot of literature has and is being written about agile developement and its surrounding philosophies. In my quest to find the best way to express the importance of agile methodologies, i have found Robert C. Martin's "A Satire Of Two Companies" to be both the most concise and thorough! Enjoy the read! Rufus Inc Project Kick Off Your name is Bob. The date is January 3, 2001, and your head still aches from the recent millennial revelry. You are sitting in a conference room with several managers and a group of your peers. You are a project team leader. Your boss is there, and he has brought along all of his team leaders. His boss called the meeting. "We have a new project to develop," says your boss's boss. Call him BB. The points in his hair are so long that they scrape the ceiling. Your boss's points are just starting to grow, but he eagerly awaits the day when he can leave Brylcream stains on the acoustic tiles. BB describes the essence of the new market they have identified and the product they want to develop to exploit this market. "We must have this new project up and working by fourth quarter October 1," BB demands. "Nothing is of higher priority, so we are cancelling your current project." The reaction in the room is stunned silence. Months of work are simply going to be thrown away. Slowly, a murmur of objection begins to circulate around the conference table.   His points give off an evil green glow as BB meets the eyes of everyone in the room. One by one, that insidious stare reduces each attendee to quivering lumps of protoplasm. It is clear that he will brook no discussion on this matter. Once silence has been restored, BB says, "We need to begin immediately. How long will it take you to do the analysis?" You raise your hand. Your boss tries to stop you, but his spitwad misses you and you are unaware of his efforts.   "Sir, we can't tell you how long the analysis will take until we have some requirements." "The requirements document won't be ready for 3 or 4 weeks," BB says, his points vibrating with frustration. "So, pretend that you have the requirements in front of you now. How long will you require for analysis?" No one breathes. Everyone looks around to see whether anyone has some idea. "If analysis goes beyond April 1, we have a problem. Can you finish the analysis by then?" Your boss visibly gathers his courage: "We'll find a way, sir!" His points grow 3 mm, and your headache increases by two Tylenol. "Good." BB smiles. "Now, how long will it take to do the design?" "Sir," you say. Your boss visibly pales. He is clearly worried that his 3 mms are at risk. "Without an analysis, it will not be possible to tell you how long design will take." BB's expression shifts beyond austere.   "PRETEND you have the analysis already!" he says, while fixing you with his vacant, beady little eyes. "How long will it take you to do the design?" Two Tylenol are not going to cut it. Your boss, in a desperate attempt to save his new growth, babbles: "Well, sir, with only six months left to complete the project, design had better take no longer than 3 months."   "I'm glad you agree, Smithers!" BB says, beaming. Your boss relaxes. He knows his points are secure. After a while, he starts lightly humming the Brylcream jingle. BB continues, "So, analysis will be complete by April 1, design will be complete by July 1, and that gives you 3 months to implement the project. This meeting is an example of how well our new consensus and empowerment policies are working. Now, get out there and start working. I'll expect to see TQM plans and QIT assignments on my desk by next week. Oh, and don't forget that your crossfunctional team meetings and reports will be needed for next month's quality audit." "Forget the Tylenol," you think to yourself as you return to your cubicle. "I need bourbon."   Visibly excited, your boss comes over to you and says, "Gosh, what a great meeting. I think we're really going to do some world shaking with this project." You nod in agreement, too disgusted to do anything else. "Oh," your boss continues, "I almost forgot." He hands you a 30-page document. "Remember that the SEI is coming to do an evaluation next week. This is the evaluation guide. You need to read through it, memorize it, and then shred it. It tells you how to answer any questions that the SEI auditors ask you. It also tells you what parts of the building you are allowed to take them to and what parts to avoid. We are determined to be a CMM level 3 organization by June!"   You and your peers start working on the analysis of the new project. This is difficult because you have no requirements. But from the 10-minute introduction given by BB on that fateful morning, you have some idea of what the product is supposed to do.   Corporate process demands that you begin by creating a use case document. You and your team begin enumerating use cases and drawing oval and stick diagrams. Philosophical debates break out among the team members. There is disagreement as to whether certain use cases should be connected with <<extends>> or <<includes>> relationships. Competing models are created, but nobody knows how to evaluate them. The debate continues, effectively paralyzing progress.   After a week, somebody finds the iceberg.com Web site, which recommends disposing entirely of <<extends>> and <<includes>> and replacing them with <<precedes>> and <<uses>>. The documents on this Web site, authored by Don Sengroiux, describes a method known as stalwart-analysis, which claims to be a step-by-step method for translating use cases into design diagrams. More competing use case models are created using this new scheme, but again, people can't agree on how to evaluate them. The thrashing continues. More and more, the use case meetings are driven by emotion rather than by reason. If it weren't for the fact that you don't have requirements, you'd be pretty upset by the lack of progress you are making. The requirements document arrives on February 15. And then again on February 20, 25, and every week thereafter. Each new version contradicts the previous one. Clearly, the marketing folks who are writing the requirements, empowered though they might be, are not finding consensus.   At the same time, several new competing use case templates have been proposed by the various team members. Each template presents its own particularly creative way of delaying progress. The debates rage on. On March 1, Prudence Putrigence, the process proctor, succeeds in integrating all the competing use case forms and templates into a single, all-encompassing form. Just the blank form is 15 pages long. She has managed to include every field that appeared on all the competing templates. She also presents a 159- page document describing how to fill out the use case form. All current use cases must be rewritten according to the new standard.   You marvel to yourself that it now requires 15 pages of fill-in-the-blank and essay questions to answer the question: What should the system do when the user presses Return? The corporate process (authored by L. E. Ott, famed author of "Holistic Analysis: A Progressive Dialectic for Software Engineers") insists that you discover all primary use cases, 87 percent of all secondary use cases, and 36.274 percent of all tertiary use cases before you can complete analysis and enter the design phase. You have no idea what a tertiary use case is. So in an attempt to meet this requirement, you try to get your use case document reviewed by the marketing department, which you hope will know what a tertiary use case is.   Unfortunately, the marketing folks are too busy with sales support to talk to you. Indeed, since the project started, you have not been able to get a single meeting with marketing, which has provided a never-ending stream of changing and contradictory requirements documents.   While one team has been spinning endlessly on the use case document, another team has been working out the domain model. Endless variations of UML documents are pouring out of this team. Every week, the model is reworked.   The team members can't decide whether to use <<interfaces>> or <<types>> in the model. A huge disagreement has been raging on the proper syntax and application of OCL. Others on the team just got back from a 5-day class on catabolism, and have been producing incredibly detailed and arcane diagrams that nobody else can fathom.   On March 27, with one week to go before analysis is to be complete, you have produced a sea of documents and diagrams but are no closer to a cogent analysis of the problem than you were on January 3. **** And then, a miracle happens.   **** On Saturday, April 1, you check your e-mail from home. You see a memo from your boss to BB. It states unequivocally that you are done with the analysis! You phone your boss and complain. "How could you have told BB that we were done with the analysis?" "Have you looked at a calendar lately?" he responds. "It's April 1!" The irony of that date does not escape you. "But we have so much more to think about. So much more to analyze! We haven't even decided whether to use <<extends>> or <<precedes>>!" "Where is your evidence that you are not done?" inquires your boss, impatiently. "Whaaa . . . ." But he cuts you off. "Analysis can go on forever; it has to be stopped at some point. And since this is the date it was scheduled to stop, it has been stopped. Now, on Monday, I want you to gather up all existing analysis materials and put them into a public folder. Release that folder to Prudence so that she can log it in the CM system by Monday afternoon. Then get busy and start designing."   As you hang up the phone, you begin to consider the benefits of keeping a bottle of bourbon in your bottom desk drawer. They threw a party to celebrate the on-time completion of the analysis phase. BB gave a colon-stirring speech on empowerment. And your boss, another 3 mm taller, congratulated his team on the incredible show of unity and teamwork. Finally, the CIO takes the stage to tell everyone that the SEI audit went very well and to thank everyone for studying and shredding the evaluation guides that were passed out. Level 3 now seems assured and will be awarded by June. (Scuttlebutt has it that managers at the level of BB and above are to receive significant bonuses once the SEI awards level 3.)   As the weeks flow by, you and your team work on the design of the system. Of course, you find that the analysis that the design is supposedly based on is flawedno, useless; no, worse than useless. But when you tell your boss that you need to go back and work some more on the analysis to shore up its weaker sections, he simply states, "The analysis phase is over. The only allowable activity is design. Now get back to it."   So, you and your team hack the design as best you can, unsure of whether the requirements have been properly analyzed. Of course, it really doesn't matter much, since the requirements document is still thrashing with weekly revisions, and the marketing department still refuses to meet with you.     The design is a nightmare. Your boss recently misread a book named The Finish Line in which the author, Mark DeThomaso, blithely suggested that design documents should be taken down to code-level detail. "If we are going to be working at that level of detail," you ask, "why don't we simply write the code instead?" "Because then you wouldn't be designing, of course. And the only allowable activity in the design phase is design!" "Besides," he continues, "we have just purchased a companywide license for Dandelion! This tool enables 'Round the Horn Engineering!' You are to transfer all design diagrams into this tool. It will automatically generate our code for us! It will also keep the design diagrams in sync with the code!" Your boss hands you a brightly colored shrinkwrapped box containing the Dandelion distribution. You accept it numbly and shuffle off to your cubicle. Twelve hours, eight crashes, one disk reformatting, and eight shots of 151 later, you finally have the tool installed on your server. You consider the week your team will lose while attending Dandelion training. Then you smile and think, "Any week I'm not here is a good week." Design diagram after design diagram is created by your team. Dandelion makes it very difficult to draw these diagrams. There are dozens and dozens of deeply nested dialog boxes with funny text fields and check boxes that must all be filled in correctly. And then there's the problem of moving classes between packages. At first, these diagram are driven from the use cases. But the requirements are changing so often that the use cases rapidly become meaningless. Debates rage about whether VISITOR or DECORATOR design patterns should be used. One developer refuses to use VISITOR in any form, claiming that it's not a properly object-oriented construct. Someone refuses to use multiple inheritance, since it is the spawn of the devil. Review meetings rapidly degenerate into debates about the meaning of object orientation, the definition of analysis versus design, or when to use aggregation versus association. Midway through the design cycle, the marketing folks announce that they have rethought the focus of the system. Their new requirements document is completely restructured. They have eliminated several major feature areas and replaced them with feature areas that they anticipate customer surveys will show to be more appropriate. You tell your boss that these changes mean that you need to reanalyze and redesign much of the system. But he says, "The analysis phase is system. But he says, "The analysis phase is over. The only allowable activity is design. Now get back to it."   You suggest that it might be better to create a simple prototype to show to the marketing folks and even some potential customers. But your boss says, "The analysis phase is over. The only allowable activity is design. Now get back to it." Hack, hack, hack, hack. You try to create some kind of a design document that might reflect the new requirements documents. However, the revolution of the requirements has not caused them to stop thrashing. Indeed, if anything, the wild oscillations of the requirements document have only increased in frequency and amplitude.   You slog your way through them.   On June 15, the Dandelion database gets corrupted. Apparently, the corruption has been progressive. Small errors in the DB accumulated over the months into bigger and bigger errors. Eventually, the CASE tool just stopped working. Of course, the slowly encroaching corruption is present on all the backups. Calls to the Dandelion technical support line go unanswered for several days. Finally, you receive a brief e-mail from Dandelion, informing you that this is a known problem and that the solution is to purchase the new version, which they promise will be ready some time next quarter, and then reenter all the diagrams by hand.   ****   Then, on July 1 another miracle happens! You are done with the design!   Rather than go to your boss and complain, you stock your middle desk drawer with some vodka.   **** They threw a party to celebrate the on-time completion of the design phase and their graduation to CMM level 3. This time, you find BB's speech so stirring that you have to use the restroom before it begins. New banners and plaques are all over your workplace. They show pictures of eagles and mountain climbers, and they talk about teamwork and empowerment. They read better after a few scotches. That reminds you that you need to clear out your file cabinet to make room for the brandy. You and your team begin to code. But you rapidly discover that the design is lacking in some significant areas. Actually, it's lacking any significance at all. You convene a design session in one of the conference rooms to try to work through some of the nastier problems. But your boss catches you at it and disbands the meeting, saying, "The design phase is over. The only allowable activity is coding. Now get back to it."   ****   The code generated by Dandelion is really hideous. It turns out that you and your team were using association and aggregation the wrong way, after all. All the generated code has to be edited to correct these flaws. Editing this code is extremely difficult because it has been instrumented with ugly comment blocks that have special syntax that Dandelion needs in order to keep the diagrams in sync with the code. If you accidentally alter one of these comments, the diagrams will be regenerated incorrectly. It turns out that "Round the Horn Engineering" requires an awful lot of effort. The more you try to keep the code compatible with Dandelion, the more errors Dandelion generates. In the end, you give up and decide to keep the diagrams up to date manually. A second later, you decide that there's no point in keeping the diagrams up to date at all. Besides, who has time?   Your boss hires a consultant to build tools to count the number of lines of code that are being produced. He puts a big thermometer graph on the wall with the number 1,000,000 on the top. Every day, he extends the red line to show how many lines have been added. Three days after the thermometer appears on the wall, your boss stops you in the hall. "That graph isn't growing quickly enough. We need to have a million lines done by October 1." "We aren't even sh-sh-sure that the proshect will require a m-million linezh," you blather. "We have to have a million lines done by October 1," your boss reiterates. His points have grown again, and the Grecian formula he uses on them creates an aura of authority and competence. "Are you sure your comment blocks are big enough?" Then, in a flash of managerial insight, he says, "I have it! I want you to institute a new policy among the engineers. No line of code is to be longer than 20 characters. Any such line must be split into two or more preferably more. All existing code needs to be reworked to this standard. That'll get our line count up!"   You decide not to tell him that this will require two unscheduled work months. You decide not to tell him anything at all. You decide that intravenous injections of pure ethanol are the only solution. You make the appropriate arrangements. Hack, hack, hack, and hack. You and your team madly code away. By August 1, your boss, frowning at the thermometer on the wall, institutes a mandatory 50-hour workweek.   Hack, hack, hack, and hack. By September 1st, the thermometer is at 1.2 million lines and your boss asks you to write a report describing why you exceeded the coding budget by 20 percent. He institutes mandatory Saturdays and demands that the project be brought back down to a million lines. You start a campaign of remerging lines. Hack, hack, hack, and hack. Tempers are flaring; people are quitting; QA is raining trouble reports down on you. Customers are demanding installation and user manuals; salespeople are demanding advance demonstrations for special customers; the requirements document is still thrashing, the marketing folks are complaining that the product isn't anything like they specified, and the liquor store won't accept your credit card anymore. Something has to give.    On September 15, BB calls a meeting. As he enters the room, his points are emitting clouds of steam. When he speaks, the bass overtones of his carefully manicured voice cause the pit of your stomach to roll over. "The QA manager has told me that this project has less than 50 percent of the required features implemented. He has also informed me that the system crashes all the time, yields wrong results, and is hideously slow. He has also complained that he cannot keep up with the continuous train of daily releases, each more buggy than the last!" He stops for a few seconds, visibly trying to compose himself. "The QA manager estimates that, at this rate of development, we won't be able to ship the product until December!" Actually, you think it's more like March, but you don't say anything. "December!" BB roars with such derision that people duck their heads as though he were pointing an assault rifle at them. "December is absolutely out of the question. Team leaders, I want new estimates on my desk in the morning. I am hereby mandating 65-hour work weeks until this project is complete. And it better be complete by November 1."   As he leaves the conference room, he is heard to mutter: "Empowermentbah!" * * * Your boss is bald; his points are mounted on BB's wall. The fluorescent lights reflecting off his pate momentarily dazzle you. "Do you have anything to drink?" he asks. Having just finished your last bottle of Boone's Farm, you pull a bottle of Thunderbird from your bookshelf and pour it into his coffee mug. "What's it going to take to get this project done? " he asks. "We need to freeze the requirements, analyze them, design them, and then implement them," you say callously. "By November 1?" your boss exclaims incredulously. "No way! Just get back to coding the damned thing." He storms out, scratching his vacant head.   A few days later, you find that your boss has been transferred to the corporate research division. Turnover has skyrocketed. Customers, informed at the last minute that their orders cannot be fulfilled on time, have begun to cancel their orders. Marketing is re-evaluating whether this product aligns with the overall goals of the company. Memos fly, heads roll, policies change, and things are, overall, pretty grim. Finally, by March, after far too many sixty-five hour weeks, a very shaky version of the software is ready. In the field, bug-discovery rates are high, and the technical support staff are at their wits' end, trying to cope with the complaints and demands of the irate customers. Nobody is happy.   In April, BB decides to buy his way out of the problem by licensing a product produced by Rupert Industries and redistributing it. The customers are mollified, the marketing folks are smug, and you are laid off.     Rupert Industries: Project Alpha   Your name is Robert. The date is January 3, 2001. The quiet hours spent with your family this holiday have left you refreshed and ready for work. You are sitting in a conference room with your team of professionals. The manager of the division called the meeting. "We have some ideas for a new project," says the division manager. Call him Russ. He is a high-strung British chap with more energy than a fusion reactor. He is ambitious and driven but understands the value of a team. Russ describes the essence of the new market opportunity the company has identified and introduces you to Jane, the marketing manager, who is responsible for defining the products that will address it. Addressing you, Jane says, "We'd like to start defining our first product offering as soon as possible. When can you and your team meet with me?" You reply, "We'll be done with the current iteration of our project this Friday. We can spare a few hours for you between now and then. After that, we'll take a few people from the team and dedicate them to you. We'll begin hiring their replacements and the new people for your team immediately." "Great," says Russ, "but I want you to understand that it is critical that we have something to exhibit at the trade show coming up this July. If we can't be there with something significant, we'll lose the opportunity."   "I understand," you reply. "I don't yet know what it is that you have in mind, but I'm sure we can have something by July. I just can't tell you what that something will be right now. In any case, you and Jane are going to have complete control over what we developers do, so you can rest assured that by July, you'll have the most important things that can be accomplished in that time ready to exhibit."   Russ nods in satisfaction. He knows how this works. Your team has always kept him advised and allowed him to steer their development. He has the utmost confidence that your team will work on the most important things first and will produce a high-quality product.   * * *   "So, Robert," says Jane at their first meeting, "How does your team feel about being split up?" "We'll miss working with each other," you answer, "but some of us were getting pretty tired of that last project and are looking forward to a change. So, what are you people cooking up?" Jane beams. "You know how much trouble our customers currently have . . ." And she spends a half hour or so describing the problem and possible solution. "OK, wait a second" you respond. "I need to be clear about this." And so you and Jane talk about how this system might work. Some of her ideas aren't fully formed. You suggest possible solutions. She likes some of them. You continue discussing.   During the discussion, as each new topic is addressed, Jane writes user story cards. Each card represents something that the new system has to do. The cards accumulate on the table and are spread out in front of you. Both you and Jane point at them, pick them up, and make notes on them as you discuss the stories. The cards are powerful mnemonic devices that you can use to represent complex ideas that are barely formed.   At the end of the meeting, you say, "OK, I've got a general idea of what you want. I'm going to talk to the team about it. I imagine they'll want to run some experiments with various database structures and presentation formats. Next time we meet, it'll be as a group, and we'll start identifying the most important features of the system."   A week later, your nascent team meets with Jane. They spread the existing user story cards out on the table and begin to get into some of the details of the system. The meeting is very dynamic. Jane presents the stories in the order of their importance. There is much discussion about each one. The developers are concerned about keeping the stories small enough to estimate and test. So they continually ask Jane to split one story into several smaller stories. Jane is concerned that each story have a clear business value and priority, so as she splits them, she makes sure that this stays true.   The stories accumulate on the table. Jane writes them, but the developers make notes on them as needed. Nobody tries to capture everything that is said; the cards are not meant to capture everything but are simply reminders of the conversation.   As the developers become more comfortable with the stories, they begin writing estimates on them. These estimates are crude and budgetary, but they give Jane an idea of what the story will cost.   At the end of the meeting, it is clear that many more stories could be discussed. It is also clear that the most important stories have been addressed and that they represent several months worth of work. Jane closes the meeting by taking the cards with her and promising to have a proposal for the first release in the morning.   * * *   The next morning, you reconvene the meeting. Jane chooses five cards and places them on the table. "According to your estimates, these cards represent about one perfect team-week's worth of work. The last iteration of the previous project managed to get one perfect team-week done in 3 real weeks. If we can get these five stories done in 3 weeks, we'll be able to demonstrate them to Russ. That will make him feel very comfortable about our progress." Jane is pushing it. The sheepish look on her face lets you know that she knows it too. You reply, "Jane, this is a new team, working on a new project. It's a bit presumptuous to expect that our velocity will be the same as the previous team's. However, I met with the team yesterday afternoon, and we all agreed that our initial velocity should, in fact, be set to one perfectweek for every 3 real-weeks. So you've lucked out on this one." "Just remember," you continue, "that the story estimates and the story velocity are very tentative at this point. We'll learn more when we plan the iteration and even more when we implement it."   Jane looks over her glasses at you as if to say "Who's the boss around here, anyway?" and then smiles and says, "Yeah, don't worry. I know the drill by now."Jane then puts 15 more cards on the table. She says, "If we can get all these cards done by the end of March, we can turn the system over to our beta test customers. And we'll get good feedback from them."   You reply, "OK, so we've got our first iteration defined, and we have the stories for the next three iterations after that. These four iterations will make our first release."   "So," says Jane, can you really do these five stories in the next 3 weeks?" "I don't know for sure, Jane," you reply. "Let's break them down into tasks and see what we get."   So Jane, you, and your team spend the next several hours taking each of the five stories that Jane chose for the first iteration and breaking them down into small tasks. The developers quickly realize that some of the tasks can be shared between stories and that other tasks have commonalities that can probably be taken advantage of. It is clear that potential designs are popping into the developers' heads. From time to time, they form little discussion knots and scribble UML diagrams on some cards.   Soon, the whiteboard is filled with the tasks that, once completed, will implement the five stories for this iteration. You start the sign-up process by saying, "OK, let's sign up for these tasks." "I'll take the initial database generation." Says Pete. "That's what I did on the last project, and this doesn't look very different. I estimate it at two of my perfect workdays." "OK, well, then, I'll take the login screen," says Joe. "Aw, darn," says Elaine, the junior member of the team, "I've never done a GUI, and kinda wanted to try that one."   "Ah, the impatience of youth," Joe says sagely, with a wink in your direction. "You can assist me with it, young Jedi." To Jane: "I think it'll take me about three of my perfect workdays."   One by one, the developers sign up for tasks and estimate them in terms of their own perfect workdays. Both you and Jane know that it is best to let the developers volunteer for tasks than to assign the tasks to them. You also know full well that you daren't challenge any of the developers' estimates. You know these people, and you trust them. You know that they are going to do the very best they can.   The developers know that they can't sign up for more perfect workdays than they finished in the last iteration they worked on. Once each developer has filled his or her schedule for the iteration, they stop signing up for tasks.   Eventually, all the developers have stopped signing up for tasks. But, of course, tasks are still left on the board.   "I was worried that that might happen," you say, "OK, there's only one thing to do, Jane. We've got too much to do in this iteration. What stories or tasks can we remove?" Jane sighs. She knows that this is the only option. Working overtime at the beginning of a project is insane, and projects where she's tried it have not fared well.   So Jane starts to remove the least-important functionality. "Well, we really don't need the login screen just yet. We can simply start the system in the logged-in state." "Rats!" cries Elaine. "I really wanted to do that." "Patience, grasshopper." says Joe. "Those who wait for the bees to leave the hive will not have lips too swollen to relish the honey." Elaine looks confused. Everyone looks confused. "So . . .," Jane continues, "I think we can also do away with . . ." And so, bit by bit, the list of tasks shrinks. Developers who lose a task sign up for one of the remaining ones.   The negotiation is not painless. Several times, Jane exhibits obvious frustration and impatience. Once, when tensions are especially high, Elaine volunteers, "I'll work extra hard to make up some of the missing time." You are about to correct her when, fortunately, Joe looks her in the eye and says, "When once you proceed down the dark path, forever will it dominate your destiny."   In the end, an iteration acceptable to Jane is reached. It's not what Jane wanted. Indeed, it is significantly less. But it's something the team feels that can be achieved in the next 3 weeks.   And, after all, it still addresses the most important things that Jane wanted in the iteration. "So, Jane," you say when things had quieted down a bit, "when can we expect acceptance tests from you?" Jane sighs. This is the other side of the coin. For every story the development team implements,   Jane must supply a suite of acceptance tests that prove that it works. And the team needs these long before the end of the iteration, since they will certainly point out differences in the way Jane and the developers imagine the system's behaviour.   "I'll get you some example test scripts today," Jane promises. "I'll add to them every day after that. You'll have the entire suite by the middle of the iteration."   * * *   The iteration begins on Monday morning with a flurry of Class, Responsibilities, Collaborators sessions. By midmorning, all the developers have assembled into pairs and are rapidly coding away. "And now, my young apprentice," Joe says to Elaine, "you shall learn the mysteries of test-first design!"   "Wow, that sounds pretty rad," Elaine replies. "How do you do it?" Joe beams. It's clear that he has been anticipating this moment. "OK, what does the code do right now?" "Huh?" replied Elaine, "It doesn't do anything at all; there is no code."   "So, consider our task; can you think of something the code should do?" "Sure," Elaine said with youthful assurance, "First, it should connect to the database." "And thereupon, what must needs be required to connecteth the database?" "You sure talk weird," laughed Elaine. "I think we'd have to get the database object from some registry and call the Connect() method. "Ah, astute young wizard. Thou perceives correctly that we requireth an object within which we can cacheth the database object." "Is 'cacheth' really a word?" "It is when I say it! So, what test can we write that we know the database registry should pass?" Elaine sighs. She knows she'll just have to play along. "We should be able to create a database object and pass it to the registry in a Store() method. And then we should be able to pull it out of the registry with a Get() method and make sure it's the same object." "Oh, well said, my prepubescent sprite!" "Hay!" "So, now, let's write a test function that proves your case." "But shouldn't we write the database object and registry object first?" "Ah, you've much to learn, my young impatient one. Just write the test first." "But it won't even compile!" "Are you sure? What if it did?" "Uh . . ." "Just write the test, Elaine. Trust me." And so Joe, Elaine, and all the other developers began to code their tasks, one test case at a time. The room in which they worked was abuzz with the conversations between the pairs. The murmur was punctuated by an occasional high five when a pair managed to finish a task or a difficult test case.   As development proceeded, the developers changed partners once or twice a day. Each developer got to see what all the others were doing, and so knowledge of the code spread generally throughout the team.   Whenever a pair finished something significant whether a whole task or simply an important part of a task they integrated what they had with the rest of the system. Thus, the code base grew daily, and integration difficulties were minimized.   The developers communicated with Jane on a daily basis. They'd go to her whenever they had a question about the functionality of the system or the interpretation of an acceptance test case.   Jane, good as her word, supplied the team with a steady stream of acceptance test scripts. The team read these carefully and thereby gained a much better understanding of what Jane expected the system to do. By the beginning of the second week, there was enough functionality to demonstrate to Jane. She watched eagerly as the demonstration passed test case after test case. "This is really cool," Jane said as the demonstration finally ended. "But this doesn't seem like one-third of the tasks. Is your velocity slower than anticipated?"   You grimace. You'd been waiting for a good time to mention this to Jane but now she was forcing the issue. "Yes, unfortunately, we are going more slowly than we had expected. The new application server we are using is turning out to be a pain to configure. Also, it takes forever to reboot, and we have to reboot it whenever we make even the slightest change to its configuration."   Jane eyes you with suspicion. The stress of last Monday's negotiations had still not entirely dissipated. She says, "And what does this mean to our schedule? We can't slip it again, we just can't. Russ will have a fit! He'll haul us all into the woodshed and ream us some new ones."   You look Jane right in the eyes. There's no pleasant way to give someone news like this. So you just blurt out, "Look, if things keep going like they're going, we're not going to be done with everything by next Friday. Now it's possible that we'll figure out a way to go faster. But, frankly, I wouldn't depend on that. You should start thinking about one or two tasks that could be removed from the iteration without ruining the demonstration for Russ. Come hell or high water, we are going to give that demonstration on Friday, and I don't think you want us to choose which tasks to omit."   "Aw forchrisakes!" Jane barely manages to stifle yelling that last word as she stalks away, shaking her head. Not for the first time, you say to yourself, "Nobody ever promised me project management would be easy." You are pretty sure it won't be the last time, either.   Actually, things went a bit better than you had hoped. The team did, in fact, have to drop one task from the iteration, but Jane had chosen wisely, and the demonstration for Russ went without a hitch. Russ was not impressed with the progress, but neither was he dismayed. He simply said, "This is pretty good. But remember, we have to be able to demonstrate this system at the trade show in July, and at this rate, it doesn't look like you'll have all that much to show." Jane, whose attitude had improved dramatically with the completion of the iteration, responded to Russ by saying, "Russ, this team is working hard, and well. When July comes around, I am confident that we'll have something significant to demonstrate. It won't be everything, and some of it may be smoke and mirrors, but we'll have something."   Painful though the last iteration was, it had calibrated your velocity numbers. The next iteration went much better. Not because your team got more done than in the last iteration but simply because the team didn't have to remove any tasks or stories in the middle of the iteration.   By the start of the fourth iteration, a natural rhythm has been established. Jane, you, and the team know exactly what to expect from one another. The team is running hard, but the pace is sustainable. You are confident that the team can keep up this pace for a year or more.   The number of surprises in the schedule diminishes to near zero; however, the number of surprises in the requirements does not. Jane and Russ frequently look over the growing system and make recommendations or changes to the existing functionality. But all parties realize that these changes take time and must be scheduled. So the changes do not cause anyone's expectations to be violated. In March, there is a major demonstration of the system to the board of directors. The system is very limited and is not yet in a form good enough to take to the trade show, but progress is steady, and the board is reasonably impressed.   The second release goes even more smoothly than the first. By now, the team has figured out a way to automate Jane's acceptance test scripts. The team has also refactored the design of the system to the point that it is really easy to add new features and change old ones. The second release was done by the end of June and was taken to the trade show. It had less in it than Jane and Russ would have liked, but it did demonstrate the most important features of the system. Although customers at the trade show noticed that certain features were missing, they were very impressed overall. You, Russ, and Jane all returned from the trade show with smiles on your faces. You all felt as though this project was a winner.   Indeed, many months later, you are contacted by Rufus Inc. That company had been working on a system like this for its internal operations. Rufus has canceled the development of that system after a death-march project and is negotiating to license your technology for its environment.   Indeed, things are looking up!

    Read the article

  • C# 4: The Curious ConcurrentDictionary

    - by James Michael Hare
    In my previous post (here) I did a comparison of the new ConcurrentQueue versus the old standard of a System.Collections.Generic Queue with simple locking.  The results were exactly what I would have hoped, that the ConcurrentQueue was faster with multi-threading for most all situations.  In addition, concurrent collections have the added benefit that you can enumerate them even if they're being modified. So I set out to see what the improvements would be for the ConcurrentDictionary, would it have the same performance benefits as the ConcurrentQueue did?  Well, after running some tests and multiple tweaks and tunes, I have good and bad news. But first, let's look at the tests.  Obviously there's many things we can do with a dictionary.  One of the most notable uses, of course, in a multi-threaded environment is for a small, local in-memory cache.  So I set about to do a very simple simulation of a cache where I would create a test class that I'll just call an Accessor.  This accessor will attempt to look up a key in the dictionary, and if the key exists, it stops (i.e. a cache "hit").  However, if the lookup fails, it will then try to add the key and value to the dictionary (i.e. a cache "miss").  So here's the Accessor that will run the tests: 1: internal class Accessor 2: { 3: public int Hits { get; set; } 4: public int Misses { get; set; } 5: public Func<int, string> GetDelegate { get; set; } 6: public Action<int, string> AddDelegate { get; set; } 7: public int Iterations { get; set; } 8: public int MaxRange { get; set; } 9: public int Seed { get; set; } 10:  11: public void Access() 12: { 13: var randomGenerator = new Random(Seed); 14:  15: for (int i=0; i<Iterations; i++) 16: { 17: // give a wide spread so will have some duplicates and some unique 18: var target = randomGenerator.Next(1, MaxRange); 19:  20: // attempt to grab the item from the cache 21: var result = GetDelegate(target); 22:  23: // if the item doesn't exist, add it 24: if(result == null) 25: { 26: AddDelegate(target, target.ToString()); 27: Misses++; 28: } 29: else 30: { 31: Hits++; 32: } 33: } 34: } 35: } Note that so I could test different implementations, I defined a GetDelegate and AddDelegate that will call the appropriate dictionary methods to add or retrieve items in the cache using various techniques. So let's examine the three techniques I decided to test: Dictionary with mutex - Just your standard generic Dictionary with a simple lock construct on an internal object. Dictionary with ReaderWriterLockSlim - Same Dictionary, but now using a lock designed to let multiple readers access simultaneously and then locked when a writer needs access. ConcurrentDictionary - The new ConcurrentDictionary from System.Collections.Concurrent that is supposed to be optimized to allow multiple threads to access safely. So the approach to each of these is also fairly straight-forward.  Let's look at the GetDelegate and AddDelegate implementations for the Dictionary with mutex lock: 1: var addDelegate = (key,val) => 2: { 3: lock (_mutex) 4: { 5: _dictionary[key] = val; 6: } 7: }; 8: var getDelegate = (key) => 9: { 10: lock (_mutex) 11: { 12: string val; 13: return _dictionary.TryGetValue(key, out val) ? val : null; 14: } 15: }; Nothing new or fancy here, just your basic lock on a private object and then query/insert into the Dictionary. Now, for the Dictionary with ReadWriteLockSlim it's a little more complex: 1: var addDelegate = (key,val) => 2: { 3: _readerWriterLock.EnterWriteLock(); 4: _dictionary[key] = val; 5: _readerWriterLock.ExitWriteLock(); 6: }; 7: var getDelegate = (key) => 8: { 9: string val; 10: _readerWriterLock.EnterReadLock(); 11: if(!_dictionary.TryGetValue(key, out val)) 12: { 13: val = null; 14: } 15: _readerWriterLock.ExitReadLock(); 16: return val; 17: }; And finally, the ConcurrentDictionary, which since it does all it's own concurrency control, is remarkably elegant and simple: 1: var addDelegate = (key,val) => 2: { 3: _concurrentDictionary[key] = val; 4: }; 5: var getDelegate = (key) => 6: { 7: string s; 8: return _concurrentDictionary.TryGetValue(key, out s) ? s : null; 9: };                    Then, I set up a test harness that would simply ask the user for the number of concurrent Accessors to attempt to Access the cache (as specified in Accessor.Access() above) and then let them fly and see how long it took them all to complete.  Each of these tests was run with 10,000,000 cache accesses divided among the available Accessor instances.  All times are in milliseconds. 1: Dictionary with Mutex Locking 2: --------------------------------------------------- 3: Accessors Mostly Misses Mostly Hits 4: 1 7916 3285 5: 10 8293 3481 6: 100 8799 3532 7: 1000 8815 3584 8:  9:  10: Dictionary with ReaderWriterLockSlim Locking 11: --------------------------------------------------- 12: Accessors Mostly Misses Mostly Hits 13: 1 8445 3624 14: 10 11002 4119 15: 100 11076 3992 16: 1000 14794 4861 17:  18:  19: Concurrent Dictionary 20: --------------------------------------------------- 21: Accessors Mostly Misses Mostly Hits 22: 1 17443 3726 23: 10 14181 1897 24: 100 15141 1994 25: 1000 17209 2128 The first test I did across the board is the Mostly Misses category.  The mostly misses (more adds because data requested was not in the dictionary) shows an interesting trend.  In both cases the Dictionary with the simple mutex lock is much faster, and the ConcurrentDictionary is the slowest solution.  But this got me thinking, and a little research seemed to confirm it, maybe the ConcurrentDictionary is more optimized to concurrent "gets" than "adds".  So since the ratio of misses to hits were 2 to 1, I decided to reverse that and see the results. So I tweaked the data so that the number of keys were much smaller than the number of iterations to give me about a 2 to 1 ration of hits to misses (twice as likely to already find the item in the cache than to need to add it).  And yes, indeed here we see that the ConcurrentDictionary is indeed faster than the standard Dictionary here.  I have a strong feeling that as the ration of hits-to-misses gets higher and higher these number gets even better as well.  This makes sense since the ConcurrentDictionary is read-optimized. Also note that I tried the tests with capacity and concurrency hints on the ConcurrentDictionary but saw very little improvement, I think this is largely because on the 10,000,000 hit test it quickly ramped up to the correct capacity and concurrency and thus the impact was limited to the first few milliseconds of the run. So what does this tell us?  Well, as in all things, ConcurrentDictionary is not a panacea.  It won't solve all your woes and it shouldn't be the only Dictionary you ever use.  So when should we use each? Use System.Collections.Generic.Dictionary when: You need a single-threaded Dictionary (no locking needed). You need a multi-threaded Dictionary that is loaded only once at creation and never modified (no locking needed). You need a multi-threaded Dictionary to store items where writes are far more prevalent than reads (locking needed). And use System.Collections.Concurrent.ConcurrentDictionary when: You need a multi-threaded Dictionary where the writes are far more prevalent than reads. You need to be able to iterate over the collection without locking it even if its being modified. Both Dictionaries have their strong suits, I have a feeling this is just one where you need to know from design what you hope to use it for and make your decision based on that criteria.

    Read the article

  • C#: System.Lazy&lt;T&gt; and the Singleton Design Pattern

    - by James Michael Hare
    So we've all coded a Singleton at one time or another.  It's a really simple pattern and can be a slightly more elegant alternative to global variables.  Make no mistake, Singletons can be abused and are often over-used -- but occasionally you find a Singleton is the most elegant solution. For those of you not familiar with a Singleton, the basic Design Pattern is that a Singleton class is one where there is only ever one instance of the class created.  This means that constructors must be private to avoid users creating their own instances, and a static property (or method in languages without properties) is defined that returns a single static instance. 1: public class Singleton 2: { 3: // the single instance is defined in a static field 4: private static readonly Singleton _instance = new Singleton(); 5:  6: // constructor private so users can't instantiate on their own 7: private Singleton() 8: { 9: } 10:  11: // read-only property that returns the static field 12: public static Singleton Instance 13: { 14: get 15: { 16: return _instance; 17: } 18: } 19: } This is the most basic singleton, notice the key features: Static readonly field that contains the one and only instance. Constructor is private so it can only be called by the class itself. Static property that returns the single instance. Looks like it satisfies, right?  There's just one (potential) problem.  C# gives you no guarantee of when the static field _instance will be created.  This is because the C# standard simply states that classes (which are marked in the IL as BeforeFieldInit) can have their static fields initialized any time before the field is accessed.  This means that they may be initialized on first use, they may be initialized at some other time before, you can't be sure when. So what if you want to guarantee your instance is truly lazy.  That is, that it is only created on first call to Instance?  Well, there's a few ways to do this.  First we'll show the old ways, and then talk about how .Net 4.0's new System.Lazy<T> type can help make the lazy-Singleton cleaner. Obviously, we could take on the lazy construction ourselves, but being that our Singleton may be accessed by many different threads, we'd need to lock it down. 1: public class LazySingleton1 2: { 3: // lock for thread-safety laziness 4: private static readonly object _mutex = new object(); 5:  6: // static field to hold single instance 7: private static LazySingleton1 _instance = null; 8:  9: // property that does some locking and then creates on first call 10: public static LazySingleton1 Instance 11: { 12: get 13: { 14: if (_instance == null) 15: { 16: lock (_mutex) 17: { 18: if (_instance == null) 19: { 20: _instance = new LazySingleton1(); 21: } 22: } 23: } 24:  25: return _instance; 26: } 27: } 28:  29: private LazySingleton1() 30: { 31: } 32: } This is a standard double-check algorithm so that you don't lock if the instance has already been created.  However, because it's possible two threads can go through the first if at the same time the first time back in, you need to check again after the lock is acquired to avoid creating two instances. Pretty straightforward, but ugly as all heck.  Well, you could also take advantage of the C# standard's BeforeFieldInit and define your class with a static constructor.  It need not have a body, just the presence of the static constructor will remove the BeforeFieldInit attribute on the class and guarantee that no fields are initialized until the first static field, property, or method is called.   1: public class LazySingleton2 2: { 3: // because of the static constructor, this won't get created until first use 4: private static readonly LazySingleton2 _instance = new LazySingleton2(); 5:  6: // Returns the singleton instance using lazy-instantiation 7: public static LazySingleton2 Instance 8: { 9: get { return _instance; } 10: } 11:  12: // private to prevent direct instantiation 13: private LazySingleton2() 14: { 15: } 16:  17: // removes BeforeFieldInit on class so static fields not 18: // initialized before they are used 19: static LazySingleton2() 20: { 21: } 22: } Now, while this works perfectly, I hate it.  Why?  Because it's relying on a non-obvious trick of the IL to guarantee laziness.  Just looking at this code, you'd have no idea that it's doing what it's doing.  Worse yet, you may decide that the empty static constructor serves no purpose and delete it (which removes your lazy guarantee).  Worse-worse yet, they may alter the rules around BeforeFieldInit in the future which could change this. So, what do I propose instead?  .Net 4.0 adds the System.Lazy type which guarantees thread-safe lazy-construction.  Using System.Lazy<T>, we get: 1: public class LazySingleton3 2: { 3: // static holder for instance, need to use lambda to construct since constructor private 4: private static readonly Lazy<LazySingleton3> _instance 5: = new Lazy<LazySingleton3>(() => new LazySingleton3()); 6:  7: // private to prevent direct instantiation. 8: private LazySingleton3() 9: { 10: } 11:  12: // accessor for instance 13: public static LazySingleton3 Instance 14: { 15: get 16: { 17: return _instance.Value; 18: } 19: } 20: } Note, you need your lambda to call the private constructor as Lazy's default constructor can only call public constructors of the type passed in (which we can't have by definition of a Singleton).  But, because the lambda is defined inside our type, it has access to the private members so it's perfect. Note how the Lazy<T> makes it obvious what you're doing (lazy construction), instead of relying on an IL generation side-effect.  This way, it's more maintainable.  Lazy<T> has many other uses as well, obviously, but I really love how elegant and readable it makes the lazy Singleton.

    Read the article

  • Using JCA Adapter with OSB 11.1.1.3

    - by James Taylor
    In OSB 10g to use the JCA adapters you were required to use JDeveloper to create the necessary WSDLs and XSDs etc using the associated adapter wizard. These files were imported into Oracle Workshop (Eclipse) and used to create the business service as you would any other web service. In 11g unfortunately JDeveloper is still required. The process has changed slightly as described below. As an example I have used the JCA DB adapter as an example. Start JDeveloper 11.1.1.3 Create a new SOA Application Create a new SOA Project and call it DBAdapters. Choose the Empty Composite Template Drag a Database Adapter Component to the External References panel on the composite. Provide a service name. Create a new database connection, or use an existing one Take note of the JNDI Name, e.g. eis/DB/MyConnection This will be used to configure the DB connection in the WebLogic Console. In my example I use a stored procedure, but you can use what ever operation you require. Please refer to the following link for other options: User's Guide for Technology Adapters Select a schema and stored procedure Once the procedure has been selected, accept the defaults and finish. Startup your OEPE version of Eclipse. Create a new Oracle Service Bus Configuration Project (you can use an existing project if you have one) Create a new Oracle Service Bus Project in the configuration project created above. Instead of importing the WSDL and XSD files you import the jca file created in JDeveloper. In Eclipse right click the Oracle Service Bus Project and select Import –> Import    Choose File System Browse to the directory where JDeveloper stores its project Select the jca, wsdl, and xsd files based on the service you created in step 5. Also check the ‘Create selected folders only’ radio button. When you import you may have a little red x indicating the files are invalid. This is due to the location of the files. Open the invalid files and fix the path in relation to where you store your files in the OSB project.   Once you have the files all valid, Right-Click the jca file and select Oracle Service Bus –> Generate Service. This will create a new Business Service. In the WebLogic Console configure the JNDI name defined in step 7. You can now deploy your project and test

    Read the article

  • why is $0 set to -bash?

    - by James Shimer
    First login process name seems to be set to "-bash", but if I subshell then it becomes "bash". for example: root@nowere:~# echo $0 -bash root@nowere:~# bash root@nowere:~# echo $0 bash -bash is causing some scripts to fail, such as . /usr/share/debconf/confmodule exec /usr/share/debconf/frontend -bash Can't exec "-bash": No such file or directory at /usr/share/perl/5.14/IPC/Open3.pm line 186. open2: exec of -bash failed at /usr/share/perl5/Debconf/ConfModule.pm line 59 Anyone know the reason $0 is set to -bash?

    Read the article

  • Beware: Upgrade to ASP.NET MVC 2.0 with care if you use AntiForgeryToken

    - by James Crowley
    If you're thinking of upgrading to MVC 2.0, and you take advantage of the AntiForgeryToken support then be careful - you can easily kick out all active visitors after the upgrade until they restart their browser. Why's this?For the anti forgery validation to take place, ASP.NET MVC uses a session cookie called "__RequestVerificationToken_Lw__". This gets checked for and de-serialized on any page where there is an AntiForgeryToken() call. However, the format of this validation cookie has apparently changed between MVC 1.0 and MVC 2.0. What this means is that when you make to switch on your production server to MVC 2.0, suddenly all your visitors session cookies are invalid, resulting in calls to AntiForgeryToken() throwing exceptions (even on a standard GET request) when de-serializing it: [InvalidCastException: Unable to cast object of type 'System.Web.UI.Triplet' to type 'System.Object[]'.]   System.Web.Mvc.AntiForgeryDataSerializer.Deserialize(String serializedToken) +104[HttpAntiForgeryException (0x80004005): A required anti-forgery token was not supplied or was invalid.]   System.Web.Mvc.AntiForgeryDataSerializer.Deserialize(String serializedToken) +368   System.Web.Mvc.HtmlHelper.GetAntiForgeryTokenAndSetCookie(String salt, String domain, String path) +209   System.Web.Mvc.HtmlHelper.AntiForgeryToken(String salt, String domain, String path) +16   System.Web.Mvc.HtmlHelper.AntiForgeryToken() +10  <snip> So you've just kicked all your active users out of your site with exceptions until they think to restart their browser (to clear the session cookies). The only work around for now is to either write some code that wipes this cookie - or disable use of AntiForgeryToken() in your MVC 2.0 site until you're confident all session cookies will have expired. That in itself isn't very straightforward, given how frequently people tend to hibernate/standby their machines - the session cookie will only clear once the browser has been shut down and re-opened. Hope this helps someone out there!

    Read the article

  • Removing .html and index.html from URL

    - by James Turner
    I'm having some problems trying to Remove the .html extension from URLs Removing 'index.html' from an URL 1) To remove the extension I have tried using this in my htaccess file. RewriteEngine on RewriteCond %{REQUEST_FILENAME} !-d RewriteCond %{REQUEST_FILENAME}\.html -f RewriteRule ^(.*)$ $1.html However when I click links in my HTML such as <a href="abcde.html"></a> it doesn't remove the .html from the URL and I am left with www.website.com/abcde.html 2) I tried using this to remove the index.html RewriteCond %{THE_REQUEST} \/index\.(php|html)\ HTTP [NC] RewriteRule (.*)index\.(php|html)$ /$1 [R=301,L] But when I load an index.html file on my server, my URL looks something like this www.website.com/folder// I am left with an extra / at the end. Can anyone help me out?

    Read the article

  • WebLogic Scripting Tool Tip &ndash; relax the syntax with the easy button

    - by james.bayer
    I stumbled on to this feature in WLST tonight called easeSyntax.  Apparently it’s a hidden feature that one of the WebLogic support engineers blogged about that allows you to simplify the commands in the interactive mode to have fewer parentheses and quotes.  For example, see how some of the commands instead of typing “ls()” I can type '”ls” or “cd(“/somepath”)” can become “cd /somepath”.  It’s not going to save the world, but it will help cut down on some extra typing. The example I was researching when stumbling into this was for how to print the runtime status of deployed application named “hello” on the “AdminServer”.  See the below output. wls:/base_domain/domainConfig> easeSyntax()   You have chosen to ease syntax for some WLST commands. However, the easy syntax should be strictly used in interactive mode. Easy syntax will not function properly in script mode and when used in loops. You can still use the regular jython syntax although you have opted for easy syntax. Use easeSyntax to turn this off. Use help(easeSyntax) for commands that support easy syntax wls:/base_domain/domainConfig> domainRuntime   wls:/base_domain/domainRuntime> ls dr-- AppRuntimeStateRuntime dr-- CoherenceServerLifeCycleRuntimes dr-- ConsoleRuntime dr-- DeployerRuntime dr-- DeploymentManager dr-- DomainServices dr-- LogRuntime dr-- MessageDrivenControlEJBRuntime dr-- MigratableServiceCoordinatorRuntime dr-- MigrationDataRuntimes dr-- PolicySubjectManagerRuntime dr-- SNMPAgentRuntime dr-- ServerLifeCycleRuntimes dr-- ServerRuntimes dr-- ServerServices dr-- ServiceMigrationDataRuntimes   -r-- ActivationTime Wed Dec 15 22:37:02 PST 2010 -r-- MessageDrivenControlEJBRuntime null -r-- MigrationDataRuntimes null -r-- Name base_domain -rw- Parent null -r-- ServiceMigrationDataRuntimes null -r-- Type DomainRuntime   -r-x preDeregister Void : -r-x restartSystemResource Void : WebLogicMBean(weblogic.management.configuration.SystemResourceMBean)   wls:/base_domain/domainRuntime> cd AppRuntimeStateRuntime/AppRuntimeStateRuntime wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime> ls   -r-- ApplicationIds java.lang.String[active-cache#[email protected], coherence-web-spi#[email protected], coherence#3. -r-- Name AppRuntimeStateRuntime -r-- Type AppRuntimeStateRuntime   -r-x getCurrentState String : String(appid),String(moduleid),String(subModuleId),String(target) -r-x getCurrentState String : String(appid),String(moduleid),String(target) -r-x getCurrentState String : String(appid),String(target) -r-x getIntendedState String : String(appid) -r-x getIntendedState String : String(appid),String(target) -r-x getModuleIds String[] : String(appid) -r-x getModuleTargets String[] : String(appid),String(moduleid) -r-x getModuleTargets String[] : String(appid),String(moduleid),String(subModuleId) -r-x getModuleType String : String(appid),String(moduleid) -r-x getRetireTimeMillis Long : String(appid) -r-x getRetireTimeoutSeconds Integer : String(appid) -r-x getSubmoduleIds String[] : String(appid),String(moduleid) -r-x isActiveVersion Boolean : String(appid) -r-x isAdminMode Boolean : String(appid),String(java.lang.String) -r-x preDeregister Void :   wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime> cmo.getCurrentState('hello','AdminServer') 'STATE_ACTIVE' wls:/base_domain/domainRuntime/AppRuntimeStateRuntime/AppRuntimeStateRuntime> cd / wls:/base_domain/domainRuntime>

    Read the article

  • Revisiting ANTS Performance Profiler 7.4

    - by James Michael Hare
    Last year, I did a small review on the ANTS Performance Profiler 6.3, now that it’s a year later and a major version number higher, I thought I’d revisit the review and revise my last post. This post will take the same examples as the original post and update them to show what’s new in version 7.4 of the profiler. Background A performance profiler’s main job is to keep track of how much time is typically spent in each unit of code. This helps when we have a program that is not running at the performance we expect, and we want to know where the program is experiencing issues. There are many profilers out there of varying capabilities. Red Gate’s typically seem to be the very easy to “jump in” and get started with very little training required. So let’s dig into the Performance Profiler. I’ve constructed a very crude program with some obvious inefficiencies. It’s a simple program that generates random order numbers (or really could be any unique identifier), adds it to a list, sorts the list, then finds the max and min number in the list. Ignore the fact it’s very contrived and obviously inefficient, we just want to use it as an example to show off the tool: 1: // our test program 2: public static class Program 3: { 4: // the number of iterations to perform 5: private static int _iterations = 1000000; 6: 7: // The main method that controls it all 8: public static void Main() 9: { 10: var list = new List<string>(); 11: 12: for (int i = 0; i < _iterations; i++) 13: { 14: var x = GetNextId(); 15: 16: AddToList(list, x); 17: 18: var highLow = GetHighLow(list); 19: 20: if ((i % 1000) == 0) 21: { 22: Console.WriteLine("{0} - High: {1}, Low: {2}", i, highLow.Item1, highLow.Item2); 23: Console.Out.Flush(); 24: } 25: } 26: } 27: 28: // gets the next order id to process (random for us) 29: public static string GetNextId() 30: { 31: var random = new Random(); 32: var num = random.Next(1000000, 9999999); 33: return num.ToString(); 34: } 35: 36: // add it to our list - very inefficiently! 37: public static void AddToList(List<string> list, string item) 38: { 39: list.Add(item); 40: list.Sort(); 41: } 42: 43: // get high and low of order id range - very inefficiently! 44: public static Tuple<int,int> GetHighLow(List<string> list) 45: { 46: return Tuple.Create(list.Max(s => Convert.ToInt32(s)), list.Min(s => Convert.ToInt32(s))); 47: } 48: } So let’s run it through the profiler and see what happens! Visual Studio Integration First, let’s look at how the ANTS profilers integrate with Visual Studio’s menu system. Once you install the ANTS profilers, you will get an ANTS menu item with several options: Notice that you can either Profile Performance or Launch ANTS Performance Profiler. These sound similar but achieve two slightly different actions: Profile Performance: this immediately launches the profiler with all defaults selected to profile the active project in Visual Studio. Launch ANTS Performance Profiler: this launches the profiler much the same way as starting it from the Start Menu. The profiler will pre-populate the application and path information, but allow you to change the settings before beginning the profile run. So really, the main difference is that Profile Performance immediately begins profiling with the default selections, where Launch ANTS Performance Profiler allows you to change the defaults and attach to an already-running application. Let’s Fire it Up! So when you fire up ANTS either via Start Menu or Launch ANTS Performance Profiler menu in Visual Studio, you are presented with a very simple dialog to get you started: Notice you can choose from many different options for application type. You can profile executables, services, web applications, or just attach to a running process. In fact, in version 7.4 we see two new options added: ASP.NET Web Application (IIS Express) SharePoint web application (IIS) So this gives us an additional way to profile ASP.NET applications and the ability to profile SharePoint applications as well. You can also choose your level of detail in the Profiling Mode drop down. If you choose Line-Level and method-level timings detail, you will get a lot more detail on the method durations, but this will also slow down profiling somewhat. If you really need the profiler to be as unintrusive as possible, you can change it to Sample method-level timings. This is performing very light profiling, where basically the profiler collects timings of a method by examining the call-stack at given intervals. Which method you choose depends a lot on how much detail you need to find the issue and how sensitive your program issues are to timing. So for our example, let’s just go with the line and method timing detail. So, we check that all the options are correct (if you launch from VS2010, the executable and path are filled in already), and fire it up by clicking the [Start Profiling] button. Profiling the Application Once you start profiling the application, you will see a real-time graph of CPU usage that will indicate how much your application is using the CPU(s) on your system. During this time, you can select segments of the graph and bookmark them, giving them mnemonic names. This can be useful if you want to compare performance in one part of the run to another part of the run. Notice that once you select a block, it will give you the call tree breakdown for that selection only, and the relative performance of those calls. Once you feel you have collected enough information, you can click [Stop Profiling] to stop the application run and information collection and begin a more thorough analysis. Analyzing Method Timings So now that we’ve halted the run, we can look around the GUI and see what we can see. By default, the times are shown in terms of percentage of time of the total run of the application, though you can change it in the View menu item to milliseconds, ticks, or seconds as well. This won’t affect the percentages of methods, it only affects what units the times are shown. Notice also that the major hotspot seems to be in a method without source, ANTS Profiler will filter these out by default, but you can right-click on the line and remove the filter to see more detail. This proves especially handy when a bottleneck is due to a method in the BCL. So now that we’ve removed the filter, we see a bit more detail: In addition, ANTS Performance Profiler gives you the ability to decompile the methods without source so that you can dive even deeper, though typically this isn’t necessary for our purposes. When looking at timings, there are generally two types of timings for each method call: Time: This is the time spent ONLY in this method, not including calls this method makes to other methods. Time With Children: This is the total of time spent in both this method AND including calls this method makes to other methods. In other words, the Time tells you how much work is being done exclusively in this method, and the Time With Children tells you how much work is being done inclusively in this method and everything it calls. You can also choose to display the methods in a tree or in a grid. The tree view is the default and it shows the method calls arranged in terms of the tree representing all method calls and the parent method that called them, etc. This is useful for when you find a hot-spot method, you can see who is calling it to determine if the problem is the method itself, or if it is being called too many times. The grid method represents each method only once with its totals and is useful for quickly seeing what method is the trouble spot. In addition, you can choose to display Methods with source which are generally the methods you wrote (as opposed to native or BCL code), or Any Method which shows not only your methods, but also native calls, JIT overhead, synchronization waits, etc. So these are just two ways of viewing the same data, and you’re free to choose the organization that best suits what information you are after. Analyzing Method Source If we look at the timings above, we see that our AddToList() method (and in particular, it’s call to the List<T>.Sort() method in the BCL) is the hot-spot in this analysis. If ANTS sees a method that is consuming the most time, it will flag it as a hot-spot to help call out potential areas of concern. This doesn’t mean the other statistics aren’t meaningful, but that the hot-spot is most likely going to be your biggest bang-for-the-buck to concentrate on. So let’s select the AddToList() method, and see what it shows in the source window below: Notice the source breakout in the bottom pane when you select a method (from either tree or grid view). This shows you the timings in this method per line of code. This gives you a major indicator of where the trouble-spot in this method is. So in this case, we see that performing a Sort() on the List<T> after every Add() is killing our performance! Of course, this was a very contrived, duh moment, but you’d be surprised how many performance issues become duh moments. Note that this one line is taking up 86% of the execution time of this application! If we eliminate this bottleneck, we should see drastic improvement in the performance. So to fix this, if we still wanted to maintain the List<T> we’d have many options, including: delay Sort() until after all Add() methods, using a SortedSet, SortedList, or SortedDictionary depending on which is most appropriate, or forgoing the sorting all together and using a Dictionary. Rinse, Repeat! So let’s just change all instances of List<string> to SortedSet<string> and run this again through the profiler: Now we see the AddToList() method is no longer our hot-spot, but now the Max() and Min() calls are! This is good because we’ve eliminated one hot-spot and now we can try to correct this one as well. As before, we can then optimize this part of the code (possibly by taking advantage of the fact the list is now sorted and returning the first and last elements). We can then rinse and repeat this process until we have eliminated as many bottlenecks as possible. Calls by Web Request Another feature that was added recently is the ability to view .NET methods grouped by the HTTP requests that caused them to run. This can be helpful in determining which pages, web services, etc. are causing hot spots in your web applications. Summary If you like the other ANTS tools, you’ll like the ANTS Performance Profiler as well. It is extremely easy to use with very little product knowledge required to get up and running. There are profilers built into the higher product lines of Visual Studio, of course, which are also powerful and easy to use. But for quickly jumping in and finding hot spots rapidly, Red Gate’s Performance Profiler 7.4 is an excellent choice. Technorati Tags: Influencers,ANTS,Performance Profiler,Profiler

    Read the article

  • What PC for programming? [on hold]

    - by James Jeffery
    I'm asking this here because I'm looking for some advice on a PC that will be suitable for my needs. I currently have mac's and have rarely used PC's apart from my Vaio laptop, which is on it's way out. I will be using the PC for C# and .NET development. I mainly develop desktop apps using a PC, but I will be doing some ASP.NET as I'm switching from PHP to ASP. The selection of PC's are on here: http://www.pcworld.co.uk/ I have £500, but if I can not spend all of that I'd be happy. I will be doing nothing on the computer apart from C# development (desktop and ASP). Any help would be much appreciated. My applications are not intensive. They are usually automation software for web scraping and marketing purposes.

    Read the article

  • How to pass XML to DB using XMLTYPE

    - by James Taylor
    Probably not a common use case but I have seen it pop up from time to time. The question how do I pass XML from a queue or web service and insert it into a DB table using XMLTYPE.In this example I create a basic table with the field PAYLOAD of type XMLTYPE. I then take the full XML payload of the web service and insert it into that database for auditing purposes.I use SOA Suite 11.1.1.2 using composite and mediator to link the web service with the DB adapter.1. Insert Database Objects Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --Create XML_EXAMPLE_TBL Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} CREATE TABLE XML_EXAMPLE_TBL (PAYLOAD XMLTYPE); Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --Create procedure LOAD_TEST_XML Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} CREATE or REPLACE PROCEDURE load_test_xml (xmlFile in CLOB) IS   BEGIN     INSERT INTO xml_example_tbl (payload) VALUES (XMLTYPE(xmlFile));   --Handle the exceptions EXCEPTION   WHEN OTHERS THEN     raise_application_error(-20101, 'Exception occurred in loadPurchaseOrder procedure :'||SQLERRM || ' **** ' || xmlFile ); END load_test_xml; / 2. Creating New SOA Project TestXMLTYPE in JDeveloperIn JDeveloper either create a new Application or open an existing Application you want to put this work.Under File -> New -> SOA Tier -> SOA Project   Provide a name for the Project, e.g. TestXMLType Choose Empty Composite When selected Empty Composite click Finish.3. Create Database Connection to Stored ProcedureA Blank composite will be displayed. From the Component Palette drag a Database Adapter to the  External References panel. and configure the Database Adapter Wizard to connect to the DB procedure created above.Provide a service name InsertXML Select a Database connection where you installed the table and procedure above. If it doesn't exist create a new one. Select Call a Stored Procedure or Function then click NextChoose the schema you installed your Procedure in step 1 and query for the LOAD_TEST_XML procedure.Click Next for the remaining screens until you get to the end, then click Finish to complete the database adapter wizard.4. Create the Web Service InterfaceDownload this sample schema that will be used as the input for the web service. It does not matter what schema you use this solution will work with any. Feel free to use your own if required. singleString.xsd Drag from the component palette the Web Service to the Exposed Services panel on the component.Provide a name InvokeXMLLoad for the service, and click the cog icon.Click the magnify glass for the URL to browse to the location where you downloaded the xml schema above.  Import the schema file by selecting the import schema iconBrowse to the location to where you downloaded the singleString.xsd above.Click OK for the Import Schema File, then select the singleString node of the imported schema.Accept all the defaults until you get back to the Web Service wizard screen. The click OK. This step has created a WSDL based on the schema we downloaded earlier.Your composite should now look something like this now.5. Create the Mediator Routing Rules Drag a Mediator component into the middle of the Composite called ComponentsGive the name of Route, and accept the defaultsLink the services up to the Mediator by connecting the reference points so your Composite looks like this.6. Perform Translations between Web Service and the Database Adapter.From the Composite double click the Route Mediator to show the Map Plan. Select the transformation icon to create the XSLT translation file.Choose Create New Mapper File and accept the defaults.From the Component Palette drag the get-content-as-string component into the middle of the translation file.Your translation file should look something like thisNow we need to map the root element of the source 'singleString' to the XMLTYPE of the database adapter, applying the function get-content-as-string.To do this drag the element singleString to the left side of the function get-content-as-string and drag the right side of the get-content-as-string to the XMLFILE element of the database adapter so the mapping looks like this. You have now completed the SOA Component you can now save your work, deploy and test.When you deploy I have assumed that you have the correct database configurations in the WebLogic Console based on the connection you setup connecting to the Stored Procedure. 7. Testing the ApplicationOpen Enterprise Manager and navigate to the TestXMLTYPE Composite and click the Test button. Load some dummy variables in the Input Arguments and click the 'Test Web Service' buttonOnce completed you can run a SQL statement to check the install. In this instance I have just used JDeveloper and opened a SQL WorksheetSQL Statement Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} select * from xml_example_tbl; Result, you should see the full payload in the result.

    Read the article

  • Look Inside WebLogic Server Embedded LDAP with an LDAP Explorer

    - by james.bayer
    Today a question came up on our internal WebLogic Server mailing lists about an issue deleting a Group from WebLogic Server.  The group had a special character in the name. The WLS console refused to delete the group with the message a java.net.MalformedURLException and another message saying “Errors must be corrected before proceeding.” as shown below. The group aa:bb is the one with the issue.  Click to enlarge. WebLogic Server includes an embedded LDAP server that can be used for managing users and groups for “reasonably small environments (10,000 or fewer users)”.  For organizations scaling larger or using more high-end features, I recommend looking at one of Oracle’s very popular enterprise directory services products like Oracle Internet Directory or Oracle Directory Server Enterprise Edition.  You can configure multiple authenicators in WebLogic Server so that you can use multiple directories at the same time. I am not sure WebLogic Server supports special characters in group names for the Embedded LDAP server, but in this case both the console and WLST reported the same issue deleting the group with the special character in the name.  Here’s the WLST output: wls:/hotspot_domain/serverConfig/SecurityConfiguration/hotspot_domain/Realms/myrealm/AuthenticationProviders/DefaultAuthenticator> cmo.removeGroup('aa:bb') Traceback (innermost last): File "<console>", line 1, in ? weblogic.security.providers.authentication.LDAPAtnDelegateException: [Security:090296]invalid URL ldap:///ou=people,ou=myrealm,dc=hotspot_domain??sub?(&(objectclass=person)(wlsMemberOf=cn=aa:bb,ou=groups,ou=myrealm,dc=hotspot_domain)) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:254) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.<init>(LDAPAtnGroupMembersNameList.java:119) at weblogic.security.providers.authentication.LDAPAtnDelegate.listGroupMembers(LDAPAtnDelegate.java:1392) at weblogic.security.providers.authentication.LDAPAtnDelegate.removeGroup(LDAPAtnDelegate.java:1989) at weblogic.security.providers.authentication.DefaultAuthenticatorImpl.removeGroup(DefaultAuthenticatorImpl.java:242) at weblogic.security.providers.authentication.DefaultAuthenticatorMBeanImpl.removeGroup(DefaultAuthenticatorMBeanImpl.java:407) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at weblogic.management.jmx.modelmbean.WLSModelMBean.invoke(WLSModelMBean.java:437) at com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.invoke(DefaultMBeanServerInterceptor.java:836) at com.sun.jmx.mbeanserver.JmxMBeanServer.invoke(JmxMBeanServer.java:761) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.JMXContextInterceptor.invoke(JMXContextInterceptor.java:263) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.SecurityInterceptor.invoke(SecurityInterceptor.java:444) at weblogic.management.jmx.mbeanserver.WLSMBeanServer.invoke(WLSMBeanServer.java:323) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11$1.run(JMXConnectorSubjectForwarder.java:663) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11.run(JMXConnectorSubjectForwarder.java:661) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder.invoke(JMXConnectorSubjectForwarder.java:654) at javax.management.remote.rmi.RMIConnectionImpl.doOperation(RMIConnectionImpl.java:1427) at javax.management.remote.rmi.RMIConnectionImpl.access$200(RMIConnectionImpl.java:72) at javax.management.remote.rmi.RMIConnectionImpl$PrivilegedOperation.run(RMIConnectionImpl.java:1265) at java.security.AccessController.doPrivileged(Native Method) at javax.management.remote.rmi.RMIConnectionImpl.doPrivilegedOperation(RMIConnectionImpl.java:1367) at javax.management.remote.rmi.RMIConnectionImpl.invoke(RMIConnectionImpl.java:788) at javax.management.remote.rmi.RMIConnectionImpl_WLSkel.invoke(Unknown Source) at weblogic.rmi.internal.BasicServerRef.invoke(BasicServerRef.java:667) at weblogic.rmi.internal.BasicServerRef$1.run(BasicServerRef.java:522) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:146) at weblogic.rmi.internal.BasicServerRef.handleRequest(BasicServerRef.java:518) at weblogic.rmi.internal.wls.WLSExecuteRequest.run(WLSExecuteRequest.java:118) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:207) at weblogic.work.ExecuteThread.run(ExecuteThread.java:176) Caused by: java.net.MalformedURLException at netscape.ldap.LDAPUrl.readNextConstruct(LDAPUrl.java:651) at netscape.ldap.LDAPUrl.parseUrl(LDAPUrl.java:277) at netscape.ldap.LDAPUrl.<init>(LDAPUrl.java:114) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:224) ... 41 more It’s fairly clear that in order to work that the : character needs to be URL encoded to %3A or similar.  But all is not lost, there is another way.  You can configure an LDAP Explorer like JXplorer to WebLogic Server Embedded LDAP and browse/edit the entries. Follow the instructions here, being sure to change the authentication credentials to the Embedded LDAP server to some value you know, as by default they are some unknown value.  You’ll need to reboot the WebLogic Server Admin Server after making this change. Now configure JXplorer to connect as described in the documentation.  I’ve circled the important inputs.  In this example, my domain name is “hotspot_domain” which listens on the localhost listen address and port 7001.  The cn=Admin user name is a constant identifier for the Administrator of the embedded LDAP and that does not change, but you need to know what it is so you can enter it into the tool you use. Once you connect successfully, you can explore the entries and in this case delete the group that is no longer desired.

    Read the article

  • Is Agile the new micromanagement?

    - by Smith James
    Hi, This question has been cooking in my head for a while so I wanted to ask those who are following agile/scrum practices in their development environments. My company has finally ventured into incorporating agile practices and has started out with a team of 4 developers in an agile group on a trial basis. It has been 4 months with 3 iterations and they continue to do it without going fully agile for the rest of us. This is due to the fact that management's trust to meet business requirements with a quite a bit of ad hoc type request from high above. Recently, I talked to the developers who are part of this initiative; they tell me that it's not fun. They are not allowed to talk to other developers by their Scrum master and are not allowed to take any phone calls in the work area (which maybe fine to an extent). For example, if I want to talk to my friend for kicks who is in the agile team, I am not allowed without the approval of the Scrum master; who is sitting right next to the agile team. The idea of all this or the agile is to provide a complete vacuum for agile developers from any interruptions and to have them put in good 6+ productive hours. Well, guys, I am no agile guru but what I have read Yahoo agile rollout document and similar for other organizations, it gives me a feeling that agile is not cheap. It require resources and budget to instill agile into the teams and correct issue as they arrive to put them back on track. For starters, it requires training for developers and coaching for managers and etc, etc... The current Scrum master was a manager who took a couple days agile training class paid by the management is now leading this agile team. I have also heard in the meeting that agile manifesto doesn't dictate that agile is not set in stones and is customized differently for each company. Well, it all sounds good and reason. In conclusion, I always thought the agile was supposed to bring harmony in the development teams which results in happy developers. However, I am getting a very opposite feeling when talking to the developers in the agile team. They are unhappy that they cannot talk anything but work, sitting quietly all day just working, and they feel it's just another way for management to make them work more. Tell me please, if this is one of the examples of good practices used for the purpose of selfish advantage for more dollars? Or maybe, it's just us the developers like me and this agile team feels that they don't like to work in an environment where they only breathe work because they are at work. Thanks. Edit: It's a company in healthcare domain that has offices across US, but we're in Texas. It definitely feels like a cowboy style agile which makes me really not wanting to go for agile at all, esp at my current company. All of it has to do with the management being completely cheap. Cutting out expensive coffee for cheaper version, emphasis on savings and being productive while staying as lean as possible. My feeling is that someone in the management behind the door threw out this idea, that agile makes you produce more so we can show our bosses we're producing more with the same headcount. Or, maybe, it will allow us to reduce headcount if that's the case. EDITED: They are having their 5 min daily meeting. But not allowed to chat or talk with someone outside of their team. All focus is on work.

    Read the article

  • Installing SOA Suite 11.1.1.3

    - by James Taylor
    With the release of Oracle SOA Suite 11.1.1.3 last week (28 April 2010) I thought I would attempt to implement a complete SOA Environment with SOA Suite, BPM and OSB on the WLS infrastructure. One major point of difference with the 11.1.1.3 is that is is released as a point release so you must have 11.1.1.2 installed first, then upgrade to 11.1.1.3. This post is performing the upgrade on Linux, if upgrading on windows you will need to substitute the directories and files accordingly. This post assumes that you have SOA Suite 11.1.1.2 installed already. 1. Download 11.1.1.3 software from the following site: http://www.oracle.com/technology/software/products/middleware/htdocs/fmw_11_download.html WLS 11.1.1.3   RCU 11.1.1.3 SOA Suite 11.1.1.3 OSB 11.1.1.3 Copy files to a staging area. For the purpose of this document the staging area is: /u01/stage  2. Shutdown your existing SOA Suite 11.1.1.2 environment 3. Execute the WLS 11.1.1.3 install from the stage directory. wls1033_linux32.bin 4. Choose the existing 11.1.1.2 Middleware Home 5. Ignore the security update notification 6. Accept the default products to be upgraded. 7. Upgrade of WebLogic has been completed   8. Upgrade the SOA Suite database schemas using the RCU utility. Unzip the RCU utility into the staging area and run the install ./u01/stage/rcuHome/bin/rcu 9. Drop the existing Repository and provide connection details 9. Install SOA Suite patch set 11.1.1.3. Unzip the SOA Suite patchset and execute the runInstaller with the following command. ./u01/stage/Disk1/runInstaller –jreLoc $MW_HOME/jdk160_18/jre 10. Choose the existing 11.1.1.2 middleware home 11. Start Install 12. Your SOA Suite Install should now be completed. Now we need to update the database repository. Login to SQLPlus as sysdba and execute the following command. SELECT version, status FROM schema_version_registry where owner = 'DEV_SOAINFRA'; the result should be similar to this: VERSION                        STATUS      OWNER ------------------------------ ----------- ------------------------------ 11.1.1.2.0                     VALID       DEV_SOAINFRA As you can see the version if these repositories are still at 11.1.1.2. 13. To upgrade these versions you have 2 options. 1 install via RCU, but this will remove any existing services. The second option is to use the Patch Set Assistant. From the $MW_HOME directory run the following command ./Oracle_SOA1/bin/psa -dbType Oracle -dbConnectString 'localhost:1521:xe' -dbaUserName sys -schemaUserName DEV_SOAINFRA 14. Install OSB. For the OSB install I did not install the IDE, or the Examples. run the runInstaller from the command line, unzip the OSB download to the stage area. ./u01/stage/osb/Disk1/runInstaller –jreLoc $MW_HOME/jdk160_18/jre 15. Choose Custom Install NOT to install the IDE (Eclipse) or Examples. 16. Unselect the, Examples and IDE checkboxes. 17. Accept the defaults and start installing. 18. Once the install has been completed configure the domain by running the Configuration Wizard. $MW_HOME/oracle_common/common/bin/config.sh You can create a new domain. In this document I will extend the soa_domain. 19. Select the following from the check list. I have selected the BPM Suite, this is unrelated to OSB but wanted it for my development purposes. To use this functionality additional license are required. 20. Configure the database connectivity. 21. Configure the database connectivity for the OSB schema. 22. Accept the defaults if installing on standard machine, if you require a cluster or advanced configuration then choose the option for you. 23. Upgrade is complete and OSB has been installed. Now you can start your environment.

    Read the article

  • C#: Adding Functionality to 3rd Party Libraries With Extension Methods

    - by James Michael Hare
    Ever have one of those third party libraries that you love but it's missing that one feature or one piece of syntactical candy that would make it so much more useful?  This, I truly think, is one of the best uses of extension methods.  I began discussing extension methods in my last post (which you find here) where I expounded upon what I thought were some rules of thumb for using extension methods correctly.  As long as you keep in line with those (or similar) rules, they can often be useful for adding that little extra functionality or syntactical simplification for a library that you have little or no control over. Oh sure, you could take an open source project, download the source and add the methods you want, but then every time the library is updated you have to re-add your changes, which can be cumbersome and error prone.  And yes, you could possibly extend a class in a third party library and override features, but that's only if the class is not sealed, static, or constructed via factories. This is the perfect place to use an extension method!  And the best part is, you and your development team don't need to change anything!  Simply add the using for the namespace the extensions are in! So let's consider this example.  I love log4net!  Of all the logging libraries I've played with, it, to me, is one of the most flexible and configurable logging libraries and it performs great.  But this isn't about log4net, well, not directly.  So why would I want to add functionality?  Well, it's missing one thing I really want in the ILog interface: ability to specify logging level at runtime. For example, let's say I declare my ILog instance like so:     using log4net;     public class LoggingTest     {         private static readonly ILog _log = LogManager.GetLogger(typeof(LoggingTest));         ...     }     If you don't know log4net, the details aren't important, just to show that the field _log is the logger I have gotten from log4net. So now that I have that, I can log to it like so:     _log.Debug("This is the lowest level of logging and just for debugging output.");     _log.Info("This is an informational message.  Usual normal operation events.");     _log.Warn("This is a warning, something suspect but not necessarily wrong.");     _log.Error("This is an error, some sort of processing problem has happened.");     _log.Fatal("Fatals usually indicate the program is dying hideously."); And there's many flavors of each of these to log using string formatting, to log exceptions, etc.  But one thing there isn't: the ability to easily choose the logging level at runtime.  Notice, the logging levels above are chosen at compile time.  Of course, you could do some fun stuff with lambdas and wrap it, but that would obscure the simplicity of the interface.  And yes there is a Logger property you can dive down into where you can specify a Level, but the Level properties don't really match the ILog interface exactly and then you have to manually build a LogEvent and... well, it gets messy.  I want something simple and sexy so I can say:     _log.Log(someLevel, "This will be logged at whatever level I choose at runtime!");     Now, some purists out there might say you should always know what level you want to log at, and for the most part I agree with them.  For the most party the ILog interface satisfies 99% of my needs.  In fact, for most application logging yes you do always know the level you will be logging at, but when writing a utility class, you may not always know what level your user wants. I'll tell you, one of my favorite things is to write reusable components.  If I had my druthers I'd write framework libraries and shared components all day!  And being able to easily log at a runtime-chosen level is a big need for me.  After all, if I want my code to really be re-usable, I shouldn't force a user to deal with the logging level I choose. One of my favorite uses for this is in Interceptors -- I'll describe Interceptors in my next post and some of my favorites -- for now just know that an Interceptor wraps a class and allows you to add functionality to an existing method without changing it's signature.  At the risk of over-simplifying, it's a very generic implementation of the Decorator design pattern. So, say for example that you were writing an Interceptor that would time method calls and emit a log message if the method call execution time took beyond a certain threshold of time.  For instance, maybe if your database calls take more than 5,000 ms, you want to log a warning.  Or if a web method call takes over 1,000 ms, you want to log an informational message.  This would be an excellent use of logging at a generic level. So here was my personal wish-list of requirements for my task: Be able to determine if a runtime-specified logging level is enabled. Be able to log generically at a runtime-specified logging level. Have the same look-and-feel of the existing Debug, Info, Warn, Error, and Fatal calls.    Having the ability to also determine if logging for a level is on at runtime is also important so you don't spend time building a potentially expensive logging message if that level is off.  Consider an Interceptor that may log parameters on entrance to the method.  If you choose to log those parameter at DEBUG level and if DEBUG is not on, you don't want to spend the time serializing those parameters. Now, mine may not be the most elegant solution, but it performs really well since the enum I provide all uses contiguous values -- while it's never guaranteed, contiguous switch values usually get compiled into a jump table in IL which is VERY performant - O(1) - but even if it doesn't, it's still so fast you'd never need to worry about it. So first, I need a way to let users pass in logging levels.  Sure, log4net has a Level class, but it's a class with static members and plus it provides way too many options compared to ILog interface itself -- and wouldn't perform as well in my level-check -- so I define an enum like below.     namespace Shared.Logging.Extensions     {         // enum to specify available logging levels.         public enum LoggingLevel         {             Debug,             Informational,             Warning,             Error,             Fatal         }     } Now, once I have this, writing the extension methods I need is trivial.  Once again, I would typically /// comment fully, but I'm eliminating for blogging brevity:     namespace Shared.Logging.Extensions     {         // the extension methods to add functionality to the ILog interface         public static class LogExtensions         {             // Determines if logging is enabled at a given level.             public static bool IsLogEnabled(this ILog logger, LoggingLevel level)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         return logger.IsDebugEnabled;                     case LoggingLevel.Informational:                         return logger.IsInfoEnabled;                     case LoggingLevel.Warning:                         return logger.IsWarnEnabled;                     case LoggingLevel.Error:                         return logger.IsErrorEnabled;                     case LoggingLevel.Fatal:                         return logger.IsFatalEnabled;                 }                                 return false;             }             // Logs a simple message - uses same signature except adds LoggingLevel             public static void Log(this ILog logger, LoggingLevel level, object message)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message);                         break;                     case LoggingLevel.Informational:                         logger.Info(message);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message);                         break;                     case LoggingLevel.Error:                         logger.Error(message);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message);                         break;                 }             }             // Logs a message and exception to the log at specified level.             public static void Log(this ILog logger, LoggingLevel level, object message, Exception exception)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message, exception);                         break;                     case LoggingLevel.Informational:                         logger.Info(message, exception);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message, exception);                         break;                     case LoggingLevel.Error:                         logger.Error(message, exception);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message, exception);                         break;                 }             }             // Logs a formatted message to the log at the specified level.              public static void LogFormat(this ILog logger, LoggingLevel level, string format,                                          params object[] args)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.DebugFormat(format, args);                         break;                     case LoggingLevel.Informational:                         logger.InfoFormat(format, args);                         break;                     case LoggingLevel.Warning:                         logger.WarnFormat(format, args);                         break;                     case LoggingLevel.Error:                         logger.ErrorFormat(format, args);                         break;                     case LoggingLevel.Fatal:                         logger.FatalFormat(format, args);                         break;                 }             }         }     } So there it is!  I didn't have to modify the log4net source code, so if a new version comes out, i can just add the new assembly with no changes.  I didn't have to subclass and worry about developers not calling my sub-class instead of the original.  I simply provide the extension methods and it's as if the long lost extension methods were always a part of the ILog interface! Consider a very contrived example using the original interface:     // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsWarnEnabled)             {                 _log.WarnFormat("Statement {0} took too long to execute.", statement);             }             ...         }     }     Now consider this alternate call where the logging level could be perhaps a property of the class          // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // allow logging level to be specified by user of class instead         public LoggingLevel ThresholdLogLevel { get; set; }                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsLogEnabled(ThresholdLogLevel))             {                 _log.LogFormat(ThresholdLogLevel, "Statement {0} took too long to execute.",                     statement);             }             ...         }     } Next time, I'll show one of my favorite uses for these extension methods in an Interceptor.

    Read the article

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • How to Install Oracle Software on Remote Linux Server

    - by James Taylor
    It is becoming more common these days to install Oracle software on remote Linux servers. This issue has always existed but was generally resolved either by silent installs or by someone physically going to the server to install the software. This is becoming more difficult with the popular virtualisation and cloud deployment strategies. This post provides the steps involved to install Oracle Software using the GUI interface on a remote Linux server. There are many ways to achieve this, the way I resolve this issue is via Virtual Network Computing (VNC) as it is shipped with RedHat and OEL out of the box. For this post I’m using OEL 5 deployed on a OVM guest. If not already done so download and install a client version of VNC so you can connect to the server. There are many out there, for the purpose of this post I use UltraVNC. You can download a free version from http://www.uvnc.com/download/index.html By default VNC Server is installed in your RedHat and OEL OS, but it is not configured. The way VNC works is when started it creates a client instance for the user and binds it to a specific port. So if have an account on the Linux box you can setup a VNC Server session for that user, you don’t need to be root. For the purpose of this document I’m going to use oracle as the user to setup a VNC Session as this is the user I want use to install the software. However to start the VNC Service you must be root. As the root user run the following command: service vncserver start Starting VNC server: no displays configured                [  OK  ] Login to the Linux box as the user  you wan to install the Oracle software [oracle@lisa ~]$ Run the command to create a new VNC server instance for the oracle user: vncserver You will be ask to supply password information. This is what you will enter when connecting from your desktop client. This password is also independent of the actual Linux user password. The VNC Server is acting as a proxy to this instance. You will require a password to access your desktops. Password: Verify: xauth:  creating new authority file /home/oracle/.Xauthority New 'lisa.nz.oracle.com:1 (oracle)' desktop is lisa.nz.oracle.com:1 Creating default startup script /home/oracle/.vnc/xstartup Starting applications specified in /home/oracle/.vnc/xstartup Log file is /home/oracle/.vnc/lisa.nz.oracle.com:1.log As you can see a new instance lisa.nz.oracle.com:1 has been created. If you were to run the vncserver command again another instance lisa.nz.oracle.com:2 will be created. If you are going through a firewall you will need to ensure that the port 5901 (port 1) is open between your client desktop and the Linux Server. Depending on the options chosen at install time a firewall could be in place. The simplest way to disable this is using the command. You will need to be root. service iptables stop This will stop the firewall while you install. If you just want to add a port to the accepted lists use the firewall UI. You will need to be root. system-config-security-level Now you are ready to connect to the server via the VNC. Using the software installed in step one start the VNC Client. You should be prompted for the server and port. If connectivity is established, you will be prompted for the password entered in step 5. You should now be presented with a terminal screen ready to install software Go to the location of the oracle install software and start the Oracle Universal Installer

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • Problem installing the latest eclipse IDE

    - by James
    I'm running ubuntu 11.04. I'm trying to install the latest "eclipse for java developers" IDE (version Indigo 3.7.1). I have downloaded and extracted it. I attempt to run it by changing to the extracted folder and executing ./eclipse This produces the following errors in the terminal: /usr/lib/gio/modules/libgiobamf.so: wrong ELF class: ELFCLASS64 Failed to load module: /usr/lib/gio/modules/libgiobamf.so /usr/lib/gio/modules/libgvfsdbus.so: wrong ELF class: ELFCLASS64 Failed to load module: /usr/lib/gio/modules/libgvfsdbus.so And then a dialog opens with this error message: JVM terminated. Exit code=13 /usr/bin/java -Dosgi.requiredJavaVersion=1.5 -XX:MaxPermSize=256m -Xms40m -Xmx384m -jar /opt/eclipse//plugins/org.eclipse.equinox.launcher_1.2.0.v20110502.jar -os linux -ws gtk -arch x86 -showsplash -launcher /opt/eclipse/eclipse -name Eclipse --launcher.library /opt/eclipse//plugins/org.eclipse.equinox.launcher.gtk.linux.x86_1.1.100.v20110505/eclipse_1407.so -startup /opt/eclipse//plugins/org.eclipse.equinox.launcher_1.2.0.v20110502.jar --launcher.overrideVmargs -exitdata 2f80031 -product org.eclipse.epp.package.java.product -clean -vm /usr/bin/java -vmargs -Dosgi.requiredJavaVersion=1.5 -XX:MaxPermSize=256m -Xms40m -Xmx384m -jar /opt/eclipse//plugins/org.eclipse.equinox.launcher_1.2.0.v20110502.jar I'd appreciate any help / insight. Update I should mention that I'm running 32 bit ubuntu and I'm trying to install 32 bit eclipse. Update #2 Oops - I just realized that I'm running 64 bit ubuntu, not 32 bit ubuntu.

    Read the article

  • C#/.NET Little Pitfalls: The Dangers of Casting Boxed Values

    - by James Michael Hare
    Starting a new series to parallel the Little Wonders series.  In this series, I will examine some of the small pitfalls that can occasionally trip up developers. Introduction: Of Casts and Conversions What happens when we try to assign from an int and a double and vice-versa? 1: double pi = 3.14; 2: int theAnswer = 42; 3:  4: // implicit widening conversion, compiles! 5: double doubleAnswer = theAnswer; 6:  7: // implicit narrowing conversion, compiler error! 8: int intPi = pi; As you can see from the comments above, a conversion from a value type where there is no potential data loss is can be done with an implicit conversion.  However, when converting from one value type to another may result in a loss of data, you must make the conversion explicit so the compiler knows you accept this risk.  That is why the conversion from double to int will not compile with an implicit conversion, we can make the conversion explicit by adding a cast: 1: // explicit narrowing conversion using a cast, compiler 2: // succeeds, but results may have data loss: 3: int intPi = (int)pi; So for value types, the conversions (implicit and explicit) both convert the original value to a new value of the given type.  With widening and narrowing references, however, this is not the case.  Converting reference types is a bit different from converting value types.  First of all when you perform a widening or narrowing you don’t really convert the instance of the object, you just convert the reference itself to the wider or narrower reference type, but both the original and new reference type both refer back to the same object. Secondly, widening and narrowing for reference types refers the going down and up the class hierarchy instead of referring to precision as in value types.  That is, a narrowing conversion for a reference type means you are going down the class hierarchy (for example from Shape to Square) whereas a widening conversion means you are going up the class hierarchy (from Square to Shape).  1: var square = new Square(); 2:  3: // implicitly convers because all squares are shapes 4: // (that is, all subclasses can be referenced by a superclass reference) 5: Shape myShape = square; 6:  7: // implicit conversion not possible, not all shapes are squares! 8: // (that is, not all superclasses can be referenced by a subclass reference) 9: Square mySquare = (Square) myShape; So we had to cast the Shape back to Square because at that point the compiler has no way of knowing until runtime whether the Shape in question is truly a Square.  But, because the compiler knows that it’s possible for a Shape to be a Square, it will compile.  However, if the object referenced by myShape is not truly a Square at runtime, you will get an invalid cast exception. Of course, there are other forms of conversions as well such as user-specified conversions and helper class conversions which are beyond the scope of this post.  The main thing we want to focus on is this seemingly innocuous casting method of widening and narrowing conversions that we come to depend on every day and, in some cases, can bite us if we don’t fully understand what is going on!  The Pitfall: Conversions on Boxed Value Types Can Fail What if you saw the following code and – knowing nothing else – you were asked if it was legal or not, what would you think: 1: // assuming x is defined above this and this 2: // assignment is syntactically legal. 3: x = 3.14; 4:  5: // convert 3.14 to int. 6: int truncated = (int)x; You may think that since x is obviously a double (can’t be a float) because 3.14 is a double literal, but this is inaccurate.  Our x could also be dynamic and this would work as well, or there could be user-defined conversions in play.  But there is another, even simpler option that can often bite us: what if x is object? 1: object x; 2:  3: x = 3.14; 4:  5: int truncated = (int) x; On the surface, this seems fine.  We have a double and we place it into an object which can be done implicitly through boxing (no cast) because all types inherit from object.  Then we cast it to int.  This theoretically should be possible because we know we can explicitly convert a double to an int through a conversion process which involves truncation. But here’s the pitfall: when casting an object to another type, we are casting a reference type, not a value type!  This means that it will attempt to see at runtime if the value boxed and referred to by x is of type int or derived from type int.  Since it obviously isn’t (it’s a double after all) we get an invalid cast exception! Now, you may say this looks awfully contrived, but in truth we can run into this a lot if we’re not careful.  Consider using an IDataReader to read from a database, and then attempting to select a result row of a particular column type: 1: using (var connection = new SqlConnection("some connection string")) 2: using (var command = new SqlCommand("select * from employee", connection)) 3: using (var reader = command.ExecuteReader()) 4: { 5: while (reader.Read()) 6: { 7: // if the salary is not an int32 in the SQL database, this is an error! 8: // doesn't matter if short, long, double, float, reader [] returns object! 9: total += (int) reader["annual_salary"]; 10: } 11: } Notice that since the reader indexer returns object, if we attempt to convert using a cast to a type, we have to make darn sure we use the true, actual type or this will fail!  If the SQL database column is a double, float, short, etc this will fail at runtime with an invalid cast exception because it attempts to convert the object reference! So, how do you get around this?  There are two ways, you could first cast the object to its actual type (double), and then do a narrowing cast to on the value to int.  Or you could use a helper class like Convert which analyzes the actual run-time type and will perform a conversion as long as the type implements IConvertible. 1: object x; 2:  3: x = 3.14; 4:  5: // if you want to cast, must cast out of object to double, then 6: // cast convert. 7: int truncated = (int)(double) x; 8:  9: // or you can call a helper class like Convert which examines runtime 10: // type of the value being converted 11: int anotherTruncated = Convert.ToInt32(x); Summary You should always be careful when performing a conversion cast from values boxed in object that you are actually casting to the true type (or a sub-type). Since casting from object is a widening of the reference, be careful that you either know the exact, explicit type you expect to be held in the object, or instead avoid the cast and use a helper class to perform a safe conversion to the type you desire. Technorati Tags: C#,.NET,Pitfalls,Little Pitfalls,BlackRabbitCoder

    Read the article

  • Is Agile the new micromanagement?

    - by Smith James
    This question has been cooking in my head for a while so I wanted to ask those who are following agile/scrum practices in their development environments. My company has finally ventured into incorporating agile practices and has started out with a team of 4 developers in an agile group on a trial basis. It has been 4 months with 3 iterations and they continue to do it without going fully agile for the rest of us. This is due to the fact that management's trust to meet business requirements with a quite a bit of ad hoc type request from high above. Recently, I talked to the developers who are part of this initiative; they tell me that it's not fun. They are not allowed to talk to other developers by their Scrum master and are not allowed to take any phone calls in the work area (which maybe fine to an extent). For example, if I want to talk to my friend for kicks who is in the agile team, I am not allowed without the approval of the Scrum master; who is sitting right next to the agile team. The idea of all this or the agile is to provide a complete vacuum for agile developers from any interruptions and to have them put in good 6+ productive hours. Well, guys, I am no agile guru but what I have read Yahoo agile rollout document and similar for other organizations, it gives me a feeling that agile is not cheap. It require resources and budget to instill agile into the teams and correct issue as they arrive to put them back on track. For starters, it requires training for developers and coaching for managers and etc, etc... The current Scrum master was a manager who took a couple days agile training class paid by the management is now leading this agile team. I have also heard in the meeting that agile manifesto doesn't dictate that agile is not set in stones and is customized differently for each company. Well, it all sounds good and reason. In conclusion, I always thought the agile was supposed to bring harmony in the development teams which results in happy developers. However, I am getting a very opposite feeling when talking to the developers in the agile team. They are unhappy that they cannot talk anything but work, sitting quietly all day just working, and they feel it's just another way for management to make them work more. Tell me please, if this is one of the examples of good practices used for the purpose of selfish advantage for more dollars? Or maybe, it's just us the developers like me and this agile team feels that they don't like to work in an environment where they only breathe work because they are at work. Thanks. Edit: It's a company in healthcare domain that has offices across US. It definitely feels like a cowboy style agile which makes me really not wanting to go for agile at all, esp at my current company. All of it has to do with the management being completely cheap. Cutting out expensive coffee for cheaper version, emphasis on savings and being productive while staying as lean as possible. My feeling is that someone in the management behind the door threw out this idea, that agile makes you produce more so we can show our bosses we're producing more with the same headcount. Or, maybe, it will allow us to reduce headcount if that's the case. EDITED: They are having their 5 min daily meeting. But not allowed to chat or talk with someone outside of their team. All focus is on work.

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >