Search Results

Search found 70567 results on 2823 pages for 'binary file'.

Page 13/2823 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Binary to Ascii and back again

    - by rross
    I'm trying to interface with a hardware device via the serial port. When I use software like Portmon to see the messages they look like this: 42 21 21 21 21 41 45 21 26 21 29 21 26 59 5F 41 30 21 2B 21 27 42 21 21 21 21 41 47 21 27 21 28 21 27 59 5D 41 32 21 2A 21 28 When I run them thru a hex to ascii converter the commands don't make sense. Are these messages in fact something different than hex? My hope was to see the messages the device is passing and emulate them using c#. What can I do to find out exactly what the messages are?

    Read the article

  • binary search tree recursive subtree in java

    - by Art Peterson
    Can anyone point me to a code example (java preferably) or psuedocode that uses recursion to return a subtree that contains all nodes with keys between fromKey and toKey. So if I was to call Tree.subtree(5,10) it should return all nodes in the BST that have keys between 5 and 10 inclusive - but I can't use loops or helper methods...only recursive calls to the subtree method, which takes fromKey and toKey as parameters. Thanks!

    Read the article

  • Binary Trees in Scheme

    - by Javier
    Consider the following BNF defining trees of numbers. Notice that a tree can either be a leaf, a node-1 with one subtrees, or a node-2 with two subtrees. tree ::= (’leaf number) | (’node-1 tree) | (’node-2 tree tree) a. Write a template for recursive procedures on these trees. b. Define the procedure (leaf-count t) that returns the number of leaves in t > (leaf-count ’(leaf 5)) 1 > (leaf-count ’(node-2 (leaf 25) (leaf 17))) 2 > (leaf-count ’(node-1 (node-2 (leaf 4) (node-2 (leaf 2) (leaf 3))))) 3 Here's what I have so far: ;define what a leaf, node-1, and node-2 is (define leaf list) (define node-1 list) (define node-2 list) ;procedure to decide if a list is a leaf or a node (define (leaf? tree) (number? (car tree))) (define (node? tree) (pair? (car tree))) (define (leaf-count tree) (cond ((null? tree) 0) ((number? tree) 0) ((leaf? tree) 1) (else (+ (leaf-count (car tree)) (leaf-count (cdr tree)))))) It looks like it should run just fine, but when I try to run it using a simple test case like (leaf-count '(leaf 5)) I get the following error message: car: expects argument of type pair; given leaf What does this error message mean? I am defining a leaf as a list. But for some reason, it's not seeing that and gives me that error message.

    Read the article

  • Effects of changing a node in a binary tree

    - by eSKay
    Suppose I want to change the orange node in the following tree. So, the only other change I'll need to make is in the left pointer of the green node. The blue node will remain the same. Am I wrong somewhere? Because according to this article (that explains zippers), even the blue node needs to be changed. Similarly, in this picture (recolored) from the same article, why do we change the orange nodes at all (when we change x)?

    Read the article

  • Working with bytes and binary data in Python

    - by ignoramus
    Four consecutive bytes in a byte string together specify some value. However, only 7 bits in each byte are used; the most significant bit is ignored (that makes 28 bits altogether). So... b"\x00\x00\x02\x01" would be 000 0000 000 0000 000 0010 000 0001. Or, for the sake of legibility, 10 000 0001. That's the value the four bytes represent. But I want a decimal, so I do this: >>> 0b100000001 257 I can work all that out myself, but how would I incorporate it into a program?

    Read the article

  • batch file command to run jar file

    - by Arivu2020
    I am created jar file.The jar file is an executable one.But how can i run the jar file from the out side,using created batch file.I want to know the batch file coding to run the jar file without mentioning class path. Or is there any way to do it?

    Read the article

  • Reading Binary data from a Serial Port.

    - by rross
    I previously have been reading NMEA data from a GPS via a serial port using C#. Now I'm doing something similar, but instead of GPS from a serial. I'm attempting to read a KISS Statement from a TNC. I'm using this event handler. comport.DataReceived += new SerialDataReceivedEventHandler(port_DataReceived); Here is port_DataReceived. private void port_DataReceived(object sender, SerialDataReceivedEventArgs e) { string data = comport.ReadExisting(); sBuffer = data; try { this.Invoke(new EventHandler(delegate { ProcessBuffer(sBuffer); })); } catch { } } The problem I'm having is that the method is being called several times per statement. So the ProcessBuffer method is being called with only a partial statment. How can I read the whole statement?

    Read the article

  • C++ string array binary search

    - by Jose Vega
    string Haystack[] = { "Alabama", "Alaska", "American Samoa", "Arizona", "Arkansas", "California", "Colorado", "Connecticut", "Delaware", "District of Columbia", "Florida", "Georgia", "Guam", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan", "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico", "New York", "North Carolina", "North Dakota", "Northern Mariana Islands", "Ohio", "Oklahoma", "Oregon", "Pennsylvania", "Puerto Rico", "Rhode Island", "South Carolina", "South Dakota", "Tennessee", "Texas", "US Virgin Islands", "Utah", "Vermont", "Virginia", "Washington", "West Virginia", "Wisconsin", "Wyoming"}; string Needle = "Virginia"; if(std::binary_search(Haystack, Haystack+56, Needle)) cout<<"Found"; If I also wanted to find the location of the needle in the string array, is there an "easy" way to find out?

    Read the article

  • Need algorithm to add Node in binary tree

    - by m.qayyum
    •if your new element is less or equal than the current node, you go to the left subtree, otherwise to the right subtree and continue traversing •if you arrived at a node, where you can not go any deeper, because there is no subtree, this is the place to insert your new element (5)Root (3)-------^--------(7) (2)---^----(5) ^-----(8) (5)--^ i want to add this last node with data 5...but i can't figure it out...I need a algorithm to do that or in java language

    Read the article

  • Help With Lisp Code for a Binary Tree

    - by iulia
    I have (setq l2 '(1 (2 b (c 1 b))(a (1 2) d))) ( defun drumuri (l3) ( cond ( (atom l3) ( cons l3 nil)) ( t ( append ( cons ( car l3 ) nil) ( drumuri ( cadr l3)) (cons (car l3)nil) ( drumuri ( caddr l3)) )))) ( drumuri l2) and it gives me: Break 2 [4]> DRUMURI Break 2 [4]> (1 2 B 2 C 1 C B 1 A 1 2 1 NIL A D) but i need: ((1 2 B)(1 2 C 1)(1 2 C B)(1 A 1 2)(1 A D))

    Read the article

  • Nicely printing/showing a binary tree in Haskell

    - by nicole
    I have a tree data type: data Tree a b = Branch b (Tree a b) (Tree a b) | Leaf a ...and I need to make it an instance of Show, without using deriving. I have found that nicely displaying a little branch with two leaves is easy: instance (Show a, Show b) => Show (Tree a b) where show (Leaf x) = show x show (Branch val l r) = " " ++ show val ++ "\n" ++ show l ++ " " ++ show r But how can I extend a nice structure to a tree of arbitrary size? It seems like determining the spacing would require me to know just how many leaves will be at the very bottom (or maybe just how many leaves there are in total) so that I can allocate all the space I need there and just work 'up.' I would probably need to call a size function. I can see this being workable, but is that making it harder than it is?

    Read the article

  • Recursive Binary Search Tree Insert

    - by Nick Sinklier
    So this is my first java program, but I've done c++ for a few years. I wrote what I think should work, but in fact it does not. So I had a stipulation of having to write a method for this call: tree.insertNode(value); where value is an int. I wanted to write it recursively, for obvious reasons, so I had to do a work around: public void insertNode(int key) { Node temp = new Node(key); if(root == null) root = temp; else insertNode(temp); } public void insertNode(Node temp) { if(root == null) root = temp; else if(temp.getKey() <= root.getKey()) insertNode(root.getLeft()); else insertNode(root.getRight()); } Thanks for any advice.

    Read the article

  • A balanced binary search tree which is also a heap

    - by saeedn
    I'm looking for a data structure where each element in it has two keys. With one of them the structure is a BST and looking at the other one, data structure is a heap. With a little search, I found a structure called Treap. It uses the heap property with a random distribution on heap keys to make the BST balanced! What I want is a Balanced BST, which can be also a heap. The BST in Treap could be unbalanced if I insert elements with heap Key in the order of my choice. Is there such a data structure?

    Read the article

  • Return parent of node in Binary Tree

    - by user188995
    I'm writing a code to return the parent of any node, but I'm getting stuck. I don't want to use any predefined ADTs. //Assume that nodes are represented by numbers from 1...n where 1=root and even //nos.=left child and odd nos=right child. public int parent(Node node){ if (node % 2 == 0){ if (root.left==node) return root; else return parent(root.left); } //same case for right } But this program is not working and giving wrong results. My basic algorithm is that the program starts from the root checks if it is on left or on the right. If it's the child or if the node that was queried else, recurses it with the child.

    Read the article

  • findNode in binary search tree

    - by Weadadada Awda
    Does this look right? I mean I am trying to implement the delete function. Node* BST::findNode(int tofind) { Node* node = new Node; node = root; while (node != NULL) { if (node->val == tofind) { return node; } else if (tofind < node->val) { node = node->left; } else { node = node->right; } } } Here is the delete, it's not even close to done but, void BST::Delete(int todelete) { // bool found = false; Node* toDelete = new Node(); toDelete=findNode(todelete); if(toDelete->val!=NULL) { cout << toDelete->val << endl; } } This causes a segmentation fault just running that, any ideas?

    Read the article

  • Error inserting data in binary tree

    - by chepe263
    I copied this code (in spanish) http://www.elrincondelc.com/nuevorincon/index.php?pag=codigos&id=4 and wrote a new one. This is my code: #include <cstdlib> #include <conio.h> #include <iostream> using namespace std; struct nodoarbol { int dato; struct nodoarbol *izq; struct nodoarbol *der; }; typedef nodoarbol Nodo; typedef Nodo *Arbol; void insertar(Arbol *, int); void inorden(Arbol); void postorden(Arbol); void preorden(Arbol); void insertar(Arbol *raiz, int nuevo){ if (*raiz==NULL){ *raiz = (Nodo *)malloc(sizeof(Nodo)); if (*raiz != NULL){ (*raiz)->dato=nuevo; (*raiz)->der=NULL; (*raiz)->izq=NULL; } else{ cout<<"No hay memoria suficiente u ocurrio un error"; } } else{ if (nuevo < (*raiz)->dato) insertar( &((*raiz)->izq), nuevo ); else if (nuevo > (*raiz)->dato) insertar(&((*raiz)->der), nuevo); } }//inseertar void inorden(Arbol raiz){ if (raiz != NULL){ inorden(raiz->izq); cout << raiz->dato << " "; inorden(raiz->der); } } void preorden(Arbol raiz){ if (raiz != NULL){ cout<< raiz->dato << " "; preorden(raiz->izq); preorden(raiz->der); } } void postorden(Arbol raiz){ if (raiz!=NULL){ postorden(raiz->izq); postorden(raiz->der); cout<<raiz->dato<<" "; } } int main() { int i; i=0; int val; Arbol raiz = NULL; for (i=0; i<10; i++){ cout<<"Inserte un numero"; cin>>val; insertar( (raiz), val); } cout<<"\nPreorden\n"; preorden(raiz); cout<<"\nIneorden\n"; inorden(raiz); cout<<"\nPostorden\n"; postorden(raiz); return 0; } I'm using netbeans 7.1.1, mingw32 compiler This is the output: make[2]: Leaving directory `/q/netbeans c++/NetBeansProjects/treek' make[1]: Leaving directory `/q/netbeans c++/NetBeansProjects/treek' main.cpp: In function 'int main()': main.cpp:110:30: error: cannot convert 'Arbol {aka nodoarbol*}' to 'Nodo** {aka nodoarbol**}' for argument '1' to 'void insertar(Nodo**, int)' make[2]: *** [build/Release/MinGW-Windows/main.o] Error 1 make[1]: *** [.build-conf] Error 2 make: *** [.build-impl] Error 2 BUILD FAILED (exit value 2, total time: 11s) I don't understand what's wrong since i just copied the code (and rewrite it to my own code). I'm really good in php, asp.net (vb) and other languages but c is a headche for me. I've been struggling with this problem for about an hour. Could somebody tell me what could it be?

    Read the article

  • efficient video format/codec for sparse & binary blob tracking

    - by user391339
    I am working on a blob tracking project and have many high-definition videos that I would like to reduce in size for storage and downstream tracking/shape-analysis. I want to use a lossless method that takes advantage of the black and white nature of the video as well as the fact that not much is moving between individual frames. The videos are quite sparse, with 5 to 10 b&w blobs per frame occupying <30% of the space in total, with each blob moving <5-10% of the field of view between frames and not changing shape too much between 2-3 frames. I will work in Python, Matlab, or LabView for this project, and could use a batch utility if available. It may be worthwhile to export the files as compressed image stacks if a proper video format can't be found. What are the pros and cons of this? A video codec uses correlations between neighboring frames, so it should be more efficient, but not if the wrong one is chosen or if it is improperly configured.

    Read the article

  • Binary Search Tree can't delete the root

    - by Ali Zahr
    Everything is working fine in this function, but the problem is that I can't delete the root, I couldn't figure out what's the bug here.I've traced the "else part" it works fine until the return, it returns the old value I don't know why. Plz Help! node *removeNode(node *Root, int key) { node *tmp = new node; if(key > Root->value) Root->right = removeNode(Root->right,key); else if(key < Root->value) Root->left = removeNode(Root->left, key); else if(Root->left != NULL && Root->right != NULL) { node *minNode = findNode(Root->right); Root->value = minNode->value; Root->right = removeNode(Root->right,Root->value); } else { tmp = Root; if(Root->left == NULL) Root = Root->right; else if(Root->right == NULL) Root = Root->left; delete tmp; } return Root; }

    Read the article

  • How many posibilities on a binary ?

    - by Val
    in hexadecimal "10 10 10 10" system you have 0-255 posibilities right? in total 256 different posibilities as there are 8 1s and 0s. how many different posibilities would i get? if i had 10 digits. instead of 8? or how would i calculate that in php ?

    Read the article

  • Problems in Binary Search Tree

    - by user2782324
    This is my first ever trial at implementing the BST, and I am unable to get it done. Please help The problem is that When I delete the node if the node is in the right subtree from the root or if its a right child in the left subtree, then it works fine. But if the node is in the left subtree from root and its any left child, then it does not get deleted. Can someone show me what mistake am I doing?? the markedNode here gets allocated to the parent node of the node to be deleted. the minValueNode here gets allocated to a node whose left value child is the smallest value and it will be used to replace the value to be deleted. package DataStructures; class Node { int value; Node rightNode; Node leftNode; } class BST { Node rootOfTree = null; public void insertintoBST(int value) { Node markedNode = rootOfTree; if (rootOfTree == null) { Node newNode = new Node(); newNode.value = value; rootOfTree = newNode; newNode.rightNode = null; newNode.leftNode = null; } else { while (true) { if (value >= markedNode.value) { if (markedNode.rightNode != null) { markedNode = markedNode.rightNode; } else { Node newNode = new Node(); newNode.value = value; markedNode.rightNode = newNode; newNode.rightNode = null; newNode.leftNode = null; break; } } if (value < markedNode.value) { if (markedNode.leftNode != null) { markedNode = markedNode.leftNode; } else { Node newNode = new Node(); newNode.value = value; markedNode.leftNode = newNode; newNode.rightNode = null; newNode.leftNode = null; break; } } } } } public void searchBST(int value) { Node markedNode = rootOfTree; if (rootOfTree == null) { System.out.println("Element Not Found"); } else { while (true) { if (value > markedNode.value) { if (markedNode.rightNode != null) { markedNode = markedNode.rightNode; } else { System.out.println("Element Not Found"); break; } } if (value < markedNode.value) { if (markedNode.leftNode != null) { markedNode = markedNode.leftNode; } else { System.out.println("Element Not Found"); break; } } if (value == markedNode.value) { System.out.println("Element Found"); break; } } } } public void deleteFromBST(int value) { Node markedNode = rootOfTree; Node minValueNode = null; if (rootOfTree == null) { System.out.println("Element Not Found"); return; } if (rootOfTree.value == value) { if (rootOfTree.leftNode == null && rootOfTree.rightNode == null) { rootOfTree = null; return; } else if (rootOfTree.leftNode == null ^ rootOfTree.rightNode == null) { if (rootOfTree.rightNode != null) { rootOfTree = rootOfTree.rightNode; return; } else { rootOfTree = rootOfTree.leftNode; return; } } else { minValueNode = rootOfTree.rightNode; if (minValueNode.leftNode == null) { rootOfTree.rightNode.leftNode = rootOfTree.leftNode; rootOfTree = rootOfTree.rightNode; } else { while (true) { if (minValueNode.leftNode.leftNode != null) { minValueNode = minValueNode.leftNode; } else { break; } } // Minvalue to the left of minvalue node rootOfTree.value = minValueNode.leftNode.value; // The value has been swapped if (minValueNode.leftNode.leftNode == null && minValueNode.leftNode.rightNode == null) { minValueNode.leftNode = null; } else { if (minValueNode.leftNode.leftNode != null) { minValueNode.leftNode = minValueNode.leftNode.leftNode; } else { minValueNode.leftNode = minValueNode.leftNode.rightNode; } // Minvalue deleted } } } } else { while (true) { if (value > markedNode.value) { if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { break; } else { markedNode = markedNode.rightNode; } } else { System.out.println("Element Not Found"); return; } } if (value < markedNode.value) { if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { break; } else { markedNode = markedNode.leftNode; } } else { System.out.println("Element Not Found"); return; } } } // Parent of the required element found // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { if (markedNode.rightNode.rightNode == null && markedNode.rightNode.leftNode == null) { markedNode.rightNode = null; return; } else if (markedNode.rightNode.rightNode == null ^ markedNode.rightNode.leftNode == null) { if (markedNode.rightNode.rightNode != null) { markedNode.rightNode = markedNode.rightNode.rightNode; return; } else { markedNode.rightNode = markedNode.rightNode.leftNode; return; } } else { if (markedNode.rightNode.value == value) { minValueNode = markedNode.rightNode.rightNode; } else { minValueNode = markedNode.leftNode.rightNode; } if (minValueNode.leftNode == null) { // MinNode has no left value markedNode.rightNode = minValueNode; return; } else { while (true) { if (minValueNode.leftNode.leftNode != null) { minValueNode = minValueNode.leftNode; } else { break; } } // Minvalue to the left of minvalue node if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { markedNode.leftNode.value = minValueNode.leftNode.value; } } if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { markedNode.rightNode.value = minValueNode.leftNode.value; } } // MarkedNode exchanged if (minValueNode.leftNode.leftNode == null && minValueNode.leftNode.rightNode == null) { minValueNode.leftNode = null; } else { if (minValueNode.leftNode.leftNode != null) { minValueNode.leftNode = minValueNode.leftNode.leftNode; } else { minValueNode.leftNode = minValueNode.leftNode.rightNode; } // Minvalue deleted } } } // //////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { if (markedNode.leftNode.rightNode == null && markedNode.leftNode.leftNode == null) { markedNode.leftNode = null; return; } else if (markedNode.leftNode.rightNode == null ^ markedNode.leftNode.leftNode == null) { if (markedNode.leftNode.rightNode != null) { markedNode.leftNode = markedNode.leftNode.rightNode; return; } else { markedNode.leftNode = markedNode.leftNode.leftNode; return; } } else { if (markedNode.rightNode.value == value) { minValueNode = markedNode.rightNode.rightNode; } else { minValueNode = markedNode.leftNode.rightNode; } if (minValueNode.leftNode == null) { // MinNode has no left value markedNode.leftNode = minValueNode; return; } else { while (true) { if (minValueNode.leftNode.leftNode != null) { minValueNode = minValueNode.leftNode; } else { break; } } // Minvalue to the left of minvalue node if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { markedNode.leftNode.value = minValueNode.leftNode.value; } } if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { markedNode.rightNode.value = minValueNode.leftNode.value; } } // MarkedNode exchanged if (minValueNode.leftNode.leftNode == null && minValueNode.leftNode.rightNode == null) { minValueNode.leftNode = null; } else { if (minValueNode.leftNode.leftNode != null) { minValueNode.leftNode = minValueNode.leftNode.leftNode; } else { minValueNode.leftNode = minValueNode.leftNode.rightNode; } // Minvalue deleted } } } } // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// } } } } } } public class BSTImplementation { public static void main(String[] args) { BST newBst = new BST(); newBst.insertintoBST(19); newBst.insertintoBST(13); newBst.insertintoBST(10); newBst.insertintoBST(20); newBst.insertintoBST(5); newBst.insertintoBST(23); newBst.insertintoBST(28); newBst.insertintoBST(16); newBst.insertintoBST(27); newBst.insertintoBST(9); newBst.insertintoBST(4); newBst.insertintoBST(22); newBst.insertintoBST(17); newBst.insertintoBST(30); newBst.insertintoBST(40); newBst.deleteFromBST(5); newBst.deleteFromBST(4); newBst.deleteFromBST(9); newBst.deleteFromBST(10); newBst.deleteFromBST(13); newBst.deleteFromBST(16); newBst.deleteFromBST(17); newBst.searchBST(5); newBst.searchBST(4); newBst.searchBST(9); newBst.searchBST(10); newBst.searchBST(13); newBst.searchBST(16); newBst.searchBST(17); System.out.println(); newBst.deleteFromBST(20); newBst.deleteFromBST(23); newBst.deleteFromBST(27); newBst.deleteFromBST(28); newBst.deleteFromBST(30); newBst.deleteFromBST(40); newBst.searchBST(20); newBst.searchBST(23); newBst.searchBST(27); newBst.searchBST(28); newBst.searchBST(30); newBst.searchBST(40); } }

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >