Search Results

Search found 4432 results on 178 pages for 'conspicuous compiler'.

Page 132/178 | < Previous Page | 128 129 130 131 132 133 134 135 136 137 138 139  | Next Page >

  • C# Generics Multiple Inheritance Problem

    - by Ciemnl
    Can any one help me with this syntax issue with C#? I have no idea how to do it. class SomeClass<T> : SomeOtherClass<T> where T : ISomeInterface , IAnotherInterface { ... } I want SomeClass to inherit from SomeOtherClass and IAnotherInterface and for T to inherit ISomeInterface only It seems the problem is that the where keyword screws everything up so that the compiler thinks both ISomeInterface and IAnotherInterface should both be inherited by T. This problem is very annoying and I think the solution is some kind of parenthesis but I have tried and failed finding one that works. Also, switching around the order of the two items inherited from SomeClass does not work because the class inherited always has to come before any interfaces. I couldn't find any solutions on the MSDN C# generics pages and I can't beleive I'm the first person to have this problem. Thanks, any help is much appreciated!

    Read the article

  • XCode Project Code Changes Not Updating 100% After Save-Build-Run

    - by Greg
    When I make code changes to my iPhone game project in XCode, and then do CMD-B + Enter, I expect the project to be saved, build and run on the simulator with the latest. What is happening though, sometimes, is that it doesn't pick up a small change I make unless I clean the project and then build. I'm a long time Java person and newish to C-based languages and it's compiler. Can someone explain to me what is cached after each build that does this and how to change my project settings to avoid having to clean everytime? Or tell me the bad news that this is part of C development? Not trying to bash it - I get compiled JSPs stuck in the working cache often in Java, too. :P

    Read the article

  • What's the outcome if I use free with new or delete with malloc?

    - by skydoor
    It is a compiler error or runtime error? The code below can be compiled! class Base{ void g(); void h(); }; int main() { Base* p = new Base(); free(p); return 0; } However it can't be compiled with a virtual function if I declare the class Base like this class Base{ virtual void g(); void h(); }; The code below can be compiled all the time, no matter the function is virtual or not. class Base{ void g(); void h(); }; int main() { Base* p = (Base*)malloc(sizeof(Base)); delete p; return 0; }

    Read the article

  • Get result type of function

    - by Robert
    I want to specialize a template function declared as: template<typename Type> Type read(std::istream& is); I then have a lot of static implementations static int read_integer(std::istream& is); a.s.o. Now I'd like to do a macro so that specialization of read is as simple as: SPECIALIZE_READ(read_integer) So I figured I'd go the boost::function_traits way and declare SPECIALIZE_READ as: #define SPECIALIZE_READ(read_function) \ template<> boost::function_traits<read_function>::result_type read(std::istream& is) { \ return read_function(is); \ } but VC++ (2008) compiler complains with: 'boost::function_traits' : 'read_integer' is not a valid template type argument for parameter 'Function' Ideas ?

    Read the article

  • what is the best approach for to use openGL in the web?

    - by Y_Y
    I wrote a program in C++/OpenGL (using Dev-C++ compiler) for my calculus 2 class. The teacher liked the program and he requested me to somehow put it online so that instead of downloading the .exe file and run it the web browser will run it automatically just like a java applet. The question is: How if possible, can I display a C++/OpenGL program in a web browser? I am thinking of moving to JOGL which is a java interpretation of OpenGL but I rather stay in C++ since I am more familiar with it. Also is there any other better and easier 3D web base API that I can consider?

    Read the article

  • C++ template + typedef

    - by MMS
    What is wrong in the following code: Point2D.h template <class T> class Point2D { private: T x; T y; ... }; PointsList.h template <class T> class Point2D; template <class T> struct TPointsList { typedef std::vector <Point2D <T> > Type; }; template <class T> class PointsList { private: TPointsList <T>::Type points; //Compiler error ... }; I would like to create new user type TPointsList without direct type specification...

    Read the article

  • Tracking Useful Information

    - by Steve M
    What do the clever programmers here do to keep track of handy programming tricks and useful information they pick up over their many years of experience? Things like useful compiler arguments, IDE short-cuts, clever code snippets, etc. I sometimes find myself frustrated when looking up something that I used to know a year or two ago. My IE favourites probably represent a good chunk of the Internet in the late 1990s, so clearly that isn't effective (at least for me). Or am I just getting old? So.. what do you do?

    Read the article

  • question about copy constructor

    - by lego69
    I have this class: class A { private: int player; public: A(int initPlayer = 0); A(const A&); A& operator=(const A&); ~A(); void foo() const; }; and I have function which contains this row: A *pa1 = new A(a2); can somebody please explain what exactly is going on, when I call A(a2) compiler calls copy constructor or constructor, thanks in advance

    Read the article

  • Pointer aliasing- in C++0x

    - by DeadMG
    I'm thinking about (just as an idea) disjointed pointer aliasing in C++0x. I was thinking about seeing if it could be implemented similarly to const correctness- that is, enforced by the compiler. What would be the requirements for such a thing? As this is more of a thought experiment, I'm perfectly happy to look at solutions that destroy legacy code or redefine half the language and that kind of thing. What I'd really rather not do is have, say, restrict from C99 where the programmer just promises it. It should be enforced.

    Read the article

  • How to make Eclipse compile with Java 1.5 in Mac OS X Leopard (10.5)?

    - by whiskeyspider
    I have been developing in Snow Leopard (10.6). I believe I have some Java6-only API features and I'd like to find these. I moved my project to Leopard (10.5) -- since Snow Leopard does not support Java 1.5 -- but I am so far unable to make Eclipse give compile errors for a Java API call which I know to have been added in 1.6. Here is what I have done: Project properties - Java Compiler - set everything to 1.5. Preferences - Java - Installed JREs - selected JVM 1.5.0. Project properties - Java Build Path - Libraries - says JRE System Library [JVM 1.5.0] What am I missing? Is there another way to find Java API calls added in 1.6 when using Eclipse in Snow Leopard? Thanks.

    Read the article

  • Testing IPhone code on Windows

    - by steve
    I'm picking up a new Dell laptop. My primary machine is a IMac. I will most likely have to write some IPhone projects for someone in the future. While I do most of my work on the IMac there would be maybe 25% of the time where I work from my laptop. Can anyone tell me if I use objective C / IPhone SDK's if there is a generic objective C compiler I can use to see if my code would in theroy work? Not looking to do hackintosh or anything like that. My other option is to just get a discounted mac mini (Think this is most likely) as well as the Dell. Thanks for any advice

    Read the article

  • Can we overload a function based on only whether a parameter is a value or a reference?

    - by skydoor
    I got the answer NO! Because passing by value and passing by reference looks identical to the caller. However, the code below compiles right class A { public: void f(int i) {} void f(int& i) {} }; But when I try to use it, there is compile error. int main () { A a; int i = 9; int& j = i; a.f(1); a.f(i); a.f(j); return 0; } Why does not the compiler disable it even without knowing it is going to be used?

    Read the article

  • Generics not so generic !!

    - by Aymen
    Hi I tried to implement a generic binary search algorithm in scala. Here it is : type Ord ={ def <(x:Any):Boolean def >(x:Any):Boolean } def binSearch[T <: Ord ](x:T,start:Int,end:Int,t:Array[T]):Boolean = { if (start > end) return false val pos = (start + end ) / 2 if(t(pos)==x) true else if (t(pos) < x) binSearch(x,pos+1,end,t) else binSearch(x,start,pos-1,t) } everything is OK until I tried to actually use it (xD) : binSearch(3,0,4,Array(1,2,5,6)) the compiler is pretending that Int not a member of Ord, well what shall I do to solve this ? Thanks

    Read the article

  • @MustOverride annotation?

    - by Harrypotter2k5
    In .NET, one can specify a "mustoverride" attribute to a method in a particular superclass to ensure that subclasses override that particular method. I was wondering whether anybody has a custom java annotation that could achieve the same effect. Essentially what i want is to push for subclasses to override a method in a superclass that itself has some logic that must be run-through. I dont want to use abstract methods or interfaces, because i want some common functionality to be run in the super method, but more-or-less produce a compiler warning/error denoting that derivative classes should override a given method.

    Read the article

  • Returning a struct from a class method

    - by tree
    I have a header file that looks something like the following: class Model { private: struct coord { int x; int y; } xy; public: .... coord get() const { return xy; } }; And in yet another file (assume ModelObject exists): struct c { int x; int y; void operator = (c &rhs) { x = rhs.x; y = rhs.y; }; } xy; xy = ModelObject->get(); The compiler throws an error that says there is no known covnersion from coord to c. I believe it is because it doesn't know about coord type because it is declared inside of a class header. I can get around that by declaring the struct outside of the class, but I was wondering if it is possible to do the way I am, or is this generally considered bad practice

    Read the article

  • Java Basics: create class object

    - by user1767853
    In C++: class Rectangle { int x, y; public: void set_values (int,int); int area () {return (x*y);} }; int main () { Rectangle rect; rect.set_values (3,4); } In Java: class Rectangle { int x, y; void set_values (int x,int y); int area () {return (x*y);} } public static void main(String[] args) { Rectangle rect=new Rectangle(3,4); } In C++ compiler will create rect object & reserve memory 4 bytes. I want to know How Java is creating object?

    Read the article

  • printf("... %c ...",'\0') and family - what will happen?

    - by SF.
    How will various functions that take printf format string behave upon encountering the %c format given value of \0/NULL? How should they behave? Is it safe? Is it defined? Is it compiler-specific? e.g. sprintf() - will it crop the result string at the NULL? What length will it return? Will printf() output the whole format string or just up to the new NULL? Will va_args + vsprintf/vprintf be affected somehow? If so, how? Do I risk memory leaks or other problems if I e.g. shoot this NULL at a point in std::string.c_str()? What are the best ways to avoid this caveat (sanitize input?)

    Read the article

  • SQL Authority News – Download Microsoft SQL Server 2014 Feature Pack and Microsoft SQL Server Developer’s Edition

    - by Pinal Dave
    Yesterday I attended the SQL Server Community Launch in Bangalore and presented on Performing an effective Presentation. It was a fun presentation and people very well received it. No matter on what subject, I present, I always end up talking about SQL. Here are two of the questions I had received during the event. Q1) I want to install SQL Server on my development server, where can we get it for free or at an economical price (I do not have MSDN)? A1) If you are not going to use your server in a production environment, you can just get SQL Server Developer’s Edition and you can read more about it over here. Here is another favorite question which I keep on receiving it during the event. Q2) I already have SQL Server installed on my machine, what are different feature pack should I install and where can I get them from. A2) Just download and install Microsoft SQL Server 2014 Service Pack. Here is the link for downloading it. The Microsoft SQL Server 2014 Feature Pack is a collection of stand-alone packages which provide additional value for Microsoft SQL Server. It includes tool and components for Microsoft SQL Server 2014 and add-on providers for Microsoft SQL Server 2014. Here is the list of component this product contains: Microsoft SQL Server Backup to Windows Azure Tool Microsoft SQL Server Cloud Adapter Microsoft Kerberos Configuration Manager for Microsoft SQL Server Microsoft SQL Server 2014 Semantic Language Statistics Microsoft SQL Server Data-Tier Application Framework Microsoft SQL Server 2014 Transact-SQL Language Service Microsoft Windows PowerShell Extensions for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Shared Management Objects Microsoft Command Line Utilities 11 for Microsoft SQL Server Microsoft ODBC Driver 11 for Microsoft SQL Server – Windows Microsoft JDBC Driver 4.0 for Microsoft SQL Server Microsoft Drivers 3.0 for PHP for Microsoft SQL Server Microsoft SQL Server 2014 Transact-SQL ScriptDom Microsoft SQL Server 2014 Transact-SQL Compiler Service Microsoft System CLR Types for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Remote Blob Store SQL RBS codeplex samples page SQL Server Remote Blob Store blogs Microsoft SQL Server Service Broker External Activator for Microsoft SQL Server 2014 Microsoft OData Source for Microsoft SQL Server 2014 Microsoft Balanced Data Distributor for Microsoft SQL Server 2014 Microsoft Change Data Capture Designer and Service for Oracle by Attunity for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Master Data Service Add-in for Microsoft Excel Microsoft SQL Server StreamInsight Microsoft Connector for SAP BW for Microsoft SQL Server 2014 Microsoft SQL Server Migration Assistant Microsoft SQL Server 2014 Upgrade Advisor Microsoft OLEDB Provider for DB2 v5.0 for Microsoft SQL Server 2014 Microsoft SQL Server 2014 PowerPivot for Microsoft SharePoint 2013 Microsoft SQL Server 2014 ADOMD.NET Microsoft Analysis Services OLE DB Provider for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Analysis Management Objects Microsoft SQL Server Report Builder for Microsoft SQL Server 2014 Microsoft SQL Server 2014 Reporting Services Add-in for Microsoft SharePoint Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority News, T SQL

    Read the article

  • Imperative Programming v/s Declarative Programming v/s Functional Programming

    - by kaleidoscope
    Imperative Programming :: Imperative programming is a programming paradigm that describes computation in terms of statements that change a program state. In much the same way as the imperative mood in natural languages expresses commands to take action, imperative programs define sequences of commands for the computer to perform. The focus is on what steps the computer should take rather than what the computer will do (ex. C, C++, Java). Declarative Programming :: Declarative programming is a programming paradigm that expresses the logic of a computation without describing its control flow. It attempts to minimize or eliminate side effects by describing what the program should accomplish, rather than describing how to go about accomplishing it. The focus is on what the computer should do rather than how it should do it (ex. SQL). A  C# example of declarative v/s. imperative programming is LINQ. With imperative programming, you tell the compiler what you want to happen, step by step. For example, let's start with this collection, and choose the odd numbers: List<int> collection = new List<int> { 1, 2, 3, 4, 5 }; With imperative programming, we'd step through this, and decide what we want: List<int> results = new List<int>(); foreach(var num in collection) {     if (num % 2 != 0)           results.Add(num); } Here’s what we are doing: *Create a result collection *Step through each number in the collection *Check the number, if it's odd, add it to the results With declarative programming, on the other hand, we write the code that describes what you want, but not necessarily how to get it var results = collection.Where( num => num % 2 != 0); Here, we're saying "Give us everything where it's odd", not "Step through the collection. Check this item, if it's odd, add it to a result collection." Functional Programming :: Functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions.Functional programming has its roots in the lambda calculus. It is a subset of declarative languages that has heavy focus on recursion. Functional programming can be a mind-bender, which is one reason why Lisp, Scheme, and Haskell have never really surpassed C, C++, Java and COBOL in commercial popularity. But there are benefits to the functional way. For one, if you can get the logic correct, functional programming requires orders of magnitude less code than imperative programming. That means fewer points of failure, less code to test, and a more productive (and, many would say, happier) programming life. As systems get bigger, this has become more and more important. To know more : http://stackoverflow.com/questions/602444/what-is-functional-declarative-and-imperative-programming http://msdn.microsoft.com/en-us/library/bb669144.aspx http://en.wikipedia.org/wiki/Imperative_programming   Technorati Tags: Ranjit,Imperative Programming,Declarative programming,Functional Programming

    Read the article

  • Subterranean IL: Filter exception handlers

    - by Simon Cooper
    Filter handlers are the second type of exception handler that aren't accessible from C#. Unlike the other handler types, which have defined conditions for when the handlers execute, filter lets you use custom logic to determine whether the handler should be run. However, similar to a catch block, the filter block does not get run if control flow exits the block without throwing an exception. Introducing filter blocks An example of a filter block in IL is the following: .try { // try block } filter { // filter block endfilter }{ // filter handler } or, in v1 syntax, TryStart: // try block TryEnd: FilterStart: // filter block HandlerStart: // filter handler HandlerEnd: .try TryStart to TryEnd filter FilterStart handler HandlerStart to HandlerEnd In the v1 syntax there is no end label specified for the filter block. This is because the filter block must come immediately before the filter handler; the end of the filter block is the start of the filter handler. The filter block indicates to the CLR whether the filter handler should be executed using a boolean value on the stack when the endfilter instruction is run; true/non-zero if it is to be executed, false/zero if it isn't. At the start of the filter block, and the corresponding filter handler, a reference to the exception thrown is pushed onto the stack as a raw object (you have to manually cast to System.Exception). The allowed IL inside a filter block is tightly controlled; you aren't allowed branches outside the block, rethrow instructions, and other exception handling clauses. You can, however, use call and callvirt instructions to call other methods. Filter block logic To demonstrate filter block logic, in this example I'm filtering on whether there's a particular key in the Data dictionary of the thrown exception: .try { // try block } filter { // Filter starts with exception object on stack // C# code: ((Exception)e).Data.Contains("MyExceptionDataKey") // only execute handler if Contains returns true castclass [mscorlib]System.Exception callvirt instance class [mscorlib]System.Collections.IDictionary [mscorlib]System.Exception::get_Data() ldstr "MyExceptionDataKey" callvirt instance bool [mscorlib]System.Collections.IDictionary::Contains(object) endfilter }{ // filter handler // Also starts off with exception object on stack callvirt instance string [mscorlib]System.Object::ToString() call void [mscorlib]System.Console::WriteLine(string) } Conclusion Filter exception handlers are another exception handler type that isn't accessible from C#, however, just like fault handlers, the behaviour can be replicated using a normal catch block: try { // try block } catch (Exception e) { if (!FilterLogic(e)) throw; // handler logic } So, it's not that great a loss, but it's still annoying that this functionality isn't directly accessible. Well, every feature starts off with minus 100 points, so it's understandable why something like this didn't make it into the C# compiler ahead of a different feature.

    Read the article

  • Oracle Releases New Mainframe Re-Hosting in Oracle Tuxedo 11g

    - by Jason Williamson
    I'm excited to say that we've released our next generation of Re-hosting in 11g. In fact I'm doing some hands-on labs now for our Systems Integrators in Italy in a couple of weeks and targeting Latin America next month. If you are an SI, or Rehosting firm and are looking to become an Oracle Partner or get a better understanding of Tuxedo and how to use the workbench for rehosting...drop me a line. Oracle Tuxedo Application Runtime for CICS and Batch 11g provides a CICS API emulation and Batch environment that exploits the full range of Oracle Tuxedo's capabilities. Re-hosted applications run in a multi-node, grid environment with centralized production control. Also, enterprise integration of CICS application services benefits from an open and SOA-enabled framework. Key features include: CICS Application Runtime: Can run IBM CICS applications unchanged in an application grid, which enables the distribution of large workloads across multiple processors and nodes. This simplifies CICS administration and can scale to over 100,000 users and over 50,000 transactions per second. 3270 Terminal Server: Protects business users from change through support for tn3270 terminal emulation. Distributed CICS Resource Management: Simplifies deployment and administration by allowing customers to run CICS regions in a distributed configuration. Batch Application Runtime: Provides robust IBM JES-like job management that enables local or remote job submissions. In addition, distributed batch initiators can enable parallelization of jobs and support fail-over, shortening the batch window and helping to meet stringent SLAs. Batch Execution Environment: Helps to run IBM batch unchanged and also supports JCL functionality and all common batch utilities. Oracle Tuxedo Application Rehosting Workbench 11g provides a set of automated migration tools integrated around a central repository. The tools provide high precision which results in very low error rates and the ability to handle large applications. This enables less expensive, low-risk migration projects. Key capabilities include: Workbench Repository and Cataloguer: Ensures integrity of the migrated application assets through full dependency checking. The Cataloguer generates and maintains all relevant meta-data on source and target components. File Migrator: Supports reliable migration of datasets and flat files to an ISAM or Oracle Database 11g. This is done through the automated migration utilities for data unloading, reloading and validation. It also generates logical access functions to shield developers from data repository changes. DB2 Migrator: Similarly, this tool automates the migration of DB2 schema and data to Oracle Database 11g. COBOL Migrator: Supports migration of IBM mainframe COBOL assets (OLTP and Batch) to open systems. Adapts programs for compiler dialects and data access variations. JCL Migrator: Supports migration of IBM JCL jobs to a Tuxedo ART environment, maintaining the flow and characteristics of batch jobs.

    Read the article

  • Is there a better term than "smoothness" or "granularity" to describe this language feature?

    - by Chris Stevens
    One of the best things about programming is the abundance of different languages. There are general purpose languages like C++ and Java, as well as little languages like XSLT and AWK. When comparing languages, people often use things like speed, power, expressiveness, and portability as the important distinguishing features. There is one characteristic of languages I consider to be important that, so far, I haven't heard [or been able to come up with] a good term for: how well a language scales from writing tiny programs to writing huge programs. Some languages make it easy and painless to write programs that only require a few lines of code, e.g. task automation. But those languages often don't have enough power to solve large problems, e.g. GUI programming. Conversely, languages that are powerful enough for big problems often require far too much overhead for small problems. This characteristic is important because problems that look small at first frequently grow in scope in unexpected ways. If a programmer chooses a language appropriate only for small tasks, scope changes can require rewriting code from scratch in a new language. And if the programmer chooses a language with lots of overhead and friction to solve a problem that stays small, it will be harder for other people to use and understand than necessary. Rewriting code that works fine is the single most wasteful thing a programmer can do with their time, but using a bazooka to kill a mosquito instead of a flyswatter isn't good either. Here are some of the ways this characteristic presents itself. Can be used interactively - there is some environment where programmers can enter commands one by one Requires no more than one file - neither project files nor makefiles are required for running in batch mode Can easily split code across multiple files - files can refeence each other, or there is some support for modules Has good support for data structures - supports structures like arrays, lists, and especially classes Supports a wide variety of features - features like networking, serialization, XML, and database connectivity are supported by standard libraries Here's my take on how C#, Python, and shell scripting measure up. Python scores highest. Feature C# Python shell scripting --------------- --------- --------- --------------- Interactive poor strong strong One file poor strong strong Multiple files strong strong moderate Data structures strong strong poor Features strong strong strong Is there a term that captures this idea? If not, what term should I use? Here are some candidates. Scalability - already used to decribe language performance, so it's not a good idea to overload it in the context of language syntax Granularity - expresses the idea of being good just for big tasks versus being good for big and small tasks, but doesn't express anything about data structures Smoothness - expresses the idea of low friction, but doesn't express anything about strength of data structures or features Note: Some of these properties are more correctly described as belonging to a compiler or IDE than the language itself. Please consider these tools collectively as the language environment. My question is about how easy or difficult languages are to use, which depends on the environment as well as the language.

    Read the article

  • Does using GCC specific builtins qualify as incorporation within a project?

    - by DavidJFelix
    I understand that linking to a program licensed under the GPL requires that you release the source of your program under the GPL as well, while the LGPL does not require this. The terminology of the (L)GPL is very clear about this. #include "gpl_program.h" means you'd have to license GPL, because you're linking to GPL licensed code. And #include "lgpl_program.h" means you're free to license however you want, so that it doesn't explicitly prohibit linking to LGPL source. Now, my question about what isn't clear is: [begin question] GCC is GPL licensed, compiling with GCC, does not constitute "integration" into your program, as the GPL puts it; does using builtin functions (which are specific to GCC) constitute "incorporation" even though you haven't explicitly linked to this GPL licensed code? My intuition tells me that this isn't the intention, but legality isn't always intuitive. I'm not actually worried, but I'm curious if this could be considered the case. [end question] [begin aside] The reason for my equivocation is that GCC builtins like __builtin_clzl() or __builtin_expect() are an API technically and could be implemented in another way. For example, many builtins were replicated by LLVM and the argument could be made that it's not implementation specific to GCC. However, many builtins have no parallel and when compiled will link GPL licensed code in GCC and will not compile on other compilers. If you make the argument here that the API could be replicated by another compiler, couldn't you make that identical claim about any program you link to, so long as you don't distribute that source? I understand that I'm being a legal snake about this, but it strikes me as odd that the GPL isn't more specific. I don't see this as a reasonable ploy for proprietary software creators to bypass the GPL, as they'd have to bundle the GPL software to make it work, removing their plausible deniability. However, isn't it possible that if builtins don't constitute linking, then open source proponents who oppose the GPL could simply write a BSD/MIT/Apache/Apple licensed product that links to a GPL'd program and claim that they intend to write a non-GPL interface that is identical to the GPL one, preserving their BSD license until it's actually compiled? [end aside] Sorry for the aside, I didn't think many people would follow why I care about this if I'm not facing any legal trouble or implications. Don't worry too much about the hypotheticals there, I'm just extrapolating what either answer to my actual question could imply.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Cross-platform independent development

    - by Joe Wreschnig
    Some years ago, if you wrote in C and some subset of C++ and used a sufficient number of platform abstractions (via SDL or whatever), you could run on every platform an indie could get on - Linux, Windows, Mac OS of various versions, obscure stuff like BeOS, and the open consoles like the GP2X and post-death Dreamcast. If you got a contract for a closed platform at some point, you could port your game to that platform with "minimal" code changes as well. Today, indie developers must use XNA to get on the Xbox 360 (and upcoming Windows phone); must not use XNA to work anywhere else but Windows; until recently had to use Java on Android; Flash doesn't run on phones, HTML5 doesn't work on IE. Unlike e.g. DirectX vs. OpenGL or Windows vs. Unix, these are changes to the core language you write your code in and can't be papered over without, basically, writing a compiler. You can move some game logic into scripts and include an interpreter - except when you can't, because the iPhone SDK doesn't allow it, and performance suffers because no one allows JIT. So what can you do if you want a really cross-platform portable game, or even just a significant body of engine and logic code? Is this not a problem because the platforms have fundamentally diverged - it's just plain not worthwhile to try to target both an iPhone and the Xbox 360 with any shared code because such a game would be bad? (I find this very unlikely. I can easily see wanting to share a game between a Windows Mobile phone and an Android, or an Xbox 360 and an iPad.) Are interfaces so high-level now that porting time is negligible? (I might believe this for business applications, but not for games with strict performance requirements.) Is this going to become more pronounced in the future? Is the split going to be, somewhat scarily, still down vendor lines? Will we all rely on high-level middleware like Flash or Unity to get anything cross-platform done? tl;dr - Is porting a problem, is it going to be a bigger problem in the future, and if so how do we solve it?

    Read the article

< Previous Page | 128 129 130 131 132 133 134 135 136 137 138 139  | Next Page >