Search Results

Search found 9351 results on 375 pages for 'cloud book'.

Page 13/375 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Open Different Types of New Google Documents Directly with These 7 New Chrome Apps

    - by Asian Angel
    Every time you want to open a new document of one kind or another in Google Drive you have to go through the whole ‘menu’ and ‘type selection’ process to do so. Now you can open the desired type directly from the New Tab Page using these terrific new Chrome apps from Google! The best part about this new set of apps is the ability to choose only the ones you want and/or need, then be able to start working on those new documents quickly without all the ‘selection’ hassle. How Hackers Can Disguise Malicious Programs With Fake File Extensions Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer

    Read the article

  • Windows Azure Use Case: Web Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many applications have a requirement to be located outside of the organization’s internal infrastructure control. For instance, the company website for a brick-and-mortar retail company may want to post not only static but interactive content to be available to their external customers, and not want the customers to have access inside the organization’s firewall. There are also cases of pure web applications used for a great many of the internal functions of the business. This allows for remote workers, shared customer/employee workloads and data and other advantages. Some firms choose to host these web servers internally, others choose to contract out the infrastructure to an “ASP” (Application Service Provider) or an Infrastructure as a Service (IaaS) company. In any case, the design of these applications often resembles the following: In this design, a server (or perhaps more than one) hosts the presentation function (http or https) access to the application, and this same system may hold the computational aspects of the program. Authorization and Access is controlled programmatically, or is more open if this is a customer-facing application. Storage is either placed on the same or other servers, hosted within an RDBMS or NoSQL database, or a combination of the options, all coded into the application. High-Availability within this scenario is often the responsibility of the architects of the application, and by purchasing more hosting resources which must be built, licensed and configured, and manually added as demand requires, although some IaaS providers have a partially automatic method to add nodes for scale-out, if the architecture of the application supports it. Disaster Recovery is the responsibility of the system architect as well. Implementation: In a Windows Azure Platform as a Service (PaaS) environment, many of these architectural considerations are designed into the system. The Azure “Fabric” (not to be confused with the Azure implementation of Application Fabric - more on that in a moment) is designed to provide scalability. Compute resources can be added and removed programmatically based on any number of factors. Balancers at the request-level of the Fabric automatically route http and https requests. The fabric also provides High-Availability for storage and other components. Disaster recovery is a shared responsibility between the facilities (which have the ability to restore in case of catastrophic failure) and your code, which should build in recovery. In a Windows Azure-based web application, you have the ability to separate out the various functions and components. Presentation can be coded for multiple platforms like smart phones, tablets and PC’s, while the computation can be a single entity shared between them. This makes the applications more resilient and more object-oriented, and lends itself to a SOA or Distributed Computing architecture. It is true that you could code up a similar set of functionality in a traditional web-farm, but the difference here is that the components are built into the very design of the architecture. The API’s and DLL’s you call in a Windows Azure code base contains components as first-class citizens. For instance, if you need storage, it is simply called within the application as an object.  Computation has multiple options and the ability to scale linearly. You also gain another component that you would either have to write or bolt-in to a typical web-farm: the Application Fabric. This Windows Azure component provides communication between applications or even to on-premise systems. It provides authorization in either person-based or claims-based perspectives. SQL Azure provides relational storage as another option, and can also be used or accessed from on-premise systems. It should be noted that you can use all or some of these components individually. Resources: Design Strategies for Scalable Active Server Applications - http://msdn.microsoft.com/en-us/library/ms972349.aspx  Physical Tiers and Deployment  - http://msdn.microsoft.com/en-us/library/ee658120.aspx

    Read the article

  • Windows Azure Use Case: Agility

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Agility in this context is defined as the ability to quickly develop and deploy an application. In theory, the speed at which your organization can develop and deploy an application on available hardware is identical to what you could deploy in a distributed environment. But in practice, this is not always the case. Having an option to use a distributed environment can be much faster for the deployment and even the development process. Implementation: When an organization designs code, they are essentially becoming a Software-as-a-Service (SaaS) provider to their own organization. To do that, the IT operations team becomes the Infrastructure-as-a-Service (IaaS) to the development teams. From there, the software is developed and deployed using an Application Lifecycle Management (ALM) process. A simplified view of an ALM process is as follows: Requirements Analysis Design and Development Implementation Testing Deployment to Production Maintenance In an on-premise environment, this often equates to the following process map: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including physical plant, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to on-premise Testing servers. If no server capacity available, more resources procured through standard budgeting and ordering processes. Manual and automated functional, load, security, etc. performed. Deployment to Production Server team involved to select platform and environments with available capacity. If no server capacity available, standard budgeting and procurement process followed. If no server capacity available, systems built, configured and put under standard organizational IT control. Systems configured for proper operating systems, patches, security and virus scans. System maintenance, HA/DR, backups and recovery plans configured and put into place. Maintenance Code changes evaluated and altered according to need. In a distributed computing environment like Windows Azure, the process maps a bit differently: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including budget, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to Azure. Manual and automated functional, load, security, etc. performed. Deployment to Production Code deployed to Azure. Point in time backup and recovery plans configured and put into place.(HA/DR and automated backups already present in Azure fabric) Maintenance Code changes evaluated and altered according to need. This means that several steps can be removed or expedited. It also means that the business function requesting the application can be held directly responsible for the funding of that request, speeding the process further since the IT budgeting process may not be involved in the Azure scenario. An additional benefit is the “Azure Marketplace”, In effect this becomes an app store for Enterprises to select pre-defined code and data applications to mesh or bolt-in to their current code, possibly saving development time. Resources: Whitepaper download- What is ALM?  http://go.microsoft.com/?linkid=9743693  Whitepaper download - ALM and Business Strategy: http://go.microsoft.com/?linkid=9743690  LiveMeeting Recording on ALM and Windows Azure (registration required, but free): http://www.microsoft.com/uk/msdn/visualstudio/contact-us.aspx?sbj=Developing with Windows Azure (ALM perspective) - 10:00-11:00 - 19th Jan 2011

    Read the article

  • The Windows Azure Software Development Kit (SDK) and the Windows Azure Training Kit (WATK)

    - by BuckWoody
    Windows Azure is a platform that allows you to write software, run software, or use software that we've already written. We provide lots of resources to help you do that - many can be found right here in this blog series. There are two primary resources you can use, and it's important to understand what they are and what they do. The Windows Azure Software Development Kit (SDK) Actually, this isn't one resource. We have SDK's for multiple development environments, such as Visual Studio and also Eclipse, along with SDK's for iOS, Android and other environments. Windows Azure is a "back end", so almost any technology or front end system can use it to solve a problem. The SDK's are primarily for development. In the case of Visual Studio, you'll get a runtime environment for Windows Azure which allows you to develop, test and even run code all locally - you do not have to be connected to Windows Azure at all, until you're ready to deploy. You'll also get a few samples and codeblocks, along with all of the libraries you need to code with Windows Azure in .NET, PHP, Ruby, Java and more. The SDK is updated frequently, so check this location to find the latest for your environment and language - just click the bar that corresponds to what you want: http://www.windowsazure.com/en-us/develop/downloads/ The Windows Azure Training Kit (WATK) Whether you're writing code, using Windows Azure Virtual Machines (VM's) or working with Hadoop, you can use the WATK to get examples, code, PowerShell scripts, PowerPoint decks, training videos and much more. This should be your second download after the SDK. This is all of the training you need to get started, and even beyond. The WATK is updated frequently - and you can find the latest one here: http://www.windowsazure.com/en-us/develop/net/other-resources/training-kit/     There are many other resources - again, check the http://windowsazure.com site, the community newsletter (which introduces the latest features), and my blog for more.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Pay in the future should make you think in the present

    - by BuckWoody
    Distributed Computing - and more importantly “-as-a-Service” models of computing have a different cost model. This is something that sounds obvious on the surface but it’s often forgotten during the design and coding phase of a project. In on-premises computing, we’re used to purchasing a server and all of the hardware infrastructure and software licenses needed not only for one project, but several. This is an up-front or “sunk” cost that we consume by running code the organization needs to perform its function. Using a direct connection over wires you’ve already paid for, we don’t often have to think about bandwidth, hits on the data store or the amount of compute we use - we just know more is better. In a pay-as-you-go model, however, each of these architecture decisions has a potential cost impact. The amount of data you store, the number of times you access it, and the amount you send back all come with a charge. The offset is that you don’t buy anything at all up-front, so that sunk cost is freed up. And financial professionals know that money now is worth more than money later. Saving that up-front cost allows you to invest it in other things. It’s not just that you’re using things that now cost money - it’s that the design itself in distributed computing has a cost impact. That can be a really good thing, such as when you dynamically add capacity for paying customers. If you can tie back the cost of a series of clicks to what a user will pay to do so, you can set a profit margin that is easy to track. Here’s a case in point: Assume you are using a large instance in Windows Azure to compute some data that you retrieve from a SQL Azure database. If you don’t monitor the path of the application, you may not know what you are really using. Since you’re paying by the size of the instance, it’s best to maximize it all the time. Recently I evaluated just this situation, and found that downsizing the instance and adding another one where needed, adding a caching function to the application, moving part of the data into Windows Azure tables not only increased the speed of the application, but reduced the cost and more closely tied the cost to the profit. The key is this: from the very outset - the design - make sure you include metrics to measure for the cost/performance (sometimes these are the same) for your application. Windows Azure opens up awesome new ways of doing things, so make sure you study distributed systems architecture before you try and force in the application design you have on premises into your new application structure.

    Read the article

  • Why do I need two Instances in Windows Azure?

    - by BuckWoody
    Windows Azure as a Platform as a Service (PaaS) means that there are various components you can use in it to solve a problem: Compute “Roles” - Computers running an OS and optionally IIS - you can have more than one "Instance" of a given Role Storage - Blobs, Tables and Queues for Storage Other Services - Things like the Service Bus, Azure Connection Services, SQL Azure and Caching It’s important to understand that some of these services are Stateless and others maintain State. Stateless means (at least in this case) that a system might disappear from one physical location and appear elsewhere. You can think of this as a cashier at the front of a store. If you’re in line, a cashier might take his break, and another person might replace him. As long as the order proceeds, you as the customer aren’t really affected except for the few seconds it takes to change them out. The cashier function in this example is stateless. The Compute Role Instances in Windows Azure are Stateless. To upgrade hardware, because of a fault or many other reasons, a Compute Role's Instance might stop on one physical server, and another will pick it up. This is done through the controlling fabric that Windows Azure uses to manage the systems. It’s important to note that storage in Azure does maintain State. Your data will not simply disappear - it is maintained - in fact, it’s maintained three times in a single datacenter and all those copies are replicated to another for safety. Going back to our example, storage is similar to the cash register itself. Even though a cashier leaves, the record of your payment is maintained. So if a Compute Role Instance can disappear and re-appear, the things running on that first Instance would stop working. If you wrote your code in a Stateless way, then another Role Instance simply re-starts that transaction and keeps working, just like the other cashier in the example. But if you only have one Instance of a Role, then when the Role Instance is re-started, or when you need to upgrade your own code, you can face downtime, since there’s only one. That means you should deploy at least two of each Role Instance not only for scale to handle load, but so that the first “cashier” has someone to replace them when they disappear. It’s not just a good idea - to gain the Service Level Agreement (SLA) for our uptime in Azure it’s a requirement. We point this out right in the Management Portal when you deploy the application: (Click to enlarge) When you deploy a Role Instance you can also set the “Upgrade Domain”. Placing Roles on separate Upgrade Domains means that you have a continuous service whenever you upgrade (more on upgrades in another post) - the process looks like this for two Roles. This example covers the scenario for upgrade, so you have four roles total - One Web and one Worker running the "older" code, and one of each running the new code. In all those Roles you want at least two instances, and this example shows that you're covered for High Availability and upgrade paths: The take-away is this - always plan for forward-facing Roles to have at least two copies. For Worker Roles that do background processing, there are ways to architect around this number, but it does affect the SLA if you have only one.

    Read the article

  • Using the @ in SQL Azure Connections

    - by BuckWoody
    The other day I was working with a client on an application they were changing to a hybrid architecture – some data on-premise and other data in SQL Azure and Windows Azure Blob storage. I had them make a couple of corrections - the first was that all communications to SQL Azure need to be encrypted. It’s a simple addition to the connection string, depending on the library you use. Which brought up another interesting point. They had been using something that looked like this, using the .NET provider: Server=tcp:[serverName].database.windows.net;Database=myDataBase; User ID=LoginName;Password=myPassword; Trusted_Connection=False;Encrypt=True; This includes most of the formatting needed for SQL Azure. It specifies TCP as the transport mechanism, the database name is included, Trusted_Connection is off, and encryption is on. But it needed one more change: Server=tcp:[serverName].database.windows.net;Database=myDataBase; User ID=[LoginName]@[serverName];Password=myPassword; Trusted_Connection=False;Encrypt=True; Notice the difference? It’s the User ID parameter. It includes the @ symbol and the name of the server – not the whole DNS name, just the server name itself. The developers were a bit surprised, since it had been working with the first format that just used the user name. Why did both work, and why is one better than the other? It has to do with the connection library you use. For most libraries, the user name is enough. But for some libraries (subject to change so I don’t list them here) the server name parameter isn’t sent in the way the load balancer understands, so you need to include the server name right in the login, so the system can parse it correctly. Keep in mind, the string limit for that is 128 characters – so take the @ symbol and the server name into consideration for user names. The user connection info is detailed here: http://msdn.microsoft.com/en-us/library/ee336268.aspx Upshot? Include the @servername on your connection string just to be safe. And plan for that extra space…  

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • Convert C# Silverlight App To AZURE CLOUD Platform?!?!

    - by Goober
    The Scenario I've been following Brad Abrams Silverlight tutorial on his blog.... I have tried following Brads "How to deploy your app to the Cloud" tutorial however i'm struggling with it, even though it is in the same context as the first tutorial.... The Question Is the application structure essentially the same as the original "non-cloud based version"!? If not, which parts are different? (I get that there is a Cloud Service project added to the solution) - but what else?! Connection String Issue In my "Non-Cloud based application", I make use of the ADO.Net Entity Framework to communicate with my database. The connection string in my web.config file looks like: <add name="InmZenEntities" connectionString="metadata=res://*/InmZenModel.csdl|res://*/InmZenModel.ssdl|res://*/InmZenModel.msl;provider=System.Data.SqlClient;provider connection string=&quot;Data Source=CHASEDIGITALWS3;Initial Catalog=InmarsatZenith;Integrated Security=True;MultipleActiveResultSets=True&quot;" providerName="System.Data.EntityClient" /></connectionStrings> However However the connection string that I get from SQL AZURE looks like: Server=tcp:k12ioy1rsi.ctp.database.windows.net;Database=master;User ID=simongilbert;Password=myPassword;Trusted_Connection=False; So how do I go about merging the two when I move the "non-cloud based application" to THE CLOUD?! Any help regarding converting a silverlight application to a cloud service and deploying it would be greatly appreciated

    Read the article

  • Open book PHP test

    - by user275074
    Hi, I have a open-book test this week and I've been notified that the test will be an exercise whereby a chunk of legacy code is provided and a requirement to port the code. I understand what a open-book test is and the requirement of it (to test your thought process etc) but (it's a long shot) what could porting involve? I have a vague idea of what porting is.

    Read the article

  • importing a VCard in the address book , objective C [migrated]

    - by user1044771
    I am designing a QR code reader, and it needs to detect and import contact cards in vCard format. is there a way to add the card data to the system Address Book directly, or do I need to parse the vCard myself and add each field individually? I will be getting the VCArd in a NSString format I tried the code below (from a different post) and didn't work -(IBAction)saveContacts{ NSString *vCardString = @"vCardDataHere"; CFDataRef vCardData = (__bridge_retained CFDataRef)[vCardString dataUsingEncoding:NSUTF8StringEncoding]; ABAddressBookRef book = ABAddressBookCreate(); ABRecordRef defaultSource = ABAddressBookCopyDefaultSource(book); CFArrayRef vCardPeople = ABPersonCreatePeopleInSourceWithVCardRepresentation(defaultSource, vCardData); for (CFIndex index = 0; index < CFArrayGetCount(vCardPeople); index++) { ABRecordRef person = CFArrayGetValueAtIndex(vCardPeople, index); ABAddressBookAddRecord(book, person, NULL); CFRelease(person); } CFRelease(vCardPeople); CFRelease(defaultSource); ABAddressBookSave(book, NULL); CFRelease(book); } I have searched a bit and fixed the code and here how it looks like it doesn t crash anymore but it doesn t save the VCard (NSString format) in the address book , any clues ?

    Read the article

  • Ada and 'The Book'

    - by Phil Factor
    The long friendship between Charles Babbage and Ada Lovelace created one of the most exciting and mysterious of collaborations ever to have resulted in a technological breakthrough. The fireworks that created by the collision of two prodigious mathematical and creative talents resulted in an invention, the Analytical Engine, which went on to change society fundamentally. However, beyond that, we just don't know what the bulk of their collaborative work was about:;  it was done in strictest secrecy. Even the known outcome of their friendship, the first programmable computer, was shrouded in mystery. At the time, nobody, except close friends and family, had any idea of Ada Byron's contribution to the invention of the ‘Engine’, and how to program it. Her great insight was published in August 1843, under the initials AAL, standing for Ada Augusta Lovelace, her title then being the Countess of Lovelace. It was contained in a lengthy ‘note’ to her translation of a publication that remains the best description of Babbage's amazing Analytical Engine. The secret identity of the person behind those enigmatic initials was finally revealed by Prince de Polignac who, seventy years later, wrote to Ada's daughter to seek confirmation that her mother had, indeed, been the author of the brilliant sentences that described so accurately how Babbage's mechanical computer could be programmed with punch-cards. L.F. Menabrea's paper on the Analytical Engine first appeared in the 'Bibliotheque Universelle de Geneve' in October 1842, and Ada translated it anonymously for Taylor's 'Scientific Memoirs'. Charles Babbage was surprised that she had not written an original paper as she already knew a surprising amount about the way the machine worked. He persuaded her to at least write some explanatory notes. These notes ended up extending to four times the length of the original article and represented the first published account of how a machine could be programmed to perform any calculation. Her example of programming the Bernoulli sequence would have worked on the Analytical engine had the device’s construction been completed, and gave Ada an unassailable claim to have invented the art of programming. What was the reason for Ada's secrecy? She was the only legitimate child of Lord Byron, who was probably the best known celebrity of the age, so she was already famous. She was a senior aristocrat, with titles, a fortune in money and vast estates in the Midlands. She had political influence, and was the cousin of Lord Melbourne, who was the Prime Minister at that time. She was friendly with the young Queen Victoria. Her mathematical activities were a pastime, and not one that would be considered by others to be in keeping with her roles and responsibilities. You wouldn't dare to dream up a fictional heroine like Ada. She was dazzlingly beautiful and talented. She could speak several languages fluently, and play some musical instruments with professional skill. Contemporary accounts refer to her being 'accomplished in science, art and literature'. On top of that, she was a brilliant mathematician, a talent inherited from her mother, Annabella Milbanke. In her mother's circle of literary and scientific friends was Charles Babbage, and Ada's friendship with him dates from her teenage zest for Mathematics. She was one of the first people he'd ever met who understood what he had attempted to achieve with the 'Difference Engine', and with whom he could converse as intellectual equals. He arranged for her to have an education from the most talented academics in the country. Ada melted the heart of the cantankerous genius to the point that he became a faithful and loyal father-figure to her. She was one of the very few who could grasp the principles of the later, and very different, ‘Analytical Engine’ which was designed from the start to tackle a variety of tasks. Sadly, Ada Byron's life ended less than a decade after completing the work that assured her long-term fame, in November 1852. She was dying of cancer, her gambling habits had caused her to run up huge debts, she'd had more than one affairs, and she was being blackmailed. Her brilliant but unempathic mother was nursing her in her final illness, destroying her personal letters and records, and repaying her debts. Her husband was distraught but helpless. Charles Babbage, however, maintained his steadfast paternalistic friendship to the end. She appointed her loyal friend to be her executor. For years, she and Babbage had been working together on a secret project, known only as 'The Book'. We have a clue to what it was in a letter written by her nine years earlier, on 11th August 1843. It was a joint project by herself and Lord Lovelace, her husband, and was intended to involve Babbage's 'undivided energies'. It involved 'consulting your Engine' (it required Babbage’s computer). The letter gives no hint about the project except for the high-minded nature of its purpose, and its highly mathematical nature.  From then on, the surviving correspondence between the two gives only veiled references to 'The Book'. There isn't much, since Babbage later destroyed any letters that could have damaged her reputation within the Establishment. 'I cannot spare the book today, which I am very sorry for. At the moment I want it for constant reference, but I think you can have it tomorrow' (Oct 1844)  And 'I will send you the book directly, and you can say, when you receive it, how long you will want to keep it'. (Nov 1844)  The two of them were obviously intent on the work: She writes, four years later, 'I have an engagement for Wednesday which will prevent me from attending to your wishes about the book' (Dec 1848). This was something that they both needed to work on, but could not do in parallel: 'I will send the book on Tuesday, and it can be left with you till Friday' (11 Feb 1849). After six years work, it had been so well-handled that it was beginning to fall apart: 'Don't forget the new cover you promised for the book. The poor book is very shabby and wants one' (20 Sept 1849). So what was going on? The word 'book' was not a code-word: it was a real book, probably a 'printer's blank', plain paper, but properly bound so printers and publishers could show off how the published work might look. The hints from the correspondence are of advanced mathematics. It is obvious that the book was travelling between them, back and forth, each one working on it for less than a week before passing it back. Ada and her husband were certainly involved in gambling large sums of money on the horses, and so most biographers have concluded that the three of them were trying to calculate the mathematical odds on the horses. This theory has three large problems. Firstly, Ada's original letter proposing the project refers to its high-minded nature. Babbage was temperamentally opposed to gambling and would scarcely have given so much time to the project, even though he was devoted to Ada. Secondly, Babbage would have very soon have realized the hopelessness of trying to beat the bookies. This sort of betting never attracts his type of intellectual background. The third problem is that any work on calculating the odds on horses would not need a well-thumbed book to pass back and forth between them; they would have not had to work in series. The original project was instigated by Ada, along with her husband, William King-Noel, 1st Earl of Lovelace. Charles Babbage was invited to join the project after the couple had come up with the idea. What could William have contributed? One might assume that William was a Bertie Wooster character, addicted only to the joys of the turf, but this was far from the truth. He was a scientist, a Cambridge graduate who was later elected to be a Fellow of the Royal Society. After Eton, he went to Trinity College, Cambridge. On graduation, he entered the diplomatic service and acted as secretary under Lord Nugent, who was Lord Commissioner of the Ionian Islands. William was very friendly with Babbage too, able to discuss scientific matters on equal terms. He was a capable engineer who invented a process for bending large timbers by the application of steam heat. He delivered a paper to the Institution of Civil Engineers in 1849, and received praise from the great engineer, Isambard Kingdom Brunel. As well as being Lord Lieutenant of the County of Surrey for most of Victoria's reign, he had time for a string of scientific and engineering achievements. Whatever the project was, it is unlikely that William was a junior partner. After Ada's death, the project disappeared. Then, two years later, Babbage, through one of his occasional outbursts of temper, demonstrated that he was able to decrypt one of the most powerful of secret codes, Vigenère's autokey cipher.  All contemporary diplomatic and military messages used a variant of this cipher. Babbage had made three important discoveries, namely, the mathematical law of this cipher, the principle of the key periodicity, and the technique of the symmetry of position. The technique is now known as the Kasiski examination, also called the Kasiski test, but Babbage got there first. At one time, he listed amongst his future projects, the writing of a book 'The Philosophy of Decyphering', but it never came to anything. This discovery was going to change the course of history, since it was used to decipher the Russians’ military dispatches in the Crimean war. Babbage himself played a role during the Crimean War as a cryptographical adviser to his friend, Rear-Admiral Sir Francis Beaufort of the Admiralty. This is as much as we can be certain about in trying to make sense of the bulk of the time that Charles Babbage and Ada Lovelace worked together. Nine years of intensive work, involving the 'Engine' and a great deal of mathematics and research seems to have been lost: or has it? I've argued in the past http://www.simple-talk.com/community/blogs/philfactor/archive/2008/06/13/59614.aspx that the cracking of the Vigenère autokey cipher, was a fundamental motive behind the British Government's support and funding of the 'Difference Engine'. The Duke of Wellington, whose understanding of the military significance of being able to read enemy dispatches, was the most steadfast advocate of the project. If the three friends were actually doing the work of cracking codes by mathematical techniques that used the techniques of key periodicity, and symmetry of position (the use of a book being passed quickly to and fro is very suggestive), intending to then use the 'Engine' to do the routine cracking of each dispatch, then this is a rather different story. The project was Ada and William's idea. (William had served in the diplomatic service and would be familiar with the use of codes). This makes Ada Lovelace the initiator of a project which, by giving both Britain, and probably the USA, a diplomatic and military advantage in the second part of the Nineteenth century, changed world history. Ada would never have wanted any credit for cracking the cipher, and developing the method that rendered all contemporary military and diplomatic ciphering techniques nugatory; quite the reverse. And it is clear from the gaps in the record of the letters between the collaborators that the evidence was destroyed, probably on her request by her irascible but intensely honorable executor, Charles Babbage. Charles Babbage toyed with the idea of going public, but the Crimean war put an end to that. The British Government had a valuable secret, and intended to keep it that way. Ada and Charles had quite often discussed possible moneymaking projects that would fund the development of the Analytic Engine, the first programmable computer, but their secret work was never in the running as a potential cash cow. I suspect that the British Government was, even then, working on the concealment of a discovery whose value to the nation depended on it remaining so. The success of code-breaking in the Crimean war, and the American Civil war, led to the British and Americans  subsequently giving much more weight and funding to the science of decryption. Paradoxically, this makes Ada's contribution even closer to the creation of Colossus, the first digital computer, at Bletchley Park, specifically to crack the Nazi’s secret codes.

    Read the article

  • So, whats the best book on C#?

    - by mbcrump
    I see this question several times a day from newbie’s to professionals. I have listed the best C# books that I have read so far.   ECMA-334 C# Language Specification. – FREE book. This is probably the best place to start. Read it backwards and forwards and you can even request a hard copy. Absolute Beginners Guide to C Sharp 2nd Edition – Used this early on and found it very useful even if its game programming. C-Sharp 2.0 - The Complete Reference, 2nd Edition (McGraw-Hill, 2006) – One of the most useful books that is always with me. It contains short example code and is very well written. Dot Net Zero - Charles Petzold  - FREE book and you should definately give it a read. C Sharp in Depth by Jon Skeet -  Probably one of the most in depth books on C Sharp and definitely not for beginners. Jon Skeet knows C# like no other. I would consider this book the Bible of C#. If you understand 50% of this book, you have a good understanding of the language.  CLR via C Sharp 3rd Edition – I just started reading this book and it is another book thats not for beginners. If you really want to understand the CLR then give this book a try. Well, thats it. I hope you enjoy the books as I have spent a lot of time researching different C# books.

    Read the article

  • What is the best book on Silverlight 4?

    - by mbcrump
    Silverlight/Expression 4 Books! I recently stumbled upon a post asking, “What is the best book on Silverlight 4?” In the age of the internet, it can be hard for anyone searching for a good book to actually find it. I have read a few Silverlight 4/Expression books in 2010 and decided to post the “best of” collection. Instead of reading multiple books, you can cut your list down to whatever category that you fit in. With Silverlight 5 coming soon, now is the time to get up to speed with what Silverlight 4 can offer. Be sure to read the full review at the bottom of each section. For the “Beginner” Silverlight Developer: Both of these books contains very simple applications and will get you started very fast. and Book Review: Microsoft Silverlight 4 Step by Step For the guy/gal that wants to “Master” Expression Blend 4: This is a hands-on kind of book. Victor get you started early on with some sample application and quickly deep dives into Storyboard and other Animations. If you want to learn Blend 4 then this is the place to start. Book Review: Foundation Expression Blend 4 by Victor Gaudioso If you are aiming to learn more about the Business side of Silverlight then check out the following two books: and Finally, For the Silverlight 4 guy/gal that wants to “Master” Silverlight 4, it really boils down to the following two books: and   Book Review: Silverlight 4 Unleashed by Laurent Bugnion Book Review: Silverlight 4 in Action by Pete Brown I can’t describe how much that I’ve actually learned from both of these books. I would also recommend you read these books if you are preparing for your Silverlight 4 Certification. For a complete list of all Silverlight 4 books then check out http://www.silverlight.net/learn/books/ and don’t forget to subscribe to my blog.  Subscribe to my feed CodeProject

    Read the article

  • Some free cloud solution to enhance your business

    - by Saif Bechan
    I am co-owner of a small internet business. I am in charge of IT, and I try to get things done as low cost as possible. When investing in servers, resources and overall business costs your project can soon turn into a financial disaster. Cloud solutions can help you in solving some financial problems, they can help you in scalability problems, and overall performance problems of your server or web application. Recently I moved the whole internal/external communication(email,calendar,documents) of my business to the cloud. I did this by using the free version of Google Apps. This works great and is a big advantage on multiple levels. I do not have to fight spam anymore on my system, and there are less resources used on my system. Also switching servers will go a lot easier. Questions Can you name some cloud solution that you have used, or some you just recommend. They can fairy form financial benefits, organizational benefits, performance benefits. It doesn't matter as soon as it helps you spread the load of your business.

    Read the article

  • What considerations should be made for a web app to be released on a cloud hosted system?

    - by Rhubarb
    I have a web app that is primarily a WordPress app, but it pulls content from a Django app, simply by calling a service that uses Django models. My understanding of cloud computing is a bit vague. If the site needs to scale up with short notice, does the cloud provider (Amazon, Rackspace, whomever) simply spin up new instances (copies) of my initially configured server? How is state managed between all of them? Are there any good primers on this subject? It's hard to find much out there without getting caught up in the marketing.

    Read the article

  • New Book: Oracle Exalogic Elastic Cloud Handbook

    - by user12608550
    Oracle Exalogic Elastic Cloud Handbook, by Tom Plunkett, TJ Palazzolo, and Tejas Joshi, Oracle Press. The well-known characteristics and tiers of cloud computing have spawned myriad implementations by a host of vendors and system integrators. One of these, Oracle's Exalogic Elastic Cloud, part of Oracle's family of Engineered Systems, is a key component of Oracle's public and private cloud computing solutions, providing critical PaaS (Platform as a Service) features for cloud developers. These developers need guidance to take advantage of Exalogic's extensive capabilities, and the Oracle Exalogic Elastic Cloud Handbook, written by three highly experienced Oracle technologists, provides that guidance. Part One of the book covers Exalogic's hardware and software components, and includes a very useful chapter on deployment examples, describing best practices for scalabiity, availability, backup and recovery, and multi-tenant security, including integration with other Oracle Engineered Systems and products such as Exadata and storage subsystems. Part Two is a thorough guide to Exalogic installation features, configuration and monitoring, packaged application software management, and scalable application development. The book also provides an extensive list of online resources, including pointers to Web sites, whitepapers, instructional videos, and other Oracle documentation. So, if you're planning to implement Exalogic as part of your cloud infrastructure, or are considering such, you'll find lots of sage advice and best practices in this handbook.

    Read the article

  • New Book - Oracle ADF Enterprise Application Development Made Simple

    - by Shay Shmeltzer
    It's nice to see another ADF book out there, this one from Sten Vesteli titled "Oracle ADF Enterprise Application Development Made Simple" comes from Packet Publishing Unlike other ADF books out there, this one doesn't aim to teach you Oracle ADF, but rather focuses on the right way to structure and manage a project that leverages ADF. This is a welcomed addition to the bookshelf for people who are looking into ADF based development. One thing I find is that some organization just start developing an ADF application without first doing much planning, something that is understandable given that it is very easy to start building a prototype with ADF and then just grow it into a full blown application. However, as the book points out, doing a bit of planning before you delve into the actual project development can save you a lot of time in the future. For example it is much better to have the right breakdown and structure of your project to allow you to do efficient team development right out of the gate, then to find out 1 year down the road that you are dealing with one monolithic size project which is hard to manage. The book touches on such topics as project organization (workspaces, projects, packages), planning your infrastructure (templates, framework classes), coding standards, team structure, etc. It also covers various aspects of application lifecycle management such as versioning, build, testing, deployment and managing requirements and tasks and how all of those are done when using JDeveloper and Oracle ADF. It's nice to see that the book covers working with Oracle Team Productivity Center - a solution that might not be getting the exposure it deserves. The book also has some chapters about security, internalization and customization of applications both with MDS and with ADF Faces skins (and it even covers the brand new skin editor). Overall I think this is definitely a book you should read if you are about to start your way on a new enterprise scale ADF application. Taking into account the topics that the book discusses before you start your work will save you time and effort down the road. By the way, don't forget that as an OTN member you can get discount on this and other books.

    Read the article

  • Python in Finance by Yuxing Yan, Packt Publishing Book Review

    - by Compudicted
    Originally posted on: http://geekswithblogs.net/Compudicted/archive/2014/06/04/python-in-finance-by-yuxing-yan-packt-publishing-book-review.aspx I picked Python in Finance from Packt Publishing to review expecting to bore myself with complex algorithms and senseless formulas while seeing little actual Python in action, indeed at 400 pages plus it may seem so. But, it turned out to be quite the opposite. I learned a lot about practical implementations of various Python modules as SciPy, NumPy and several more, I think they empower a developer a lot. No wonder Python is on the track to become a de-facto scientist language of choice! But I am not going to compromise the truth, the book does discuss numerous financial terms, many of them, and this is where the enormous power of this book is coming from: it is like standing on the shoulders of a giant. Python is that giant - flexible and powerful, yet very approachable. The TOC is very detailed thanks to Packt, any one can see what financial algorithms are covered, I am only going to name a few which I had most fun with (though all of them are covered in enough details): Fama*, Fat Tail, ARCH, Monte-Carlo and of course the volatility smile! I am under an impression this book is best suited for students in Finance, especially those who are about to join the workforce, but I suspect the material in this book is very well suited for mature Financists, an investor who has some programming skills and wants to benefit from it, or even a programmer, or a mathematician who already knows Python or any other language, but wants to have fun in Quantitative Finance and earn a few buck! Pure fun, real results, tons of practical insight from reading data from a file to downloading trade data from Yahoo! Lastly, I need to complement Yuxing – he is a talented teacher, this book could not be what it is otherwise. It is a 5 out of 5 product. Disclaimer: I received a  free copy of this book for review purposes from the publisher.

    Read the article

  • Vernon's book Implementing DDD and modeling of underlying concepts

    - by EdvRusj
    Following questions all refer to examples presented in Implementing DDD In article we can see from Figure 6 that both BankingAccount and PayeeAccount represent the same underlying concept of Banking Account BA 1. On page 64 author gives an example of a publishing organization, where the life-cycle of a book goes through several stages ( proposing a book, editorial process, translation of the book ... ) and at each of those stages this book has a different definition. Each stage of the book is defined in a different Bounded Context, but do all these different definitions still represent the same underlying concept of a Book, just like both BankingAccount and PayeeAccount represent the same underlying concept of a BA? 2. a) I understand why User shouldn't exist in Collaboration Context ( CC ), but instead should be defined within Identity and Access Context IAC ( page 65 ). But still, do User ( IAC ), Moderator ( CC ), Author ( CC ),Owner ( CC ) and Participant ( CC ) all represent different aspects of the same underlying concept? b) If yes, then this means that CC contains several model elements ( Moderator, Author, Owner and Participant ), each representing different aspect of the same underlying concept ( just like both BankingAccount and PayeeAccount represent the same underlying concept of a BA ). But isn't this considered a duplication of concepts ( Evan's book, page 339 ), since several model elements in CC represent the same underlying concept? c) If Moderator, Author ... don't represent the same underlying concept, then what underlying concept does each represent? 3. In an e-commerce system, the term Customer has multiple meanings ( page 49 ): When user is browsing the Catalog, Customer has different meaning than when user is placing an Order. But do these two different definitions of a Customer represent the same underlying concept, just like both BankingAccount and PayeeAccount represent the same underlying concept of a BA? thanks

    Read the article

  • Advice on choosing a book to read

    - by Kioshiki
    I would like to ask for some recommendations on useful books to read. Initially I had intended on posting quite a long description of my current issue and asking for advice. But I realised that I didn’t have a clear idea of what I wanted to ask. One thing that is clear to me is that my knowledge in various areas needs improving and reading is one method of doing that. Though choosing the right book to read seems like a task in itself when there are so many books out there. I am a programmer but I also deal with analysis, design & testing. So I am not sure what type of book to read. One option might be to work through two books at the same time. I had thought maybe one about design or practices and another of a more technical focus. Recently I came across one book that I thought might be useful to read: http://xunitpatterns.com/index.html It seems like an interesting book, but the comments I read on amazon.co.uk show that the book is probably longer than it needs to be. Has anyone read it and can comment on this? Another book that I already own and would probably be a good one to finish reading is this: http://www.amazon.co.uk/Code-Complete-Practical-Handbook-Construction/dp/0735619670/ref=sr_1_1?ie=UTF8&qid=1309438553&sr=8-1 Has anyone else read this who can comment on its usefulness? Beyond these two I currently have no clear idea of what to read. I have thought about reading a book related to OO design or the GOF design patterns. But I wonder if I am worrying too much about the process and practices and not focusing on the actual work. I would be very grateful for any suggestions or comments. Many Thanks, Kioshiki

    Read the article

  • How to use LVM on Rackspace Cloud

    - by batrick
    Dear all, I am trying to set up a simple but effective solution to make a backup of my rackspace cloud servers. These servers each run subversion, trac, and some database-backed custom php applications. My idea is to set up a LVM and mount a volume under, say, /srv. In this volume, I keep the data from all applications. Instead of caring about how to back-up each app in a different way (svn hotcopy, trac-admin hotcopy, huge mess for mysql), I simply take an LVM snapshot and back this one up cloud files using the excellent cloudcity script (http://github.com/jspringman/cloudcity/blob/master/cloudcity). The advantage of this solution is that it is quick and easy, and LVM allows to make decent backups. As more apps are added, it should not be required to change the backup script much. The downside, and main point of my question here, is that I am not sure how to get LVM working on Rackspace cloud, because there is only one root volume and no service like Amazon's EBS. I was thinking it may be possible to create a large empty file and use this as a "physical volume". Has anybody done anything like this before? Or do you know why it can never work? It would be great to hear from you. Thanks, batrick

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >