Search Results

Search found 28744 results on 1150 pages for 'higher order functions'.

Page 131/1150 | < Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >

  • Could you recommend a good shopping cart script?

    - by user649482
    I'm looking for a PHP/MySQL script, free or not. Could you please recommend me one that can do the following: The site I'm trying to build requires an extensive product catalogue, which will have around 600 products. Because there are so many products they will be uploaded using a CSV file or spreadsheet. Users must be logged in to see prices Users can add products to an order form, which they can then email to admin. (NO payment processing whatsoever) They will just add products to a cart, review the cart's content and click a button to send the order The order email to admin must have the order details attached in a CSV file. Newsletter Newsletter sign up. Admin can create and send newsletter from the admin section. User Login/Member Section After users sign up they can access their member section. In this section they can Edit their details See previous orders they have made, and click a button to send that order again Thank you! (the question is also posted here but with no replies)

    Read the article

  • algorithm analysis - orders of growth question

    - by cchampion
    I'm studing orders of growth "big oh", "big omega", and "big theta". Since I can't type the little symbols for these I will denote them as follows: ORDER = big oh OMEGA = big omega THETA = big theta For example I'll say n = ORDER(n^2) to mean that the function n is in the order of n^2 (n grows at most as fast n^2). Ok for the most part I understand these: n = ORDER(n^2) //n grows at most as fast as n^2 n^2 = OMEGA(n) //n^2 grows atleast as fast as n 8n^2 + 1000 = THETA(n^2) //same order of growth Ok here comes the example that confuses me: what is n(n+1) vs n^2 I realize that n(n+1) = n^2 + n; I would say it has the same order of growth as n^2; therefore I would say n(n+1) = THETA(n^2) but my question is, would it also be correct to say: n(n+1) = ORDER(n^2) please help because this is confusing to me. thanks.

    Read the article

  • Spring MVC - Cannot map request parameters as a Map parameter in method?

    - by Ken Chen
    What I want to do is passing a map to the method in Controller using @RequestParam, but it seems not working. While this is working in Struts 2. Below is what I am trying: In JSP using JQuery: var order = {}; order['seq'] = "ASC"; var criteria = {}; criteria['label'] = "Directory"; $.post(context + 'menu/list', {"orders" : order, "criterias" : criteria} The parameters I am trying to post is an 'map' object order and criteria for listing menu. In Java: @RequestMapping("/{collection}/list") public @ResponseBody Map<String, ? extends Object> list(@PathVariable String collection, @RequestParam("criterias") Map<String, String> criteria, @RequestParam("orders") Map<String, String> order) { However, when I print out the map criteria & order in Java, it takes all value as below: Criteria: {criterias[label]=Directory, orders[seq]=ASC} Order: {criterias[label]=Directory, orders[seq]=ASC} Can @RequestParam in Spring be used to init a Map parameter?

    Read the article

  • How do I get Linq-to-SQL to refresh its local copy of a database record?

    - by Gary McGill
    Suppose I have an Orders table in my database and a corresponding model class generated by the VS2008 "Linq to SQL Classes" designer. Suppose I also have a stored procedure (ProcessOrder) in my database that I use to do some processing on an order record. If I do the following: var order = dataContext.Orders.Where(o => o.id == orderId).First(); // More code here dataContext.ProcessOrder(orderId); order.Status = "PROCESSED"; dataContext.SubmitChanges(); ...then I'll get a concurrency violation if the ProcessOrder stored proc has modified the order (which is of course very likely), because L2S will detect that the order record has changed, and will fail to submit the changes to that order. That's all fairly logical, but what if I want to update the order record after calling the stored proc? How do I tell L2S to forget about its cached copy and refresh it from the DB?

    Read the article

  • .NET chart Datamanipulator

    - by peter
    In .NET C#4.0 with the .NET Chart control I have this code to generate a pie chart: chart.Series[0].ChartType = SeriesChartType.Pie; foreach (Order order in orderCollection) { // If I set point.LegendText = order.UserName, .Group will erase it chart.Series[0].Points.AddXY(order.UserName, order.Total); } chart.DataManipulator.Sort(PointSortOrder.Ascending, "X", "Series1"); chart.DataManipulator.Group("SUM", 1, IntervalType.Months, "Series1"); This works well, it generates a pie chart with the top 10 users showing their total order sum. I would like to set the DataPoints' legendtext to the order.UserName property. The problem is, DataManipulator.Group overwrites the series DataPoints. So if I set the legendtext in the foreach loop, they will be erased after the Group call. And after the Group call, I don't see a way to retrieve the correct UserName for a DataPoint to set the legendtext. What is the best approach for this situation?

    Read the article

  • Where to include business logic in a domain driven architecture

    - by Mike C.
    I'm trying to learn effective DDD practices as I go, but had a fundamental question I wanted to get some clarity on. I am using ASP.NET WebForms and I am creating a situation where a user places an order. Upon order submission, the code-behind retrieves the user, builds the order from the inputs on the form, calls the User.PlaceOrder() method to perform add the order object to the user's order collection, and calls the repository to save the record to the database. That is fairly simply and straightforward. Now I need to add logic to send an order confirmation email, and I'm not really sure the proper place to put this code or where to call it. In the olden days I would simply put that code in the code-behind and call it at the same time I was building the order, but I want to get a step closer to solid proper architecture so I wanted to get some information. Thanks for your help!

    Read the article

  • Which substring of the string1 matches with the string2.

    - by Harikrishna
    There are two strings. String str1="Order Number Order Time Trade Number"; String str2="Order Tm"; Then I want to know that str2 matches with which substring in the str1. string regex = Regex.Escape(str2.Replace(@"\ ", @"\s*"); bool isColumnNameMatched = Regex.IsMatch(str1, regex, RegexOptions.IgnoreCase); I am using regex because "Order Tm" will also matches "Order Time".It gives bool value that matches occurred or not. Like str2="Order Tm" then it should return like in the str1,Order Time is the substring where matches is occurred.

    Read the article

  • ASP.NET MVC 3 Hosting :: New Features in ASP.NET MVC 3

    - by mbridge
    Razor View Engine The Razor view engine is a new view engine option for ASP.NET MVC that supports the Razor templating syntax. The Razor syntax is a streamlined approach to HTML templating designed with the goal of being a code driven minimalist templating approach that builds on existing C#, VB.NET and HTML knowledge. The result of this approach is that Razor views are very lean and do not contain unnecessary constructs that get in the way of you and your code. ASP.NET MVC 3 Preview 1 only supports C# Razor views which use the .cshtml file extension. VB.NET support will be enabled in later releases of ASP.NET MVC 3. For more information and examples, see Introducing “Razor” – a new view engine for ASP.NET on Scott Guthrie’s blog. Dynamic View and ViewModel Properties A new dynamic View property is available in views, which provides access to the ViewData object using a simpler syntax. For example, imagine two items are added to the ViewData dictionary in the Index controller action using code like the following: public ActionResult Index() {          ViewData["Title"] = "The Title";          ViewData["Message"] = "Hello World!"; } Those properties can be accessed in the Index view using code like this: <h2>View.Title</h2> <p>View.Message</p> There is also a new dynamic ViewModel property in the Controller class that lets you add items to the ViewData dictionary using a simpler syntax. Using the previous controller example, the two values added to the ViewData dictionary can be rewritten using the following code: public ActionResult Index() {     ViewModel.Title = "The Title";     ViewModel.Message = "Hello World!"; } “Add View” Dialog Box Supports Multiple View Engines The Add View dialog box in Visual Studio includes extensibility hooks that allow it to support multiple view engines, as shown in the following figure: Service Location and Dependency Injection Support ASP.NET MVC 3 introduces improved support for applying Dependency Injection (DI) via Inversion of Control (IoC) containers. ASP.NET MVC 3 Preview 1 provides the following hooks for locating services and injecting dependencies: - Creating controller factories. - Creating controllers and setting dependencies. - Setting dependencies on view pages for both the Web Form view engine and the Razor view engine (for types that derive from ViewPage, ViewUserControl, ViewMasterPage, WebViewPage). - Setting dependencies on action filters. Using a Dependency Injection container is not required in order for ASP.NET MVC 3 to function properly. Global Filters ASP.NET MVC 3 allows you to register filters that apply globally to all controller action methods. Adding a filter to the global filters collection ensures that the filter runs for all controller requests. To register an action filter globally, you can make the following call in the Application_Start method in the Global.asax file: GlobalFilters.Filters.Add(new MyActionFilter()); The source of global action filters is abstracted by the new IFilterProvider interface, which can be registered manually or by using Dependency Injection. This allows you to provide your own source of action filters and choose at run time whether to apply a filter to an action in a particular request. New JsonValueProviderFactory Class The new JsonValueProviderFactory class allows action methods to receive JSON-encoded data and model-bind it to an action-method parameter. This is useful in scenarios such as client templating. Client templates enable you to format and display a single data item or set of data items by using a fragment of HTML. ASP.NET MVC 3 lets you connect client templates easily with an action method that both returns and receives JSON data. Support for .NET Framework 4 Validation Attributes and IvalidatableObject The ValidationAttribute class was improved in the .NET Framework 4 to enable richer support for validation. When you write a custom validation attribute, you can use a new IsValid overload that provides a ValidationContext instance. This instance provides information about the current validation context, such as what object is being validated. This change enables scenarios such as validating the current value based on another property of the model. The following example shows a sample custom attribute that ensures that the value of PropertyOne is always larger than the value of PropertyTwo: public class CompareValidationAttribute : ValidationAttribute {     protected override ValidationResult IsValid(object value,              ValidationContext validationContext) {         var model = validationContext.ObjectInstance as SomeModel;         if (model.PropertyOne > model.PropertyTwo) {            return ValidationResult.Success;         }         return new ValidationResult("PropertyOne must be larger than PropertyTwo");     } } Validation in ASP.NET MVC also supports the .NET Framework 4 IValidatableObject interface. This interface allows your model to perform model-level validation, as in the following example: public class SomeModel : IValidatableObject {     public int PropertyOne { get; set; }     public int PropertyTwo { get; set; }     public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {         if (PropertyOne <= PropertyTwo) {            yield return new ValidationResult(                "PropertyOne must be larger than PropertyTwo");         }     } } New IClientValidatable Interface The new IClientValidatable interface allows the validation framework to discover at run time whether a validator has support for client validation. This interface is designed to be independent of the underlying implementation; therefore, where you implement the interface depends on the validation framework in use. For example, for the default data annotations-based validator, the interface would be applied on the validation attribute. Support for .NET Framework 4 Metadata Attributes ASP.NET MVC 3 now supports .NET Framework 4 metadata attributes such as DisplayAttribute. New IMetadataAware Interface The new IMetadataAware interface allows you to write attributes that simplify how you can contribute to the ModelMetadata creation process. Before this interface was available, you needed to write a custom metadata provider in order to have an attribute provide extra metadata. This interface is consumed by the AssociatedMetadataProvider class, so support for the IMetadataAware interface is automatically inherited by all classes that derive from that class (notably, the DataAnnotationsModelMetadataProvider class). New Action Result Types In ASP.NET MVC 3, the Controller class includes two new action result types and corresponding helper methods. HttpNotFoundResult Action The new HttpNotFoundResult action result is used to indicate that a resource requested by the current URL was not found. The status code is 404. This class derives from HttpStatusCodeResult. The Controller class includes an HttpNotFound method that returns an instance of this action result type, as shown in the following example: public ActionResult List(int id) {     if (id < 0) {                 return HttpNotFound();     }     return View(); } HttpStatusCodeResult Action The new HttpStatusCodeResult action result is used to set the response status code and description. Permanent Redirect The HttpRedirectResult class has a new Boolean Permanent property that is used to indicate whether a permanent redirect should occur. A permanent redirect uses the HTTP 301 status code. Corresponding to this change, the Controller class now has several methods for performing permanent redirects: - RedirectPermanent - RedirectToRoutePermanent - RedirectToActionPermanent These methods return an instance of HttpRedirectResult with the Permanent property set to true. Breaking Changes The order of execution for exception filters has changed for exception filters that have the same Order value. In ASP.NET MVC 2 and earlier, exception filters on the controller with the same Order as those on an action method were executed before the exception filters on the action method. This would typically be the case when exception filters were applied without a specified order Order value. In MVC 3, this order has been reversed in order to allow the most specific exception handler to execute first. As in earlier versions, if the Order property is explicitly specified, the filters are run in the specified order. Known Issues When you are editing a Razor view (CSHTML file), the Go To Controller menu item in Visual Studio will not be available, and there are no code snippets.

    Read the article

  • SQL SERVER – LCK_M_XXX – Wait Type – Day 15 of 28

    - by pinaldave
    Locking is a mechanism used by the SQL Server Database Engine to synchronize access by multiple users to the same piece of data, at the same time. In simpler words, it maintains the integrity of data by protecting (or preventing) access to the database object. From Book On-Line: LCK_M_BU Occurs when a task is waiting to acquire a Bulk Update (BU) lock. LCK_M_IS Occurs when a task is waiting to acquire an Intent Shared (IS) lock. LCK_M_IU Occurs when a task is waiting to acquire an Intent Update (IU) lock. LCK_M_IX Occurs when a task is waiting to acquire an Intent Exclusive (IX) lock. LCK_M_S Occurs when a task is waiting to acquire a Shared lock. LCK_M_SCH_M Occurs when a task is waiting to acquire a Schema Modify lock. LCK_M_SCH_S Occurs when a task is waiting to acquire a Schema Share lock. LCK_M_SIU Occurs when a task is waiting to acquire a Shared With Intent Update lock. LCK_M_SIX Occurs when a task is waiting to acquire a Shared With Intent Exclusive lock. LCK_M_U Occurs when a task is waiting to acquire an Update lock. LCK_M_UIX Occurs when a task is waiting to acquire an Update With Intent Exclusive lock. LCK_M_X Occurs when a task is waiting to acquire an Exclusive lock. LCK_M_XXX Explanation: I think the explanation of this wait type is the simplest. When any task is waiting to acquire lock on any resource, this particular wait type occurs. The common reason for the task to be waiting to put lock on the resource is that the resource is already locked and some other operations may be going on within it. This wait also indicates that resources are not available or are occupied at the moment due to some reasons. There is a good chance that the waiting queries start to time out if this wait type is very high. Client application may degrade the performance as well. You can use various methods to find blocking queries: EXEC sp_who2 SQL SERVER – Quickest Way to Identify Blocking Query and Resolution – Dirty Solution DMV – sys.dm_tran_locks DMV – sys.dm_os_waiting_tasks Reducing LCK_M_XXX wait: Check the Explicit Transactions. If transactions are very long, this wait type can start building up because of other waiting transactions. Keep the transactions small. Serialization Isolation can build up this wait type. If that is an acceptable isolation for your business, this wait type may be natural. The default isolation of SQL Server is ‘Read Committed’. One of my clients has changed their isolation to “Read Uncommitted”. I strongly discourage the use of this because this will probably lead to having lots of dirty data in the database. Identify blocking queries mentioned using various methods described above, and then optimize them. Partition can be one of the options to consider because this will allow transactions to execute concurrently on different partitions. If there are runaway queries, use timeout. (Please discuss this solution with your database architect first as timeout can work against you). Check if there is no memory and IO-related issue using the following counters: Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Windows Azure AppFabric: ServiceBus Queue WPF Sample

    - by xamlnotes
    The latest version of the AppFabric ServiceBus now has support for queues and topics. Today I will show you a bit about using queues and also talk about some of the best practices in using them. If you are just getting started, you can check out this site for more info on Windows Azure. One of the 1st things I thought if when Azure was announced back when was how we handle fault tolerance. Web sites hosted in Azure are no much of an issue unless they are using SQL Azure and then you must account for potential fault or latency issues. Today I want to talk a bit about ServiceBus and how to handle fault tolerance.  And theres stuff like connecting to the servicebus and so on you have to take care of. To demonstrate some of the things you can do, let me walk through this sample WPF app that I am posting for you to download. To start off, the application is going to need things like the servicenamespace, issuer details and so forth to make everything work.  To facilitate this I created settings in the wpf app for all of these items. Then I mapped a static class to them and set the values when the program loads like so: StaticElements.ServiceNamespace = Convert.ToString(Properties.Settings.Default["ServiceNamespace"]); StaticElements.IssuerName = Convert.ToString(Properties.Settings.Default["IssuerName"]); StaticElements.IssuerKey = Convert.ToString(Properties.Settings.Default["IssuerKey"]); StaticElements.QueueName = Convert.ToString(Properties.Settings.Default["QueueName"]);   Now I can get to each of these elements plus some other common values or instances directly from the StaticElements class. Now, lets look at the application.  The application looks like this when it starts:   The blue graphic represents the queue we are going to use.  The next figure shows the form after items were added and the queue stats were updated . You can see how the queue has grown: To add an item to the queue, click the Add Order button which displays the following dialog: After you fill in the form and press OK, the order is published to the ServiceBus queue and the form closes. The application also allows you to read the queued items by clicking the Process Orders button. As you can see below, the form shows the queued items in a list and the  queue has disappeared as its now empty. In real practice we normally would use a Windows Service or some other automated process to subscribe to the queue and pull items from it. I created a class named ServiceBusQueueHelper that has the core queue features we need. There are three public methods: * GetOrCreateQueue – Gets an instance of the queue description if the queue exists. if not, it creates the queue and returns a description instance. * SendMessageToQueue = This method takes an order instance and sends it to the queue. The call to the queue is wrapped in the ExecuteAction method from the Transient Fault Tolerance Framework and handles all the retry logic for the queue send process. * GetOrderFromQueue – Grabs an order from the queue and returns a typed order from the queue. It also marks the message complete so the queue can remove it.   Now lets turn to the WPF window code (MainWindow.xaml.cs). The constructor contains the 4 lines shown about to setup the static variables and to perform other initialization tasks. The next few lines setup certain features we need for the ServiceBus: TokenProvider credentials = TokenProvider.CreateSharedSecretTokenProvider(StaticElements.IssuerName, StaticElements.IssuerKey); Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", StaticElements.ServiceNamespace, string.Empty); StaticElements.CurrentNamespaceManager = new NamespaceManager(serviceUri, credentials); StaticElements.CurrentMessagingFactory = MessagingFactory.Create(serviceUri, credentials); The next two lines update the queue name label and also set the timer to 20 seconds.             QueueNameLabel.Content = StaticElements.QueueName;             _timer.Interval = TimeSpan.FromSeconds(20);             Next I call the UpdateQueueStats to initialize the UI for the queue:             UpdateQueueStats();             _timer.Tick += new EventHandler(delegate(object s, EventArgs a)                         {                      UpdateQueueStats();                  });             _timer.Start();         } The UpdateQueueStats method shown below. You can see that it uses the GetOrCreateQueue method mentioned earlier to grab the queue description, then it can get the MessageCount property.         private void UpdateQueueStats()         {             _queueDescription = _serviceBusQueueHelper.GetOrCreateQueue();             QueueCountLabel.Content = "(" + _queueDescription.MessageCount + ")";             long count = _queueDescription.MessageCount;             long queueWidth = count * 20;             QueueRectangle.Width = queueWidth;             QueueTickCount += 1;             TickCountlabel.Content = QueueTickCount.ToString();         }   The ReadQueueItemsButton_Click event handler calls the GetOrderFromQueue method and adds the order to the listbox. If you look at the SendQueueMessageController, you can see the SendMessage method that sends an order to the queue. Its pretty simple as it just creates a new CustomerOrderEntity instance,fills it and then passes it to the SendMessageToQueue. As you can see, all of our interaction with the queue is done through the helper class (ServiceBusQueueHelper). Now lets dig into the helper class. First, before you create anything like this, download the Transient Fault Handling Framework. Microsoft provides this free and they also provide the C# source. Theres a great article that shows how to use this framework with ServiceBus. I included the entire ServiceBusQueueHelper class in List 1. Notice the using statements for TransientFaultHandling: using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; The SendMessageToQueue in Listing 1 shows how to use the async send features of ServiceBus with them wrapped in the Transient Fault Handling Framework.  It is not much different than plain old ServiceBus calls but it sure makes it easy to have the fault tolerance added almost for free. The GetOrderFromQueue uses the standard synchronous methods to access the queue. The best practices article walks through using the async approach for a receive operation also.  Notice that this method makes a call to Receive to get the message then makes a call to GetBody to get a new strongly typed instance of CustomerOrderEntity to return. Listing 1 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; using Microsoft.ServiceBus; using Microsoft.ServiceBus.Messaging; using System.Xml.Serialization; using System.Diagnostics; namespace WPFServicebusPublishSubscribeSample {     class ServiceBusQueueHelper     {         RetryPolicy currentPolicy = new RetryPolicy<ServiceBusTransientErrorDetectionStrategy>(RetryPolicy.DefaultClientRetryCount);         QueueClient currentQueueClient;         public QueueDescription GetOrCreateQueue()         {                        QueueDescription queue = null;             bool createNew = false;             try             {                 // First, let's see if a queue with the specified name already exists.                 queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 createNew = (queue == null);             }             catch (MessagingEntityNotFoundException)             {                 // Looks like the queue does not exist. We should create a new one.                 createNew = true;             }             // If a queue with the specified name doesn't exist, it will be auto-created.             if (createNew)             {                 try                 {                     var newqueue = new QueueDescription(StaticElements.QueueName);                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.CreateQueue(newqueue); });                 }                 catch (MessagingEntityAlreadyExistsException)                 {                     // A queue under the same name was already created by someone else,                     // perhaps by another instance. Let's just use it.                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 }             }             currentQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName);             return queue;         }         public void SendMessageToQueue(CustomerOrderEntity Order)         {             BrokeredMessage msg = null;             GetOrCreateQueue();             // Use a retry policy to execute the Send action in an asynchronous and reliable fashion.             currentPolicy.ExecuteAction             (                 (cb) =>                 {                     // A new BrokeredMessage instance must be created each time we send it. Reusing the original BrokeredMessage instance may not                     // work as the state of its BodyStream cannot be guaranteed to be readable from the beginning.                     msg = new BrokeredMessage(Order);                     // Send the event asynchronously.                     currentQueueClient.BeginSend(msg, cb, null);                 },                 (ar) =>                 {                     try                     {                         // Complete the asynchronous operation.                         // This may throw an exception that will be handled internally by the retry policy.                         currentQueueClient.EndSend(ar);                     }                     finally                     {                         // Ensure that any resources allocated by a BrokeredMessage instance are released.                         if (msg != null)                         {                             msg.Dispose();                             msg = null;                         }                     }                 },                 (ex) =>                 {                     // Always dispose the BrokeredMessage instance even if the send                     // operation has completed unsuccessfully.                     if (msg != null)                     {                         msg.Dispose();                         msg = null;                     }                     // Always log exceptions.                     Trace.TraceError(ex.Message);                 }             );         }                 public CustomerOrderEntity GetOrderFromQueue()         {             CustomerOrderEntity Order = new CustomerOrderEntity();             QueueClient myQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName, ReceiveMode.PeekLock);             BrokeredMessage message;             ServiceBusQueueHelper serviceBusQueueHelper = new ServiceBusQueueHelper();             QueueDescription queueDescription;             queueDescription = serviceBusQueueHelper.GetOrCreateQueue();             if (queueDescription.MessageCount > 0)             {                 message = myQueueClient.Receive(TimeSpan.FromSeconds(90));                 if (message != null)                 {                     try                     {                         Order = message.GetBody<CustomerOrderEntity>();                         message.Complete();                     }                     catch (Exception ex)                     {                         throw ex;                     }                 }                 else                 {                     throw new Exception("Did not receive the messages");                 }             }             return Order;         }     } } I will post a link to the download demo in a separate post soon.

    Read the article

  • SQL SERVER – Puzzle to Win Print Book – Write T-SQL Self Join Without Using FIRST _VALUE and LAST_VALUE

    - by pinaldave
    Last week we asked a puzzle SQL SERVER – Puzzle to Win Print Book – Functions FIRST_VALUE and LAST_VALUE with OVER clause and ORDER BY . This puzzle got very interesting participation. The details of the winner is listed here. In this puzzle we received two very important feedback. This puzzle cleared the concepts of First_Value and Last_Value to the participants. As this was based on SQL Server 2012 many could not participate it as they have yet not installed SQL Server 2012. I really appreciate the feedback of user and decided to come up something as fun and helps learn new feature of SQL Server 2012. Please read yesterday’s blog post SQL SERVER – Introduction to LEAD and LAG – Analytic Functions Introduced in SQL Server 2012 before continuing this puzzle as it is based on yesterday’s post. Yesterday I ran following query which uses functions LEAD and LAG. USE AdventureWorks GO SELECT s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty, FIRST_VALUE(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID) FstValue, LAST_VALUE(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID) LstValue FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY s.SalesOrderID,s.SalesOrderDetailID,s.OrderQty GO The above query will give us the following result: Puzzle: Now use T-SQL Self Join where same table is joined to itself and get the same result without using LEAD or LAG functions. Hint: Introduction to JOINs – Basic of JOINs Self Join A new analytic functions in SQL Server Denali CTP3 – LEAD() and LAG() Rules Leave a comment with your detailed answer by Nov 21's blog post. Open world-wide (where Amazon ships books) If you blog about puzzle’s solution and if you win, you win additional surprise gift as well. Prizes Print copy of my new book SQL Server Interview Questions Amazon|Flipkart If you already have this book, you can opt for any of my other books SQL Wait Stats [Amazon|Flipkart|Kindle] and SQL Programming [Amazon|Flipkart|Kindle]. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Function, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • list of things to think about for hosting a potentially high traffic website

    - by SpashHit
    I do my own hosting for a few clients on my own VPS server (Lindode). Since my clients so far have been extremely low traffic, I have not had to really dig into some of the considerations that I would need for a higher traffic site. Now I am bidding on a client whose site will be potentially higher (not Facebook or twitter, but higher than Joe's ice cream shop). Is there a list of things I need to think about that I may be missing? I am going to assume, at least at first, that I will be able to handle them on my shared Linode, but I could move to a dedicated Linode if need be. I am not thinking so far of multiple servers, but short of that there are still considerations. For example, mod_perl instead of straight CGI, better backups, etc. What else? In case it matters, the stack will be debian-linux / apache / Perl / mysql / Template Toolkit.

    Read the article

  • NHibernate Pitfalls: Loading Foreign Key Properties

    - by Ricardo Peres
    This is part of a series of posts about NHibernate Pitfalls. See the entire collection here. When saving a new entity that has references to other entities (one to one, many to one), one has two options for setting their values: Load each of these references by calling ISession.Get and passing the foreign key; Load a proxy instead, by calling ISession.Load with the foreign key. So, what is the difference? Well, ISession.Get goes to the database and tries to retrieve the record with the given key, returning null if no record is found. ISession.Load, on the other hand, just returns a proxy to that record, without going to the database. This turns out to be a better option, because we really don’t need to retrieve the record – and all of its non-lazy properties and collections -, we just need its key. An example: 1: //going to the database 2: OrderDetail od = new OrderDetail(); 3: od.Product = session.Get<Product>(1); //a product is retrieved from the database 4: od.Order = session.Get<Order>(2); //an order is retrieved from the database 5:  6: session.Save(od); 7:  8: //creating in-memory proxies 9: OrderDetail od = new OrderDetail(); 10: od.Product = session.Load<Product>(1); //a proxy to a product is created 11: od.Order = session.Load<Order>(2); //a proxy to an order is created 12:  13: session.Save(od); So, if you just need to set a foreign key, use ISession.Load instead of ISession.Get.

    Read the article

  • Ensure your view and function meta data is upto date.

    - by simonsabin
    You will see if you use views and functions that SQL Server holds the rowset metadata for this in system tables. This means that if you change the underlying tables, columns and data types your views and functions can be out of sync. This is especially the case with views and functions that use select * To get the metadata to be updated you need to use sp_refreshsqlmodule. This forces the object to be “re run” into the database and the meta data updated. Thomas mentioned sp_refreshview which is a...(read more)

    Read the article

  • SQL Rank

    - by Derek Dieter
    The SQL Rank function was introduced in SQL Server 2005 and is part of a family of ranking functions. In order to explain the SQL Rank function, we need to look at it in context with the other rank functions.RANK DENSE_RANK ROW_NUMBER NTILEThis list may seem overwhelming, however most of the ranking functions are rather similar. First, the [...]

    Read the article

  • Does the LGPL allow me to do this?

    - by user1229892
    I am planning to develop a commercial software using a LGPL software. In the LGPL software that I am using some functions in a class are not fully implemented. I want to modify the LGPL code so that the class and not-implemented functions are made visible outside the dll by adding dllexport infront of class and by adding virtual keyword infront of function. Then I plan to implement those functions in my proprietary software. I am ready to distribute the modified LGPL code but not proprietary software that implements functions in the way I want. Does that violate LGPL terms and conditions?

    Read the article

  • Oracle Magazine: Getting started with SQL Analytics

    - by KLaker
    I am currently working on a series of podcasts covering the broad categories of our SQL analytical functions and features and while I was doing some research I came across of series of four articles in the Oracle Magazine. This series of article is written by Melanie Caffrey who is a senior development manager at Oracle. She is a coauthor of Expert PL/SQL Practices for Oracle Developers and DBAs (Apress, 2011) and Expert Oracle Practices: Oracle Database Administration from the Oak Table (Apress, 2010). The four articles are under the banner "Technology: SQL 101" and parts 9, 10, 11 and 12 cover SQL analytics. Here are the links to the four articles: Jan 2013 Having Sums, Averages, and Other Grouped Data March 2013 A Window into the World of Analytic Functions May 2013 Leading Ranks and Lagging Percentages: Analytic Functions, Continued July 2013 Pivotal Access to Your Data: Analytic Functions, Concluded The articles cover topics such as GROUP BY, SUM, AVG, HAVING, window functions, RANK, FIRST, LAST, LAG, LEAD etc.   The great news is that  you can try out the examples in this series. All you need is access to an Oracle Database instance. All the schemas, data sets and SQL statements that you will need can be downloaded from a link included in the January article.    I hope you find this series of articles useful.

    Read the article

  • MySQL Multi-Aggregated Rows in Crosstab Queries

    MySQL's crosstabs contain aggregate functions on two or more fields, presented in a tabular format. In a multi-aggregate crosstab query, two different functions can be applied to the same field or the same function can be applied to multiple fields on the same (row or column) axis. Rob Gravelle shows you how to apply two different functions to the same field in order to create grouping levels in the row axis.

    Read the article

  • MySQL Multi-Aggregated Rows in Crosstab Queries

    MySQL's crosstabs contain aggregate functions on two or more fields, presented in a tabular format. In a multi-aggregate crosstab query, two different functions can be applied to the same field or the same function can be applied to multiple fields on the same (row or column) axis. Rob Gravelle shows you how to apply two different functions to the same field in order to create grouping levels in the row axis.

    Read the article

  • Variant Management– Which Approach fits for my Product?

    - by C. Chadwick
    Jürgen Kunz – Director Product Development – Oracle ORACLE Deutschland B.V. & Co. KG Introduction In a difficult economic environment, it is important for companies to understand the customer requirements in detail and to address them in their products. Customer specific products, however, usually cause increased costs. Variant management helps to find the best combination of standard components and custom components which balances customer’s product requirements and product costs. Depending on the type of product, different approaches to variant management will be applied. For example the automotive product “car” or electronic/high-tech products like a “computer”, with a pre-defined set of options to be combined in the individual configuration (so called “Assembled to Order” products), require a different approach to products in heavy machinery, which are (at least partially) engineered in a customer specific way (so-called “Engineered-to Order” products). This article discusses different approaches to variant management. Starting with the simple Bill of Material (BOM), this article presents three different approaches to variant management, which are provided by Agile PLM. Single level BOM and Variant BOM The single level BOM is the basic form of the BOM. The product structure is defined using assemblies and single parts. A particular product is thus represented by a fixed product structure. As soon as you have to manage product variants, the single level BOM is no longer sufficient. A variant BOM will be needed to manage product variants. The variant BOM is sometimes referred to as 150% BOM, since a variant BOM contains more parts and assemblies than actually needed to assemble the (final) product – just 150% of the parts You can evolve the variant BOM from the single level BOM by replacing single nodes with a placeholder node. The placeholder in this case represents the possible variants of a part or assembly. Product structure nodes, which are part of any product, are so-called “Must-Have” parts. “Optional” parts can be omitted in the final product. Additional attributes allow limiting the quantity of parts/assemblies which can be assigned at a certain position in the Variant BOM. Figure 1 shows the variant BOM of Agile PLM. Figure 1 Variant BOM in Agile PLM During the instantiation of the Variant BOM, the placeholders get replaced by specific variants of the parts and assemblies. The selection of the desired or appropriate variants is either done step by step by the user or by applying pre-defined configuration rules. As a result of the instantiation, an independent BOM will be created (Figure 2). Figure 2 Instantiated BOM in Agile PLM This kind of Variant BOM  can be used for „Assembled –To-Order“ type products as well as for „Engineered-to-Order“-type products. In case of “Assembled –To-Order” type products, typically the instantiation is done automatically with pre-defined configuration rules. For „Engineered- to-Order“-type products at least part of the product is selected manually to make use of customized parts/assemblies, that have been engineered according to the specific custom requirements. Template BOM The Template BOM is used for „Engineered-to-Order“-type products. It is another type of variant BOM. The engineer works in a flexible environment which allows him to build the most creative solutions. At the same time the engineer shall be guided to re-use existing solutions and it shall be assured that product variants of the same product family share the same base structure. The template BOM defines the basic structure of products belonging to the same product family. Let’s take a gearbox as an example. The customer specific configuration of the gearbox is influenced by several parameters (e.g. rpm range, transmitted torque), which are defined in the customer’s requirement document.  Figure 3 shows part of a Template BOM (yellow) and its relation to the product family hierarchy (blue).  Figure 3 Template BOM Every component of the Template BOM has links to the variants that have been engineeried so far for the component (depending on the level in the Template BOM, they are product variants, Assembly Variant or single part variants). This library of solutions, the so-called solution space, can be used by the engineers to build new product variants. In the best case, the engineer selects an existing solution variant, such as the gearbox shown in figure 3. When the existing variants do not fulfill the specific requirements, a new variant will be engineered. This new variant must be compliant with the given Template BOM. If we look at the gearbox in figure 3  it must consist of a transmission housing, a Connecting Plate, a set of Gears and a Planetary transmission – pre-assumed that all components are must have components. The new variant will enhance the solution space and is automatically available for re-use in future variants. The result of the instantiation of the Template BOM is a stand-alone BOM which represents the customer specific product variant. Modular BOM The concept of the modular BOM was invented in the automotive industry. Passenger cars are so-called „Assembled-to-Order“-products. The customer first selects the specific equipment of the car (so-called specifications) – for instance engine, audio equipment, rims, color. Based on this information the required parts will be determined and the customer specific car will be assembled. Certain combinations of specification are not available for the customer, because they are not feasible from technical perspective (e.g. a convertible with sun roof) or because the combination will not be offered for marketing reasons (e.g. steel rims with a sports line car). The modular BOM (yellow structure in figure 4) is defined in the context of a specific product family (in the sample it is product family „Speedstar“). It is the same modular BOM for the different types of cars of the product family (e.g. sedan, station wagon). The assembly or single parts of the car (blue nodes in figure 4) are assigned at the leaf level of the modular BOM. The assignment of assembly and parts to the modular BOM is enriched with a configuration rule (purple elements in figure 4). The configuration rule defines the conditions to use a specific assembly or single part. The configuration rule is valid in the context of a type of car (green elements in figure 4). Color specific parts are assigned to the color independent parts via additional configuration rules (grey elements in figure 4). The configuration rules use Boolean operators to connect the specifications. Additional consistency rules (constraints) may be used to define invalid combinations of specification (so-called exclusions). Furthermore consistency rules may be used to add specifications to the set of specifications. For instance it is important that a car with diesel engine always is build using the high capacity battery.  Figure 4 Modular BOM The calculation of the car configuration consists of several steps. First the consistency rules (constraints) are applied. Resulting from that specification might be added automatically. The second step will determine the assemblies and single parts for the complete structure of the modular BOM, by evaluating the configuration rules in the context of the current type of car. The evaluation of the rules for one component in the modular BOM might result in several rules being fulfilled. In this case the most specific rule (typically the longest rule) will win. Thanks to this approach, it is possible to add a specific variant to the modular BOM without the need to change any other configuration rules.  As a result the whole set of configuration rules is easy to maintain. Finally the color specific assemblies respective parts will be determined and the configuration is completed. Figure 5 Calculated Car Configuration The result of the car configuration is shown in figure 5. It shows the list of assemblies respective single parts (blue components in figure 5), which are required to build the customer specific car. Summary There are different approaches to variant management. Three different approaches have been presented in this article. At the end of the day, it is the type of the product which decides about the best approach.  For „Assembled to Order“-type products it is very likely that you can define the configuration rules and calculate the product variant automatically. Products of type „Engineered-to-Order“ ,however, need to be engineered. Nevertheless in the majority of cases, part of the product structure can be generated automatically in a similar way to „Assembled to Order“-tape products.  That said it is important first to analyze the product portfolio, in order to define the best approach to variant management.

    Read the article

  • What is the ideal length of a method?

    - by iPhoneDeveloper
    In object-oriented programming, there is no exact rule on the maximum length of a method , but I still found these two qutes somewhat contradicting each other, so I would like to hear what you think. In Clean Code: A Handbook of Agile Software Craftsmanship, Robert Martin says: The first rule of functions is that they should be small. The second rule of functions is that they should be smaller than that. Functions should not be 100 lines long. Functions should hardly ever be 20 lines long. and he gives an example from Java code he sees from Kent Beck: Every function in his program was just two, or three, or four lines long. Each was transparently obvious. Each told a story. And each led you to the next in a compelling order. That’s how short your functions should be! This sounds great, but on the other hand, in Code Complete, Steve McConnell says something very different: The routine should be allowed to grow organically up to 100-200 lines, decades of evidence say that routines of such length no more error prone then shorter routines. And he gives a reference to a study that says routines 65 lines or long are cheaper to develop. So while there are diverging opinions about the matter, is there a functional best-practice towards determining the ideal length of a method for you?

    Read the article

  • Multicast hostname lookups on OSX

    - by KARASZI István
    I have a problem with hostname lookups on my OSX computer. According to Apple's HK3473 document it says for v10.6: Host names that contain only one label in addition to local, for example "My-Computer.local", are resolved using Multicast DNS (Bonjour) by default. Host names that contain two or more labels in addition to local, for example "server.domain.local", are resolved using a DNS server by default. Which is not true as my testing. If I try to open a connection on my local computer to a remote port: telnet example.domain.local 22 then it will lookup the IP address with multicast DNS next to the A and AAAA lookups. This causes a two seconds lookup timeout on every lookup. Which is a lot! When I try with IPv4 only then it won't use the multicast queries to fetch the remote address just the simple A queries. telnet -4 example.domain.local 22 When I try with IPv6 only: telnet -6 example.domain.local 22 then it will lookup with multicast DNS and AAAA again, and the 2 seconds timeout delay occurs again. I've tried to create a resolver entry to my /etc/resolver/domain.local, and /etc/resolver/local.1, but none of them was working. Is there any way to disable this multicast lookups for the "two or more label addition to local" domains, or simply disable it for the selected subdomain (domain.local)? Thank you! Update #1 Thanks @mralexgray for the scutil --dns command, now I can see my domain in the list, but it's late in the order: DNS configuration resolver #1 domain : adverticum.lan nameserver[0] : 192.168.1.1 order : 200000 resolver #2 domain : local options : mdns timeout : 2 order : 300000 resolver #3 domain : 254.169.in-addr.arpa options : mdns timeout : 2 order : 300200 resolver #4 domain : 8.e.f.ip6.arpa options : mdns timeout : 2 order : 300400 resolver #5 domain : 9.e.f.ip6.arpa options : mdns timeout : 2 order : 300600 resolver #6 domain : a.e.f.ip6.arpa options : mdns timeout : 2 order : 300800 resolver #7 domain : b.e.f.ip6.arpa options : mdns timeout : 2 order : 301000 resolver #8 domain : domain.local nameserver[0] : 192.168.1.1 order : 200001 Maybe it would work if I could move the resolver #8 to the position #2. Update #2 No probably won't work because the local DNS server on 192.168.1.1 answering for domain.local requests and it's before the mDNS (resolver #2). Update #3 I could decrease the mDNS timeout in /System/Library/SystemConfiguration/IPMonitor.bundle/Contents/Info.plist file, which speeds up the lookups a little, but this is not the solution.

    Read the article

  • What are known approaches to graphing algebraic expressions?

    - by jeremynealbrown
    I am planning to build an expression parser that will be used to graph algebraic functions ( think TI-83 ) with JavaScript. Functions will take the form of f(x)= Aside from typical operators such as: + - * / ^ I'd also like to add support for inline functions such as: sin(), cos(), log() and random(). I have looked at implementing the Shunting Yard algorithm for parsing expressions, but it does not look like an efficient approach to evaluating a function with a hundreds or thousands of inputs. What other known algorithms exist for this task?

    Read the article

< Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >