Search Results

Search found 29467 results on 1179 pages for 'public'.

Page 131/1179 | < Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >

  • ASP.NET MVC ‘Extendable-hooks’ – ControllerActionInvoker class

    - by nmarun
    There’s a class ControllerActionInvoker in ASP.NET MVC. This can be used as one of an hook-points to allow customization of your application. Watching Brad Wilsons’ Advanced MP3 from MVC Conf inspired me to write about this class. What MSDN says: “Represents a class that is responsible for invoking the action methods of a controller.” Well if MSDN says it, I think I can instill a fair amount of confidence into what the class does. But just to get to the details, I also looked into the source code for MVC. Seems like the base class Controller is where an IActionInvoker is initialized: 1: protected virtual IActionInvoker CreateActionInvoker() { 2: return new ControllerActionInvoker(); 3: } In the ControllerActionInvoker (the O-O-B behavior), there are different ‘versions’ of InvokeActionMethod() method that actually call the action method in question and return an instance of type ActionResult. 1: protected virtual ActionResult InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor actionDescriptor, IDictionary<string, object> parameters) { 2: object returnValue = actionDescriptor.Execute(controllerContext, parameters); 3: ActionResult result = CreateActionResult(controllerContext, actionDescriptor, returnValue); 4: return result; 5: } I guess that’s enough on the ‘behind-the-screens’ of this class. Let’s see how we can use this class to hook-up extensions. Say I have a requirement that the user should be able to get different renderings of the same output, like html, xml, json, csv and so on. The user will type-in the output format in the url and should the get result accordingly. For example: http://site.com/RenderAs/ – renders the default way (the razor view) http://site.com/RenderAs/xml http://site.com/RenderAs/csv … and so on where RenderAs is my controller. There are many ways of doing this and I’m using a custom ControllerActionInvoker class (even though this might not be the best way to accomplish this). For this, my one and only route in the Global.asax.cs is: 1: routes.MapRoute("RenderAsRoute", "RenderAs/{outputType}", 2: new {controller = "RenderAs", action = "Index", outputType = ""}); Here the controller name is ‘RenderAsController’ and the action that’ll get called (always) is the Index action. The outputType parameter will map to the type of output requested by the user (xml, csv…). I intend to display a list of food items for this example. 1: public class Item 2: { 3: public int Id { get; set; } 4: public string Name { get; set; } 5: public Cuisine Cuisine { get; set; } 6: } 7:  8: public class Cuisine 9: { 10: public int CuisineId { get; set; } 11: public string Name { get; set; } 12: } Coming to my ‘RenderAsController’ class. I generate an IList<Item> to represent my model. 1: private static IList<Item> GetItems() 2: { 3: Cuisine cuisine = new Cuisine { CuisineId = 1, Name = "Italian" }; 4: Item item = new Item { Id = 1, Name = "Lasagna", Cuisine = cuisine }; 5: IList<Item> items = new List<Item> { item }; 6: item = new Item {Id = 2, Name = "Pasta", Cuisine = cuisine}; 7: items.Add(item); 8: //... 9: return items; 10: } My action method looks like 1: public IList<Item> Index(string outputType) 2: { 3: return GetItems(); 4: } There are two things that stand out in this action method. The first and the most obvious one being that the return type is not of type ActionResult (or one of its derivatives). Instead I’m passing the type of the model itself (IList<Item> in this case). We’ll convert this to some type of an ActionResult in our custom controller action invoker class later. The second thing (a little subtle) is that I’m not doing anything with the outputType value that is passed on to this action method. This value will be in the RouteData dictionary and we’ll use this in our custom invoker class as well. It’s time to hook up our invoker class. First, I’ll override the Initialize() method of my RenderAsController class. 1: protected override void Initialize(RequestContext requestContext) 2: { 3: base.Initialize(requestContext); 4: string outputType = string.Empty; 5:  6: // read the outputType from the RouteData dictionary 7: if (requestContext.RouteData.Values["outputType"] != null) 8: { 9: outputType = requestContext.RouteData.Values["outputType"].ToString(); 10: } 11:  12: // my custom invoker class 13: ActionInvoker = new ContentRendererActionInvoker(outputType); 14: } Coming to the main part of the discussion – the ContentRendererActionInvoker class: 1: public class ContentRendererActionInvoker : ControllerActionInvoker 2: { 3: private readonly string _outputType; 4:  5: public ContentRendererActionInvoker(string outputType) 6: { 7: _outputType = outputType.ToLower(); 8: } 9: //... 10: } So the outputType value that was read from the RouteData, which was passed in from the url, is being set here in  a private field. Moving to the crux of this article, I now override the CreateActionResult method. 1: protected override ActionResult CreateActionResult(ControllerContext controllerContext, ActionDescriptor actionDescriptor, object actionReturnValue) 2: { 3: if (actionReturnValue == null) 4: return new EmptyResult(); 5:  6: ActionResult result = actionReturnValue as ActionResult; 7: if (result != null) 8: return result; 9:  10: // This is where the magic happens 11: // Depending on the value in the _outputType field, 12: // return an appropriate ActionResult 13: switch (_outputType) 14: { 15: case "json": 16: { 17: JavaScriptSerializer serializer = new JavaScriptSerializer(); 18: string json = serializer.Serialize(actionReturnValue); 19: return new ContentResult { Content = json, ContentType = "application/json" }; 20: } 21: case "xml": 22: { 23: XmlSerializer serializer = new XmlSerializer(actionReturnValue.GetType()); 24: using (StringWriter writer = new StringWriter()) 25: { 26: serializer.Serialize(writer, actionReturnValue); 27: return new ContentResult { Content = writer.ToString(), ContentType = "text/xml" }; 28: } 29: } 30: case "csv": 31: controllerContext.HttpContext.Response.AddHeader("Content-Disposition", "attachment; filename=items.csv"); 32: return new ContentResult 33: { 34: Content = ToCsv(actionReturnValue as IList<Item>), 35: ContentType = "application/ms-excel" 36: }; 37: case "pdf": 38: string filePath = controllerContext.HttpContext.Server.MapPath("~/items.pdf"); 39: controllerContext.HttpContext.Response.AddHeader("content-disposition", 40: "attachment; filename=items.pdf"); 41: ToPdf(actionReturnValue as IList<Item>, filePath); 42: return new FileContentResult(StreamFile(filePath), "application/pdf"); 43:  44: default: 45: controllerContext.Controller.ViewData.Model = actionReturnValue; 46: return new ViewResult 47: { 48: TempData = controllerContext.Controller.TempData, 49: ViewData = controllerContext.Controller.ViewData 50: }; 51: } 52: } A big method there! The hook I was talking about kinda above actually is here. This is where different kinds / formats of output get returned based on the output type requested in the url. When the _outputType is not set (string.Empty as set in the Global.asax.cs file), the razor view gets rendered (lines 45-50). This is the default behavior in most MVC applications where-in a view (webform/razor) gets rendered on the browser. As you see here, this gets returned as a ViewResult. But then, for an outputType of json/xml/csv, a ContentResult gets returned, while for pdf, a FileContentResult is returned. Here are how the different kinds of output look like: This is how we can leverage this feature of ASP.NET MVC to developer a better application. I’ve used the iTextSharp library to convert to a pdf format. Mike gives quite a bit of detail regarding this library here. You can download the sample code here. (You’ll get an option to download once you open the link). Verdict: Hot chocolate: $3; Reebok shoes: $50; Your first car: $3000; Being able to extend a web application: Priceless.

    Read the article

  • Entity Framework 4.0: Creating objects of correct type when using lazy loading

    - by DigiMortal
    In my posting about Entity Framework 4.0 and POCOs I introduced lazy loading in EF applications. EF uses proxy classes for lazy loading and this means we have new types in that come and go dynamically in runtime. We don’t have these types available when we write code but we cannot forget that EF may expect us to use dynamically generated types. In this posting I will give you simple hint how to use correct types in your code. The background of lazy loading and proxy classes As a first thing I will explain you in short what is proxy class. Business classes when designed correctly have no knowledge about their birth and death – they don’t know how they are created and they don’t know how their data is persisted. This is the responsibility of object runtime. When we use lazy loading we need a little bit different classes that know how to load data for properties when code accesses the property first time. As we cannot add this functionality to our business classes (they may be stored through more than one data access technology or by more than one Data Access Layer (DAL)) we create proxy classes that extend our business classes. If we have class called Product and product has lazy loaded property called Customer then we need proxy class, let’s say ProductProxy, that has same public signature as Product so we can use it INSTEAD OF product in our code. ProductProxy overrides Customer property. If customer is not asked then customer is null. But if we ask for Customer property then overridden property of ProductProxy loads it from database. This is how lazy loading works. Problem – two types for same thing As lazy loading may introduce dynamically generated proxy types we don’t know in our application code which type is returned. We cannot be sure that we have Product not ProductProxy returned. This leads us to the following question: how can we create Product of correct type if we don’t know the correct type? In EF solution is simple. Solution – use factory methods If you are using repositories and you are not using factories (imho it is pretty pointless with mapper) you can add factory methods to your EF based repositories. Take a look at this class. public class Event {     public int ID { get; set; }     public string Title { get; set; }     public string Location { get; set; }     public virtual Party Organizer { get; set; }     public DateTime Date { get; set; } } We have virtual member called Organizer. This property is virtual because we want to use lazy loading on this class so Organizer is loaded only when we ask it. EF provides us with method called CreateObject<T>(). CreateObject<T>() is member of ObjectContext class and it creates the object based on given type. In runtime proxy type for Event is created for us automatically and when we call CreateObject<T>() for Event it returns as object of Event proxy type. The factory method for events repository is as follows. public Event CreateEvent() {     var evt = _context.CreateObject<Event>();     return evt; } And we are done. Instead of creating factory classes we created factory methods that guarantee that created objects are of correct type. Conclusion Although lazy loading introduces some new objects we cannot use at design time because they live only in runtime we can write code without worrying about exact implementation type of object. This holds true until we have clean code and we don’t make any decisions based on object type. EF4.0 provides us with very simple factory method that create and return objects of correct type. All we had to do was adding factory methods to our repositories.

    Read the article

  • Cisco ASA Hairpinning with Dynamic IP

    - by Joseph Sturtevant
    I currently have my Cisco ASA 5505 firewall configured to forward port 80 from the outside interface to a host on my dmz interface. I also need to allow clients on my inside interface to access the host in the dmz by entering the public ip / dns record in their browsers. I was able to do that by following the instructions here, resulting in the following configuration: static (dmz,outside) tcp interface www 192.168.1.5 www netmask 255.255.255.255 static (dmz,inside) tcp 74.125.45.100 www 192.168.1.5 www netmask 255.255.255.255 (Where 74.125.45.100 is my public IP and 192.168.1.5 is the IP of the dmz host) This works great except for the fact that my network has a dynamic public IP and this configuration will therefore break as soon as my public IP changes. Is there a way to do what I want with a dynamic ip? Note: Adding an internal DNS record won't solve my problem since I have multiple dmz hosts mapped to different ports on the public IP.

    Read the article

  • Using Razor together with ASP.NET Web API

    - by Fredrik N
    On the blog post “If Then, If Then, If Then, MVC” I found the following code example: [HttpGet]public ActionResult List() { var list = new[] { "John", "Pete", "Ben" }; if (Request.AcceptTypes.Contains("application/json")) { return Json(list, JsonRequestBehavior.AllowGet); } if (Request.IsAjaxRequest()) [ return PartialView("_List", list); } return View(list); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The code is a ASP.NET MVC Controller where it reuse the same “business” code but returns JSON if the request require JSON, a partial view when the request is an AJAX request or a normal ASP.NET MVC View. The above code may have several reasons to be changed, and also do several things, the code is not closed for modifications. To extend the code with a new way of presenting the model, the code need to be modified. So I started to think about how the above code could be rewritten so it will follow the Single Responsibility and open-close principle. I came up with the following result and with the use of ASP.NET Web API: public String[] Get() { return new[] { "John", "Pete", "Ben" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   It just returns the model, nothing more. The code will do one thing and it will do it well. But it will not solve the problem when it comes to return Views. If we use the ASP.NET Web Api we can get the result as JSON or XML, but not as a partial view or as a ASP.NET MVC view. Wouldn’t it be nice if we could do the following against the Get() method?   Accept: application/json JSON will be returned – Already part of the Web API   Accept: text/html Returns the model as HTML by using a View   The best thing, it’s possible!   By using the RazorEngine I created a custom MediaTypeFormatter (RazorFormatter, code at the end of this blog post) and associate it with the media type “text/html”. I decided to use convention before configuration to decide which Razor view should be used to render the model. To register the formatter I added the following code to Global.asax: GlobalConfiguration.Configuration.Formatters.Add(new RazorFormatter()); Here is an example of a ApiController that just simply returns a model: using System.Web.Http; namespace WebApiRazor.Controllers { public class CustomersController : ApiController { // GET api/values public Customer Get() { return new Customer { Name = "John Doe", Country = "Sweden" }; } } public class Customer { public string Name { get; set; } public string Country { get; set; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Because I decided to use convention before configuration I only need to add a view with the same name as the model, Customer.cshtml, here is the example of the View:   <!DOCTYPE html> <html> <head> <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.5.1.min.js" type="text/javascript"></script> </head> <body> <div id="body"> <section> <div> <hgroup> <h1>Welcome '@Model.Name' to ASP.NET Web API Razor Formatter!</h1> </hgroup> </div> <p> Using the same URL "api/values" but using AJAX: <button>Press to show content!</button> </p> <p> </p> </section> </div> </body> <script type="text/javascript"> $("button").click(function () { $.ajax({ url: '/api/values', type: "GET", contentType: "application/json; charset=utf-8", success: function(data, status, xhr) { alert(data.Name); }, error: function(xhr, status, error) { alert(error); }}); }); </script> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Now when I open up a browser and enter the following URL: http://localhost/api/customers the above View will be displayed and it will render the model the ApiController returns. If I use Ajax against the same ApiController with the content type set to “json”, the ApiController will now return the model as JSON. Here is a part of a really early prototype of the Razor formatter (The code is far from perfect, just use it for testing). I will rewrite the code and also make it possible to specify an attribute to the returned model, so it can decide which view to be used when the media type is “text/html”, but by default the formatter will use convention: using System; using System.Net.Http.Formatting; namespace WebApiRazor.Models { using System.IO; using System.Net; using System.Net.Http.Headers; using System.Reflection; using System.Threading.Tasks; using RazorEngine; public class RazorFormatter : MediaTypeFormatter { public RazorFormatter() { SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/html")); SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/xhtml+xml")); } //... public override Task WriteToStreamAsync( Type type, object value, Stream stream, HttpContentHeaders contentHeaders, TransportContext transportContext) { var task = Task.Factory.StartNew(() => { var viewPath = // Get path to the view by the name of the type var template = File.ReadAllText(viewPath); Razor.Compile(template, type, type.Name); var razor = Razor.Run(type.Name, value); var buf = System.Text.Encoding.Default.GetBytes(razor); stream.Write(buf, 0, buf.Length); stream.Flush(); }); return task; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Summary By using formatters and the ASP.NET Web API we can easily just extend our code without doing any changes to our ApiControllers when we want to return a new format. This blog post just showed how we can extend the Web API to use Razor to format a returned model into HTML.   If you want to know when I will post more blog posts, please feel free to follow me on twitter:   @fredrikn

    Read the article

  • C#: Adding Functionality to 3rd Party Libraries With Extension Methods

    - by James Michael Hare
    Ever have one of those third party libraries that you love but it's missing that one feature or one piece of syntactical candy that would make it so much more useful?  This, I truly think, is one of the best uses of extension methods.  I began discussing extension methods in my last post (which you find here) where I expounded upon what I thought were some rules of thumb for using extension methods correctly.  As long as you keep in line with those (or similar) rules, they can often be useful for adding that little extra functionality or syntactical simplification for a library that you have little or no control over. Oh sure, you could take an open source project, download the source and add the methods you want, but then every time the library is updated you have to re-add your changes, which can be cumbersome and error prone.  And yes, you could possibly extend a class in a third party library and override features, but that's only if the class is not sealed, static, or constructed via factories. This is the perfect place to use an extension method!  And the best part is, you and your development team don't need to change anything!  Simply add the using for the namespace the extensions are in! So let's consider this example.  I love log4net!  Of all the logging libraries I've played with, it, to me, is one of the most flexible and configurable logging libraries and it performs great.  But this isn't about log4net, well, not directly.  So why would I want to add functionality?  Well, it's missing one thing I really want in the ILog interface: ability to specify logging level at runtime. For example, let's say I declare my ILog instance like so:     using log4net;     public class LoggingTest     {         private static readonly ILog _log = LogManager.GetLogger(typeof(LoggingTest));         ...     }     If you don't know log4net, the details aren't important, just to show that the field _log is the logger I have gotten from log4net. So now that I have that, I can log to it like so:     _log.Debug("This is the lowest level of logging and just for debugging output.");     _log.Info("This is an informational message.  Usual normal operation events.");     _log.Warn("This is a warning, something suspect but not necessarily wrong.");     _log.Error("This is an error, some sort of processing problem has happened.");     _log.Fatal("Fatals usually indicate the program is dying hideously."); And there's many flavors of each of these to log using string formatting, to log exceptions, etc.  But one thing there isn't: the ability to easily choose the logging level at runtime.  Notice, the logging levels above are chosen at compile time.  Of course, you could do some fun stuff with lambdas and wrap it, but that would obscure the simplicity of the interface.  And yes there is a Logger property you can dive down into where you can specify a Level, but the Level properties don't really match the ILog interface exactly and then you have to manually build a LogEvent and... well, it gets messy.  I want something simple and sexy so I can say:     _log.Log(someLevel, "This will be logged at whatever level I choose at runtime!");     Now, some purists out there might say you should always know what level you want to log at, and for the most part I agree with them.  For the most party the ILog interface satisfies 99% of my needs.  In fact, for most application logging yes you do always know the level you will be logging at, but when writing a utility class, you may not always know what level your user wants. I'll tell you, one of my favorite things is to write reusable components.  If I had my druthers I'd write framework libraries and shared components all day!  And being able to easily log at a runtime-chosen level is a big need for me.  After all, if I want my code to really be re-usable, I shouldn't force a user to deal with the logging level I choose. One of my favorite uses for this is in Interceptors -- I'll describe Interceptors in my next post and some of my favorites -- for now just know that an Interceptor wraps a class and allows you to add functionality to an existing method without changing it's signature.  At the risk of over-simplifying, it's a very generic implementation of the Decorator design pattern. So, say for example that you were writing an Interceptor that would time method calls and emit a log message if the method call execution time took beyond a certain threshold of time.  For instance, maybe if your database calls take more than 5,000 ms, you want to log a warning.  Or if a web method call takes over 1,000 ms, you want to log an informational message.  This would be an excellent use of logging at a generic level. So here was my personal wish-list of requirements for my task: Be able to determine if a runtime-specified logging level is enabled. Be able to log generically at a runtime-specified logging level. Have the same look-and-feel of the existing Debug, Info, Warn, Error, and Fatal calls.    Having the ability to also determine if logging for a level is on at runtime is also important so you don't spend time building a potentially expensive logging message if that level is off.  Consider an Interceptor that may log parameters on entrance to the method.  If you choose to log those parameter at DEBUG level and if DEBUG is not on, you don't want to spend the time serializing those parameters. Now, mine may not be the most elegant solution, but it performs really well since the enum I provide all uses contiguous values -- while it's never guaranteed, contiguous switch values usually get compiled into a jump table in IL which is VERY performant - O(1) - but even if it doesn't, it's still so fast you'd never need to worry about it. So first, I need a way to let users pass in logging levels.  Sure, log4net has a Level class, but it's a class with static members and plus it provides way too many options compared to ILog interface itself -- and wouldn't perform as well in my level-check -- so I define an enum like below.     namespace Shared.Logging.Extensions     {         // enum to specify available logging levels.         public enum LoggingLevel         {             Debug,             Informational,             Warning,             Error,             Fatal         }     } Now, once I have this, writing the extension methods I need is trivial.  Once again, I would typically /// comment fully, but I'm eliminating for blogging brevity:     namespace Shared.Logging.Extensions     {         // the extension methods to add functionality to the ILog interface         public static class LogExtensions         {             // Determines if logging is enabled at a given level.             public static bool IsLogEnabled(this ILog logger, LoggingLevel level)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         return logger.IsDebugEnabled;                     case LoggingLevel.Informational:                         return logger.IsInfoEnabled;                     case LoggingLevel.Warning:                         return logger.IsWarnEnabled;                     case LoggingLevel.Error:                         return logger.IsErrorEnabled;                     case LoggingLevel.Fatal:                         return logger.IsFatalEnabled;                 }                                 return false;             }             // Logs a simple message - uses same signature except adds LoggingLevel             public static void Log(this ILog logger, LoggingLevel level, object message)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message);                         break;                     case LoggingLevel.Informational:                         logger.Info(message);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message);                         break;                     case LoggingLevel.Error:                         logger.Error(message);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message);                         break;                 }             }             // Logs a message and exception to the log at specified level.             public static void Log(this ILog logger, LoggingLevel level, object message, Exception exception)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message, exception);                         break;                     case LoggingLevel.Informational:                         logger.Info(message, exception);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message, exception);                         break;                     case LoggingLevel.Error:                         logger.Error(message, exception);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message, exception);                         break;                 }             }             // Logs a formatted message to the log at the specified level.              public static void LogFormat(this ILog logger, LoggingLevel level, string format,                                          params object[] args)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.DebugFormat(format, args);                         break;                     case LoggingLevel.Informational:                         logger.InfoFormat(format, args);                         break;                     case LoggingLevel.Warning:                         logger.WarnFormat(format, args);                         break;                     case LoggingLevel.Error:                         logger.ErrorFormat(format, args);                         break;                     case LoggingLevel.Fatal:                         logger.FatalFormat(format, args);                         break;                 }             }         }     } So there it is!  I didn't have to modify the log4net source code, so if a new version comes out, i can just add the new assembly with no changes.  I didn't have to subclass and worry about developers not calling my sub-class instead of the original.  I simply provide the extension methods and it's as if the long lost extension methods were always a part of the ILog interface! Consider a very contrived example using the original interface:     // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsWarnEnabled)             {                 _log.WarnFormat("Statement {0} took too long to execute.", statement);             }             ...         }     }     Now consider this alternate call where the logging level could be perhaps a property of the class          // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // allow logging level to be specified by user of class instead         public LoggingLevel ThresholdLogLevel { get; set; }                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsLogEnabled(ThresholdLogLevel))             {                 _log.LogFormat(ThresholdLogLevel, "Statement {0} took too long to execute.",                     statement);             }             ...         }     } Next time, I'll show one of my favorite uses for these extension methods in an Interceptor.

    Read the article

  • What happens to C# 4 optional parameters when compiling against 3.5?

    - by Bertrand Le Roy
    Here’s a method declaration that uses optional parameters: public Path Copy( Path destination, bool overwrite = false, bool recursive = false) Something you may not know is that Visual Studio 2010 will let you compile this against .NET 3.5, with no error or warning. You may be wondering (as I was) how it does that. Well, it takes the easy and rather obvious way of not trying to be too smart and just ignores the optional parameters. So if you’re compiling against 3.5 from Visual Studio 2010, the above code is equivalent to: public Path Copy( Path destination, bool overwrite, bool recursive) The parameters are not optional (no such thing in C# 3), and no overload gets magically created for you. If you’re building a library that is going to have both 3.5 and 4.0 versions, and you want 3.5 users to have reasonable overloads of your methods, you’ll have to provide those yourself, which means that providing a version with optional parameters for the benefit of 4.0 users is not going to provide that much value, except for the ability to provide named parameters out of order. I guess that’s not so bad… Providing all of the following overloads will compile against both 3.5 and 4.0: public Path Copy(Path destination)public Path Copy(Path destination, bool overwrite)public Path Copy( Path destination, bool overwrite = false, bool recursive = false)

    Read the article

  • Resolving "PLS-00201: identifier 'DBMS_SYSTEM.XXXX' must be declared" Error

    - by Giri Mandalika
    Here is a failure sample. SQL set serveroutput on SQL alter package APPS.FND_TRACE compile body; Warning: Package Body altered with compilation errors. SQL show errors Errors for PACKAGE BODY APPS.FND_TRACE: LINE/COL ERROR -------- ----------------------------------------------------------------- 235/6 PL/SQL: Statement ignored 235/6 PLS-00201: identifier 'DBMS_SYSTEM.SET_EV' must be declared .. By default, DBMS_SYSTEM package is accessible only from SYS schema. Also there is no public synonym created for this package. So, the solution is to create the public synonym and grant "execute" privilege on DBMS_SYSTEM package to all database users or a specific user. eg., SQL CREATE PUBLIC SYNONYM dbms_system FOR dbms_system; Synonym created. SQL GRANT EXECUTE ON dbms_system TO APPS; Grant succeeded. - OR - SQL GRANT EXECUTE ON dbms_system TO PUBLIC; Grant succeeded. SQL alter package APPS.FND_TRACE compile body; Package body altered. Note that merely granting execute privilege is not enough -- creating the public synonym is as important to resolve this issue.

    Read the article

  • New Validation Attributes in ASP.NET MVC 3 Future

    - by imran_ku07
         Introduction:             Validating user inputs is an very important step in collecting information from users because it helps you to prevent errors during processing data. Incomplete or improperly formatted user inputs will create lot of problems for your application. Fortunately, ASP.NET MVC 3 makes it very easy to validate most common input validations. ASP.NET MVC 3 includes Required, StringLength, Range, RegularExpression, Compare and Remote validation attributes for common input validation scenarios. These validation attributes validates most of your user inputs but still validation for Email, File Extension, Credit Card, URL, etc are missing. Fortunately, some of these validation attributes are available in ASP.NET MVC 3 Future. In this article, I will show you how to leverage Email, Url, CreditCard and FileExtensions validation attributes(which are available in ASP.NET MVC 3 Future) in ASP.NET MVC 3 application.       Description:             First of all you need to download ASP.NET MVC 3 RTM Source Code from here. Then extract all files in a folder. Then open MvcFutures project from mvc3-rtm-sources\mvc3\src\MvcFutures folder. Build the project. In case, if you get compile time error(s) then simply remove the reference of System.Web.WebPages and System.Web.Mvc assemblies and add the reference of System.Web.WebPages and System.Web.Mvc 3 assemblies again but from the .NET tab and then build the project again, it will create a Microsoft.Web.Mvc assembly inside mvc3-rtm-sources\mvc3\src\MvcFutures\obj\Debug folder. Now we can use Microsoft.Web.Mvc assembly inside our application.             Create a new ASP.NET MVC 3 application. For demonstration purpose, I will create a dummy model UserInformation. So create a new class file UserInformation.cs inside Model folder and add the following code,   public class UserInformation { [Required] public string Name { get; set; } [Required] [EmailAddress] public string Email { get; set; } [Required] [Url] public string Website { get; set; } [Required] [CreditCard] public string CreditCard { get; set; } [Required] [FileExtensions(Extensions = "jpg,jpeg")] public string Image { get; set; } }             Inside UserInformation class, I am using Email, Url, CreditCard and FileExtensions validation attributes which are defined in Microsoft.Web.Mvc assembly. By default FileExtensionsAttribute allows png, jpg, jpeg and gif extensions. You can override this by using Extensions property of FileExtensionsAttribute class.             Then just open(or create) HomeController.cs file and add the following code,   public class HomeController : Controller { public ActionResult Index() { return View(); } [HttpPost] public ActionResult Index(UserInformation u) { return View(); } }             Next just open(or create) Index view for Home controller and add the following code,  @model NewValidationAttributesinASPNETMVC3Future.Model.UserInformation @{ ViewBag.Title = "Index"; Layout = "~/Views/Shared/_Layout.cshtml"; } <h2>Index</h2> <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script> @using (Html.BeginForm()) { @Html.ValidationSummary(true) <fieldset> <legend>UserInformation</legend> <div class="editor-label"> @Html.LabelFor(model => model.Name) </div> <div class="editor-field"> @Html.EditorFor(model => model.Name) @Html.ValidationMessageFor(model => model.Name) </div> <div class="editor-label"> @Html.LabelFor(model => model.Email) </div> <div class="editor-field"> @Html.EditorFor(model => model.Email) @Html.ValidationMessageFor(model => model.Email) </div> <div class="editor-label"> @Html.LabelFor(model => model.Website) </div> <div class="editor-field"> @Html.EditorFor(model => model.Website) @Html.ValidationMessageFor(model => model.Website) </div> <div class="editor-label"> @Html.LabelFor(model => model.CreditCard) </div> <div class="editor-field"> @Html.EditorFor(model => model.CreditCard) @Html.ValidationMessageFor(model => model.CreditCard) </div> <div class="editor-label"> @Html.LabelFor(model => model.Image) </div> <div class="editor-field"> @Html.EditorFor(model => model.Image) @Html.ValidationMessageFor(model => model.Image) </div> <p> <input type="submit" value="Save" /> </p> </fieldset> } <div> @Html.ActionLink("Back to List", "Index") </div>             Now just run your application. You will find that both client side and server side validation for the above validation attributes works smoothly.                      Summary:             Email, URL, Credit Card and File Extension input validations are very common. In this article, I showed you how you can validate these input validations into your application. I explained this with an example. I am also attaching a sample application which also includes Microsoft.Web.Mvc.dll. So you can add a reference of Microsoft.Web.Mvc assembly directly instead of doing any manual work. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Escaping Generics with T4 Templates

    - by Gavin Stevens
    I've been doing some work with T4 templates lately and ran into an issue which I couldn't find an answer to anywhere.  I finally figured it out, so I thought I'd share the solution. I was trying to generate a code class with a T4 template which used generics The end result a method like: public IEnumerator GetEnumerator()             {                 return new TableEnumerator<Table>(_page);             } the related section of the T4 template looks like this:  public IEnumerator GetEnumerator()             {                 return new TableEnumerator<#=renderClass.Name#>(_page);             } But this of course is missing the Generic Syntax for < > which T4 complains about because < > are reserved. using syntax like <#<#><#=renderClass.Name#><#=<#> won't work becasue the TextTransformation engine chokes on them.  resulting in : Error 2 The number of opening brackets ('<#') does not match the number of closing brackets ('#>')  even trying to escape the characters won't work: <#\<#><#=renderClass.Name#><#\<#> this results in: Error 4 A Statement cannot appear after the first class feature in the template. Only boilerplate, expressions and other class features are allowed after the first class feature block.  The final solution delcares a few strings to represent the literals like this: <#+    void RenderCollectionEnumerator(RenderCollection renderClass)  {     string open = "<";   string close =">"; #>    public partial class <#=renderClass.Name#> : IEnumerable         {             private readonly PageBase _page;             public <#=renderClass.Name#>(PageBase page)             {                 _page = page;             }             public IEnumerator GetEnumerator()             {                 return new TableEnumerator<#=open#><#=renderClass.Name#><#=close#>(_page);             }         } <#+  }  #> This works, and everyone is happy, resulting in an automatically generated class enumerator, complete with generics! Hopefully this will save someone some time :)

    Read the article

  • Code Trivia #5

    - by João Angelo
    A quick one inspired by real life broken code. What’s wrong in this piece of code? class Planet { public Planet() { this.Initialize(); } public Planet(string name) : this() { this.Name = name; } private string name = "Unspecified"; public string Name { get { return name; } set { name = value; } } private void Initialize() { Console.Write("Planet {0} initialized.", this.Name); } }

    Read the article

  • Slick2D - Cannot instantiate the type Image

    - by speakon
    I am getting this strange error and I cannot for the life of me figure out why: Cannot instantiate the type Image CODE: import java.awt.Image; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.SlickException; import org.newdawn.slick.state.BasicGameState; import org.newdawn.slick.state.StateBasedGame; public class MainMenuState extends BasicGameState { int stateID = -1; Image background = null; Image startGameOption = null; Image exitOption = null; float startGameScale = 1; float exitScale = 1; MainMenuState( int stateID ) { this.stateID = stateID; } public int getID() { return stateID; } public void init(GameContainer gc, StateBasedGame sbg) throws SlickException { try { background = new Image("data/menu.jpg"); Image menuOptions = new Image("data/menuoptions.png"); startGameOption = menuOptions.getSubImage(0, 0, 377, 71); exitOption = menuOptions.getSubImage(0, 71, 377, 71); }catch (SlickException e) { System.err.print(e); } } public void render(GameContainer gc, StateBasedGame sbg, Graphics g) throws SlickException { } public void update(GameContainer gc, StateBasedGame sbg, int delta) throws SlickException { } } Why do I get this error? I've googled endlessly and nobody else has it, this worked fine in my other game. Any ideas?

    Read the article

  • Extension Methods in Dot Net 2.0

    - by Tom Hines
    Not that anyone would still need this, but in case you have a situation where the code MUST be .NET 2.0 compliant and you want to use a cool feature like Extension methods, there is a way.  I saw this article when looking for ways to create extension methods in C++, C# and VB:  http://msdn.microsoft.com/en-us/magazine/cc163317.aspx The author shows a simple  way to declare/define the ExtensionAttribute so it's available to 2.0 .NET code. Please read the article to learn about the when and why and use the content below to learn HOW. In the next post, I'll demonstrate cross-language calling of extension methods. Here is a version of it in C# First, here's the project showing there's no VOODOO included: using System; namespace System.Runtime.CompilerServices {    [       AttributeUsage(          AttributeTargets.Assembly          | AttributeTargets.Class          | AttributeTargets.Method,       AllowMultiple = false, Inherited = false)    ]    class ExtensionAttribute : Attribute{} } namespace TestTwoDotExtensions {    public static class Program    {       public static void DoThingCS(this string str)       {          Console.WriteLine("2.0\t{0:G}\t2.0", str);       }       static void Main(string[] args)       {          "asdf".DoThingCS();       }    } }   Here is the C++ version: // TestTwoDotExtensions_CPP.h #pragma once using namespace System; namespace System {        namespace Runtime {               namespace CompilerServices {               [                      AttributeUsage(                            AttributeTargets::Assembly                             | AttributeTargets::Class                            | AttributeTargets::Method,                      AllowMultiple = false, Inherited = false)               ]               public ref class ExtensionAttribute : Attribute{};               }        } } using namespace System::Runtime::CompilerServices; namespace TestTwoDotExtensions_CPP { public ref class CTestTwoDotExtensions_CPP {    public:            [ExtensionAttribute] // or [Extension]            static void DoThingCPP(String^ str)    {       Console::WriteLine("2.0\t{0:G}\t2.0", str);    } }; }

    Read the article

  • JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue

    - by John-Brown.Evans
    JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue ol{margin:0;padding:0} .c18_3{vertical-align:top;width:487.3pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c20_3{vertical-align:top;width:487.3pt;border-style:solid;border-color:#ffffff;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c19_3{background-color:#ffffff} .c17_3{list-style-type:circle;margin:0;padding:0} .c12_3{list-style-type:disc;margin:0;padding:0} .c6_3{font-style:italic;font-weight:bold} .c10_3{color:inherit;text-decoration:inherit} .c1_3{font-size:10pt;font-family:"Courier New"} .c2_3{line-height:1.0;direction:ltr} .c9_3{padding-left:0pt;margin-left:72pt} .c15_3{padding-left:0pt;margin-left:36pt} .c3_3{color:#1155cc;text-decoration:underline} .c5_3{height:11pt} .c14_3{border-collapse:collapse} .c7_3{font-family:"Courier New"} .c0_3{background-color:#ffff00} .c16_3{font-size:18pt} .c8_3{font-weight:bold} .c11_3{font-size:24pt} .c13_3{font-style:italic} .c4_3{direction:ltr} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt}.subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. In the first post, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g we looked at how to create a JMS queue and its dependent objects in WebLogic Server. In the previous post, JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue I showed how to write a message to that JMS queue using the QueueSend.java sample program. In this article, we will use a similar sample, the QueueReceive.java program to read the message from that queue. Please review the previous posts if you have not already done so, as they contain prerequisites for executing the sample in this article. 1. Source code The following java code will be used to read the message(s) from the JMS queue. As with the previous example, it is based on a sample program shipped with the WebLogic Server installation. The sample is not installed by default, but needs to be installed manually using the WebLogic Server Custom Installation option, together with many, other useful samples. You can either copy-paste the following code into your editor, or install all the samples. The knowledge base article in My Oracle Support: How To Install WebLogic Server and JMS Samples in WLS 10.3.x (Doc ID 1499719.1) describes how to install the samples. QueueReceive.java package examples.jms.queue; import java.util.Hashtable; import javax.jms.*; import javax.naming.Context; import javax.naming.InitialContext; import javax.naming.NamingException; /** * This example shows how to establish a connection to * and receive messages from a JMS queue. The classes in this * package operate on the same JMS queue. Run the classes together to * witness messages being sent and received, and to browse the queue * for messages. This class is used to receive and remove messages * from the queue. * * @author Copyright (c) 1999-2005 by BEA Systems, Inc. All Rights Reserved. */ public class QueueReceive implements MessageListener { // Defines the JNDI context factory. public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory"; // Defines the JMS connection factory for the queue. public final static String JMS_FACTORY="jms/TestConnectionFactory"; // Defines the queue. public final static String QUEUE="jms/TestJMSQueue"; private QueueConnectionFactory qconFactory; private QueueConnection qcon; private QueueSession qsession; private QueueReceiver qreceiver; private Queue queue; private boolean quit = false; /** * Message listener interface. * @param msg message */ public void onMessage(Message msg) { try { String msgText; if (msg instanceof TextMessage) { msgText = ((TextMessage)msg).getText(); } else { msgText = msg.toString(); } System.out.println("Message Received: "+ msgText ); if (msgText.equalsIgnoreCase("quit")) { synchronized(this) { quit = true; this.notifyAll(); // Notify main thread to quit } } } catch (JMSException jmse) { System.err.println("An exception occurred: "+jmse.getMessage()); } } /** * Creates all the necessary objects for receiving * messages from a JMS queue. * * @param ctx JNDI initial context * @param queueName name of queue * @exception NamingException if operation cannot be performed * @exception JMSException if JMS fails to initialize due to internal error */ public void init(Context ctx, String queueName) throws NamingException, JMSException { qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY); qcon = qconFactory.createQueueConnection(); qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); queue = (Queue) ctx.lookup(queueName); qreceiver = qsession.createReceiver(queue); qreceiver.setMessageListener(this); qcon.start(); } /** * Closes JMS objects. * @exception JMSException if JMS fails to close objects due to internal error */ public void close()throws JMSException { qreceiver.close(); qsession.close(); qcon.close(); } /** * main() method. * * @param args WebLogic Server URL * @exception Exception if execution fails */ public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("Usage: java examples.jms.queue.QueueReceive WebLogicURL"); return; } InitialContext ic = getInitialContext(args[0]); QueueReceive qr = new QueueReceive(); qr.init(ic, QUEUE); System.out.println( "JMS Ready To Receive Messages (To quit, send a \"quit\" message)."); // Wait until a "quit" message has been received. synchronized(qr) { while (! qr.quit) { try { qr.wait(); } catch (InterruptedException ie) {} } } qr.close(); } private static InitialContext getInitialContext(String url) throws NamingException { Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY); env.put(Context.PROVIDER_URL, url); return new InitialContext(env); } } 2. How to Use This Class 2.1 From the file system on Linux This section describes how to use the class from the file system of a WebLogic Server installation. Log in to a machine with a WebLogic Server installation and create a directory to contain the source and code matching the package name, e.g. span$HOME/examples/jms/queue. Copy the above QueueReceive.java file to this directory. Set the CLASSPATH and environment to match the WebLogic server environment. Go to $MIDDLEWARE_HOME/user_projects/domains/base_domain/bin  and execute . ./setDomainEnv.sh Collect the following information required to run the script: The JNDI name of the JMS queue to use In the WebLogic server console > Services > Messaging > JMS Modules > Module name, (e.g. TestJMSModule) > JMS queue name, (e.g. TestJMSQueue) select the queue and note its JNDI name, e.g. jms/TestJMSQueue The JNDI name of the connection factory to use to connect to the queue Follow the same path as above to get the connection factory for the above queue, e.g. TestConnectionFactory and its JNDI name e.g. jms/TestConnectionFactory The URL and port of the WebLogic server running the above queue Check the JMS server for the above queue and the managed server it is targeted to, for example soa_server1. Now find the port this managed server is listening on, by looking at its entry under Environment > Servers in the WLS console, e.g. 8001 The URL for the server to be passed to the QueueReceive program will therefore be t3://host.domain:8001 e.g. t3://jbevans-lx.de.oracle.com:8001 Edit Queue Receive .java and enter the above queue name and connection factory respectively under ... public final static String JMS_FACTORY="jms/TestConnectionFactory"; ... public final static String QUEUE="jms/TestJMSQueue"; ... Compile Queue Receive .java using javac Queue Receive .java Go to the source’s top-level directory and execute it using java examples.jms.queue.Queue Receive   t3://jbevans-lx.de.oracle.com:8001 This will print a message that it is ready to receive messages or to send a “quit” message to end. The program will read all messages in the queue and print them to the standard output until it receives a message with the payload “quit”. 2.2 From JDeveloper The steps from JDeveloper are the same as those used for the previous program QueueSend.java, which is used to send a message to the queue. So we won't repeat them here. Please see the previous blog post at JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue and apply the same steps in that example to the QueueReceive.java program. This concludes the example. In the following post we will create a BPEL process which writes a message based on an XML schema to the queue.

    Read the article

  • Gravity stops when side-collision detected

    - by Adrian Marszalek
    Please, look at this GIF: The label on the animation says "Move button is pressed, then released". And you can see when it's pressed (and player's getCenterY() is above wall getCenterY()), gravity doesn't work. I'm trying to fix it since yesterday, but I can't. All methods are called from game loop. public void move() { if (left) { switch (game.currentLevel()) { case 1: for (int i = 0; i < game.lvl1.getX().length; i++) game.lvl1.getX()[i] += game.physic.xVel; break; } } else if (right) { switch (game.currentLevel()) { case 1: for (int i = 0; i < game.lvl1.getX().length; i++) game.lvl1.getX()[i] -= game.physic.xVel; break; } } } int manCenterX, manCenterY, boxCenterX, boxCenterY; //gravity stop public void checkCollision() { for (int i = 0; i < game.lvl1.getX().length; i++) { manCenterX = (int) game.man.getBounds().getCenterX(); manCenterY = (int) game.man.getBounds().getCenterY(); if (game.man.getBounds().intersects(game.lvl1.getBounds(i))) { boxCenterX = (int) game.lvl1.getBounds(i).getCenterX(); boxCenterY = (int) game.lvl1.getBounds(i).getCenterY(); if (manCenterY - boxCenterY > 0 || manCenterY - boxCenterY < 0) { game.man.setyPos(-2f); game.man.isFalling = false; } } } } //left side of walls public void colliLeft() { for (int i = 0; i < game.lvl1.getX().length; i++) { if (game.man.getBounds().intersects(game.lvl1.getBounds(i))) { if (manCenterX - boxCenterX < 0) { for (int i1 = 0; i1 < game.lvl1.getX().length; i1++) { game.lvl1.getX()[i1] += game.physic.xVel; game.man.isFalling = true; } } } } } //right side of walls public void colliRight() { for (int i = 0; i < game.lvl1.getX().length; i++) { if (game.man.getBounds().intersects(game.lvl1.getBounds(i))) { if (manCenterX - boxCenterX > 0) { for (int i1 = 0; i1 < game.lvl1.getX().length; i1++) { game.lvl1.getX()[i1] += -game.physic.xVel; game.man.isFalling = true; } } } } } public void gravity() { game.man.setyPos(yVel); } //not called from gameloop: public void setyPos(float yPos) { this.yPos += yPos; }

    Read the article

  • Sending Big Files with WCF

    - by Sean Feldman
    I had to look into a project that submits large files to WCF service. Implementation is based on data chunking. This is a good approach when your client and server are not both based on WCF, bud different technologies. The problem with something like this is that chunking (either you wish it or not) complicates the overall solution. Alternative would be streaming. In WCF to WCF scenario, this is a piece of cake. When client is Java, it becomes a bit more challenging (has anyone implemented Java client streaming data to WCF service?). What I really liked about .NET implementation with WCF, is that sending header info along with stream was dead simple, and from the developer point of view looked like it’s all a part of the DTO passed into the service. [ServiceContract] public interface IFileUpload { [OperationContract] void UploadFile(SendFileMessage message); } Where SendFileMessage is [MessageContract] public class SendFileMessage { [MessageBodyMember(Order = 1)] public Stream FileData; [MessageHeader(MustUnderstand = true)] public FileTransferInfo FileTransferInfo; }

    Read the article

  • Silverlight Recruiting Application Part 4 - Navigation and Modules

    After our brief intermission (and the craziness of Q1 2010 release week), we're back on track here and today we get to dive into how we are going to navigate through our applications as well as how to set up our modules. That way, as I start adding the functionality- adding Jobs and Applicants, Interview Scheduling, and finally a handy Dashboard- you'll see how everything is communicating back and forth. This is all leading up to an eventual webinar, in which I'll dive into this process and give a honest look at the current story for MVVM vs. Code-Behind applications. (For a look at the future with SL4 and a little thing called MEF, check out what Ross is doing over at his blog!) Preamble... Before getting into really talking about this app, I've done a little bit of work ahead of time to create a ton of files that I'll need. Since the webinar is going to cover the Dashboard, it's not here, but otherwise this is a look at what the project layout looks like (and remember, this is both projects since they share the .Web): So as you can see, from an architecture perspective, the code-behind app is much smaller and more streamlined- aka a better fit for the one man shop that is me. Each module in the MVVM app has the same setup, which is the Module class and corresponding Views and ViewModels. Since the code-behind app doesn't need a go-between project like Infrastructure, each MVVM module is instead replaced by a single Silverlight UserControl which will contain all the logic for each respective bit of functionality. My Very First Module Navigation is going to be key to my application, so I figured the first thing I would setup is my MenuModule. First step here is creating a Silverlight Class Library named MenuModule, creatingthe View and ViewModel folders, and adding the MenuModule.cs class to handle module loading. The most important thing here is that my MenuModule inherits from IModule, which runs an Initialize on each module as it is created that, in my case, adds the views to the correct regions. Here's the MenuModule.cs code: public class MenuModule : IModule { private readonly IRegionManager regionManager; private readonly IUnityContainer container; public MenuModule(IUnityContainer container, IRegionManager regionmanager) { this.container = container; this.regionManager = regionmanager; } public void Initialize() { var addMenuView = container.Resolve<MenuView>(); regionManager.Regions["MenuRegion"].Add(addMenuView); } } Pretty straightforward here... We inject a container and region manager from Prism/Unity, then upon initialization we grab the view (out of our Views folder) and add it to the region it needs to live in. Simple, right? When the MenuView is created, the only thing in the code-behind is a reference to the set the MenuViewModel as the DataContext. I'd like to achieve MVVM nirvana and have zero code-behind by placing the viewmodel in the XAML, but for the reasons listed further below I can't. Navigation - MVVM Since navigation isn't the biggest concern in putting this whole thing together, I'm using the Button control to handle different options for loading up views/modules. There is another reason for this- out of the box, Prism has command support for buttons, which is one less custom command I had to work up for the functionality I would need. This comes from the Microsoft.Practices.Composite.Presentation assembly and looks as follows when put in code: <Button x:Name="xGoToJobs" Style="{StaticResource menuStyle}" Content="Jobs" cal:Click.Command="{Binding GoModule}" cal:Click.CommandParameter="JobPostingsView" /> For quick reference, 'menuStyle' is just taking care of margins and spacing, otherwise it looks, feels, and functions like everyone's favorite Button. What MVVM's this up is that the Click.Command is tying to a DelegateCommand (also coming fromPrism) on the backend. This setup allows you to tie user interaction to a command you setup in your viewmodel, which replaces the standard event-based setup you'd see in the code-behind app. Due to databinding magic, it all just works. When we get looking at the DelegateCommand in code, it ends up like this: public class MenuViewModel : ViewModelBase { private readonly IRegionManager regionManager; public DelegateCommand<object> GoModule { get; set; } public MenuViewModel(IRegionManager regionmanager) { this.regionManager = regionmanager; this.GoModule = new DelegateCommand<object>(this.goToView); } public void goToView(object obj) { MakeMeActive(this.regionManager, "MainRegion", obj.ToString()); } } Another for reference, ViewModelBase takes care of iNotifyPropertyChanged and MakeMeActive, which switches views in the MainRegion based on the parameters. So our public DelegateCommand GoModule ties to our command on the view, that in turn calls goToView, and the parameter on the button is the name of the view (which we pass with obj.ToString()) to activate. And how do the views get the names I can pass as a string? When I called regionManager.Regions[regionname].Add(view), there is an overload that allows for .Add(view, "viewname"), with viewname being what I use to activate views. You'll see that in action next installment, just wanted to clarify how that works. With this setup, I create two more buttons in my MenuView and the MenuModule is good to go. Last step is to make sure my MenuModule loads in my Bootstrapper: protected override IModuleCatalog GetModuleCatalog() { ModuleCatalog catalog = new ModuleCatalog(); // add modules here catalog.AddModule(typeof(MenuModule.MenuModule)); return catalog; } Clean, simple, MVVM-delicious. Navigation - Code-Behind Keeping with the history of significantly shorter code-behind sections of this series, Navigation will be no different. I promise. As I explained in a prior post, due to the one-project setup I don't have to worry about the same concerns so my menu is part of MainPage.xaml. So I can cheese-it a bit, though, since I've already got three buttons all set I'm just copying that code and adding three click-events instead of the command/commandparameter setup: <!-- Menu Region --> <StackPanel Grid.Row="1" Orientation="Vertical"> <Button x:Name="xJobsButton" Content="Jobs" Style="{StaticResource menuStyleCB}" Click="xJobsButton_Click" /> <Button x:Name="xApplicantsButton" Content="Applicants" Style="{StaticResource menuStyleCB}" Click="xApplicantsButton_Click" /> <Button x:Name="xSchedulingModule" Content="Scheduling" Style="{StaticResource menuStyleCB}" Click="xSchedulingModule_Click" /> </StackPanel> Simple, easy to use events, and no extra assemblies required! Since the code for loading each view will be similar, we'll focus on JobsView for now.The code-behind with this setup looks something like... private JobsView _jobsView; public MainPage() { InitializeComponent(); } private void xJobsButton_Click(object sender, RoutedEventArgs e) { if (MainRegion.Content.GetType() != typeof(JobsView)) { if (_jobsView == null) _jobsView = new JobsView(); MainRegion.Content = _jobsView; } } What am I doing here? First, for each 'view' I create a private reference which MainPage will hold on to. This allows for a little bit of state-maintenance when switching views. When a button is clicked, first we make sure the 'view' typeisn't active (why load it again if it is already at center stage?), then we check if the view has been created and create if necessary, then load it up. Three steps to switching views and is easy as pie. Part 4 Results The end result of all this is that I now have a menu module (MVVM) and a menu section (code-behind) that load their respective views. Since I'm using the same exact XAML (except with commands/events depending on the project), the end result for both is again exactly the same and I'll show a slightly larger image to show it off: Next time, we add the Jobs Module and wire up RadGridView and a separate edit page to handle adding and editing new jobs. That's when things get fun. And somewhere down the line, I'll make the menu look slicker. :) Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Authenticating clients in the new WCF Http stack

    - by cibrax
    About this time last year, I wrote a couple of posts about how to use the “Interceptors” from the REST starker kit for implementing several authentication mechanisms like “SAML”, “Basic Authentication” or “OAuth” in the WCF Web programming model. The things have changed a lot since then, and Glenn finally put on our hands a new version of the Web programming model that deserves some attention and I believe will help us a lot to build more Http oriented services in the .NET stack. What you can get today from wcf.codeplex.com is a preview with some cool features like Http Processors (which I already discussed here), a new and improved version of the HttpClient library, Dependency injection and better TDD support among others. However, the framework still does not support an standard way of doing client authentication on the services (This is something planned for the upcoming releases I believe). For that reason, moving the existing authentication interceptors to this new programming model was one of the things I did in the last few days. In order to make authentication simple and easy to extend,  I first came up with a model based on what I called “Authentication Interceptors”. An authentication interceptor maps to an existing Http authentication mechanism and implements the following interface, public interface IAuthenticationInterceptor{ string Scheme { get; } bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal);} An authentication interceptors basically needs to returns the http authentication schema that implements in the property “Scheme”, and implements the authentication mechanism in the method “DoAuthentication”. As you can see, this last method “DoAuthentication” only relies on the HttpRequestMessage and HttpResponseMessage classes, making the testing of this interceptor very simple (There is no need to do some black magic with the WCF context or messages). After this, I implemented a couple of interceptors for supporting basic authentication and brokered authentication with SAML (using WIF) in my services. The following code illustrates how the basic authentication interceptors looks like. public class BasicAuthenticationInterceptor : IAuthenticationInterceptor{ Func<UsernameAndPassword, bool> userValidation; string realm;  public BasicAuthenticationInterceptor(Func<UsernameAndPassword, bool> userValidation, string realm) { if (userValidation == null) throw new ArgumentNullException("userValidation");  if (string.IsNullOrEmpty(realm)) throw new ArgumentNullException("realm");  this.userValidation = userValidation; this.realm = realm; }  public string Scheme { get { return "Basic"; } }  public bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal) { string[] credentials = ExtractCredentials(request); if (credentials.Length == 0 || !AuthenticateUser(credentials[0], credentials[1])) { response.StatusCode = HttpStatusCode.Unauthorized; response.Content = new StringContent("Access denied"); response.Headers.WwwAuthenticate.Add(new AuthenticationHeaderValue("Basic", "realm=" + this.realm));  principal = null;  return false; } else { principal = new GenericPrincipal(new GenericIdentity(credentials[0]), new string[] {});  return true; } }  private string[] ExtractCredentials(HttpRequestMessage request) { if (request.Headers.Authorization != null && request.Headers.Authorization.Scheme.StartsWith("Basic")) { string encodedUserPass = request.Headers.Authorization.Parameter.Trim();  Encoding encoding = Encoding.GetEncoding("iso-8859-1"); string userPass = encoding.GetString(Convert.FromBase64String(encodedUserPass)); int separator = userPass.IndexOf(':');  string[] credentials = new string[2]; credentials[0] = userPass.Substring(0, separator); credentials[1] = userPass.Substring(separator + 1);  return credentials; }  return new string[] { }; }  private bool AuthenticateUser(string username, string password) { var usernameAndPassword = new UsernameAndPassword { Username = username, Password = password };  if (this.userValidation(usernameAndPassword)) { return true; }  return false; }} This interceptor receives in the constructor a callback in the form of a Func delegate for authenticating the user and the “realm”, which is required as part of the implementation. The rest is a general implementation of the basic authentication mechanism using standard http request and response messages. I also implemented another interceptor for authenticating a SAML token with WIF. public class SamlAuthenticationInterceptor : IAuthenticationInterceptor{ SecurityTokenHandlerCollection handlers = null;  public SamlAuthenticationInterceptor(SecurityTokenHandlerCollection handlers) { if (handlers == null) throw new ArgumentNullException("handlers");  this.handlers = handlers; }  public string Scheme { get { return "saml"; } }  public bool DoAuthentication(HttpRequestMessage request, HttpResponseMessage response, out IPrincipal principal) { SecurityToken token = ExtractCredentials(request);  if (token != null) { ClaimsIdentityCollection claims = handlers.ValidateToken(token);  principal = new ClaimsPrincipal(claims);  return true; } else { response.StatusCode = HttpStatusCode.Unauthorized; response.Content = new StringContent("Access denied");  principal = null;  return false; } }  private SecurityToken ExtractCredentials(HttpRequestMessage request) { if (request.Headers.Authorization != null && request.Headers.Authorization.Scheme == "saml") { XmlTextReader xmlReader = new XmlTextReader(new StringReader(request.Headers.Authorization.Parameter));  var col = SecurityTokenHandlerCollection.CreateDefaultSecurityTokenHandlerCollection(); SecurityToken token = col.ReadToken(xmlReader);  return token; }  return null; }}This implementation receives a “SecurityTokenHandlerCollection” instance as part of the constructor. This class is part of WIF, and basically represents a collection of token managers to know how to handle specific xml authentication tokens (SAML is one of them). I also created a set of extension methods for injecting these interceptors as part of a service route when the service is initialized. var basicAuthentication = new BasicAuthenticationInterceptor((u) => true, "ContactManager");var samlAuthentication = new SamlAuthenticationInterceptor(serviceConfiguration.SecurityTokenHandlers); // use MEF for providing instancesvar catalog = new AssemblyCatalog(typeof(Global).Assembly);var container = new CompositionContainer(catalog);var configuration = new ContactManagerConfiguration(container); RouteTable.Routes.AddServiceRoute<ContactResource>("contact", configuration, basicAuthentication, samlAuthentication);RouteTable.Routes.AddServiceRoute<ContactsResource>("contacts", configuration, basicAuthentication, samlAuthentication); In the code above, I am injecting the basic authentication and saml authentication interceptors in the “contact” and “contacts” resource implementations that come as samples in the code preview. I will use another post to discuss more in detail how the brokered authentication with SAML model works with this new WCF Http bits. The code is available to download in this location.

    Read the article

  • LINQ: Enhancing Distinct With The PredicateEqualityComparer

    - by Paulo Morgado
    Today I was writing a LINQ query and I needed to select distinct values based on a comparison criteria. Fortunately, LINQ’s Distinct method allows an equality comparer to be supplied, but, unfortunately, sometimes, this means having to write custom equality comparer. Because I was going to need more than one equality comparer for this set of tools I was building, I decided to build a generic equality comparer that would just take a custom predicate. Something like this: public class PredicateEqualityComparer<T> : EqualityComparer<T> { private Func<T, T, bool> predicate; public PredicateEqualityComparer(Func<T, T, bool> predicate) : base() { this.predicate = predicate; } public override bool Equals(T x, T y) { if (x != null) { return ((y != null) && this.predicate(x, y)); } if (y != null) { return false; } return true; } public override int GetHashCode(T obj) { if (obj == null) { return 0; } return obj.GetHashCode(); } } Now I can write code like this: .Distinct(new PredicateEqualityComparer<Item>((x, y) => x.Field == y.Field)) But I felt that I’d lost all conciseness and expressiveness of LINQ and it doesn’t support anonymous types. So I came up with another Distinct extension method: public static IEnumerable<TSource> Distinct<TSource>(this IEnumerable<TSource> source, Func<TSource, TSource, bool> predicate) { return source.Distinct(new PredicateEqualityComparer<TSource>(predicate)); } And the query is now written like this: .Distinct((x, y) => x.Field == y.Field) Looks a lot better, doesn’t it?

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

  • using Unity Android In a sub view and add actionbar and style

    - by aeroxr1
    I exported a simple animation from Unity3D (version 4.5) in android project. With eclipse I modified the manifest and added another activity. In this activity I put a button that it makes start the animation,and this is the result. The action bar appear in the main activity but it doesn't in the unity's activity :( How can I add the action bar and the style of the first activity to unity's animation activity ? This is the unity's activity's code : package com.rabidgremlin.tut.redcube; import android.app.NativeActivity; import android.content.res.Configuration; import android.graphics.PixelFormat; import android.os.Bundle; import android.view.KeyEvent; import android.view.MotionEvent; import android.view.View; import android.view.ViewGroup; import android.view.Window; import android.view.WindowManager; import com.unity3d.player.UnityPlayer; public class UnityPlayerNativeActivity extends NativeActivity { protected UnityPlayer mUnityPlayer; // don't change the name of this variable; referenced from native code // Setup activity layout @Override protected void onCreate (Bundle savedInstanceState) { //requestWindowFeature(Window.FEATURE_NO_TITLE); super.onCreate(savedInstanceState); getWindow().takeSurface(null); //setTheme(android.R.style.Theme_NoTitleBar_Fullscreen); getWindow().setFormat(PixelFormat.RGB_565); mUnityPlayer = new UnityPlayer(this); /*if (mUnityPlayer.getSettings ().getBoolean ("hide_status_bar", true)) getWindow ().setFlags (WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN); */ setContentView(mUnityPlayer); mUnityPlayer.requestFocus(); } // Quit Unity @Override protected void onDestroy () { mUnityPlayer.quit(); super.onDestroy(); } // Pause Unity @Override protected void onPause() { super.onPause(); mUnityPlayer.pause(); } // eliminiamo questa onResume() e proviamo a modificare la onResume() // Resume Unity @Override protected void onResume() { super.onResume(); mUnityPlayer.resume(); } // inseriamo qualche modifica qui // This ensures the layout will be correct. @Override public void onConfigurationChanged(Configuration newConfig) { super.onConfigurationChanged(newConfig); mUnityPlayer.configurationChanged(newConfig); } // Notify Unity of the focus change. @Override public void onWindowFocusChanged(boolean hasFocus) { super.onWindowFocusChanged(hasFocus); mUnityPlayer.windowFocusChanged(hasFocus); } // For some reason the multiple keyevent type is not supported by the ndk. // Force event injection by overriding dispatchKeyEvent(). @Override public boolean dispatchKeyEvent(KeyEvent event) { if (event.getAction() == KeyEvent.ACTION_MULTIPLE) return mUnityPlayer.injectEvent(event); return super.dispatchKeyEvent(event); } // Pass any events not handled by (unfocused) views straight to UnityPlayer @Override public boolean onKeyUp(int keyCode, KeyEvent event) { return mUnityPlayer.injectEvent(event); } @Override public boolean onKeyDown(int keyCode, KeyEvent event) { return mUnityPlayer.injectEvent(event); } @Override public boolean onTouchEvent(MotionEvent event) { return mUnityPlayer.injectEvent(event); } /*API12*/ public boolean onGenericMotionEvent(MotionEvent event) { return mUnityPlayer.injectEvent(event); } } And this is the AndroidManifest.xml android:versionCode="1" android:versionName="1.0" > <!-- android:theme="@android:style/Theme.NoTitleBar"--> <supports-screens android:anyDensity="true" android:largeScreens="true" android:normalScreens="true" android:smallScreens="true" android:xlargeScreens="true" /> <application android:icon="@drawable/app_icon" android:label="@string/app_name" android:theme="@android:style/Theme.Holo.Light" > <activity android:name="com.rabidgremlin.tut.redcube.UnityPlayerNativeActivity" android:configChanges="mcc|mnc|locale|touchscreen|keyboard|keyboardHidden|navigation|orientation|screenLayout|uiMode|screenSize|smallestScreenSize|fontScale" android:label="@string/app_name" android:screenOrientation="portrait" > <!--android:launchMode="singleTask"--> <meta-data android:name="unityplayer.UnityActivity" android:value="true" /> <meta-data android:name="unityplayer.ForwardNativeEventsToDalvik" android:value="false" /> </activity> <activity android:name="com.rabidgremlin.tut.redcube.MainActivity" android:label="@string/title_activity_main" > <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> </application> <uses-sdk android:minSdkVersion="17" android:targetSdkVersion="19" /> <uses-feature android:glEsVersion="0x00020000" /> </manifest>

    Read the article

  • Persisting settings without using Options dialog in Visual Studio

    - by Utkarsh Shigihalli
    Originally posted on: http://geekswithblogs.net/onlyutkarsh/archive/2013/11/02/persisting-settings-without-using-options-dialog-in-visual-studio.aspxIn one of my previous blog post we have seen persisting settings using Visual Studio's options dialog. Visual Studio options has many advantages in automatically persisting user options for you. However, during our latest Team Rooms extension development, we decided to provide our users; ability to use our preferences directly from Team Explorer. The main reason was that we had only one simple option for user and we thought it is cumbersome for user to go to Tools –> Options dialog to change this. Another reason was, we wanted to highlight this setting to user as soon as he is using our extension.   So if you are in such a scenario where you do not want to use VS options window, but still would like to persist the settings, this post will guide you through. Visual Studio SDK provides two ways to persist settings in your extensions. One is using DialogPage as shown in my previous post. Another way is to use by implementing IProfileManager interface which I will explain in this post. Please note that the class implementing IProfileManager should be independent class. This is because, VS instantiates this class during Tools –> Import and Export Settings. IProfileManager provides 2 different sets of methods (total 4 methods) to persist the settings. They are LoadSettingsFromXml and SaveSettingsToXml – Implement these methods to persist settings to disk from VS settings storage. The VS will persist your settings along with other options to disk. LoadSettingsFromStorage and SaveSettingsToStorage – Implement these methods to persist settings to local storage, usually it be registry. VS calls LoadSettingsFromStorage method when it is initializing the package too. We are going to use the 2nd set of methods for this example. First, we are creating a separate class file called UserOptions.cs. Please note that, we also need to implement IComponent, which can be done by inheriting Component along with IProfileManager. [ComVisible(true)] [Guid("XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX")] public class UserOptions : Component, IProfileManager { private const string SUBKEY_NAME = "TForVS2013"; private const string TRAY_NOTIFICATIONS_STRING = "TrayNotifications"; ... } Define the property so that it can be used to set and get from other classes. public bool TrayNotifications { get; set; } Implement the members of IProfileManager. public void LoadSettingsFromStorage() { RegistryKey reg = null; try { using (reg = Package.UserRegistryRoot.OpenSubKey(SUBKEY_NAME)) { if (reg != null) { // Key already exists, so just update this setting. TrayNotifications = Convert.ToBoolean(reg.GetValue(TRAY_NOTIFICATIONS_STRING, true)); } } } catch (TeamRoomException exception) { TrayNotifications = true; ExceptionReporting.Report(exception); } finally { if (reg != null) { reg.Close(); } } } public void LoadSettingsFromXml(IVsSettingsReader reader) { reader.ReadSettingBoolean(TRAY_NOTIFICATIONS_STRING, out _isTrayNotificationsEnabled); TrayNotifications = (_isTrayNotificationsEnabled == 1); } public void ResetSettings() { } public void SaveSettingsToStorage() { RegistryKey reg = null; try { using (reg = Package.UserRegistryRoot.OpenSubKey(SUBKEY_NAME, true)) { if (reg != null) { // Key already exists, so just update this setting. reg.SetValue(TRAY_NOTIFICATIONS_STRING, TrayNotifications); } else { reg = Package.UserRegistryRoot.CreateSubKey(SUBKEY_NAME); reg.SetValue(TRAY_NOTIFICATIONS_STRING, TrayNotifications); } } } catch (TeamRoomException exception) { ExceptionReporting.Report(exception); } finally { if (reg != null) { reg.Close(); } } } public void SaveSettingsToXml(IVsSettingsWriter writer) { writer.WriteSettingBoolean(TRAY_NOTIFICATIONS_STRING, TrayNotifications ? 1 : 0); } Let me elaborate on the method implementation. The Package class provides UserRegistryRoot (which is HKCU\Microsoft\VisualStudio\12.0 for VS2013) property which can be used to create and read the registry keys. So basically, in the methods above, I am checking if the registry key exists already and if not, I simply create it. Also, in case there is an exception I return the default values. If the key already exists, I update the value. Also, note that you need to make sure that you close the key while exiting from the method. Very simple right? Accessing and settings is simple too. We just need to use the exposed property. UserOptions.TrayNotifications = true; UserOptions.SaveSettingsToStorage(); Reading settings is as simple as reading a property. UserOptions.LoadSettingsFromStorage(); var trayNotifications = UserOptions.TrayNotifications; Lastly, the most important step. We need to tell Visual Studio shell that our package exposes options using the UserOptions class. For this we need to decorate our package class with ProvideProfile attribute as below. [ProvideProfile(typeof(UserOptions), "TForVS2013", "TeamRooms", 110, 110, false, DescriptionResourceID = 401)] public sealed class TeamRooms : Microsoft.VisualStudio.Shell.Package { ... } That's it. If everything is alright, once you run the package you will also see your options appearing in "Import Export settings" window, which allows you to export your options.

    Read the article

  • View Clipboard & Copy To Clipboard from NetBeans IDE

    - by Geertjan
    Thanks to this code, I can press Ctrl-Alt-V in NetBeans IDE and then view whatever is in the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.DataFlavor; import java.awt.datatransfer.Transferable; import java.awt.datatransfer.UnsupportedFlavorException; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.IOException; import javax.swing.JOptionPane; import org.openide.awt.ActionRegistration; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionID; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.ShowClipboardAction") @ActionRegistration( displayName = "#CTL_ShowClipboardAction") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 5), @ActionReference(path = "Shortcuts", name = "DA-V") }) @Messages("CTL_ShowClipboardAction=Show Clipboard") public final class ShowClipboardAction implements ActionListener { @Override public void actionPerformed(ActionEvent e) { JOptionPane.showMessageDialog(null, getClipboard(), "Clipboard Content", 1); } public String getClipboard() { String text = null; Transferable t = Toolkit.getDefaultToolkit().getSystemClipboard().getContents(null); try { if (t != null && t.isDataFlavorSupported(DataFlavor.stringFlavor)) { text = (String) t.getTransferData(DataFlavor.stringFlavor); } } catch (UnsupportedFlavorException e) { } catch (IOException e) { } return text; } } And now I can also press Ctrl-Alt-C, which copies the path to the current file to the clipboard: import java.awt.Toolkit; import java.awt.datatransfer.Clipboard; import java.awt.datatransfer.StringSelection; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import org.openide.awt.ActionID; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionRegistration; import org.openide.awt.StatusDisplayer; import org.openide.loaders.DataObject; import org.openide.util.NbBundle.Messages; @ActionID( category = "Tools", id = "org.demo.CopyPathToClipboard") @ActionRegistration( displayName = "#CTL_CopyPathToClipboard") @ActionReferences({ @ActionReference(path = "Menu/Tools", position = 0), @ActionReference(path = "Editors/Popup", position = 10), @ActionReference(path = "Shortcuts", name = "DA-C") }) @Messages("CTL_CopyPathToClipboard=Copy Path to Clipboard") public final class CopyPathToClipboardAction implements ActionListener { private final DataObject context; public CopyPathToClipboardAction(DataObject context) { this.context = context; } @Override public void actionPerformed(ActionEvent e) { String path = context.getPrimaryFile().getPath(); StatusDisplayer.getDefault().setStatusText(path); StringSelection ss = new StringSelection(path); Clipboard clipboard = Toolkit.getDefaultToolkit().getSystemClipboard(); clipboard.setContents(ss, null); } }

    Read the article

  • OSSEC agent behind NAT

    - by Eric
    I am working on an OSSEC deployment where I will have multiple agents behind 1 public IP. Below is an example of the setup Private Network OSSEC-Agent1 (192.168.1.10) OSSEC-Agent2 (192.168.50.33) OSSEC-Agent3 (10.10.10.1) Those IPs NAT to 1 public IP (1.1.1.1) Then 1.1.1.1 talks to the public OSSEC server on 2.2.2.2 I've read some OSSEC documentation talking about NAT here, but it doesn't tell me exactly what I need to know. Their example is using an entire /24 subnet and mine will mainly have multiple agents to only 1 public IP. With the setup so far, I brought Agent1 online fine and it is communicating to the OSSEC server. However Agent2 continues to fail trying to connect to 2.2.2.2. Even though when I added the key, I had the correct name for it, so I know it talked to the portal at least once for that information. I'm assuming it's just getting confused with the multiple keys to 1 public IP. I basically want to know if this is possible and/or if I'm just overlooking something simple. Any help would be greatly appreciated.

    Read the article

  • Cross-language Extension Method Calling

    - by Tom Hines
    Extension methods are a concise way of binding functions to particular types. In my last post, I showed how Extension methods can be created in the .NET 2.0 environment. In this post, I discuss calling the extensions from other languages. Most of the differences I find between the Dot Net languages are mainly syntax.  The declaration of Extensions is no exception.  There is, however, a distinct difference with the framework accepting excensions made with C++ that differs from C# and VB.  When calling the C++ extension from C#, the compiler will SOMETIMES say there is no definition for DoCPP with the error: 'string' does not contain a definition for 'DoCPP' and no extension method 'DoCPP' accepting a first argument of type 'string' could be found (are you missing a using directive or an assembly reference?) If I recompile, the error goes away. The strangest problem with calling the C++ extension from C# is that I first must make SOME type of reference to the class BEFORE using the extension or it will not be recognized at all.  So, if I first call the DoCPP() as a static method, the extension works fine later.  If I make a dummy instantiation of the class, it works.  If I have no forward reference of the class, I get the same error as before and recompiling does not fix it.  It seems as if this none of this is supposed to work across the languages. I have made a few work-arounds to get the examples to compile and run. Note the following examples: Extension in C# using System; namespace Extension_CS {    public static class CExtension_CS    {  //in C#, the "this" keyword is the key.       public static void DoCS(this string str)       {          Console.WriteLine("CS\t{0:G}\tCS", str);       }    } } Extension in C++ /****************************************************************************\  * Here is the C++ implementation.  It is the least elegant and most quirky,  * but it works. \****************************************************************************/ #pragma once using namespace System; using namespace System::Runtime::CompilerServices;     //<-Essential // Reference: System.Core.dll //<- Essential namespace Extension_CPP {        public ref class CExtension_CPP        {        public:               [Extension] // or [ExtensionAttribute] /* either works */               static void DoCPP(String^ str)               {                      Console::WriteLine("C++\t{0:G}\tC++", str);               }        }; } Extension in VB ' Here is the VB implementation.  This is not as elegant as the C#, but it's ' functional. Imports System.Runtime.CompilerServices ' Public Module modExtension_VB 'Extension methods can be defined only in modules.    <Extension()> _       Public Sub DoVB(ByVal str As String)       Console.WriteLine("VB" & Chr(9) & "{0:G}" & Chr(9) & "VB", str)    End Sub End Module   Calling program in C# /******************************************************************************\  * Main calling program  * Intellisense and VS2008 complain about the CPP implementation, but with a  * little duct-tape, it works just fine. \******************************************************************************/ using System; using Extension_CPP; using Extension_CS; using Extension_VB; // vitual namespace namespace TestExtensions {    public static class CTestExtensions    {       /**********************************************************************\        * For some reason, this needs a direct reference into the C++ version        * even though it does nothing than add a null reference.        * The constructor provides the fake usage to please the compiler.       \**********************************************************************/       private static CExtension_CPP x = null;   // <-DUCT_TAPE!       static CTestExtensions()       {          // Fake usage to stop compiler from complaining          if (null != x) {} // <-DUCT_TAPE       }       static void Main(string[] args)       {          string strData = "from C#";          strData.DoCPP();          strData.DoCS();          strData.DoVB();       }    } }   Calling program in VB  Imports Extension_CPP Imports Extension_CS Imports Extension_VB Imports System.Runtime.CompilerServices Module TestExtensions_VB    <Extension()> _       Public Sub DoCPP(ByVal str As String)       'Framework does not treat this as an extension, so use the static       CExtension_CPP.DoCPP(str)    End Sub    Sub Main()       Dim strData As String = "from VB"       strData.DoCS()       strData.DoVB()       strData.DoCPP() 'fake    End Sub End Module  Calling program in C++ // TestExtensions_CPP.cpp : main project file. #include "stdafx.h" using namespace System; using namespace Extension_CPP; using namespace Extension_CS; using namespace Extension_VB; void main(void) {        /*******************************************************\         * Extension methods are called like static methods         * when called from C++.  There may be a difference in         * syntax when calling the VB extension as VB Extensions         * are embedded in Modules instead of classes        \*******************************************************/     String^ strData = "from C++";     CExtension_CPP::DoCPP(strData);     CExtension_CS::DoCS(strData);     modExtension_VB::DoVB(strData); //since Extensions go in Modules }

    Read the article

  • Custom Model Binding of IEnumerable Properties in ASP.Net MVC 2

    - by Doug Lampe
    MVC 2 provides a GREAT feature for dealing with enumerable types.  Let's say you have an object with a parent/child relationship and you want to allow users to modify multiple children at the same time.  You can simply use the following syntax for any indexed enumerables (arrays, generic lists, etc.) and then your values will bind to your enumerable model properties. 1: <% using (Html.BeginForm("TestModelParameter", "Home")) 2: { %> 3: < table > 4: < tr >< th >ID</th><th>Name</th><th>Description</th></tr> 5: <% for (int i = 0; i < Model.Items.Count; i++) 6: { %> 7: < tr > 8: < td > 9: <%= i %> 10: </ td > 11: < td > 12: <%= Html.TextBoxFor(m => m.Items[i].Name) %> 13: </ td > 14: < td > 15: <%= Model.Items[i].Description %> 16: </ td > 17: </ tr > 18: <% } %> 19: </ table > 20: < input type ="submit" /> 21: <% } %> Then just update your model either by passing it into your action method as a parameter or explicitly with UpdateModel/TryUpdateModel. 1: public ActionResult TestTryUpdate() 2: { 3: ContainerModel model = new ContainerModel(); 4: TryUpdateModel(model); 5:   6: return View("Test", model); 7: } 8:   9: public ActionResult TestModelParameter(ContainerModel model) 10: { 11: return View("Test", model); 12: } Simple right?  Well, not quite.  The problem is the DefaultModelBinder and how it sets properties.  In this case our model has a property that is a generic list (Items).  The first bad thing the model binder does is create a new instance of the list.  This can be fixed by making the property truly read-only by removing the set accessor.  However this won't help because this behaviour continues.  As the model binder iterates through the items to "set" their values, it creates new instances of them as well.  This means you lose any information not passed via the UI to your controller so in the examplel above the "Description" property would be blank for each item after the form posts. One solution for this is custom model binding.  I have put together a solution which allows you to retain the structure of your model.  Model binding is a somewhat advanced concept so you may need to do some additional research to really understand what is going on here, but the code is fairly simple.  First we will create a binder for the parent object which will retain the state of the parent as well as some information on which children have already been bound. 1: public class ContainerModelBinder : DefaultModelBinder 2: { 3: /// <summary> 4: /// Gets an instance of the model to be used to bind child objects. 5: /// </summary> 6: public ContainerModel Model { get; private set; } 7:   8: /// <summary> 9: /// Gets a list which will be used to track which items have been bound. 10: /// </summary> 11: public List<ItemModel> BoundItems { get; private set; } 12:   13: public ContainerModelBinder() 14: { 15: BoundItems = new List<ItemModel>(); 16: } 17:   18: protected override object CreateModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Type modelType) 19: { 20: // Set the Model property so child binders can find children. 21: Model = base.CreateModel(controllerContext, bindingContext, modelType) as ContainerModel; 22:   23: return Model; 24: } 25: } Next we will create the child binder and have it point to the parent binder to get instances of the child objects.  Note that this only works if there is only one property of type ItemModel in the parent class since the property to find the item in the parent is hard coded. 1: public class ItemModelBinder : DefaultModelBinder 2: { 3: /// <summary> 4: /// Gets the parent binder so we can find objects in the parent's collection 5: /// </summary> 6: public ContainerModelBinder ParentBinder { get; private set; } 7: 8: public ItemModelBinder(ContainerModelBinder containerModelBinder) 9: { 10: ParentBinder = containerModelBinder; 11: } 12:   13: protected override object CreateModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Type modelType) 14: { 15: // Find the item in the parent collection and add it to the bound items list. 16: ItemModel item = ParentBinder.Model.Items.FirstOrDefault(i => !ParentBinder.BoundItems.Contains(i)); 17: ParentBinder.BoundItems.Add(item); 18: 19: return item; 20: } 21: } Finally, we will register these binders in Global.asax.cs so they will be used to bind the classes. 1: protected void Application_Start() 2: { 3: AreaRegistration.RegisterAllAreas(); 4:   5: ContainerModelBinder containerModelBinder = new ContainerModelBinder(); 6: ModelBinders.Binders.Add(typeof(ContainerModel), containerModelBinder); 7: ModelBinders.Binders.Add(typeof(ItemModel), new ItemModelBinder(containerModelBinder)); 8:   9: RegisterRoutes(RouteTable.Routes); 10: } I'm sure some of my fellow geeks will comment that this could be done more efficiently by simply rewriting some of the methods of the default model binder to get the same desired behavior.  I like my method shown here because it extends the binder class instead of modifying it so it minimizes the potential for unforseen problems. In a future post (if I ever get around to it) I will explore creating a generic version of these binders.

    Read the article

< Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >