Search Results

Search found 6559 results on 263 pages for 'parallel foreach'.

Page 130/263 | < Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >

  • Designing Content-Based ETL Process with .NET and SFDC

    - by Patrick
    As my firm makes the transition to using SFDC as our main operational system, we've spun together a couple of SFDC portals where we can post customer-specific documents to be viewed at will. As such, we've had the need for pseudo-ETL applications to be implemented that are able to extract metadata from the documents our analysts generate internally (most are industry-standard PDFs, XML, or MS Office formats) and place in networked "queue" folders. From there, our applications scoop of the queued documents and upload them to the appropriate SFDC CRM Content Library along with some select pieces of metadata. I've mostly used DbAmp to broker communication with SFDC (DbAmp is a Linked Server provider that allows you to use SQL conventions to interact with your SFDC Org data). I've been able to create [console] applications in C# that work pretty well, and they're usually structured something like this: static void Main() { // Load parameters from app.config. // Get documents from queue. var files = someInterface.GetFiles(someFilterOrRegexPattern); foreach (var file in files) { // Extract metadata from the file. // Validate some attributes of the file; add any validation errors to an in-memory // structure (e.g. List<ValidationErrors>). if (isValid) { // Upload using some wrapper for an ORM an someInterface.Upload(meta.Param1, meta.Param2, ...); } else { // Bounce the file } } // Report any validation errors (via message bus or SMTP or some such). } And that's pretty much it. Most of the time I wrap all these operations in a "Worker" class that takes the needed interfaces as constructor parameters. This approach has worked reasonably well, but I just get this feeling in my gut that there's something awful about it and would love some feedback. Is writing an ETL process as a C# Console app a bad idea? I'm also wondering if there are some design patterns that would be useful in this scenario that I'm clearly overlooking. Thanks in advance!

    Read the article

  • Creating a Sandboxed Instance

    - by Ricardo Peres
    In .NET 4.0 the policy APIs have changed a bit. Here's how you can create a sandboxed instance of a type, which must inherit from MarshalByRefObject: static T CreateRestrictedType<T>(SecurityZone zone, params Assembly [] fullTrustAssemblies) where T : MarshalByRefObject, new() { return(CreateRestrictedType<T>(zone, fullTrustAssemblies, new IPermission [0]); } static T CreateRestrictedType<T>(SecurityZone zone, params IPermission [] additionalPermissions) where T : MarshalByRefObject, new() { return(CreateRestrictedType<T>(zone, new Assembly [0], additionalPermissions); } static T CreateRestrictedType<T>(SecurityZone zone, Assembly [] fullTrustAssemblies, IPermission [] additionalPermissions) where T : MarshalByRefObject, new() { Evidence evidence = new Evidence(); evidence.AddHostEvidence(new Zone(zone)); PermissionSet evidencePermissionSet = SecurityManager.GetStandardSandbox(evidence); foreach (IPermission permission in additionalPermissions ?? new IPermission[ 0 ]) { evidencePermissionSet.AddPermission(permission); } StrongName [] strongNames = (fullTrustAssemblies ?? new Assembly[0]).Select(a = a.Evidence.GetHostEvidence<StrongName>()).ToArray(); AppDomainSetup adSetup = new AppDomainSetup(); adSetup.ApplicationBase = Path.GetDirectoryName(typeof(T).Assembly.Location); AppDomain newDomain = AppDomain.CreateDomain("Sandbox", evidence, adSetup, evidencePermissionSet, strongNames); ObjectHandle handle = Activator.CreateInstanceFrom(newDomain, typeof(T).Assembly.ManifestModule.FullyQualifiedName, typeof(T).FullName); return (handle.Unwrap() as T); } SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.brushes.CSharp.aliases = ['c#', 'c-sharp', 'csharp']; SyntaxHighlighter.all();

    Read the article

  • Design guideline for saving big byte stream in c# [migrated]

    - by Praveen
    I have an application where I am receiving big byte array very fast around per 50 miliseconds. The byte array contains some information like file name etc. The data (byte array ) may come from several sources. Each time I receive the data, I have to find the file name and save the data to that file name. I need some guide lines to how should I design it so that it works efficient. Following is my code... public class DataSaver { private static Dictionary<string, FileStream> _dictFileStream; public static void SaveData(byte[] byteArray) { string fileName = GetFileNameFromArray(byteArray); FileStream fs = GetFileStream(fileName); fs.Write(byteArray, 0, byteArray.Length); } private static FileStream GetFileStream(string fileName) { FileStream fs; bool hasStream = _dictFileStream.TryGetValue(fileName, out fs); if (!hasStream) { fs = new FileStream(fileName, FileMode.Append); _dictFileStream.Add(fileName, fs); } return fs; } public static void CloseSaver() { foreach (var key in _dictFileStream.Keys) { _dictFileStream[key].Close(); } } } How can I improve this code ? I need to create a thread maybe to do the saving.

    Read the article

  • Tweaking log4net Settings Programmatically

    - by PSteele
    A few months ago, I had to dynamically add a log4net appender at runtime.  Now I find myself in another log4net situation.  I need to modify the configuration of my appenders at runtime. My client requires all files generated by our applications to be saved to a specific location.  This location is determined at runtime.  Therefore, I want my FileAppenders to log their data to this specific location – but I won't know the location until runtime so I can't add it to the XML configuration file I'm using. No problem.  Bing is my new friend and returned a couple of hits.  I made a few tweaks to their LINQ queries and created a generic extension method for ILoggerRepository (just a hunch that I might want this functionality somewhere else in the future – sorry YAGNI fans): public static void ModifyAppenders<T>(this ILoggerRepository repository, Action<T> modify) where T:log4net.Appender.AppenderSkeleton { var appenders = from appender in log4net.LogManager.GetRepository().GetAppenders() where appender is T select appender as T;   foreach (var appender in appenders) { modify(appender); appender.ActivateOptions(); } } Now I can easily add the proper directory prefix to all of my FileAppenders at runtime: log4net.LogManager.GetRepository().ModifyAppenders<FileAppender>(a => { a.File = Path.Combine(settings.ConfigDirectory, Path.GetFileName(a.File)); }); Thanks beefycode and Wil Peck. Technorati Tags: .NET,log4net,LINQ

    Read the article

  • Auto-hydrate your objects with ADO.NET

    - by Jake Rutherford
    Recently while writing the monotonous code for pulling data out of a DataReader to hydrate some objects in an application I suddenly wondered "is this really necessary?" You've probably asked yourself the same question, and many of you have: - Used a code generator - Used a ORM such as Entity Framework - Wrote the code anyway because you like busy work     In most of the cases I've dealt with when making a call to a stored procedure the column names match up with the properties of the object I am hydrating. Sure that isn't always the case, but most of the time it's 1 to 1 mapping.  Given that fact I whipped up the following method of hydrating my objects without having write all of the code. First I'll show the code, and then explain what it is doing.      /// <summary>     /// Abstract base class for all Shared objects.     /// </summary>     /// <typeparam name="T"></typeparam>     [Serializable, DataContract(Name = "{0}SharedBase")]     public abstract class SharedBase<T> where T : SharedBase<T>     {         private static List<PropertyInfo> cachedProperties;         /// <summary>         /// Hydrates derived class with values from record.         /// </summary>         /// <param name="dataRecord"></param>         /// <param name="instance"></param>         public static void Hydrate(IDataRecord dataRecord, T instance)         {             var instanceType = instance.GetType();                         //Caching properties to avoid repeated calls to GetProperties.             //Noticable performance gains when processing same types repeatedly.             if (cachedProperties == null)             {                 cachedProperties = instanceType.GetProperties().ToList();             }                         foreach (var property in cachedProperties)             {                 if (!dataRecord.ColumnExists(property.Name)) continue;                 var ordinal = dataRecord.GetOrdinal(property.Name);                 var isNullable = property.PropertyType.IsGenericType &&                                  property.PropertyType.GetGenericTypeDefinition() == typeof (Nullable<>);                 var isNull = dataRecord.IsDBNull(ordinal);                 var propertyType = property.PropertyType;                 if (isNullable)                 {                     if (!string.IsNullOrEmpty(propertyType.FullName))                     {                         var nullableType = Type.GetType(propertyType.FullName);                         propertyType = nullableType != null ? nullableType.GetGenericArguments()[0] : propertyType;                     }                 }                 switch (Type.GetTypeCode(propertyType))                 {                     case TypeCode.Int32:                         property.SetValue(instance,                                           (isNullable && isNull) ? (int?) null : dataRecord.GetInt32(ordinal), null);                         break;                     case TypeCode.Double:                         property.SetValue(instance,                                           (isNullable && isNull) ? (double?) null : dataRecord.GetDouble(ordinal),                                           null);                         break;                     case TypeCode.Boolean:                         property.SetValue(instance,                                           (isNullable && isNull) ? (bool?) null : dataRecord.GetBoolean(ordinal),                                           null);                         break;                     case TypeCode.String:                         property.SetValue(instance, (isNullable && isNull) ? null : isNull ? null : dataRecord.GetString(ordinal),                                           null);                         break;                     case TypeCode.Int16:                         property.SetValue(instance,                                           (isNullable && isNull) ? (int?) null : dataRecord.GetInt16(ordinal), null);                         break;                     case TypeCode.DateTime:                         property.SetValue(instance,                                           (isNullable && isNull)                                               ? (DateTime?) null                                               : dataRecord.GetDateTime(ordinal), null);                         break;                 }             }         }     }   Here is a class which utilizes the above: [Serializable] [DataContract] public class foo : SharedBase<foo> {     [DataMember]     public int? ID { get; set; }     [DataMember]     public string Name { get; set; }     [DataMember]     public string Description { get; set; }     [DataMember]     public string Subject { get; set; }     [DataMember]     public string Body { get; set; }            public foo(IDataRecord record)     {         Hydrate(record, this);                }     public foo() {} }   Explanation: - Class foo inherits from SharedBase specifying itself as the type. (NOTE SharedBase is abstract here in the event we want to provide additional methods which could be overridden by the instance class) public class foo : SharedBase<foo> - One of the foo class constructors accepts a data record which then calls the Hydrate method on SharedBase passing in the record and itself. public foo(IDataRecord record) {      Hydrate(record, this); } - Hydrate method on SharedBase will use reflection on the object passed in to determine its properties. At the same time, it will effectively cache these properties to avoid repeated expensive reflection calls public static void Hydrate(IDataRecord dataRecord, T instance) {      var instanceType = instance.GetType();      //Caching properties to avoid repeated calls to GetProperties.      //Noticable performance gains when processing same types repeatedly.      if (cachedProperties == null)      {           cachedProperties = instanceType.GetProperties().ToList();      } . . . - Hydrate method on SharedBase will iterate each property on the object and determine if a column with matching name exists in data record foreach (var property in cachedProperties) {      if (!dataRecord.ColumnExists(property.Name)) continue;      var ordinal = dataRecord.GetOrdinal(property.Name); . . . NOTE: ColumnExists is an extension method I put on IDataRecord which I’ll include at the end of this post. - Hydrate method will determine if the property is nullable and whether the value in the corresponding column of the data record has a null value var isNullable = property.PropertyType.IsGenericType && property.PropertyType.GetGenericTypeDefinition() == typeof (Nullable<>); var isNull = dataRecord.IsDBNull(ordinal); var propertyType = property.PropertyType; . . .  - If Hydrate method determines the property is nullable it will determine the underlying type and set propertyType accordingly - Hydrate method will set the value of the property based upon the propertyType   That’s it!!!   The magic here is in a few places. First, you may have noticed the following: public abstract class SharedBase<T> where T : SharedBase<T> This says that SharedBase can be created with any type and that for each type it will have it’s own instance. This is important because of the static members within SharedBase. We want this behavior because we are caching the properties for each type. If we did not handle things in this way only 1 type could be cached at a time, or, we’d need to create a collection that allows us to cache the properties for each type = not very elegant.   Second, in the constructor for foo you may have noticed this (literally): public foo(IDataRecord record) {      Hydrate(record, this); } I wanted the code for auto-hydrating to be as simple as possible. At first I wasn’t quite sure how I could call Hydrate on SharedBase within an instance of the class and pass in the instance itself. Fortunately simply passing in “this” does the trick. I wasn’t sure it would work until I tried it out, and fortunately it did.   So, to actually use this feature when utilizing ADO.NET you’d do something like the following:        public List<foo> GetFoo(int? fooId)         {             List<foo> fooList;             const string uspName = "usp_GetFoo";             using (var conn = new SqlConnection(_dbConnection))             using (var cmd = new SqlCommand(uspName, conn))             {                 cmd.CommandType = CommandType.StoredProcedure;                 cmd.Parameters.Add(new SqlParameter("@FooID", SqlDbType.Int)                                        {Direction = ParameterDirection.Input, Value = fooId});                 conn.Open();                 using (var dr = cmd.ExecuteReader())                 {                     fooList= (from row in dr.Cast<DbDataRecord>()                                             select                                                 new foo(row)                                            ).ToList();                 }             }             return fooList;         }   Nice! Instead of having line after line manually assigning values from data record to an object you simply create a new instance and pass in the data record. Note that there are certainly instances where columns returned from stored procedure do not always match up with property names. In this scenario you can still use the above method and simply do your manual assignments afterward.

    Read the article

  • Getting the relational table data into XML recursively

    - by Tom
    I have levels of tables (Level1, Level2, Level3, ...) For simplicity, we'll say I have 3 levels. The rows in the higher level tables are parents of lower level table rows. The relationship does not skip levels however. E.g. Row1Level1 is parent of Row3Level2, Row2Level2 is parent of Row4Level3. Level(n-1)'s parent is always be in Level(n). Given these tables with data, I need to come up with a recursive function that generates an XML file to represent the relationship and the data. E.g. <data> <level levelid = 1 rowid=1> <level levelid = 2 rowid=3 /> </level> <level levelid = 2 rowid=2> <level levelid = 3 rowid=4 /> </level> </data> I would like help with coming up with a pseudo-code for this setup. This is what I have so far: XElement GetXMLData(Table table, string identifier, XElement data) { XElement xmlData = data; if (table != null) { foreach (row in the table) { // Get subordinate table Table subordinateTable = GetSubordinateTable(table); // Get the XML Data for the children of current row xmlData += GetXMLData(subordinateTable, row.Identifier, xmlData); } } return xmlData; }

    Read the article

  • How to create a thread in XNA for pathfinding?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work? Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • Usage of repository between EF model and code consumer

    - by jim
    I have binary data in my database that I'll have to convert to bitmap at some point. I was thinking whether or not it's appropriate to use a repository and do it there. My consumer, which is a presentation layer, will use this repository. For example: // This is a class I created for modeling the item as is. public class RealItem { public string Name { get; set; } public Bitmap Image { get; set; } } public abstract class BaseRepository { //using Unity (http://unity.codeplex.com) to inject the dependancy of entity context. [Dependency] public Context { get; set; } } public calss ItemRepository : BaseRepository { public List<Items> Select() { IEnumerable<Items> items = from item in Context.Items select item; List<RealItem> lst = new List<RealItem>(); foreach(itm in items) { MemoryStream stream = new MemoryStream(itm.Image); Bitmap image = (Bitmap)Image.FromStream(stream); RealItem ritem = new RealItem{ Name=item.Name, Image=image }; lst.Add(ritem); } return lst; } } Is this a correct way to use the repository pattern? I'm learning this pattern and I've seen a lot of examples online that are using a repository but when I looked at their source code... for example: public IQueryable<object> Select { return from q in base.Context select q; } as you can see no behavior is added to the system by their approach, so I was confused that maybe repository is something else and I got it all wrong. At the end there should be extra benifits of using them right?

    Read the article

  • Overlap of the variable in mysql, my column are set to my query result

    - by foodil
    The question is not clear , let me clarify it: try{ $sql = ' SELECT UserID <==== (***********Used here for query ******) FROM user WHERE Rights != ?'; $stmt = $conn->prepare($sql); $stmt->execute(array('admin')); $result= $stmt->fetchAll(); } catch(PDOException $e) { die ($e->getMessage().'<a href="add.php"> Back</a>'); } foreach ($result as $set) { if ($set['UserID']==$_SESSION['username']) $rights='edit'; else {$rights=$_POST[$set['UserID']];} if (($rights != 'default' || $set['UserID']==$_SESSION['username']) && $_POST['public']==0 ) { $user=$set['UserID']; try { $query="INSERT INTO user_list(UserID <==== (***********Used here for insert ******),ListID,UserRights) VALUES ($user,$lastID,$rights)"; $stmt = $conn->prepare($query); $stmt->execute(); } catch(PDOException $e) { die ($e->getMessage().'<a href="add.php"> Back</a>'); $conn->rollBack(); } } } As you can see the UserID is a query result but it is also the column i need to insert, so when i insert into the table it will casued an error SQLSTATE[42S22]: Column not found: 1054 Unknown column 'UserA_ID' in 'field list' because the column is modify by my query result from: $query="INSERT INTO user_list(UserID,ListID,UserRights) VALUES ($user,$lastID,$rights)"; to: $query="INSERT INTO user_list(query_result_id,ListID,UserRights) VALUES ($user,$lastID,$rights)"; How to fix it ?Thank you.

    Read the article

  • XNA, how to draw two cubes standing in line parallelly?

    - by user3535716
    I just got a problem with drawing two 3D cubes standing in line. In my code, I made a cube class, and in the game1 class, I built two cubes, A on the right side, B on the left side. I also setup an FPS camera in the 3D world. The problem is if I draw cube B first(Blue), and move the camera to the left side to cube B, A(Red) is still standing in front of B, which is apparently wrong. I guess some pics can make much sense. Then, I move the camera to the other side, the situation is like: This is wrong.... From this view, the red cube, A should be behind the blue one, B.... Could somebody give me help please? This is the draw in the Cube class Matrix center = Matrix.CreateTranslation( new Vector3(-0.5f, -0.5f, -0.5f)); Matrix scale = Matrix.CreateScale(0.5f); Matrix translate = Matrix.CreateTranslation(location); effect.World = center * scale * translate; effect.View = camera.View; effect.Projection = camera.Projection; foreach (EffectPass pass in effect.CurrentTechnique.Passes) { pass.Apply(); device.SetVertexBuffer(cubeBuffer); RasterizerState rs = new RasterizerState(); rs.CullMode = CullMode.None; rs.FillMode = FillMode.Solid; device.RasterizerState = rs; device.DrawPrimitives( PrimitiveType.TriangleList, 0, cubeBuffer.VertexCount / 3); } This is the Draw method in game1 A.Draw(camera, effect); B.Draw(camera, effect); **

    Read the article

  • XNA C# Rectangle Intersect Ball on a Square

    - by user2436057
    I made a Game like Peggle Deluxe using C# and XNA for lerning. I have 2 rectangles a ball and a square field. The ball gets shoot out with a cannon and if the Ball hits the Square the Square disapears and the Ball flys away.But the Ball doesent spring of realistically, it sometimes flys away in a different direction or gets stuck on the edge. Thads my Code at the moment: public void Update(Ball b, Deadline dl) { ArrayList listToDelete = new ArrayList(); foreach (Field aField in allFields) { if (aField.square.Intersects(b.ballhere)) { listToDelete.Add(aField); Punkte = Punkte + 100; float distanceX = Math.Abs(b.ballhere.X - aField.square.X); float distanceY = Math.Abs(b.ballhere.Y - aField.square.Y); if (distanceX < distanceY) { b.myMovement.X = -b.myMovement.X; } else { b.myMovement.Y = -b.myMovement.Y; } } } It changes the X or Y axis depending on how the ball hits the Square but not everytimes. What could cause the problem? Thanks for your answer. Greetings from Switzerland.

    Read the article

  • Use MvcContrib Grid to Display a Grid of Data in ASP.NET MVC

    The past six articles in this series have looked at how to display a grid of data in an ASP.NET MVC application and how to implement features like sorting, paging, and filtering. In each of these past six tutorials we were responsible for generating the rendered markup for the grid. Our Views included the <table> tags, the <th> elements for the header row, and a foreach loop that emitted a series of <td> elements for each row to display in the grid. While this approach certainly works, it does lead to a bit of repetition and inflates the size of our Views. The ASP.NET MVC framework includes an HtmlHelper class that adds support for rendering HTML elements in a View. An instance of this class is available through the Html object, and is often used in a View to create action links (Html.ActionLink), textboxes (Html.TextBoxFor), and other HTML content. Such content could certainly be created by writing the markup by hand in the View; however, the HtmlHelper makes things easier by offering methods that emit common markup patterns. You can even create your own custom HTML Helpers by adding extension methods to the HtmlHelper class. MvcContrib is a popular, open source project that adds various functionality to the ASP.NET MVC framework. This includes a very versatile Grid HTML Helper that provides a strongly-typed way to construct a grid in your Views. Using MvcContrib's Grid HTML Helper you can ditch the <table>, <tr>, and <td> markup, and instead use syntax like Html.Grid(...). This article looks at using the MvcContrib Grid to display a grid of data in an ASP.NET MVC application. A future installment will show how to configure the MvcContrib Grid to support both sorting and paging. Read on to learn more! Read More >

    Read the article

  • What conventions or frameworks exist for MVVM in Perl?

    - by Will Sheppard
    We're using Catalyst to render lots of webforms in what will become a large application. I don't like the way all the form data is confusingly into a big hash in the Controller, before being passed to the template. It seems jumbled up and messy for the template. I'm sure there are real disadvantages that I haven't described properly... Are there? One solution is to just decide on a convention for the hash, e.g.: { defaults => { type => ['a', 'b', 'c'] }, input => { type => 'a' }, output => { message => "2 widgets found of type a", widgets => [ 'foo', 'bar' ] } } Another way is to store the page/form data as attributes in a class (a ViewModel?), and pass a whole object to the template, which it could use like this: <p class="message">[% model.message %]<p> [% FOREACH widget IN model.widgets %] Which way is more flexible for large applications? Are there any other solutions or existing Catalyst-compatible frameworks?

    Read the article

  • Matrix.CreateBillboard centre rotation problem

    - by Chris88
    I'm having an issue with Matrix.CreateBillboard and a textured Quad where the center axis seems to be positioned incorrectly to the quad object which is rotating around a center point: Using: BasicEffect quadEffect; Drawing the quad shape: Left = Vector3.Cross(Normal, Up); Vector3 uppercenter = (Up * height / 2) + origin; LowerLeft = uppercenter + (Left * width / 2); LowerRight = uppercenter - (Left * width / 2); UpperLeft = LowerLeft - (Up * height); UpperRight = LowerRight - (Up * height); Where height and width are float values passed in (it draws a square) Draw method: quadEffect.View = camera.view; quadEffect.Projection = camera.projection; quadEffect.World = Matrix.CreateBillboard(Origin, camera.cameraPosition, Vector3.Up, camera.cameraDirection); GraphicsDevice.BlendState = BlendState.Additive; foreach (EffectPass pass in quadEffect.CurrentTechnique.Passes) { pass.Apply(); GraphicsDevice.DrawUserIndexedPrimitives <VertexPositionNormalTexture>( PrimitiveType.TriangleList, Vertices, 0, 4, Indexes, 0, 2); } GraphicsDevice.BlendState = BlendState.Opaque; In the screenshots below i draw the image at Vector3(32f, 0f, 32f) The screenshots below show you the position of the quad in relation to the red cross. The red cross shows where it should be drawn http://i.imgur.com/YwRYj.jpg http://i.imgur.com/ZtoHL.jpg It rotates around the red cross position

    Read the article

  • XNA hlsl tex2D() only reads 3 channels from normal maps and specular maps

    - by cubrman
    Our engine uses deferred rendering and at the main draw phase gathers plenty of data from the objects it draws. In order to save on tex2D calls, we packed our objects' specular maps with all sorts of data, so three out of four channels are already taken. To make it clear: I am talking about the assets that come with the models and are stored in their material's Specular Level channel, not about the RenderTarget. So now I need another information to be stored in the alpha channel, but I cannot make the shader to read it properly! Nomatter what I write into alpha it ends up being 1 (255)! I tried: saving the textures in PNG/TGA formats. turning off pre-computed alpha in model's properties. Out of every texture available to me (we use Diffuse map, Normal Map and Specular Map) I was only able to read alpha successfully from the Diffuse Map! Here is how I add specular and normal maps to my model's material in the content processor: if (geometry.Material.Textures.ContainsKey(normalMapKey)) { ExternalReference<TextureContent> texRef = geometry.Material.Textures[normalMapKey]; geometry.Material.Textures.Remove("NormalMap"); geometry.Material.Textures.Add("NormalMap", texRef); } ... foreach (KeyValuePair<String, ExternalReference<TextureContent>> texture in material.Textures) { if ((texture.Key == "Texture") || (texture.Key == "NormalMap") || (texture.Key == "SpecularMap")) mat.Textures.Add(texture.Key, texture.Value); } In the shader I obviously use: float4 data = tex2D(specularMapSampler, TexCoords); so data.a is always 1 in my case, could you suggest a reason?

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • How to Generate a Create Table DDL Script Along With Its Related Tables

    - by Compudicted
    Have you ever wondered when creating table diagrams in SQL Server Management Studio (SSMS) how slickly you can add related tables to it by just right-clicking on the interesting table name? Have you also ever needed to script those related tables including the master one? And you discovered you have dozens of related tables? Or may be no SSMS at your disposal? That was me one day. Well, creativity to the rescue! I Binged and Googled around until I found more or less what I wanted, but it was all involving T-SQL, yeah, a long and convoluted CROSS APPLYs, then I saw a PowerShell solution that I quickly adopted to my needs (I am not referencing any particular author because it was a mashup): 1: ########################################################################################################### 2: # Created by: Arthur Zubarev on Oct 14, 2012 # 3: # Synopsys: Generate file containing the root table CREATE (DDL) script along with all its related tables # 4: ########################################################################################################### 5:   6: [System.Reflection.Assembly]::LoadWithPartialName('Microsoft.SqlServer.SMO') | out-null 7:   8: $RootTableName = "TableName" # The table name, no schema name needed 9:   10: $srv = new-Object Microsoft.SqlServer.Management.Smo.Server("TargetSQLServerName") 11: $conContext = $srv.ConnectionContext 12: $conContext.LoginSecure = $True 13: # In case the integrated security is not used uncomment below 14: #$conContext.Login = "sa" 15: #$conContext.Password = "sapassword" 16: $db = New-Object Microsoft.SqlServer.Management.Smo.Database 17: $db = $srv.Databases.Item("TargetDatabase") 18:   19: $scrp = New-Object Microsoft.SqlServer.Management.Smo.Scripter($srv) 20: $scrp.Options.NoFileGroup = $True 21: $scrp.Options.AppendToFile = $False 22: $scrp.Options.ClusteredIndexes = $False 23: $scrp.Options.DriAll = $False 24: $scrp.Options.ScriptDrops = $False 25: $scrp.Options.IncludeHeaders = $True 26: $scrp.Options.ToFileOnly = $True 27: $scrp.Options.Indexes = $False 28: $scrp.Options.WithDependencies = $True 29: $scrp.Options.FileName = 'C:\TEMP\TargetFileName.SQL' 30:   31: $smoObjects = New-Object Microsoft.SqlServer.Management.Smo.UrnCollection 32: Foreach ($tb in $db.Tables) 33: { 34: Write-Host -foregroundcolor yellow "Table name being processed" $tb.Name 35: 36: If ($tb.IsSystemObject -eq $FALSE -and $tb.Name -eq $RootTableName) # feel free to customize the selection condition 37: { 38: Write-Host -foregroundcolor magenta $tb.Name "table and its related tables added to be scripted." 39: $smoObjects.Add($tb.Urn) 40: } 41: } 42:   43: # The actual act of scripting 44: $sc = $scrp.Script($smoObjects) 45:   46: Write-host -foregroundcolor green $RootTableName "and its related tables have been scripted to the target file." Enjoy!

    Read the article

  • Create a thread in xna Update method to find path?

    - by Dan
    I am trying to create a separate thread for my enemy's A* pathfinder which will give me a list of points to get to the player. I have placed the thread in the update method of my enemy. However this seems to cause jittering in the game every-time the thread is called. I have tried calling just the method and this works fine. Is there any way I can sort this out so that I can have the pathfinder on its own thread? Do I need to remove the thread start from the update and start it in the constructor? Is there any way this can work. Here is the code at the moment: bool running = false; bool threadstarted; System.Threading.Thread thread; public void update() { if (running == false && threadstarted == false) { thread = new System.Threading.Thread(PathThread); //thread.Priority = System.Threading.ThreadPriority.Lowest; thread.IsBackground = true; thread.Start(startandendobj); //PathThread(startandendobj); threadstarted = true; } } public void PathThread(object Startandend) { object[] Startandendarray = (object[])Startandend; Point startpoint = (Point)Startandendarray[0]; Point endpoint = (Point)Startandendarray[1]; bool runnable = true; // Path find from 255, 255 to 0,0 on the map foreach(Tile tile in Map) { if(tile.Color == Color.Red) { if (tile.Position.Contains(endpoint)) { runnable = false; } } } if(runnable == true) { running = true; Pathfinder p = new Pathfinder(Map); pathway = p.FindPath(startpoint, endpoint); running = false; threadstarted = false; } }

    Read the article

  • Kinect Click counter function

    - by Sweta Dwivedi
    So i have the following kinect click function which will check if the hand is within the bounds then it will click with a counter . . however there is a slight problem . .the first few button clicks work fine.. but after it clicks one of the buttons it changes the game state and immediately clicks the other button without the counter reaching 200. . . Kinect click is a method in the button class. . .and each button inside a list can access the Kinect click method. . . public bool KinectClick(int x,int y) { if ((x >= position.X && x <= position.X + position.Width) && (y >= position.Y && y <= position.Y + position.Height)) { counter++; if (counter > 200) { counter = 0; return true; } } else { counter = 0; } return false; } I call to check if this property is true in the Game update method to act as a button click. . foreach(Button g_t in Game_theme) { if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "animoe") { Selected_anim = true; currentGameState = GameState.InGame; } if ((g_t.KinectClick(x_c, y_c) == true || g_t.ButtonClicked() == true) && g_t.name == "planet") { Selected_planet = true; currentGameState = GameState.InGame; }

    Read the article

  • On developing deep programming knowledge

    - by Robert Harvey
    Occasionally I see questions about edge cases and other weirdness on Stack Overflow that are easily answered by the likes of Jon Skeet and Eric Lippert, demonstrating a deep knowledge of the language and its many intricacies, like this one: You might think that in order to use a foreach loop, the collection you are iterating over must implement IEnumerable or IEnumerable<T>. But as it turns out, that is not actually a requirement. What is required is that the type of the collection must have a public method called GetEnumerator, and that must return some type that has a public property getter called Current and a public method MoveNext that returns a bool. If the compiler can determine that all of those requirements are met then the code is generated to use those methods. Only if those requirements are not met do we check to see if the object implements IEnumerable or IEnumerable<T>. That's cool stuff to know. I can understand why Eric knows this; he's on the compiler team, so he has to know. But what about those who demonstrate such deep knowledge who are not insiders? How do mere mortals (who are not on the C# compiler team) find out about stuff like this? Specifically, are there methods these folks use to systematically root out such knowledge, explore it and internalize it (make it their own)?

    Read the article

  • 2D scene graph not transforming relative to parent

    - by Dr.Denis McCracleJizz
    I am currently in the process of coding my own 2D Scene graph, which is basically a port of flash's render engine. The problem I have right now is my rendering doesn't seem to be working properly. This code creates the localTransform property for each DisplayObject. Matrix m_transform = Matrix.CreateRotationZ(rotation) * Matrix.CreateScale(scaleX, scaleY, 1) * Matrix.CreateTranslation(new Vector3(x, y, z)); This is my render code. float dRotation; Vector2 dPosition, dScale; Matrix transform; transform = this.localTransform; if (parent != null) transform = localTransform * parent.localTransform; DecomposeMatrix(ref transform, out dPosition, out dRotation, out dScale); spriteBatch.Draw(this.texture, dPosition, null, Color.White, dRotation, new Vector2(originX, originY), dScale, SpriteEffects.None, 0.0f); Here is the result when I try to add the Stage then to the stage a First DisplayObjectContainer and then a second one. It may look fine but the problem lies in the fact that I add a first DisplayObjectContainer at (400,400) and the second one within it (that's the smallest one) at position (0,0). So he should be right over its parent but he gets render within the parent at the same position the parent has (400, 400) for some reason. It's just as if I double the parent's localMatrix and then render the second cat there. This is the code i use to loop through every childs. base.Draw(spriteBatch); foreach (DisplayObject childs in _childs) { childs.Draw(spriteBatch); }

    Read the article

  • Towards Ultra-Reusability for ADF - Adaptive Bindings

    - by Duncan Mills
    The task flow mechanism embodies one of the key value propositions of the ADF Framework, it's primary contribution being the componentization of your applications and implicitly the introduction of a re-use culture, particularly in large applications. However, what if we could do more? How could we make task flows even more re-usable than they are today? Well one great technique is to take advantage of a feature that is already present in the framework, a feature which I will call, for want of a better name, "adaptive bindings". What's an adaptive binding? well consider a simple use case.  I have several screens within my application which display tabular data which are all essentially identical, the only difference is that they happen to be based on different data collections (View Objects, Bean collections, whatever) , and have a different set of columns. Apart from that, however, they happen to be identical; same toolbar, same key functions and so on. So wouldn't it be nice if I could have a single parametrized task flow to represent that type of UI and reuse it? Hold on you say, great idea, however, to do that we'd run into problems. Each different collection that I want to display needs different entries in the pageDef file and: I want to continue to use the ADF Bindings mechanism rather than dropping back to passing the whole collection into the taskflow   If I do use bindings, there is no way I want to have to declare iterators and tree bindings for every possible collection that I might want the flow to handle  Ah, joy! I reply, no need to panic, you can just use adaptive bindings. Defining an Adaptive Binding  It's easiest to explain with a simple before and after use case.  Here's a basic pageDef definition for our familiar Departments table.  <executables> <iterator Binds="DepartmentsView1" DataControl="HRAppModuleDataControl" RangeSize="25"             id="DepartmentsView1Iterator"/> </executables> <bindings> <tree IterBinding="DepartmentsView1Iterator" id="DepartmentsView1">   <nodeDefinition DefName="oracle.demo.model.vo.DepartmentsView" Name="DepartmentsView10">     <AttrNames>       <Item Value="DepartmentId"/>         <Item Value="DepartmentName"/>         <Item Value="ManagerId"/>         <Item Value="LocationId"/>       </AttrNames>     </nodeDefinition> </tree> </bindings>  Here's the adaptive version: <executables> <iterator Binds="${pageFlowScope.voName}" DataControl="HRAppModuleDataControl" RangeSize="25"             id="TableSourceIterator"/> </executables> <bindings> <tree IterBinding="TableSourceIterator" id="GenericView"> <nodeDefinition Name="GenericViewNode"/> </tree> </bindings>  You'll notice three changes here.   Most importantly, you'll see that the hard-coded View Object name  that formally populated the iterator Binds attribute is gone and has been replaced by an expression (${pageFlowScope.voName}). This of course, is key, you can see that we can pass a parameter to the task flow, telling it exactly what VO to instantiate to populate this table! I've changed the IDs of the iterator and the tree binding, simply to reflect that they are now re-usable The tree binding itself has simplified and the node definition is now empty.  Now what this effectively means is that the #{node} map exposed through the tree binding will expose every attribute of the underlying iterator's collection - neat! (kudos to Eugene Fedorenko at this point who reminded me that this was even possible in his excellent "deep dive" session at OpenWorld  this year) Using the adaptive binding in the UI Now we have a parametrized  binding we have to make changes in the UI as well, first of all to reflect the new ID that we've assigned to the binding (of course) but also to change the column list from being a fixed known list to being a generic metadata driven set: <af:table value="#{bindings.GenericView.collectionModel}" rows="#{bindings.GenericView.rangeSize}"         fetchSize="#{bindings.GenericView.rangeSize}"           emptyText="#{bindings.GenericView.viewable ? 'No data to display.' : 'Access Denied.'}"           var="row" rowBandingInterval="0"           selectedRowKeys="#{bindings.GenericView.collectionModel.selectedRow}"           selectionListener="#{bindings.GenericView.collectionModel.makeCurrent}"           rowSelection="single" id="t1"> <af:forEach items="#{bindings.GenericView.attributeDefs}" var="def">   <af:column headerText="#{bindings.GenericView.labels[def.name]}" sortable="true"            sortProperty="#{def.name}" id="c1">     <af:outputText value="#{row[def.name]}" id="ot1"/>     </af:column>   </af:forEach> </af:table> Of course you are not constrained to a simple read only table here.  It's a normal tree binding and iterator that you are using behind the scenes so you can do all the usual things, but you can see the value of using ADFBC as the back end model as you have the rich pantheon of UI hints to use to derive things like labels (and validators and converters...)  One Final Twist  To finish on a high note I wanted to point out that you can take this even further and achieve the ultra-reusability I promised. Here's the new version of the pageDef iterator, see if you can notice the subtle change? <iterator Binds="{pageFlowScope.voName}"  DataControl="${pageFlowScope.dataControlName}" RangeSize="25"           id="TableSourceIterator"/>  Yes, as well as parametrizing the collection (VO) name, we can also parametrize the name of the data control. So your task flow can graduate from being re-usable within an application to being truly generic. So if you have some really common patterns within your app you can wrap them up and reuse then across multiple developments without having to dictate data control names, or connection names. This also demonstrates the importance of interacting with data only via the binding layer APIs. If you keep any code in the task flow generic in that way you can deal with data from multiple types of data controls, not just one flavour. Enjoy!

    Read the article

  • Should we encourage coding styles in favor of developer's autonomy, or discourage it in favor of consistency?

    - by Saeed Neamati
    A developer writes if/else blocks with one-line code statements like: if (condition) // Do this one-line code else // Do this one-line code Another uses curly braces for all of them: if (condition) { // Do this one-line code } else { // Do this one-line code } A developer first instantiates an object, then uses it: HelperClass helper = new HelperClass(); helper.DoSomething(); Another developer instantiates and uses the object in one line: new HelperClass().DoSomething(); A developer is more easy with arrays, and for loops: string[] ordinals = new string[] {'First', 'Second', 'Third'}; for (i = 0; i < ordinals.Length; i++) { // Do something } Another writes: List<string> ordinals = new List<string>() {'First', 'Second', 'Third'}; foreach (string ordinal in ordinals) { // Do something } I'm sure that you know what I'm talking about. I call it coding style (cause I don't know what it's called). But whatever we call it, is it good or bad? Does encouraging it have an effect of higher productivity of developers? Should we ask developers to try to write code the way we tell them, so to make the whole system become style-consistent?

    Read the article

  • What is the disadvantage of using abstract class as a database connectivity in zend framework 2 instead of service locator

    - by arslaan ejaz
    If I use database by creating adapter with drivers, initialize it in some abstract class and extend that abstract class to required model. Then use simple query statement. Like this: namespace My-Model\Model\DB; abstract class MysqliDB { protected $adapter; public function __construct(){ $this->adapter = new \Zend\Db\Adapter\Adapter(array( 'driver' => 'Mysqli', 'database' => 'my-database', 'username' => 'root', 'password' => '' )); } } And use abstract class of database like this in my models: class States extends DB\MysqliDB{ public function __construct(){ parent::__construct(); } protected $states = array(); public function select_all_states(){ $data = $this->adapter->query('select * from states'); foreach ($data->execute() as $row){ $this->states[] = $row; } return $this->states; } } I am new to zend framework, before i have experience of working in YII and Codeigniter. I like the object oriented in zend so i want to use it like this. And don't want to use it through service locater something like this: public function getServiceConfig(){ return array( 'factories' => array( 'addserver-mysqli' => new Model\MyAdapterFactory('addserver-mysqli'), 'loginDB' => function ($sm){ $adapter = $sm->get('addserver-mysqli'); return new LoginDB($adapter); } ) ); } In module. Am i Ok with this approach?

    Read the article

  • XNA model drawing problem

    - by user1990950
    When using this code: public static void DrawModel(Model model, Vector3 position, Vector3 offset, float xRotation, float yRotation, float zRotation, float allrot, float xScale, float yScale, float zScale) { position.Y *= -1; offset.Y *= -1; Matrix worldMatrix = ((Matrix.CreateRotationZ(MathHelper.ToRadians(zRotation)) * Matrix.CreateRotationX(MathHelper.ToRadians(xRotation))) * Matrix.CreateRotationY(MathHelper.ToRadians(yRotation))) * (Matrix.CreateTranslation(offset) * Matrix.CreateRotationY(MathHelper.ToRadians(allrot))) * Matrix.CreateScale(xScale, yScale, zScale); worldMatrix *= Matrix.CreateTranslation(position) * theCamera.GetTransformation() * Matrix.CreateTranslation(new Vector3(-(graphics.GraphicsDevice.Viewport.Width / 2), graphics.GraphicsDevice.Viewport.Height / 2, 0)); foreach (ModelMesh mesh in model.Meshes) { for (int i = 0; i < mesh.Effects.Count; i++) { ((BasicEffect)mesh.Effects[i]).EnableDefaultLighting(); ((BasicEffect)mesh.Effects[i]).World = worldMatrix; ((BasicEffect)mesh.Effects[i]).View = viewMatrix; ((BasicEffect)mesh.Effects[i]).Projection = projectionMatrix; } mesh.Draw(); } } The model rotates and then scales. It should scale and then rotate, but whenever I try to change it, it won't work.

    Read the article

< Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >