Search Results

Search found 1783 results on 72 pages for 'computation theory'.

Page 13/72 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Using a user-defined type as a primary key

    - by Chris Kaminski
    Suppose I have a system where I have metadata such as: table: ====== key name address ... Then suppose I have a user-defined type described as so: datasource datasource-key A) are there systems where it's possible to have keys based on user-defined types? B) if so, how do you decompose the keys into a form suitable for querying? C) is this a case where I'm just better off with a composite primary key?

    Read the article

  • Is a server an infinite loop running as a background process?

    - by Tony
    Is a server essentially a background process running an infinite loop listening on a port? For example: while(1){ command = read(127.0.0.1:xxxx); if(command){ execute(command); } } When I say server, I obviously am not referring to a physical server (computer). I am referring to a MySQL server, or Apache, etc. Full disclosure - I haven't had time to poke through any source code. Actual code examples would be great!

    Read the article

  • do you call them functions, procedures or methods?

    - by lowlyintern
    consider a standard c# 'function' public void foo() { //some code } In c or c++ this is called a 'function' - even if taking no parameters and returning no value. In another language maybe it would be a 'procedure'. In object orientation speak it would be called a 'method' if a class member. What would be the correct term to use in c#?

    Read the article

  • Will a source-removal sort always return a maximal cycle?

    - by Jason Baker
    I wrote a source-removal algorithm to sort some dependencies between tables in our database, and it turns out we have a cycle. For simplicity, let's say we have tables A, B, C, and D. The edges are like this: (A, B) (B, A) (B, C) (C, D) (D, A) As you can see, there are two cycles here. One is between A and B and another is between all four of them. Will this type of sort always choke on the largest cycle? Or is that not necessarily the case?

    Read the article

  • Floating point computer - Trouble with getting back correct results

    - by Francisco P.
    Having trouble with a challenge. Let's say I have a theoretical, base 10, floating point calculator with the following characteristics Only 3 digits for mantissa 1 digit for exponent Sign for mantissa and exponent How would this machine compute the following? 300 + \sum_{i=1}^{100} 0.2 The correct result is 320. The machine's result is 300. But why? Can't get where the 20 goes goes missing... Thanks for your time.

    Read the article

  • What areas of computer science are particularly relevant to mobile development?

    - by MalcomTucker
    This isn't a platform specific question - rather I'm interested in the general platform independent areas of computer science that are particularly relevant to mobile applications development. For example, things like compression techniques, distributed synchronisation algorithims etc.. what theoretical concepts have you found relevant, useful or enabling when building mobile apps?

    Read the article

  • The Cash or Credit problem

    - by Josh K
    If you go to a store and ask "Cash or Credit?" they might simply say "Yes." This doesn't tell you anything as you posed an OR statement. if(cash || credit) With humans it's possible that they might respond "Both" to that question, or "Only {cash | credit}." Is there a way (or operator) to force the a statement to return the TRUE portions of a statement? For example: boolean cash = true; boolean credit = true; boolean cheque = false; if(cash || credit || cheque ) { // In here you would have an array with cash and credit in it because both of those are true }

    Read the article

  • Weakly connected balanced digraph

    - by user1074557
    How can I prove that if a balanced digraph is weakly connected, then it is also strongly connected? (balanced digraph means that for every node, it's indegree and outdegree is the same and weakly connected means the non-directed version of this graph is connected). What I can think of so far is: if the graph is balanced, it means it is a union of directed cycles. So if I remove any cycle, it will stay balanced. Also each vertex in the cycle has one edge coming into it and one edge leading out of it.. Then I guess I need to use some contradiction or induction to prove that the graph is strongly connected.. That's where I confused.

    Read the article

  • What is the best way to create a debugging web page for a computation in Java?

    - by Shooshpanchick
    I'm developing a website that uses some complex computations (NLP-related). My customer wants to have "debugging" webpages for some of these computations where he can run them with arbitrary input and see all the intermediate results that occur during computation. Before this request all of the computations were encapsulated in beans and intermediate results were logged into general log. What is the best way to capture all these results on Java level to render them as webpage?

    Read the article

  • Theory of Computation - Showing that a language is regular..

    - by Tony
    I'm reviewing some notes for my course on Theory of Computation and I'm a little bit stuck on showing the following statement and I was hoping somebody could help me out with an explanation :) Let A be a regular language. The language B = {ab | a exists in A and b does not exist in A*} Why is B a regular language? Some points are obvious to me. If b is simply a constant string, this is trivial. Since we know a is in A and b is a string, regular languages are closed under union, so unioning the language that accepts these two strings is obviously regular. I'm not sure that b is constant, however. Maybe it is, and if so, then this isn't really an issue. I'm having a hard time making sense of it. Thanks!

    Read the article

  • VS compiling Error 1256 ( integer overflow in internal computation ... ) during inheritance

    - by odbb
    Hi there, my problem occurs during compiling Irrlicht3D Engine in VS 2008. 1Error 1256: integer overflow in internal computation due to size or complexity of "irr::IReferenceCounted" I'm currently merging a very old Softwaredriver I have written with the rest of the engine which is much newer. The main Problme is that I have tried to resolve abstract inherince problems. But now I get this error and it is the only one. "irr::IReferenceCounted" is one of the base classes used by other classes which have been inherinced from. What does that mean? I know that an integer overflow can be a normal overflow, but why is this shown during compilation? Any help appreciated! -db

    Read the article

  • PHP - Why does my computation produce a different result when I assign it to a variable?

    - by David
    I want to round a number to a specific number of significant digits - basically I want the following function: round(12345.67, 2) -> 12000 round(8888, 3) -> 8890 I have the following, but there's a strange problem. function round_to_sf($number, $sf) { $mostsigplace = floor(log10(abs($number)))+1; $num = $number / pow(10, ($mostsigplace-$sf)); echo ($number / pow(10, ($mostsigplace-$sf))).' '.$num.'<BR>'; } round_to_sf(41918.522, 1); Produces the following output: 4.1918522 -0 How can the result of a computation be different when it's assigned to a variable?

    Read the article

  • How does an optimizing compiler react to a program with nested loops?

    - by D.Singh
    Say you have a bunch of nested loops. public void testMethod() { for(int i = 0; i<1203; i++){ //some computation for(int k=2; k<123; k++){ //some computation for(int j=2; j<12312; j++){ //some computation for(int l=2; l<123123; l++){ //some computation for(int p=2; p<12312; p++){ //some computation } } } } } } When the above code reaches the stage where the compiler will try to optimize it (I believe it's when the intermediate language needs to converted to machine code?), what will the compiler try to do? Is there any significant optimization that will take place? I understand that the optimizer will break up the loops by means of loop fission. But this is only per loop isn't it? What I mean with my question is will it take any action exclusively based on seeing the nested loops? Or will it just optimize the loops one by one? If the Java VM complicates the explanation then please just assume that it's C or C++ code.

    Read the article

  • Parallelism implies concurrency but not the other way round right?

    - by Cedric Martin
    I often read that parallelism and concurrency are different things. Very often the answerers/commenters go as far as writing that they're two entirely different things. Yet in my view they're related but I'd like some clarification on that. For example if I'm on a multi-core CPU and manage to divide the computation into x smaller computation (say using fork/join) each running in its own thread, I'll have a program that is both doing parallel computation (because supposedly at any point in time several threads are going to run on several cores) and being concurrent right? While if I'm simply using, say, Java and dealing with UI events and repaints on the Event Dispatch Thread plus running the only thread I created myself, I'll have a program that is concurrent (EDT + GC thread + my main thread etc.) but not parallel. I'd like to know if I'm getting this right and if parallelism (on a "single but multi-cores" system) always implies concurrency or not? Also, are multi-threaded programs running on multi-cores CPU but where the different threads are doing totally different computation considered to be using "parallelism"?

    Read the article

  • Learning how to design knowledge and data flow [closed]

    - by max
    In designing software, I spend a lot of time deciding how the knowledge (algorithms / business logic) and data should be allocated between different entities; that is, which object should know what. I am asking for advice about books, articles, presentations, classes, or other resources that would help me learn how to do it better. I code primarily in Python, but my question is not really language-specific; even if some of the insights I learn don't work in Python, that's fine. I'll give a couple examples to clarify what I mean. Example 1 I want to perform some computation. As a user, I will need to provide parameters to do the computation. I can have all those parameters sent to the "main" object, which then uses them to create other objects as needed. Or I can create one "main" object, as well as several additional objects; the additional objects would then be sent to the "main" object as parameters. What factors should I consider to make this choice? Example 2 Let's say I have a few objects of type A that can perform a certain computation. The main computation often involves using an object of type B that performs some interim computation. I can either "teach" A instances what exact parameters to pass to B instances (i.e., make B "dumb"); or I can "teach" B instances to figure out what needs to be done when looking at an A instance (i.e., make B "smart"). What should I think about when I'm making this choice?

    Read the article

  • Akka framework support for finding duplicate messages

    - by scala_is_awesome
    I'm trying to build a high-performance distributed system with Akka and Scala. If a message requesting an expensive (and side-effect-free) computation arrives, and the exact same computation has already been requested before, I want to avoid computing the result again. If the computation requested previously has already completed and the result is available, I can cache it and re-use it. However, the time window in which duplicate computation can be requested may be arbitrarily small. e.g. I could get a thousand or a million messages requesting the same expensive computation at the same instant for all practical purposes. There is a commercial product called Gigaspaces that supposedly handles this situation. However there seems to be no framework support for dealing with duplicate work requests in Akka at the moment. Given that the Akka framework already has access to all the messages being routed through the framework, it seems that a framework solution could make a lot of sense here. Here is what I am proposing for the Akka framework to do: 1. Create a trait to indicate a type of messages (say, "ExpensiveComputation" or something similar) that are to be subject to the following caching approach. 2. Smartly (hashing etc.) identify identical messages received by (the same or different) actors within a user-configurable time window. Other options: select a maximum buffer size of memory to be used for this purpose, subject to (say LRU) replacement etc. Akka can also choose to cache only the results of messages that were expensive to process; the messages that took very little time to process can be re-processed again if needed; no need to waste precious buffer space caching them and their results. 3. When identical messages (received within that time window, possibly "at the same time instant") are identified, avoid unnecessary duplicate computations. The framework would do this automatically, and essentially, the duplicate messages would never get received by a new actor for processing; they would silently vanish and the result from processing it once (whether that computation was already done in the past, or ongoing right then) would get sent to all appropriate recipients (immediately if already available, and upon completion of the computation if not). Note that messages should be considered identical even if the "reply" fields are different, as long as the semantics/computations they represent are identical in every other respect. Also note that the computation should be purely functional, i.e. free from side-effects, for the caching optimization suggested to work and not change the program semantics at all. If what I am suggesting is not compatible with the Akka way of doing things, and/or if you see some strong reasons why this is a very bad idea, please let me know. Thanks, Is Awesome, Scala

    Read the article

  • Generic Method to find the tuples used for computation in Postgres?

    - by Rahul
    If I have a table col1 | name | pay ------+------------------+------ 1 | Steve Jobs | 1006 2 | Mike Markkula | 1007 3 | Mike Scott | 1978 4 | John Sculley | 1983 5 | Michael Spindler | 1653 The user executes a sum query which sums the pay of people getting paid more than $1500. Is there a way to also implicitly know which tuples have been used which satisfy the condition for sum ? I know you can separately write another query to just return the primary key ids which satisfy the condition. But, Is there any other way to do that in the same query ? probably rewrite the query in some way ? or... any suggestion ?

    Read the article

  • Is SQL DATEDIFF(year, ..., ...) an Expensive Computation?

    - by rlb.usa
    I'm trying to optimize up some horrendously complicated SQL queries because it takes too long to finish. In my queries, I have dynamically created SQL statements with lots of the same functions, so I created a temporary table where each function is only called once instead of many, many times - this cut my execution time by 3/4. So my question is, can I expect to see much of a difference if say, 1,000 datediff computations are narrowed to 100?

    Read the article

  • How to implement geo-based data store and computation?

    - by Mickey Shine
    Well, let me explain this briefly: 1.I want to build a website that provides location based services, like http://fireeagle.yahoo.net/ . 2.I guess most of these services have something do with longitude and latitude. 3.Is there any particular database/datastore/data structures fit well for such apps? I mean easy to store longitude, latitude and easy to compute or easy to use. I am new to this and any feedbacks are welcome

    Read the article

  • Computation overhead in C# - Using getters/setters vs. modifying arrays directly and casting speeds

    - by Jeffrey Kern
    I was going to write a long-winded post, but I'll boil it down here: I'm trying to emulate the graphical old-school style of the NES via XNA. However, my FPS is SLOW, trying to modify 65K pixels per frame. If I just loop through all 65K pixels and set them to some arbitrary color, I get 64FPS. The code I made to look-up what colors should be placed where, I get 1FPS. I think it is because of my object-orented code. Right now, I have things divided into about six classes, with getters/setters. I'm guessing that I'm at least calling 360K getters per frame, which I think is a lot of overhead. Each class contains either/and-or 1D or 2D arrays containing custom enumerations, int, Color, or Vector2D, bytes. What if I combined all of the classes into just one, and accessed the contents of each array directly? The code would look a mess, and ditch the concepts of object-oriented coding, but the speed might be much faster. I'm also not concerned about access violations, as any attempts to get/set the data in the arrays will done in blocks. E.g., all writing to arrays will take place before any data is accessed from them. As for casting, I stated that I'm using custom enumerations, int, Color, and Vector2D, bytes. Which data types are fastest to use and access in the .net Framework, XNA, XBox, C#? I think that constant casting might be a cause of slowdown here. Also, instead of using math to figure out which indexes data should be placed in, I've used precomputed lookup tables so I don't have to use constant multiplication, addition, subtraction, division per frame. :)

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • (interactive) graph as in graph theory on a web page ?

    - by LB
    Hi, I have to integrate a graph with nodes and edges on a web page. Ideally, i would like to be able to interact with it (like moving the nodes around). Actually, i'm beginning by representing trees, so i would appreciate to be able to collapse subtrees. How can I do that ? I was considering google-visualization api but i wasn't able to find the kind of visualization i'm looking for (org chart doesn't allow to have multiple fathers, if i understood well) I've got no idea of the kind of technology so my tagging may not be really accurate :-). thanks

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >