Search Results

Search found 13151 results on 527 pages for 'performance counters'.

Page 132/527 | < Previous Page | 128 129 130 131 132 133 134 135 136 137 138 139  | Next Page >

  • Simple Self Join Query Bad Performance

    - by user1514042
    Could anyone advice on how do I improve the performance of the following query. Note, the problem seems to be caused by where clause. Data (table contains a huge set of rows - 500K+, the set of parameters it's called with assums the return of 2-5K records per query, which takes 8-10 minutes currently): USE [SomeDb] GO SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE TABLE [dbo].[Data]( [x] [money] NOT NULL, [y] [money] NOT NULL, CONSTRAINT [PK_Data] PRIMARY KEY CLUSTERED ( [x] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] GO The Query select top 10000 s.x as sx, e.x as ex, s.y as sy, e.y as ey, e.y - s.y as y_delta, e.x - s.x as x_delta from Data s inner join Data e on e.x > s.x and e.x - s.x between xFrom and xTo --where e.y - s.y > @yDelta -- when uncommented causes a huge delay Update 1 - Execution Plan <?xml version="1.0" encoding="utf-16"?> <ShowPlanXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" Version="1.2" Build="11.0.2100.60" xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"> <BatchSequence> <Batch> <Statements> <StmtSimple StatementCompId="1" StatementEstRows="100" StatementId="1" StatementOptmLevel="FULL" StatementOptmEarlyAbortReason="GoodEnoughPlanFound" StatementSubTreeCost="0.0263655" StatementText="select top 100&#xD;&#xA;s.x as sx,&#xD;&#xA;e.x as ex,&#xD;&#xA;s.y as sy,&#xD;&#xA;e.y as ey,&#xD;&#xA;e.y - s.y as y_delta,&#xD;&#xA;e.x - s.x as x_delta&#xD;&#xA;from Data s &#xD;&#xA; inner join Data e&#xD;&#xA; on e.x &gt; s.x and e.x - s.x between 100 and 105&#xD;&#xA;where e.y - s.y &gt; 0.01&#xD;&#xA;" StatementType="SELECT" QueryHash="0xAAAC02AC2D78CB56" QueryPlanHash="0x747994153CB2D637" RetrievedFromCache="true"> <StatementSetOptions ANSI_NULLS="true" ANSI_PADDING="true" ANSI_WARNINGS="true" ARITHABORT="true" CONCAT_NULL_YIELDS_NULL="true" NUMERIC_ROUNDABORT="false" QUOTED_IDENTIFIER="true" /> <QueryPlan DegreeOfParallelism="0" NonParallelPlanReason="NoParallelPlansInDesktopOrExpressEdition" CachedPlanSize="24" CompileTime="13" CompileCPU="13" CompileMemory="424"> <MemoryGrantInfo SerialRequiredMemory="0" SerialDesiredMemory="0" /> <OptimizerHardwareDependentProperties EstimatedAvailableMemoryGrant="52199" EstimatedPagesCached="14561" EstimatedAvailableDegreeOfParallelism="4" /> <RelOp AvgRowSize="55" EstimateCPU="1E-05" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Compute Scalar" NodeId="0" Parallel="false" PhysicalOp="Compute Scalar" EstimatedTotalSubtreeCost="0.0263655"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> <ColumnReference Column="Expr1004" /> <ColumnReference Column="Expr1005" /> </OutputList> <ComputeScalar> <DefinedValues> <DefinedValue> <ColumnReference Column="Expr1004" /> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[y] as [e].[y]-[SomeDb].[dbo].[Data].[y] as [s].[y]"> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> </DefinedValue> <DefinedValue> <ColumnReference Column="Expr1005" /> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x]"> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> </DefinedValue> </DefinedValues> <RelOp AvgRowSize="39" EstimateCPU="1E-05" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Top" NodeId="1" Parallel="false" PhysicalOp="Top" EstimatedTotalSubtreeCost="0.0263555"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="1" ActualExecutions="1" /> </RunTimeInformation> <Top RowCount="false" IsPercent="false" WithTies="false"> <TopExpression> <ScalarOperator ScalarString="(100)"> <Const ConstValue="(100)" /> </ScalarOperator> </TopExpression> <RelOp AvgRowSize="39" EstimateCPU="151828" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Inner Join" NodeId="2" Parallel="false" PhysicalOp="Nested Loops" EstimatedTotalSubtreeCost="0.0263455"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="0" ActualExecutions="1" /> </RunTimeInformation> <NestedLoops Optimized="false"> <OuterReferences> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OuterReferences> <RelOp AvgRowSize="23" EstimateCPU="1.80448" EstimateIO="3.76461" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="1" LogicalOp="Clustered Index Scan" NodeId="3" Parallel="false" PhysicalOp="Clustered Index Scan" EstimatedTotalSubtreeCost="0.0032831" TableCardinality="1640290"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="15225" ActualEndOfScans="0" ActualExecutions="1" /> </RunTimeInformation> <IndexScan Ordered="false" ForcedIndex="false" ForceScan="false" NoExpandHint="false"> <DefinedValues> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </DefinedValue> </DefinedValues> <Object Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Index="[PK_Data]" Alias="[e]" IndexKind="Clustered" /> </IndexScan> </RelOp> <RelOp AvgRowSize="23" EstimateCPU="0.902317" EstimateIO="1.88387" EstimateRebinds="1" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Clustered Index Seek" NodeId="4" Parallel="false" PhysicalOp="Clustered Index Seek" EstimatedTotalSubtreeCost="0.0263655" TableCardinality="1640290"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="15224" ActualExecutions="15225" /> </RunTimeInformation> <IndexScan Ordered="true" ScanDirection="FORWARD" ForcedIndex="false" ForceSeek="false" ForceScan="false" NoExpandHint="false" Storage="RowStore"> <DefinedValues> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </DefinedValue> </DefinedValues> <Object Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Index="[PK_Data]" Alias="[s]" IndexKind="Clustered" /> <SeekPredicates> <SeekPredicateNew> <SeekKeys> <EndRange ScanType="LT"> <RangeColumns> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[x] as [e].[x]"> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> </RangeExpressions> </EndRange> </SeekKeys> </SeekPredicateNew> </SeekPredicates> <Predicate> <ScalarOperator ScalarString="([SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x])&gt;=($100.0000) AND ([SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x])&lt;=($105.0000) AND ([SomeDb].[dbo].[Data].[y] as [e].[y]-[SomeDb].[dbo].[Data].[y] as [s].[y])&gt;(0.01)"> <Logical Operation="AND"> <ScalarOperator> <Compare CompareOp="GE"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="($100.0000)" /> </ScalarOperator> </Compare> </ScalarOperator> <ScalarOperator> <Compare CompareOp="LE"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="($105.0000)" /> </ScalarOperator> </Compare> </ScalarOperator> <ScalarOperator> <Compare CompareOp="GT"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="(0.01)" /> </ScalarOperator> </Compare> </ScalarOperator> </Logical> </ScalarOperator> </Predicate> </IndexScan> </RelOp> </NestedLoops> </RelOp> </Top> </RelOp> </ComputeScalar> </RelOp> </QueryPlan> </StmtSimple> </Statements> </Batch> </BatchSequence> </ShowPlanXML>

    Read the article

  • StringBuilder/StringBuffer vs. "+" Operator

    - by matt.seil
    I'm reading "Better, Faster, Lighter Java" (by Bruce Tate and Justin Gehtland) and am familiar with the readability requirements in agile type teams, such as what Robert Martin discusses in his clean coding books. On the team I'm on now, I've been told explicitly not to use the "+" operator because it creates extra (and unnecessary) string objects during runtime. But this article: http://www.ibm.com/developerworks/java/library/j-jtp01274.html Written back in '04 talks about how object allocation is about 10 machine instructions. (essentially free) It also talks about how the GC also helps to reduce costs in this environment. What is the actual performance tradeoffs between using "+," "StringBuilder," or "StringBuffer?" (In my case it is StringBuffer only as we are limited to Java 1.4.2.) StringBuffer to me results in ugly, less readable code, as a couple of examples in Tate's book demonstrates. And StringBuffer is thread-synchronized which seems to have its own costs that outweigh the "danger" in using the "+" operator. Thoughts/Opinions?

    Read the article

  • Pros and cons of sorting data in DB?

    - by Roman
    Let's assume I have a table with field of type VARCHAR. And I need to get data from that table sorted alphabetically by that field. What is the best way (for performance): add sort by field to the SQL-query or sort the data when it's already fetched? I'm using Java (with Hibernate), but I can't tell anything about DB engine. It could be any popular relational database (like MySQL or MS Sql Server or Oracle or HSQL DB or any other). The amount of records in table can vary greatly but let's assume there are 5k records.

    Read the article

  • Managing StringBuilder Resources in C#

    - by Jim Fell
    Hello. My C# (.NET 2.0) application has a StringBuilder variable with a capacity of 2.5MB. Obviously, I do not want to copy such a large buffer to a larger buffer space every time it fills. By that point, there is so much data in the buffer anyways, removing the older data is a viable option. Can anyone see any obvious problems with how I'm doing this (i.e. am I introducing more performance problems than I'm solving), or does it look okay? tText_c = new StringBuilder(2500000, 2500000); private void AppendToText(string text) { if (tText_c.Length * 100 / tText_c.Capacity > 95) { tText_c.Remove(0, tText_c.Length / 2); } tText_c.Append(text); } Thanks.

    Read the article

  • Is this a valid benefit of using embedded SQL over stored procedures?

    - by George
    Here's an argument for SPs that I haven't heard. Flamers, be gentle with the down tick, Since there is overhead associated with each trip to the database server, I would suggest that a POSSIBLE reason for placing your SQL in SPs over embedded code is that you are more insulated to change without taking a performance hit. For example. Let's say you need to perform Query A that returns a scalar integer. Then, later, the requirements change and you decide that it the results of the scalar is x that then, and only then, you need to perform another query. If you performed the first query in a SP, you could easily check the result of the first query and conditionally execute the 2nd SQL in the same SP. How would you do this efficiently in embedded SQL w/o perform a separate query or an unnecessary query? Here's an example: --This SP may return 1 or two queries. SELECT @CustCount = COUNT(*) FROM CUSTOMER IF @CustCount 10 SELECT * FROM PRODUCT Can this/what is the best way to do this in embedded SQL?

    Read the article

  • How can I optimize MVC and IIS pipeline to obtain higher speed?

    - by Andy
    Hi, I am doing performance tweaking of a simple app that uses MVC on IIS 7.5. I have a StopWatch starting up in Application_BeginRequest and I take a snapshot at Controller.OnActionExecuting. So I measure the time spend in the entire IIS pipeline: from request receipt to the moment execution finally gets to my controller. I obtain 700 microseconds on my 3GHz quad-core (project compiled Release x64), and I wonder where the bottleneck is, especially hearing some people say that one can get up to 8000 page loads per second with MVC. How can I optimize MVC and IIS pipeline to obtain higher speed?

    Read the article

  • Speed-up of readonly MyISAM table

    - by Ozzy
    We have a large MyISAM table that is used to archive old data. This archiving is performed every month, and except from these occasions data is never written to the table. Is there anyway to "tell" MySQL that this table is read-only, so that MySQL might optimize the performance of reads from this table? I've looked at the MEMORY storage engine, but the problem is that this table is so large that it would take a large portion of the servers memory, which I don't want. Hope my question is clear enough, I'm a novice when it comes to db administration so any input or suggestions are welcome.

    Read the article

  • Temporary intermediate table

    - by user289429
    In our project to generate massive reports in oracle we use some permanent table to hold intermediate results. For example to generate one report we run few queries and populate the table, at the final step we join the intermediate table with huge application tables. These intermediate tables are cleared for next report run. We have few concerns in performance areas. These intermediate tables are transactional and don't have statistics. Is it good idea to join these with application tables which are partitioned and have up to date statistics. We need these results stored in the intermediate tables to be available across requests from UI hence we are not in a position to use oracle provided temporary tables. Any thoughts on what could be done would be appreciated.

    Read the article

  • MongoDB efficient dealing with embedded documents

    - by Sebastian Nowak
    I have serious trouble finding anything useful in Mongo documentation about dealing with embedded documents. Let's say I have a following schema: { _id: ObjectId, ... data: [ { _childId: ObjectId // let's use custom name so we can distinguish them ... } ] } What's the most efficient way to remove everything inside data for particular _id? What's the most efficient way to remove embedded document with particular _childId inside given _id? What's the performance here, can _childId be indexed in order to achieve logarithmic (or similar) complexity instead of linear lookup? If so, how? What's the most efficient way to insert a lot of (let's say a 1000) documents into data for given _id? And like above, can we get O(n log n) or similar complexity with proper indexing? What's the most efficient way to get the count of documents inside data for given _id?

    Read the article

  • When calling CRUD check if "parent" exists with read or join?

    - by Trick
    All my entities can not be deleted - only deactivated, so they don't appear in any read methods (SELECT ... WHERE active=TRUE). Now I have some 1:M tables on this entities on which all CRUD operations can be executed. What is more efficient or has better performance? My first solution: To add to all CRUD operations: UPDATE ... JOIN entity e ... WHERE e.active=TRUE My second solution: Before all CRUD operations check if entity is active: if (getEntity(someId) != null) { //do some CRUD } In getEntity there's just SELECT * FROM entity WHERE id=? AND active=TRUE. Or any other solution, recommendation,...?

    Read the article

  • DataReader or DataSet when pulling multiple recordsets in ASP.NET

    - by Gern Blandston
    I've got an ASP.NET page that has a bunch of controls that need to be populated (e.g. dropdown lists). I'd like to make a single trip to the db and bring back multiple recordsets instead of making a round-trip for each control. I could bring back multiple tables in a DataSet, or I could bring back a DataReader and use '.NextResult' to put each result set into a custom business class. Will I likely see a big enough performance advantage using the DataReader approach, or should I just use the DataSet approach? Any examples of how you usually handle this would be appreciated.

    Read the article

  • How to keep Hibernate mapping use under control as requirements grow

    - by David Plumpton
    I've worked on a number of Java web apps where persistence is via Hibernate, and we start off with some central class (e.g. an insurance application) without any time being spent considering how to break things up into manageable chunks. Over time as features are added we add more mappings (rates, clients, addresses, etc.) and then amount of time spent saving and loading an insurance object and everything it connects to grows. In particular you get close to a go-live date and performance testing with larger amounts of data in each table is starting to demonstrate that it's all too slow. Obviously there are a number of ways that we could attempt to partition things up, e.g. map only the client classes for the client CRUD screens, etc., which would have been better to get in place earlier rather than trying to work it in at the end of the dev cycle. I'm just wondering if there are recommendations about ways to handle/mitigate this.

    Read the article

  • In .NET which loop runs faster for or foreach

    - by Binoj Antony
    In c#/VB.NET/.NET which loop runs faster for or foreach? Ever since I read that for loop works faster than foreach a long time ago I assumed it stood true for all collections, generic collection all arrays etc. I scoured google and found few articles but most of them are inconclusive (read comments on the articles) and open ended. What would be ideal is to have each scenarios listed and the best solution for the same e.g: (just example of how it should be) for iterating an array of 1000+ strings - for is better than foreach for iterating over IList (non generic) strings - foreach is better than for Few references found on the web for the same: Original grand old article by Emmanuel Schanzer CodeProject FOREACH Vs. FOR Blog - To foreach or not to foreach that is the question asp.net forum - NET 1.1 C# for vs foreach [Edit] Apart from the readability aspect of it I am really interested in facts and figures, there are applications where the last mile of performance optimization squeezed do matter.

    Read the article

  • Why do a small amount of add/deletes take several seconds in EF4?

    - by TomWij
    Using the Entity Framework 4. I have created a Code First database in the past and a piece of code needs to delete and add 16 objects, this takes 6 seconds each. That's 300+ ms for each query! The deletes/adds occur in a foreach scope and there is a SaveChanges() outside the foreach. In the above image you see that each takes 6 seconds, which is 34% of the time, for 16 calls. That doesn't sound normal to me... Why is this and how can I improve the performance? If there is no solution: Are there any workarounds I can use? It would be a pain to rewrite my project...

    Read the article

  • need for tcp fine-tuning on heavily used proxy server

    - by Vijay Gharge
    Hi all, I am using squid like Internet proxy server on RHEL 4 update 6 & 8 with quite heavy load i.e. 8k established connections during peak hour. Without depending much on application provider's expertise I want to achieve maximum o/p from linux. W.r.t. that I have certain questions as following: How to find out if there is scope for further tcp fine-tuning (without exhausting available resources) as the benchmark values given by vendor looks poor! Is there any parameter value that is available from OS / network stack that will show me the results. If at all there is scope, how shall I identify & configure OS tcp stack parameters i.e. using sysctl or any specific parameter Post tuning how shall I clearly measure performance enhancement / degradation ?

    Read the article

  • in java, which is better - three arrays of booleans or 1 array of bytes?

    - by joe_shmoe
    I know the question sounds silly, but consider this: I have an array of items and a labelling algorithm. at any point the item is in one of three states. The current version holds these states in a byte array, where 0, 1 and 2 represent the three states. alternatively, I could have three arrays of boolean - one for each state. which is better (consumes less memory) depends on how jvm (sun's version) stores the arrays - is a boolean represented by 1 bit? (p.s. don't start with all that "this is not the way OO/Java works" - I know, but here performance comes in front. plus the algorithm is simple and perfectly readable even in such form). Thanks a lot

    Read the article

  • C sharp: read last "n" lines of log file

    - by frictionlesspulley
    need a snippet of code which would read out last "n lines" of a log file. I came up with the following code from the net.I am kinda new to C sharp. Since the log file might be quite large, I want to avoid overhead of reading the entire file.Can someone suggest any performance enhancement. I do not really want to read each character and change position. var reader = new StreamReader(filePath, Encoding.ASCII); reader.BaseStream.Seek(0, SeekOrigin.End); var count = 0; while (count <= tailCount) { if (reader.BaseStream.Position <= 0) break; reader.BaseStream.Position--; int c = reader.Read(); if (reader.BaseStream.Position <= 0) break; reader.BaseStream.Position--; if (c == '\n') { ++count; } } var str = reader.ReadToEnd();

    Read the article

  • Use of private constructor to prevent instantiation of class?

    - by cringe
    Hi guys! Right now I'm thinking about adding a private constructor to a class that only holds some String constants. public class MyStrings { // I want to add this: private MyString() {} public static final String ONE = "something"; public static final String TWO = "another"; ... } Is there any performance or memory overhead if I add a private constructor to this class to prevent someone to instantiate it? Do you think it's necessary at all or that private constructors for this purpose are a waste of time and code clutter?

    Read the article

  • Minimizing Java Thread Context Switching Overhead

    - by binil
    I have a Java application running on Sun 1.6 32-bit VM/Solaris 10 (x86)/Nahelem 8-core(2 threads per core). A specific usecase in the application is to respond to some external message. In my performance test environment, when I prepare and send the response in the same thread that receives the external input, I get about 50 us advantage than when I hand off the message to a separate thread to send the response. I use a ThreadPoolExecutor with a SynchronousQueue to do the handoff. In your experience what is the acceptable delay between scheduling a task to a thread pool and it getting picked up for execution? What ideas had worked for you in the past to try improve this?

    Read the article

  • Multiple calculations on the same set of data: ruby or database?

    - by Pierre
    Hi, I have a model Transaction for which I need to display the results of many calculations on many fields for a subset of transactions. I've seen 2 ways to do it, but am not sure which is the best. I'm after the one that will have the least impact in terms of performance when data set grows and number of concurrent users increases. data[:total_before] = Transaction.where(xxx).sum(:amount_before) data[:total_after] = Transaction.where(xxx).sum(:amount_after) ... or transactions = Transaction.where(xxx) data[:total_before]= transactions.inject(0) {|s, e| s + e.amount_before } data[:total_after]= transactions.inject(0) {|s, e| s + e.amount_after } ... Which one should I choose? (or is there a 3rd, better way?) Thanks, P.

    Read the article

  • MySQL: Efficient Blobbing?

    - by feklee
    I'm dealing with blobs of up to - I estimate - about 100 kilo bytes in size. The data is compressed already. Storage engine: InnoDB on MySQL 5.1 Frontend: PHP (Symfony with Propel ORM) Some questions: I've read somewhere that it's not good to update blobs, because it leads to reallocation, fragmentation, and thus bad performance. Is that true? Any reference on this? Initially the blobs get constructed by appending data chunks. Each chunk is up to 16 kilo bytes in size. Is it more efficient to use a separate chunk table instead, for example with fields as below? parent_id, position, chunk Then, to get the entire blob, one would do something like: SELECT GROUP_CONCAT(chunk ORDER BY position) FROM chunks WHERE parent_id = 187 The result would be used in a PHP script. Is there any difference between the types of blobs, aside from the size needed for meta data, which should be negligible.

    Read the article

  • CoreData and many NSArrayController

    - by unixo
    In my CoreData Application, I've an outline view on left of main window, acting as source list (like iTunes); on the right I display a proper view, based on outline selection. Each view has its components, such as table view, connected to array controller, owned by the specific view. Very often different views display same data, for example, a table view of the same entity. From a performance point of view, is better to have a single array controller per entity and share it between all views or does CoreData cache avoid memory waste?

    Read the article

  • Anyone Know a Great Sparse One Dimensional Array Library in Python?

    - by TheJacobTaylor
    I am working on an algorithm in Python that uses arrays heavily. The arrays are typically sparse and are read from and written to constantly. I am currently using relatively large native arrays and the performance is good but the memory usage is high (as expected). I would like to be able to have the array implementation not waste space for values that are not used and allow an index offset other than zero. As an example, if my numbers start at 1,000,000 I would like to be able to index my array starting at 1,000,000 and not be required to waste memory with a million unused values. Array reads and writes needs to be fast. Expanding into new territory can be a small delay but reads and writes should be O(1) if possible. Does anybody know of a library that can do it? Thanks!

    Read the article

  • Is memcached a dinosaur in comparison to Redis?

    - by Industrial
    Hi everyone, I have worked quite a bit with memcached the last weeks and just found out about Redis. When I read this part of their readme, I suddenly got a warm, cozy feeling in my stomach: Redis can be used as a memcached on steroids because is as fast as memcached but with a number of features more. Like memcached, Redis also supports setting timeouts to keys so that this key will be automatically removed when a given amount of time passes. This sounds amazing. I'd also found this page with benchmarks: http://www.ruturaj.net/redis-memcached-tokyo-tyrant-mysql-comparison So, honestly - Is memcache really that old dinousaur that is a bad choice from a performance perspective when compared to this newcomer called Redis? I haven't heard lot about Redis previously, thereby the approach for my question!

    Read the article

  • Same address, multiple shared_ptr counters, is it forbidden by C++ standard?

    - by icando
    Suppose I have some needs to do the following (This is just some imaginative code for discussion of the C++ standard, thus I won't discuss why I design it this way, so don't bother me something like: your design is wrong.) T* ptr = new T; shared_ptr<T> p(ptr); shared_ptr<T> q(ptr, SomeDeleterThatDoesnotDeleteButDoSomeOtherStuff()); Suppose the logic guarantees that p or some of its copies lives longer than any copies of q, so practically there won't be any problem. My question is, is it forbidden by C++ standard, e.g. explicitly stated as UB by C++ standard, that different shared_ptr counters share the same address? Thanks.

    Read the article

< Previous Page | 128 129 130 131 132 133 134 135 136 137 138 139  | Next Page >