Search Results

Search found 493 results on 20 pages for 'orderby'.

Page 13/20 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • How to dynamically order many-to-many relationship with JPA or HQl?

    - by Indrek
    I have a mapping like this: @ManyToMany(cascade = CascadeType.PERSIST) @JoinTable( name="product_product_catalog", joinColumns={@JoinColumn(name="product_catalog", referencedColumnName="product_catalog")}, inverseJoinColumns={@JoinColumn(name="product", referencedColumnName="product")}) public List<Product> products = new ArrayList<Product>(); I can fetch the products for the catalog nicely, but I can't (dynamically) order the products. How could I order them? I probably have to write a many-to-many HQL query with the order-by clause? I though of passing the orderBy field name string to the query, or is there a better solution? Tables are: products, product_catalog, product_product_catalog (associative table) P.S. Using Play! Framework JPASupport for my entities.

    Read the article

  • Linq Order By a subtable

    - by Michael
    Hello, My question is how to sort a Linq query by a sub table: Table Apps: - app_id - name Table AppStatus: - app_status_id - app_id - severity - status_date I would like to have a query with all the apps, sorted by the last status severity: app_id name 1 first 2 second 3 third app_status_id app_id severity status_date 1 1 5 12-4-2010 2 1 2 15-4-2010 3 2 7 10-4-2010 4 3 3 13-4-2010 Now i want it sorted like: app_id name 3 third 1 first 2 second Can anyone help me with a LINQ query for this. I tried the following already, but that didn't work: var apps = from apps in dc.Apps orderby apps.AppStatus.LastOrDefault().severity select apps;

    Read the article

  • Grabbing Just The Top Entry From A LINQ Query

    - by Soo
    I basically have a lot of poorly designed code to do something that, I'm sure, can be done far more elegantly. What I'm trying to do is grab the last date from a database table. var Result = from a in DB.Table orderby a.Date descending select new {Date = a}; foreach(var Row in Result) { LastDate = Row.Date.Date; break; } Basically, there's a foreach loop that is designed to run only once. Crappy code! What's a "best practice" way to accomplish the same thing?

    Read the article

  • How to use LINQ To Entities for filtering when many methods are not supported?

    - by Kinderchocolate
    Hi, I have a table in SQL database: ID Data Value 1 1 0.1 1 2 0.4 2 10 0.3 2 11 0.2 3 10 0.5 3 11 0.6 For each unique value in Data, I want to filter out the row with the largest ID. For example: In the table above, I want to filter out the third and fourth row because the fifth and sixth rows have the same Data values but their IDs (3) are larger (2 in the third and fourth row). I tried this in Linq to Entities: IQueryable<DerivedRate> test = ObjectContext.DerivedRates.OrderBy(d => d.Data).ThenBy(d => d.ID).SkipWhile((d, index) => (index == size - 1) || (d.ID != ObjectContext.DerivedRates.ElementAt(index + 1).ID)); Basically, I am sorting the list and removing the duplicates by checking if the next element has an identical ID. However, this doesn't work because SkipWhile(index) and ElementAt(index) aren't supported in Linq to Entities. I don't want to pull the entire gigantic table into an array before sorting it. Is there a way?

    Read the article

  • LINQ Expression help with Func TEntity,TType

    - by Chris Conway
    I have a repository method that accepts an order by parameter in the form: public IEnumerable<TEntity> Get<TEntity>(Expression<Func<TEntity,string>> orderBy) Now that works fine when trying to sort by a property of type string, var entities = rep.Get(x => x.Name); but what if i want to sort by double or int or any other type. Doing something like var entities = rep.Get(x => x.Price); obviously throws a compile error saying I can't convert double to string. How can I make this more generic so I can sort by any property in my entity, or at least the properties where the type implements IComparable or something similar?

    Read the article

  • How to look for different types of files in a directory?

    - by herrow
    public List<string> MapMyFiles() { List<FileInfo> batchaddresses = new List<FileInfo>(); foreach (object o in lstViewAddresses.Items) { try { string[] files = Directory.GetFiles(o.ToString(), "*-E.esy"); files.ToList().ForEach(f => batchaddresses.Add(new FileInfo(f))); } catch { if(MessageBox.Show(o.ToString() + " does not exist. Process anyway?", "Continue?", MessageBoxButtons.YesNo) == DialogResult.Yes) { } else { Application.Exit(); } } } return batchaddresses.OrderBy(f => f.CreationTime) .Select(f => f.FullName).ToList(); } i would like to add to the array not only .ESY but also "p-.csv" how do i do this?

    Read the article

  • How to set up default value in symfony2 select box with data from database

    - by user172409255
    I have this code ->add('user', 'entity', array( 'class' => 'Acme\Entity\User', 'query_builder' => function(EntityRepository $er) use ($options) { return $er->createQueryBuilder('u') ->orderBy('u.name', 'ASC'); }, 'data' => $option['id'] )) Its not working public function buildForm(FormBuilderInterface $builder, array $options) { $builder ->add('description') ->add('user', 'entity', array( 'class' => 'Acme\Entity\User', 'query_builder' => function(EntityRepository $er) use ($options) { return $er->createQueryBuilder('u'); }, 'preferred_choices' => array('2') )) ; }

    Read the article

  • SQL Query to select upcoming events with a start and end date

    - by Chris T
    I need to display upcoming events from a database. The problem is when I use the query I'm currently using any events with a start day that has passed will show up lower on the list of upcoming events regardless of the fact that they are current My table (yaml): columns: title: type: string(255) notnull: true default: Untitled Event start_time: type: time end_time: type: time start_day: type: date notnull: true end_day: type: date description: type: string(500) default: This event has no description category_id: integer My query (doctrine): $results = Doctrine_Query::create() ->from("sfEventItem e, e.Category c") ->select("e.title, e.start_day, e.description, e.category_id, e.slug") ->addSelect("c.title, c.slug") ->orderBy("e.start_day, e.start_time, e.title") ->limit(5) ->execute(array(), Doctrine_Core::HYDRATE_ARRAY); Basically I'd like any events that is currently going on (so if today is in between start_day and end_day) to be at the top of the list. How would I go about doing this if it's even possible? Raw sql queries are good answers too because they're pretty easy to turn into DQL.

    Read the article

  • Help me construct this Linq statement

    - by Geoffrey
    There should be a simple Linq query for what I'm trying to accomplish, but I'm producing some ugly code. I have two tables, one of issues and another of issue status. There is a one-to-many relationship between issue and issue status. When an issue is created an IssueStatus is also created with the status field set to "Open" when it is closed, another IssueStatus is created with the status field set to "Closed" ... but issues can be re-opened. It seems like I should be able to write something like this: public static List<Issue> FindOpenIssues(this IList<Issue> issues) { return ( from issue in issues from issueStatus in issue.issueStatus.OrderBy(x=>x.CreatedOn).Single() where issueStatus.Status == "Open" select issue ).ToList(); } This obviously fails, but there must be a clean way to do this? Thanks!

    Read the article

  • How to get a List ordered by the List it's filtered by?

    - by DaveDev
    I have a method as follows. It returns a list of MyTypes which appear to be ordered by myType.Id ascending by default. public List<MyType> GetMyTypes(List<int> ids) { return (from myType in db.MyTypes where ids.Contains(myType.Id) select new MyType { MyValue = myType.MyValue }).ToList(); } So if ids contains 302 300 301 the List returned contains items in ascending order. What do I need to do to return List<MyType> in the order of ids? Thanks edit: I've tried orderby ids.IndexOf(myType.Id) but it throws the exception Method 'Int32 IndexOf(Int32)' has no supported translation to SQL.

    Read the article

  • Broken php/localhost/something

    - by ghego1
    I was trying to install the mcrypt libraries following this tutorial (http://www.glenscott.co.uk/blog/2011/08/29/install-mcrypt-php-extension-on-mac-os-x-lion/), but something must have gone wrong and now when I load a php page on my localhost I see this: query="SELECT DISTINCT ".$field." as a,".$field2." as b FROM ".$tab." ".$where. " Group by ".$field." order By ".$orderBy; return $this->query; } And all the remaining code of the php page that should get loaded. I've retrieved the previous versions of the private/etc folder and usr/lib/php folder with time machine but it didn't help. And now if I execute sudo pachectl restart it gives me this error: sudo: no valid sudoers sources found, quitting (while before it worked. PS I'm on a mac with Mountain Lion

    Read the article

  • List.clear() followed by List.add() not working.

    - by Vincent
    I have the following C# Class/Function: class Hand { private List<Card> myCards = new List<Card>(); public void sortBySuitValue() { IEnumerable<Card> query = from s in myCards orderby (int)s.suit, (int)s.value select s; myCards = new List<Card>(); myCards.AddRange(query); } } On a card Game. This works fine, however, I had trouble at first, instead of using myCards = new List(); to 'reset' myCards, I would use myCards.clear(), however, once I called the clear function, I would not be able to call myCards.add() or myCards.addRange(). The count would stay at zero. Is my current approach good? Is using LINQ to sort my cards good/bad?

    Read the article

  • No supported translation to SQL

    - by derans
    We have this code: private IList<InfoRequest> GetBy(Func<InformationRequest, string> func, string searchby) { var requests = _dc.InformationRequests .Where(x => func.Invoke(x).Contains(searchby)) .OrderBy(y => y.RequestDate); return Mapper.Map<InformationRequest[], InfoRequest[]>(requests.ToArray()); } It continues to throw the no supported translation to SQL error. Any ideas on the problem or how to resolve it?

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Working with Joins in LINQ

    - by vik20000in
    While working with data most of the time we have to work with relation between different lists of data. Many a times we want to fetch data from both the list at once. This requires us to make different kind of joins between the lists of data. LINQ support different kinds of join Inner Join     List<Customer> customers = GetCustomerList();     List<Supplier> suppliers = GetSupplierList();      var custSupJoin =         from sup in suppliers         join cust in customers on sup.Country equals cust.Country         select new { Country = sup.Country, SupplierName = sup.SupplierName, CustomerName = cust.CompanyName }; Group Join – where By the joined dataset is also grouped.     List<Customer> customers = GetCustomerList();     List<Supplier> suppliers = GetSupplierList();      var custSupQuery =         from sup in suppliers         join cust in customers on sup.Country equals cust.Country into cs         select new { Key = sup.Country, Items = cs }; We can also work with the Left outer join in LINQ like this.     List<Customer> customers = GetCustomerList();     List<Supplier> suppliers = GetSupplierList();      var supplierCusts =         from sup in suppliers         join cust in customers on sup.Country equals cust.Country into cs         from c in cs.DefaultIfEmpty()  // DefaultIfEmpty preserves left-hand elements that have no matches on the right side         orderby sup.SupplierName         select new { Country = sup.Country, CompanyName = c == null ? "(No customers)" : c.CompanyName,                      SupplierName = sup.SupplierName};Vikram

    Read the article

  • How to join two collections with LINQ

    - by JustinGreenwood
    Here is a simple and complete example of how to perform joins on two collections with LINQ. I wrote it for a friend to show him, in one simple file, the power of LINQ queries and anonymous objects. In the file below, there are two simple data classes defined: Person and Item. In the beginning of the main method, two collections are created. Note that the Item's OwnerId field reference the PersonId of a Person object. The effect of the LINQ query below is equivalent to a SQL statement looking like this: select Person.PersonName as OwnerName, Item.ItemName as OwnedItem from Person inner join Item on Item.OwnerId = Person.PersonId order by Item.ItemName desc; using System; using System.Collections.Generic; using System.Linq; namespace LinqJoinAnonymousObjects { class Program { class Person { public int PersonId { get; set; } public string PersonName { get; set; } } class Item { public string ItemName { get; set; } public int OwnerId { get; set; } } static void Main(string[] args) { // Create two collections: one of people, and another with their possessions. var people = new List<Person> { new Person { PersonId=1, PersonName="Justin" }, new Person { PersonId=2, PersonName="Arthur" }, new Person { PersonId=3, PersonName="Bob" } }; var items = new List<Item> { new Item { OwnerId=1, ItemName="Armor" }, new Item { OwnerId=1, ItemName="Book" }, new Item { OwnerId=2, ItemName="Chain Mail" }, new Item { OwnerId=2, ItemName="Excalibur" }, new Item { OwnerId=3, ItemName="Bubbles" }, new Item { OwnerId=3, ItemName="Gold" } }; // Create a new, anonymous composite result for person id=2. var compositeResult = from p in people join i in items on p.PersonId equals i.OwnerId where p.PersonId == 2 orderby i.ItemName descending select new { OwnerName = p.PersonName, OwnedItem = i.ItemName }; // The query doesn't evaluate until you iterate through the query or convert it to a list Console.WriteLine("[" + compositeResult.GetType().Name + "]"); // Convert to a list and loop through it. var compositeList = compositeResult.ToList(); Console.WriteLine("[" + compositeList.GetType().Name + "]"); foreach (var o in compositeList) { Console.WriteLine("\t[" + o.GetType().Name + "] " + o.OwnerName + " - " + o.OwnedItem); } Console.ReadKey(); } } } The output of the program is below: [WhereSelectEnumerableIterator`2] [List`1] [<>f__AnonymousType1`2] Arthur - Excalibur [<>f__AnonymousType1`2] Arthur - Chain Mail

    Read the article

  • Developing for 2005 using VS2008!

    - by Vincent Grondin
    I joined a fairly large project recently and it has a particularity… Once finished, everything has to be sent to the client under VS2005 using VB.Net and can target either framework 2.0 or 3.0… A long time ago, the decision to use VS2008 and to target framework 3.0 was taken but people knew they would need to establish a few rules to ensure that each dev would use VS2008 as if it was VS2005… Why is that so? Well simply because the compiler in VS2005 is different from the compiler inside VS2008…  I thought it might be a good idea to note the things that you cannot use in VS2008 if you plan on going back to VS2005. Who knows, this might save someone the headache of going over all their code to fix errors… -        Do not use LinQ keywords (from, in, select, orderby…).   -        Do not use LinQ standard operators under the form of extension methods.   -        Do not use type inference (in VB.Net you can switch it OFF in each project properties). o   This means you cannot use XML Literals.   -        Do not use nullable types under the following declarative form:    Dim myInt as Integer? But using:   Dim myInt as Nullable(Of Integer)     is perfectly fine.   -        Do not test nullable types with     Is Nothing    use    myInt.HasValue     instead.   -        Do not use Lambda expressions (there is no Lambda statements in VB9) so you cannot use the keyword “Function”.   -        Pay attention not to use relaxed delegates because this one is easy to miss in VS2008   -        Do not use Object Initializers   -        Do not use the “ternary If operator” … not the IIf method but this one     If(confition, truepart, falsepart).   As a side note, I talked about not using LinQ keyword nor the extension methods but, this doesn’t mean not to use LinQ in this scenario. LinQ is perfectly accessible from inside VS2005. All you need to do is reference System.Core, use namespace System.Linq and use class “Enumerable” as a helper class… This is one of the many classes containing various methods that VS2008 sees as extensions. The trick is you can use them too! Simply remember that the first parameter of the method is the object you want to query on and then pass in the other parameters needed… That’s pretty much all I see but I could have missed a few… If you know other things that are specific to the VS2008 compiler and which do not work under VS2005, feel free to leave a comment and I’ll modify my list accordingly (and notify our team here…) ! Happy coding all!

    Read the article

  • Use Expressions with LINQ to Entities

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Recently I've been putting together a generic approach for paging the response from a WCF service. Paging changes the service signature, so it's not as simple as adding a behavior to an existing service in config, but the complexity of the paging is isolated in a generic base class. We're using the Entity Framework talking to SQL Server, so when we ask for a page using LINQ's .Take() method we get a nice efficient SQL query for just the rows we want, with minimal impact on SQL Server and network traffic. We use the maximum ID of the record returned as a high-water mark (rather than using .Skip() to go to the next record), so the approach caters for records being deleted between page requests. In the paged response we include a HasMorePages indicator, computed by comparing the max ID in the page of results to the max ID for the whole resultset - if the latter is bigger, then there are more pages. In some quick performance testing, the paged version of the service performed much more slowly than the unpaged version, which was unexpected. We narrowed it down to the code which gets the max ID for the full resultset - instead of building an efficient MAX() SQL query, EF was returning the whole resultset and then computing the max ID in the service layer. It's easy to reproduce - take this AdventureWorks query:             var context = new AdventureWorksEntities();             var query = from od in context.SalesOrderDetail                         where od.ModifiedDate >= modified                          && od.SalesOrderDetailID.CompareTo(id) > 0                         orderby od.SalesOrderDetailID                         select od;   We can find the maximum SalesOrderDetailID like this:             var maxIdEfficiently = query.Max(od => od.SalesOrderDetailID);   which produces our efficient MAX() SQL query. If we're doing this generically and we already have the ID function in a Func:             Func<SalesOrderDetail, int> idFunc = od => od.SalesOrderDetailID;             var maxIdInefficiently = query.Max(idFunc);   This fetches all the results from the query and then runs the Max() function in code. If you look at the difference in Reflector, the first call passes an Expression to the Max(), while the second call passes a Func. So it's an easy fix - wrap the Func in an Expression:             Expression<Func<SalesOrderDetail, int>> idExpression = od => od.SalesOrderDetailID;             var maxIdEfficientlyAgain = query.Max(idExpression);   - and we're back to running an efficient MAX() statement. Evidently the EF provider can dissect an Expression and build its equivalent in SQL, but it can't do that with Funcs.

    Read the article

  • Using Query Classes With NHibernate

    - by Liam McLennan
    Even when using an ORM, such as NHibernate, the developer still has to decide how to perform queries. The simplest strategy is to get access to an ISession and directly perform a query whenever you need data. The problem is that doing so spreads query logic throughout the entire application – a clear violation of the Single Responsibility Principle. A more advanced strategy is to use Eric Evan’s Repository pattern, thus isolating all query logic within the repository classes. I prefer to use Query Classes. Every query needed by the application is represented by a query class, aka a specification. To perform a query I: Instantiate a new instance of the required query class, providing any data that it needs Pass the instantiated query class to an extension method on NHibernate’s ISession type. To query my database for all people over the age of sixteen looks like this: [Test] public void QueryBySpecification() { var canDriveSpecification = new PeopleOverAgeSpecification(16); var allPeopleOfDrivingAge = session.QueryBySpecification(canDriveSpecification); } To be able to query for people over a certain age I had to create a suitable query class: public class PeopleOverAgeSpecification : Specification<Person> { private readonly int age; public PeopleOverAgeSpecification(int age) { this.age = age; } public override IQueryable<Person> Reduce(IQueryable<Person> collection) { return collection.Where(person => person.Age > age); } public override IQueryable<Person> Sort(IQueryable<Person> collection) { return collection.OrderBy(person => person.Name); } } Finally, the extension method to add QueryBySpecification to ISession: public static class SessionExtensions { public static IEnumerable<T> QueryBySpecification<T>(this ISession session, Specification<T> specification) { return specification.Fetch( specification.Sort( specification.Reduce(session.Query<T>()) ) ); } } The inspiration for this style of data access came from Ayende’s post Do You Need a Framework?. I am sick of working through multiple layers of abstraction that don’t do anything. Have you ever seen code that required a service layer to call a method on a repository, that delegated to a common repository base class that wrapped and ORMs unit of work? I can achieve the same thing with NHibernate’s ISession and a single extension method. If you’re interested you can get the full Query Classes example source from Github.

    Read the article

  • Linq to LLBLGen query problem

    - by Jeroen Breuer
    Hello, I've got a Stored Procedure and i'm trying to convert it to a Linq to LLBLGen query. The query in Linq to LLBGen works, but when I trace the query which is send to sql server it is far from perfect. This is the Stored Procedure: ALTER PROCEDURE [dbo].[spDIGI_GetAllUmbracoProducts] -- Add the parameters for the stored procedure. @searchText nvarchar(255), @startRowIndex int, @maximumRows int, @sortExpression nvarchar(255) AS BEGIN SET @startRowIndex = @startRowIndex + 1 SET @searchText = '%' + @searchText + '%' -- SET NOCOUNT ON added to prevent extra result sets from -- interfering with SELECT statements. SET NOCOUNT ON; -- This is the query which will fetch all the UmbracoProducts. -- This query also supports paging and sorting. WITH UmbracoOverview As ( SELECT ROW_NUMBER() OVER( ORDER BY CASE WHEN @sortExpression = 'productName' THEN umbracoProduct.productName WHEN @sortExpression = 'productCode' THEN umbracoProduct.productCode END ASC, CASE WHEN @sortExpression = 'productName DESC' THEN umbracoProduct.productName WHEN @sortExpression = 'productCode DESC' THEN umbracoProduct.productCode END DESC ) AS row_num, umbracoProduct.umbracoProductId, umbracoProduct.productName, umbracoProduct.productCode FROM umbracoProduct INNER JOIN product ON umbracoProduct.umbracoProductId = product.umbracoProductId WHERE (umbracoProduct.productName LIKE @searchText OR umbracoProduct.productCode LIKE @searchText OR product.code LIKE @searchText OR product.description LIKE @searchText OR product.descriptionLong LIKE @searchText OR product.unitCode LIKE @searchText) ) SELECT UmbracoOverview.UmbracoProductId, UmbracoOverview.productName, UmbracoOverview.productCode FROM UmbracoOverview WHERE (row_num >= @startRowIndex AND row_num < (@startRowIndex + @maximumRows)) -- This query will count all the UmbracoProducts. -- This query is used for paging inside ASP.NET. SELECT COUNT (umbracoProduct.umbracoProductId) AS CountNumber FROM umbracoProduct INNER JOIN product ON umbracoProduct.umbracoProductId = product.umbracoProductId WHERE (umbracoProduct.productName LIKE @searchText OR umbracoProduct.productCode LIKE @searchText OR product.code LIKE @searchText OR product.description LIKE @searchText OR product.descriptionLong LIKE @searchText OR product.unitCode LIKE @searchText) END This is my Linq to LLBLGen query: using System.Linq.Dynamic; var q = ( from up in MetaData.UmbracoProduct join p in MetaData.Product on up.UmbracoProductId equals p.UmbracoProductId where up.ProductCode.Contains(searchText) || up.ProductName.Contains(searchText) || p.Code.Contains(searchText) || p.Description.Contains(searchText) || p.DescriptionLong.Contains(searchText) || p.UnitCode.Contains(searchText) select new UmbracoProductOverview { UmbracoProductId = up.UmbracoProductId, ProductName = up.ProductName, ProductCode = up.ProductCode } ).OrderBy(sortExpression); //Save the count in HttpContext.Current.Items. This value will only be saved during 1 single HTTP request. HttpContext.Current.Items["AllProductsCount"] = q.Count(); //Returns the results paged. return q.Skip(startRowIndex).Take(maximumRows).ToList<UmbracoProductOverview>(); This is my Initial expression to process: value(SD.LLBLGen.Pro.LinqSupportClasses.DataSource`1[Eurofysica.DB.EntityClasses.UmbracoProductEntity]).Join(value(SD.LLBLGen.Pro.LinqSupportClasses.DataSource`1[Eurofysica.DB.EntityClasses.ProductEntity]), up => up.UmbracoProductId, p => p.UmbracoProductId, (up, p) => new <>f__AnonymousType0`2(up = up, p = p)).Where(<>h__TransparentIdentifier0 => (((((<>h__TransparentIdentifier0.up.ProductCode.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText) || <>h__TransparentIdentifier0.up.ProductName.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.Code.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.Description.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.DescriptionLong.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText)) || <>h__TransparentIdentifier0.p.UnitCode.Contains(value(Eurofysica.BusinessLogic.BLL.Controllers.UmbracoProductController+<>c__DisplayClass1).searchText))).Select(<>h__TransparentIdentifier0 => new UmbracoProductOverview() {UmbracoProductId = <>h__TransparentIdentifier0.up.UmbracoProductId, ProductName = <>h__TransparentIdentifier0.up.ProductName, ProductCode = <>h__TransparentIdentifier0.up.ProductCode}).OrderBy( => .ProductName).Count() Now this is how the queries look like that are send to sql server: Select query: Query: SELECT [LPA_L2].[umbracoProductId] AS [UmbracoProductId], [LPA_L2].[productName] AS [ProductName], [LPA_L2].[productCode] AS [ProductCode] FROM ( [eurofysica].[dbo].[umbracoProduct] [LPA_L2] INNER JOIN [eurofysica].[dbo].[product] [LPA_L3] ON [LPA_L2].[umbracoProductId] = [LPA_L3].[umbracoProductId]) WHERE ( ( ( ( ( ( ( ( [LPA_L2].[productCode] LIKE @ProductCode1) OR ( [LPA_L2].[productName] LIKE @ProductName2)) OR ( [LPA_L3].[code] LIKE @Code3)) OR ( [LPA_L3].[description] LIKE @Description4)) OR ( [LPA_L3].[descriptionLong] LIKE @DescriptionLong5)) OR ( [LPA_L3].[unitCode] LIKE @UnitCode6)))) Parameter: @ProductCode1 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @ProductName2 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Code3 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Description4 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @DescriptionLong5 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @UnitCode6 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Count query: Query: SELECT TOP 1 COUNT(*) AS [LPAV_] FROM (SELECT [LPA_L2].[umbracoProductId] AS [UmbracoProductId], [LPA_L2].[productName] AS [ProductName], [LPA_L2].[productCode] AS [ProductCode] FROM ( [eurofysica].[dbo].[umbracoProduct] [LPA_L2] INNER JOIN [eurofysica].[dbo].[product] [LPA_L3] ON [LPA_L2].[umbracoProductId] = [LPA_L3].[umbracoProductId]) WHERE ( ( ( ( ( ( ( ( [LPA_L2].[productCode] LIKE @ProductCode1) OR ( [LPA_L2].[productName] LIKE @ProductName2)) OR ( [LPA_L3].[code] LIKE @Code3)) OR ( [LPA_L3].[description] LIKE @Description4)) OR ( [LPA_L3].[descriptionLong] LIKE @DescriptionLong5)) OR ( [LPA_L3].[unitCode] LIKE @UnitCode6))))) [LPA_L1] Parameter: @ProductCode1 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @ProductName2 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Code3 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @Description4 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @DescriptionLong5 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". Parameter: @UnitCode6 : String. Length: 2. Precision: 0. Scale: 0. Direction: Input. Value: "%%". As you can see no sorting or paging is done (like in my Stored Procedure). This is probably done inside the code after all the results are fetched. This costs a lot of performance! Does anybody know how I can convert my Stored Procedure to Linq to LLBLGen the proper way?

    Read the article

  • Referencing CDI producer method result in h:selectOneMenu

    - by user953217
    I have a named session scoped bean CustomerRegistration which has a named producer method getNewCustomer which returns a Customer object. There is also CustomerListProducer class which produces all customers as list from the database. On the selectCustomer.xhtml page the user is then able to select one of the customers and submit the selection to the application which then simply prints out the last name of the selected customer. Now this only works when I reference the selected customer on the facelets page via #{customerRegistration.newCustomer}. When I simply use #{newCustomer} then the output for the last name is null whenever I submit the form. What's going on here? Is this the expected behavior as according to chapter 7.1 Restriction upon bean instantion of JSR-299 spec? It says: ... However, if the application directly instantiates a bean class, instead of letting the container perform instantiation, the resulting instance is not managed by the container and is not a contextual instance as defined by Section 6.5.2, “Contextual instance of a bean”. Furthermore, the capabilities listed in Section 2.1, “Functionality provided by the container to the bean” will not be available to that particular instance. In a deployed application, it is the container that is responsible for instantiating beans and initializing their dependencies. ... Here's the code: Customer.java: @javax.persistence.Entity @Veto public class Customer implements Serializable, Entity { private static final long serialVersionUID = 122193054725297662L; @Column(name = "first_name") private String firstName; @Column(name = "last_name") private String lastName; @Id @GeneratedValue() private Long id; public String getFirstName() { return firstName; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getLastName() { return lastName; } public void setLastName(String lastName) { this.lastName = lastName; } @Override public String toString() { return firstName + ", " + lastName; } @Override public Long getId() { return this.id; } } CustomerListProducer.java: @SessionScoped public class CustomerListProducer implements Serializable { @Inject private EntityManager em; private List<Customer> customers; @Inject @Category("helloworld_as7") Logger log; // @Named provides access the return value via the EL variable name // "members" in the UI (e.g., // Facelets or JSP view) @Produces @Named public List<Customer> getCustomers() { return customers; } public void onCustomerListChanged( @Observes(notifyObserver = Reception.IF_EXISTS) final Customer customer) { // retrieveAllCustomersOrderedByName(); log.info(customer.toString()); } @PostConstruct public void retrieveAllCustomersOrderedByName() { CriteriaBuilder cb = em.getCriteriaBuilder(); CriteriaQuery<Customer> criteria = cb.createQuery(Customer.class); Root<Customer> customer = criteria.from(Customer.class); // Swap criteria statements if you would like to try out type-safe // criteria queries, a new // feature in JPA 2.0 // criteria.select(member).orderBy(cb.asc(member.get(Member_.name))); criteria.select(customer).orderBy(cb.asc(customer.get("lastName"))); customers = em.createQuery(criteria).getResultList(); } } CustomerRegistration.java: @Named @SessionScoped public class CustomerRegistration implements Serializable { @Inject @Category("helloworld_as7") private Logger log; private Customer newCustomer; @Produces @Named public Customer getNewCustomer() { return newCustomer; } public void selected() { log.info("Customer " + newCustomer.getLastName() + " ausgewählt."); } @PostConstruct public void initNewCustomer() { newCustomer = new Customer(); } public void setNewCustomer(Customer newCustomer) { this.newCustomer = newCustomer; } } not working selectCustomer.xhtml: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html" xmlns:ui="http://java.sun.com/jsf/facelets"> <h:head> <title>Auswahl</title> </h:head> <h:body> <h:form> <h:selectOneMenu value="#{newCustomer}" converter="customerConverter"> <f:selectItems value="#{customers}" var="current" itemLabel="#{current.firstName}, #{current.lastName}" /> </h:selectOneMenu> <h:panelGroup id="auswahl"> <h:outputText value="#{newCustomer.lastName}" /> </h:panelGroup> <h:commandButton value="Klick" action="#{customerRegistration.selected}" /> </h:form> </h:body> </html> working selectCustomer.xhtml: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html" xmlns:ui="http://java.sun.com/jsf/facelets"> <h:head> <title>Auswahl</title> </h:head> <h:body> <h:form> <h:selectOneMenu value="#{customerRegistration.newCustomer}" converter="customerConverter"> <f:selectItems value="#{customers}" var="current" itemLabel="#{current.firstName}, #{current.lastName}" /> </h:selectOneMenu> <h:panelGroup id="auswahl"> <h:outputText value="#{newCustomer.lastName}" /> </h:panelGroup> <h:commandButton value="Klick" action="#{customerRegistration.selected}" /> </h:form> </h:body> </html> CustomerConverter.java: @SessionScoped @FacesConverter("customerConverter") public class CustomerConverter implements Converter, Serializable { private static final long serialVersionUID = -6093400626095413322L; @Inject EntityManager entityManager; @Override public Object getAsObject(FacesContext context, UIComponent component, String value) { Long id = Long.valueOf(value); return entityManager.find(Customer.class, id); } @Override public String getAsString(FacesContext context, UIComponent component, Object value) { return ((Customer) value).getId().toString(); } }

    Read the article

  • MVC4 Model in View has nested data - cannot get data in model

    - by Taersious
    I have a Model defined that gets me a View with a list of RadioButtons, per IEnumerable. Within that Model, I want to display a list of checkboxes that will vary based on the item selected. Finally, there will be a Textarea in the same view once the user has selected from the available checkboxes, with some dynamic text there based on the CheckBoxes that are selected. What we should end up with is a Table-per-hierarchy. The layout is such that the RadioButtonList is in the first table cell, the CheckBoxList is in the middle table cell, and the Textarea is ini the right table cell. If anyone can guide me to what my model-view should be to achieve this result, I'll be most pleased... Here are my codes: // // View Model for implementing radio button list public class RadioButtonViewModel { // objects public List<RadioButtonItem> RadioButtonList { get; set; } public string SelectedRadioButton { get; set; } } // // Object for handling each radio button public class RadioButtonItem { // this object public string Name { get; set; } public bool Selected { get; set; } public int ObjectId { get; set; } // columns public virtual IEnumerable<CheckBoxItem> CheckBoxItems { get; set; } } // // Object for handling each checkbox public class CheckBoxViewModel { public List<CheckBoxItem> CheckBoxList { get; set; } } // // Object for handling each check box public class CheckBoxItem { public string Name { get; set; } public bool Selected { get; set; } public int ObjectId { get; set; } public virtual RadioButtonItem RadioButtonItem { get; set; } } and the view @model IEnumerable<EF_Utility.Models.RadioButtonItem> @{ ViewBag.Title = "Connect"; ViewBag.Selected = Request["name"] != null ? Request["name"].ToString() : ""; } @using (Html.BeginForm("Objects" , "Home", FormMethod.Post) ){ @Html.ValidationSummary(true) <table> <tbody> <tr> <td style="border: 1px solid grey; vertical-align:top;"> <table> <tbody> <tr> <th style="text-align:left; width: 50px;">Select</th> <th style="text-align:left;">View or Table Name</th> </tr> @{ foreach (EF_Utility.Models.RadioButtonItem item in @Model ) { <tr> <td> @Html.RadioButton("RadioButtonViewModel.SelectedRadioButton", item.Name, ViewBag.Selected == item.Name ? true : item.Selected, new { @onclick = "this.form.action='/Home/Connect?name=" + item.Name + "'; this.form.submit(); " }) </td> <td> @Html.DisplayFor(i => item.Name) </td> </tr> } } </tbody> </table> </td> <td style="border: 1px solid grey; width: 220px; vertical-align:top; @(ViewBag.Selected == "" ? "display:none;" : "")"> <table> <tbody> <tr> <th>Column </th> </tr> <tr> <td><!-- checkboxes will go here --> </td> </tr> </tbody> </table> </td> <td style="border: 1px solid grey; vertical-align:top; @(ViewBag.Selected == "" ? "display:none;" : "")"> <textarea name="output" id="output" rows="24" cols="48"></textarea> </td> </tr> </tbody> </table> } and the relevant controller public ActionResult Connect() { /* TEST SESSION FIRST*/ if( Session["connstr"] == null) return RedirectToAction("Index"); else { ViewBag.Message = ""; ViewBag.ConnectionString = Server.UrlDecode( Session["connstr"].ToString() ); ViewBag.Server = ParseConnectionString( ViewBag.ConnectionString, "Data Source" ); ViewBag.Database = ParseConnectionString( ViewBag.ConnectionString, "Initial Catalog" ); using( var db = new SysDbContext(ViewBag.ConnectionString)) { var objects = db.Set<SqlObject>().ToArray(); var model = objects .Select( o => new RadioButtonItem { Name = o.Name, Selected = false, ObjectId = o.Object_Id, CheckBoxItems = Enumerable.Empty<EF_Utility.Models.CheckBoxItem>() } ) .OrderBy( rb => rb.Name ); return View( model ); } } } What I am missing it seems, is the code in my Connect() method that will bring the data context forward; at that point, it should be fairly straight-forward to set up the Html for the View. EDIT ** So I am going to need to bind the RadioButtonItem to the view with something like the following, except my CheckBoxList will NOT be an empty set. // // POST: /Home/Connect/ [HttpPost] public ActionResult Connect( RadioButtonItem rbl ) { /* TEST SESSION FIRST*/ if ( Session["connstr"] == null ) return RedirectToAction( "Index" ); else { ViewBag.Message = ""; ViewBag.ConnectionString = Server.UrlDecode( Session["connstr"].ToString() ); ViewBag.Server = ParseConnectionString( ViewBag.ConnectionString, "Data Source" ); ViewBag.Database = ParseConnectionString( ViewBag.ConnectionString, "Initial Catalog" ); using ( var db = new SysDbContext( ViewBag.ConnectionString ) ) { var objects = db.Set<SqlObject>().ToArray(); var model = objects .Select( o => new RadioButtonItem { Name = o.Name, Selected = false, ObjectId = o.Object_Id, CheckBoxItems = Enumerable.Empty<EF_Utility.Models.CheckBoxItem>() } ) .OrderBy( rb => rb.Name ); return View( model ); } } }

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >