Search Results

Search found 3912 results on 157 pages for 'distributed caching'.

Page 13/157 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Performance Improvements: Caching

    Caching can greatly improve performance but it can also lull you into a false sense of security. In some cases it can even make the performance worse. If you haven't already, then now is the time to learn the issues and limitations of caching so that you can truly improve performance.

    Read the article

  • Performance Improvements: Caching

    Caching can greatly improve performance but it can also lull you into a false sense of security. In some cases it can even make the performance worse. If you haven't already, then now is the time to learn the issues and limitations of caching so that you can truly improve performance.

    Read the article

  • Caching: the Good, the Bad and the Hype

    One of the more important aspects of the scalability of an ASP.NET site is caching. To do this effectively, one must understand the relative permanence and importance of the data that is presented to the user, and work out which of the four major aspects of caching should be used. There is always a compromise, but in most cases it is an easy compromise to make considering its effects in a heavily-loaded production system

    Read the article

  • How can I force PHP's fopen() to return the current version of a web page?

    - by Edward Tanguay
    The current content of this google docs page is: However, when reading this page with the following PHP fopen() script, I get an older, cached version: I've tried two solutions proposed in this question (a random attribute and using POST) and I also tried clearstatcache() but I always get the cached version of the web page. What do I have to change in the following script so that fopen() returns the current version of the web page? <?php $url = 'http://docs.google.com/View?id=dc7gj86r_32g68627ff&amp;rand=' . getRandomDigits(10); echo $url . '<hr/>'; echo loadFile($url); function loadFile($sFilename) { clearstatcache(); if (floatval(phpversion()) >= 4.3) { $sData = file_get_contents($sFilename); } else { if (!file_exists($sFilename)) return -3; $opts = array('http' => array( 'method' => 'POST', 'content'=>'' ) ); $context = stream_context_create($opts); $rHandle = fopen($sFilename, 'r'); if (!$rHandle) return -2; $sData = ''; while(!feof($rHandle)) $sData .= fread($rHandle, filesize($sFilename)); fclose($rHandle); } return $sData; } function getRandomDigits($numberOfDigits) { $r = ""; for($i=1; $i<=$numberOfDigits; $i++) { $nr=rand(0,9); $r .= $nr; } return $r; } ?>

    Read the article

  • SQLAuthority News – Mark the Date: October 16, 2013 – Introducing NuoDB Blackbirds: THE Distributed Database

    - by Pinal Dave
    I am very excited to announce first on this blog about the release of NuoDB Blackbirds (NuoDB Release 2.0). NuoDB is my favorite application to work with data now a days. They are increasingly gaining market share as well as brining out new features with their every new release. I was very excited when I learned that NuoDB is releasing their flagship release of 2.0 on October 16, 2013. Interesting enough I will be in USA while this release happens and I will be watching it live during my day time. Even though if I had to stay up the entire night to just watch this release, I would do it. Here is the details of the announcements: Introducing NuoDB Blackbirds: THE Distributed Database Date: October 16, 2013 Time: 1:00 PM EDT Location: Online Registration Link What is the best DBMS architecture to handle today’s and tomorrow’s evolving needs? The days of shared disk are over. The times are “a-changin” and IT infrastructure has to change with them. Join NuoDB live for the introduction of our latest major product release, NuoDB Blackbirds, and take a look at why the NuoDB distributed database architecture is the only answer for customers like Fathom Voice, a leading provider of Voice Over IP (VoIP). NuoDB CEO, Barry Morris, welcomes Cameron Weeks, CEO of Fathom Voice to discuss how his company is using DBMS to break away from the pack and become the hottest player in VoIP. The webcast will include demonstrations of a single, logical database running in multiple geographies and a live Q&A. If due to any reason, you cannot watch it live, do not worry at all, just register at this Registration Link, as after the event you will get the link to watch the event on-demand. You can watch the launch event at any time if you have registered for the launch. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: NuoDB

    Read the article

  • Test Data in a Distributed System

    - by Davin Tryon
    A question that has been vexing me lately has been about how to effectively test (end-to-end) features in a distributed system. Particuarly, how to effectively manage (through time) test data for feature testing. The system in question is a typical SOA setup. The composition is done in JavaScript when call to several REST APIs. Each service is built as an independent block. Each service has some kind of persistent storage (SQL Server in most cases). The main issue at the moment is how to approach test data when testing end-to-end features. Functional end-to-end testing occurs through the UI, and it is therefore necessary for test data to be set up before the test run (this could be manual or automated testing). As is typical in a distributed system, identifiers from one service are used as a link in another service. So, some level of synchronization needs to be present in the data to effectively test. What is the best way to manage and set up this data after a successful deployment to a test environment? For example, is it better to manage this test data inside each service? Or package it together with the testing suite? Does that testing suite exist as a separate project? I'm interested in design guidance about how to store and manage this test data as the application features evolve.

    Read the article

  • Distributed Rendering in the UDK and Unity

    - by N0xus
    At the moment I'm looking at getting a game engine to run in a CAVE environment. So far, during my research I've seen a lot of people being able to get both Unity and the Unreal engine up and running in a CAVE (someone did get CryEngine to work in one, but there is little research data about it). As of yet, I have not cemented my final choice of engine for use in the next stage of my project. I've experience in both, so the learning curve will be gentle on both. And both of the engines offer stereoscopic rendering, either already inbuilt with ReadD (Unreal) or by doing it yourself (Unity). Both can also make use of other input devices as well, such as the kinect or other devices. So again, both engines are still on the table. For the last bit of my preliminary research, I was advised to see if either, or both engines could do distributed rendering. I was advised this, as the final game we make could go into a variety of differently sized CAVEs. The one I have access to is roughly 2.4m x 3m cubed, and have been duly informed that this one is a "baby" compared to others. So, finally onto my question: Can either the Unreal Engine, or Unity Engine make it possible for developers to allow distributed rendering? Either through in built devices, or by creating my own plugin / script?

    Read the article

  • Communication Between Different Technologies in a Distributed Application

    - by sjtaheri
    I had to a incorporate several legacy applications and services in a network-distributed application. The existing services and applications are written using different languages and technologies, including: java, C#.Net and C++; all running on MS Windows machines. Now I'm wondering about the communication mechanism between them. What is the simple and standard way? Thanks! PS. communications include simple message sending and remote method invocations.

    Read the article

  • SQL SERVER – Shard No More – An Innovative Look at Distributed Peer-to-peer SQL Database

    - by pinaldave
    There is no doubt that SQL databases play an important role in modern applications. In an ideal world, a single database can handle hundreds of incoming connections from multiple clients and scale to accommodate the related transactions. However the world is not ideal and databases are often a cause of major headaches when applications need to scale to accommodate more connections, transactions, or both. In order to overcome scaling issues, application developers often resort to administrative acrobatics, also known as database sharding. Sharding helps to improve application performance and throughput by splitting the database into two or more shards. Unfortunately, this practice also requires application developers to code transactional consistency into their applications. Getting transactional consistency across multiple SQL database shards can prove to be very difficult. Sharding requires developers to think about things like rollbacks, constraints, and referential integrity across tables within their applications when these types of concerns are best handled by the database. It also makes other common operations such as joins, searches, and memory management very difficult. In short, the very solution implemented to overcome throughput issues becomes a bottleneck in and of itself. What if database sharding was no longer required to scale your application? Let me explain. For the past several months I have been following and writing about NuoDB, a hot new SQL database technology out of Cambridge, MA. NuoDB is officially out of beta and they have recently released their first release candidate so I decided to dig into the database in a little more detail. Their architecture is very interesting and exciting because it completely eliminates the need to shard a database to achieve higher throughput. Each NuoDB database consists of at least three or more processes that enable a single database to run across multiple hosts. These processes include a Broker, a Transaction Engine and a Storage Manager.  Brokers are responsible for connecting client applications to Transaction Engines and maintain a global view of the network to keep track of the multiple Transaction Engines available at any time. Transaction Engines are in-memory processes that client applications connect to for processing SQL transactions. Storage Managers are responsible for persisting data to disk and serving up records to the Transaction Managers if they don’t exist in memory. The secret to NuoDB’s approach to solving the sharding problem is that it is a truly distributed, peer-to-peer, SQL database. Each of its processes can be deployed across multiple hosts. When client applications need to connect to a Transaction Engine, the Broker will automatically route the request to the most available process. Since multiple Transaction Engines and Storage Managers running across multiple host machines represent a single logical database, you never have to resort to sharding to get the throughput your application requires. NuoDB is a new pioneer in the SQL database world. They are making database scalability simple by eliminating the need for acrobatics such as sharding, and they are also making general administration of the database simpler as well.  Their distributed database appears to you as a user like a single SQL Server database.  With their RC1 release they have also provided a web based administrative console that they call NuoConsole. This tool makes it extremely easy to deploy and manage NuoDB processes across one or multiple hosts with the click of a mouse button. See for yourself by downloading NuoDB here. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: CodeProject, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology Tagged: NuoDB

    Read the article

  • SQL SERVER – Database Dynamic Caching by Automatic SQL Server Performance Acceleration

    - by pinaldave
    My second look at SafePeak’s new version (2.1) revealed to me few additional interesting features. For those of you who hadn’t read my previous reviews SafePeak and not familiar with it, here is a quick brief: SafePeak is in business of accelerating performance of SQL Server applications, as well as their scalability, without making code changes to the applications or to the databases. SafePeak performs database dynamic caching, by caching in memory result sets of queries and stored procedures while keeping all those cache correct and up to date. Cached queries are retrieved from the SafePeak RAM in microsecond speed and not send to the SQL Server. The application gets much faster results (100-500 micro seconds), the load on the SQL Server is reduced (less CPU and IO) and the application or the infrastructure gets better scalability. SafePeak solution is hosted either within your cloud servers, hosted servers or your enterprise servers, as part of the application architecture. Connection of the application is done via change of connection strings or adding reroute line in the c:\windows\system32\drivers\etc\hosts file on all application servers. For those who would like to learn more on SafePeak architecture and how it works, I suggest to read this vendor’s webpage: SafePeak Architecture. More interesting new features in SafePeak 2.1 In my previous review of SafePeak new I covered the first 4 things I noticed in the new SafePeak (check out my article “SQLAuthority News – SafePeak Releases a Major Update: SafePeak version 2.1 for SQL Server Performance Acceleration”): Cache setup and fine-tuning – a critical part for getting good caching results Database templates Choosing which database to cache Monitoring and analysis options by SafePeak Since then I had a chance to play with SafePeak some more and here is what I found. 5. Analysis of SQL Performance (present and history): In SafePeak v.2.1 the tools for understanding of performance became more comprehensive. Every 15 minutes SafePeak creates and updates various performance statistics. Each query (or a procedure execute) that arrives to SafePeak gets a SQL pattern, and after it is used again there are statistics for such pattern. An important part of this product is that it understands the dependencies of every pattern (list of tables, views, user defined functions and procs). From this understanding SafePeak creates important analysis information on performance of every object: response time from the database, response time from SafePeak cache, average response time, percent of traffic and break down of behavior. One of the interesting things this behavior column shows is how often the object is actually pdated. The break down analysis allows knowing the above information for: queries and procedures, tables, views, databases and even instances level. The data is show now on all arriving queries, both read queries (that can be cached), but also any types of updates like DMLs, DDLs, DCLs, and even session settings queries. The stats are being updated every 15 minutes and SafePeak dashboard allows going back in time and investigating what happened within any time frame. 6. Logon trigger, for making sure nothing corrupts SafePeak cache data If you have an application with many parts, many servers many possible locations that can actually update the database, or the SQL Server is accessible to many DBAs or software engineers, each can access some database directly and do some changes without going thru SafePeak – this can create a potential corruption of the data stored in SafePeak cache. To make sure SafePeak cache is correct it needs to get all updates to arrive to SafePeak, and if a DBA will access the database directly and do some changes, for example, then SafePeak will simply not know about it and will not clean SafePeak cache. In the new version, SafePeak brought a new feature called “Logon Trigger” to solve the above challenge. By special click of a button SafePeak can deploy a special server logon trigger (with a CLR object) on your SQL Server that actually monitors all connections and informs SafePeak on any connection that is coming not from SafePeak. In SafePeak dashboard there is an interface that allows to control which logins can be ignored based on login names and IPs, while the rest will invoke cache cleanup of SafePeak and actually locks SafePeak cache until this connection will not be closed. Important to note, that this does not interrupt any logins, only informs SafePeak on such connection. On the Dashboard screen in SafePeak you will be able to see those connections and then decide what to do with them. Configuration of this feature in SafePeak dashboard can be done here: Settings -> SQL instances management -> click on instance -> Logon Trigger tab. Other features: 7. User management ability to grant permissions to someone without changing its configuration and only use SafePeak as performance analysis tool. 8. Better reports for analysis of performance using 15 minute resolution charts. 9. Caching of client cursors 10. Support for IPv6 Summary SafePeak is a great SQL Server performance acceleration solution for users who want immediate results for sites with performance, scalability and peak spikes challenges. Especially if your apps are packaged or 3rd party, since no code changes are done. SafePeak can significantly increase response times, by reducing network roundtrip to the database, decreasing CPU resource usage, eliminating I/O and storage access. SafePeak team provides a free fully functional trial www.safepeak.com/download and actually provides a one-on-one assistance during such trial. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Plan Caching and Query Memory Part I – When not to use stored procedure or other plan caching mechanisms like sp_executesql or prepared statement

    - by sqlworkshops
      The most common performance mistake SQL Server developers make: SQL Server estimates memory requirement for queries at compilation time. This mechanism is fine for dynamic queries that need memory, but not for queries that cache the plan. With dynamic queries the plan is not reused for different set of parameters values / predicates and hence different amount of memory can be estimated based on different set of parameter values / predicates. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Sort with examples. It is recommended to read Plan Caching and Query Memory Part II after this article which covers Hash Match operations.   When the plan is cached by using stored procedure or other plan caching mechanisms like sp_executesql or prepared statement, SQL Server estimates memory requirement based on first set of execution parameters. Later when the same stored procedure is called with different set of parameter values, the same amount of memory is used to execute the stored procedure. This might lead to underestimation / overestimation of memory on plan reuse, overestimation of memory might not be a noticeable issue for Sort operations, but underestimation of memory will lead to spill over tempdb resulting in poor performance.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a stored procedure does not change significantly based on predicates.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts   Enough theory, let’s see an example where we sort initially 1 month of data and then use the stored procedure to sort 6 months of data.   Let’s create a stored procedure that sorts customers by name within certain date range.   --Example provided by www.sqlworkshops.com create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1)       end go Let’s execute the stored procedure initially with 1 month date range.   set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 48 ms to complete.     The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.       The estimated number of rows, 43199.9 is similar to actual number of rows 43200 and hence the memory estimation should be ok.       There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 679 ms to complete.      The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.      The estimated number of rows, 43199.9 is way different from the actual number of rows 259200 because the estimation is based on the first set of parameter value supplied to the stored procedure which is 1 month in our case. This underestimation will lead to sort spill over tempdb, resulting in poor performance.      There was Sort Warnings in SQL Profiler.    To monitor the amount of data written and read from tempdb, one can execute select num_of_bytes_written, num_of_bytes_read from sys.dm_io_virtual_file_stats(2, NULL) before and after the stored procedure execution, for additional information refer to the webcast: www.sqlworkshops.com/webcasts.     Let’s recompile the stored procedure and then let’s first execute the stored procedure with 6 month date range.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts for further details.   exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go Now the stored procedure took only 294 ms instead of 679 ms.    The stored procedure was granted 26832 KB of memory.      The estimated number of rows, 259200 is similar to actual number of rows of 259200. Better performance of this stored procedure is due to better estimation of memory and avoiding sort spill over tempdb.      There was no Sort Warnings in SQL Profiler.       Now let’s execute the stored procedure with 1 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 49 ms to complete, similar to our very first stored procedure execution.     This stored procedure was granted more memory (26832 KB) than necessary memory (6656 KB) based on 6 months of data estimation (259200 rows) instead of 1 month of data estimation (43199.9 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is 6 months in this case. This overestimation did not affect performance, but it might affect performance of other concurrent queries requiring memory and hence overestimation is not recommended. This overestimation might affect performance Hash Match operations, refer to article Plan Caching and Query Memory Part II for further details.    Let’s recompile the stored procedure and then let’s first execute the stored procedure with 2 day date range. exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-02' go The stored procedure took 1 ms.      The stored procedure was granted 1024 KB based on 1440 rows being estimated.      There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go   The stored procedure took 955 ms to complete, way higher than 679 ms or 294ms we noticed before.      The stored procedure was granted 1024 KB based on 1440 rows being estimated. But we noticed in the past this stored procedure with 6 month date range needed 26832 KB of memory to execute optimally without spill over tempdb. This is clear underestimation of memory and the reason for the very poor performance.      There was Sort Warnings in SQL Profiler. Unlike before this was a Multiple pass sort instead of Single pass sort. This occurs when granted memory is too low.      Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined date range.   Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, recompile)       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.      The stored procedure with 1 month date range has good estimation like before.      The stored procedure with 6 month date range also has good estimation and memory grant like before because the query was recompiled with current set of parameter values.      The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.     Let’s recreate the stored procedure with optimize for hint of 6 month date range.   --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, optimize for (@CreationDateFrom = '2001-01-01', @CreationDateTo ='2001-06-30'))       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.    The stored procedure with 1 month date range has overestimation of rows and memory. This is because we provided hint to optimize for 6 months of data.      The stored procedure with 6 month date range has good estimation and memory grant because we provided hint to optimize for 6 months of data.       Let’s execute the stored procedure with 12 month date range using the currently cashed plan for 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-12-31' go The stored procedure took 1138 ms to complete.      2592000 rows were estimated based on optimize for hint value for 6 month date range. Actual number of rows is 524160 due to 12 month date range.      The stored procedure was granted enough memory to sort 6 month date range and not 12 month date range, so there will be spill over tempdb.      There was Sort Warnings in SQL Profiler.      As we see above, optimize for hint cannot guarantee enough memory and optimal performance compared to recompile hint.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case. I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.     Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.     Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • Per-machine decentralised DNS caching - nscd/lwresd/etc

    - by Dan Carley
    Preface: We have caching resolvers at each of our geographic network locations. These are clustered for resiliency and their locality reduces the latency of internal requests generated by our servers. This works well. Except that a vast quantity of the requests seen over the wire are lookups for the same records, generated by applications which don't perform any DNS caching of their own. Questions: Is there a significant benefit to running lightweight caching daemons on the individual servers in order to reduce repeated requests from hitting the network? Does anyone have experience of using [u]nscd, lwresd or dnscache to do such a thing? Are there any other packages worth looking at? Any caveats to beware of? Besides the obvious, caching and negative caching stale results.

    Read the article

  • Caching DNS server (bind9.2) CPU usage is so so so high.

    - by Gk
    Hi, I have a caching-only dns server which get ~3k queries per second. Here is specs: Xeon dual-core 2,8GHz 4GB of RAM Centos 5x (kernel 2.6.18-164.15.1.el5PAE) bind 9.4.2 rndc status: recursive clients: 666/4900/5000 About 300 new queries (not in cache) per second. Bind always uses 100% on one core on single-thread config. After I recompiled it to multi-thread, it uses nearly 200% on two core :( No iowait, only sys and user. I searched around but didn't see any info about how bind use CPU. Why does it become bottleneck? One more thing, here is RAM usage: cat /proc/meminfo MemTotal: 4147876 kB MemFree: 1863972 kB Buffers: 143632 kB Cached: 372792 kB SwapCached: 0 kB Active: 1916804 kB Inactive: 276056 kB I've set max-cache-size to 0 to make sure bind can use as much RAM as it want, but it always stop at ~2GB. Since every second we got not cached queries so theoretically RAM must be exhausted but it wasn't. Do you have any idea? TIA, -Gk

    Read the article

  • Discussion of a Distributed Data Storage implementation

    - by fegol
    I want to implement a distributed data storage using a client/server architecture. Each data item will be stored persistently in disk in one of several remote servers. The client uses a library to update and query the data, shielding the client from its actual location. This should allow a client to associate keys (String) to values(byte[]), much as a Map does. The system must ensure that the amount of data stored in each server is approximately the same. The set of servers is known beforehand by other servers and clients. Both the client and the server will be written in Java, using sockets, threads, and files. I open this topic with the objective of discussing the best way to implement this idea, assuming simplicity, what are the issues of this implementation, performance measurements and discussion of the limitations.

    Read the article

  • Azure Futures - Distributed Computing and Number Crunching

    - by JoshReuben
    "the biggest Azure customers today are the ones using HPC on-premises at the current time" - http://www.zdnet.com/blog/microsoft/windows-azure-futures-turning-the-cloud-into-a-supercomputer/8592?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+zdnet%2Fmicrosoft+%28ZDNet+All+About+Microsoft%29&utm_content=Google+Reader   Orleans Framework for cloud computing - http://research.microsoft.com/en-us/projects/orleans     HPC on Azure - http://www.zdnet.com/blog/microsoft/microsoft-finalizes-its-latest-supercomputing-operating-system-release/7414   Dryad is Microsoft’s competitor to Google MapReduce and Apache Hadoop  - http://www.zdnet.com/blog/microsoft/microsoft-takes-a-step-toward-commercializing-its-dryad-distributed-computing-technologies/8255?tag=mantle_skin;content   SQL Server Analysis Services DataMining in the cloud - http://www.sqlmag.com/article/reporting2/azure-data-mining-in-the-cloud.aspx

    Read the article

  • SharePoint 2010 HierarchicalConfig Caching Problem

    - by Damon
    We've started using the Application Foundations for SharePoint 2010 in some of our projects at work, and I came across a nasty issue with the hierarchical configuration settings.  I have some settings that I am storing at the Farm level, and as I was testing my code it seemed like the settings were not being saved - at least that is what it appeared was the case at first.  However, I happened to reset IIS and the settings suddenly appeared.  Immediately, I figured that it must be a caching issue and dug into the code base.  I found that there was a 10 second caching mechanism in the SPFarmPropertyBag and the SPWebAppPropertyBag classes.  So I ran another test where I waited 10 seconds to make sure that enough time had passed to force the caching mechanism to reset the data.  After 10 minutes the cache had still not cleared.  After digging a bit further, I found a double lock check that looked a bit off in the GetSettingsStore() method of the SPFarmPropertyBag class: if (_settingStore == null || (DateTime.Now.Subtract(lastLoad).TotalSeconds) > cacheInterval)) { //Need to exist so don't deadlock. rrLock.EnterWriteLock(); try { //make sure first another thread didn't already load... if (_settingStore == null) { _settingStore = WebAppSettingStore.Load(this.webApplication); lastLoad = DateTime.Now; } } finally { rrLock.ExitWriteLock(); } } What ends up happening here is the outer check determines if the _settingStore is null or the cache has expired, but the inner check is just checking if the _settingStore is null (which is never the case after the first time it's been loaded).  Ergo, the cached settings are never reset.  The fix is really easy, just add the cache checking back into the inner if statement. //make sure first another thread didn't already load... if (_settingStore == null || (DateTime.Now.Subtract(lastLoad).TotalSeconds) > cacheInterval) { _settingStore = WebAppSettingStore.Load(this.webApplication); lastLoad = DateTime.Now; } And then it starts working just fine. as long as you wait at least 10 seconds for the cache to clear.

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >