Search Results

Search found 3371 results on 135 pages for 'compare'.

Page 134/135 | < Previous Page | 130 131 132 133 134 135  | Next Page >

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • How to create Custom ListForm WebPart

    - by DipeshBhanani
    Mostly all who works extensively on SharePoint (including meJ) don’t like to use out-of-box list forms (DispForm.aspx, EditForm.aspx, NewForm.aspx) as interface. Actually these OOB list forms bind hands of developers for the customization. It gives headache to developers to add just one post back event, for a dropdown field and to populate other fields in NewForm.aspx or EditForm.aspx. On top of that clients always ask such stuff. So here I am going to give you guys a flight for SharePoint Customization world. In this blog, I will explain, how to create CustomListForm WebPart. In my next blogs, I am going to explain easy deployment of List Forms through features and last, guidance on using SharePoint web controls. 1.       First thing, create a class library project through Visual Studio and inherit the class with WebPart class.     public class CustomListForm : WebPart   2.       Declare the public variables and properties which we are going to use throughout the class. You will get to know these once you see them in use.         #region "Variable Declaration"           Table spTableCntl;         FormToolBar formToolBar;         Literal ltAlertMessage;         Guid SiteId;         Guid ListId;         int ItemId;         string ListName;           #endregion           #region "Properties"           SPControlMode _ControlMode = SPControlMode.New;         [Personalizable(PersonalizationScope.Shared),          WebBrowsable(true),          WebDisplayName("Control Mode"),          WebDescription("Set Control Mode"),          DefaultValue(""),          Category("Miscellaneous")]         public SPControlMode ControlMode         {             get { return _ControlMode; }             set { _ControlMode = value; }         }           #endregion     The property “ControlMode” is used to identify the mode of the List Form. The property is of type SPControlMode which is an enum type with values (Display, Edit, New and Invalid). When we will add this WebPart to DispForm.aspx, EditForm.aspx and NewForm.aspx, we will set the WebPart property “ControlMode” to Display, Edit and New respectively.     3.       Now, we need to override the CreateChildControl method and write code to manually add SharePoint Web Controls related to each list fields as well as ToolBar controls.         protected override void CreateChildControls()         {             base.CreateChildControls();               try             {                 SiteId = SPContext.Current.Site.ID;                 ListId = SPContext.Current.ListId;                 ListName = SPContext.Current.List.Title;                   if (_ControlMode == SPControlMode.Display || _ControlMode == SPControlMode.Edit)                     ItemId = SPContext.Current.ItemId;                   SPSecurity.RunWithElevatedPrivileges(delegate()                 {                     using (SPSite site = new SPSite(SiteId))                     {                         //creating a new SPSite with credentials of System Account                         using (SPWeb web = site.OpenWeb())                         {                               //<Custom Code for creating form controls>                         }                     }                 });             }             catch (Exception ex)             {                 ShowError(ex, "CreateChildControls");             }         }   Here we are assuming that we are developing this WebPart to plug into List Forms. Hence we will get the List Id and List Name from the current context. We can have Item Id only in case of Display and Edit Mode. We are putting our code into “RunWithElevatedPrivileges” to elevate privileges to System Account. Now, let’s get deep down into the main code and expand “//<Custom Code for creating form controls>”. Before initiating any SharePoint control, we need to set context of SharePoint web controls explicitly so that it will be instantiated with elevated System Account user. Following line does the job.     //To create SharePoint controls with new web object and System Account credentials     SPControl.SetContextWeb(Context, web);   First thing, let’s add main table as container for all controls.     //Table to render webpart     Table spTableMain = new Table();     spTableMain.CellPadding = 0;     spTableMain.CellSpacing = 0;     spTableMain.Width = new Unit(100, UnitType.Percentage);     this.Controls.Add(spTableMain);   Now we need to add Top toolbar with Save and Cancel button at top as you see in the below screen shot.       // Add Row and Cell for Top ToolBar     TableRow spRowTopToolBar = new TableRow();     spTableMain.Rows.Add(spRowTopToolBar);     TableCell spCellTopToolBar = new TableCell();     spRowTopToolBar.Cells.Add(spCellTopToolBar);     spCellTopToolBar.Width = new Unit(100, UnitType.Percentage);         ToolBar toolBarTop = (ToolBar)Page.LoadControl("/_controltemplates/ToolBar.ascx");     toolBarTop.CssClass = "ms-formtoolbar";     toolBarTop.ID = "toolBarTbltop";     toolBarTop.RightButtons.SeparatorHtml = "<td class=ms-separator> </td>";       if (_ControlMode != SPControlMode.Display)     {         SaveButton btnSave = new SaveButton();         btnSave.ControlMode = _ControlMode;         btnSave.ListId = ListId;           if (_ControlMode == SPControlMode.New)             btnSave.RenderContext = SPContext.GetContext(web);         else         {             btnSave.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);             btnSave.ItemId = ItemId;         }         toolBarTop.RightButtons.Controls.Add(btnSave);     }       GoBackButton goBackButtonTop = new GoBackButton();     toolBarTop.RightButtons.Controls.Add(goBackButtonTop);     goBackButtonTop.ControlMode = SPControlMode.Display;       spCellTopToolBar.Controls.Add(toolBarTop);   Here we have use “SaveButton” and “GoBackButton” which are internal SharePoint web controls for save and cancel functionality. I have set some of the properties of Save Button with if-else condition because we will not have Item Id in case of New Mode. Item Id property is used to identify which SharePoint List Item need to be saved. Now, add Form Toolbar to the page which contains “Attach File”, “Delete Item” etc buttons.       // Add Row and Cell for FormToolBar     TableRow spRowFormToolBar = new TableRow();     spTableMain.Rows.Add(spRowFormToolBar);     TableCell spCellFormToolBar = new TableCell();     spRowFormToolBar.Cells.Add(spCellFormToolBar);     spCellFormToolBar.Width = new Unit(100, UnitType.Percentage);       FormToolBar formToolBar = new FormToolBar();     formToolBar.ID = "formToolBar";     formToolBar.ListId = ListId;     if (_ControlMode == SPControlMode.New)         formToolBar.RenderContext = SPContext.GetContext(web);     else     {         formToolBar.RenderContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemContext = SPContext.GetContext(this.Context, ItemId, ListId, web);         formToolBar.ItemId = ItemId;     }     formToolBar.ControlMode = _ControlMode;     formToolBar.EnableViewState = true;       spCellFormToolBar.Controls.Add(formToolBar);     The ControlMode property will take care of which button to be displayed on the toolbar. E.g. “Attach files”, “Delete Item” in new/edit forms and “New Item”, “Edit Item”, “Delete Item”, “Manage Permissions” etc in display forms. Now add main section which contains form field controls.     //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       //Add a Blank Row with height of 5px to render space between ToolBar table and Control table     TableRow spRowLine1 = new TableRow();     spTableMain.Rows.Add(spRowLine1);     TableCell spCellLine1 = new TableCell();     spRowLine1.Cells.Add(spCellLine1);     spCellLine1.Height = new Unit(5, UnitType.Pixel);     spCellLine1.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       //Add Row and Cell for Form Controls Section     TableRow spRowCntl = new TableRow();     spTableMain.Rows.Add(spRowCntl);     TableCell spCellCntl = new TableCell();       //Create Form Field controls and add them in Table "spCellCntl"     CreateFieldControls(web);     //Add public variable "spCellCntl" containing all form controls to the page     spRowCntl.Cells.Add(spCellCntl);     spCellCntl.Width = new Unit(100, UnitType.Percentage);     spCellCntl.Controls.Add(spTableCntl);       TableRow spRowLine2 = new TableRow();     spTableMain.Rows.Add(spRowLine2);     TableCell spCellLine2 = new TableCell();     spRowLine2.Cells.Add(spCellLine2);     spCellLine2.CssClass = "ms-formline";     spCellLine2.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));       // Add Blank row with height of 5 pixel     TableRow spRowLine3 = new TableRow();     spTableMain.Rows.Add(spRowLine3);     TableCell spCellLine3 = new TableCell();     spRowLine3.Cells.Add(spCellLine3);     spCellLine3.Height = new Unit(5, UnitType.Pixel);     spCellLine3.Controls.Add(new LiteralControl("<IMG SRC='/_layouts/images/blank.gif' width=1 height=1 alt=''>"));   You can add bottom toolbar also to get same look and feel as OOB forms. I am not adding here as the blog will be much lengthy. At last, you need to write following lines to allow unsafe updates for Save and Delete button.     // Allow unsafe update on web for save button and delete button     if (this.Page.IsPostBack && this.Page.Request["__EventTarget"] != null         && (this.Page.Request["__EventTarget"].Contains("IOSaveItem")         || this.Page.Request["__EventTarget"].Contains("IODeleteItem")))     {         SPContext.Current.Web.AllowUnsafeUpdates = true;     }   So that’s all. We have finished writing Custom Code for adding field control. But something most important is skipped. In above code, I have called function “CreateFieldControls(web);” to add SharePoint field controls to the page. Let’s see the implementation of the function:     private void CreateFieldControls(SPWeb pWeb)     {         SPList listMain = pWeb.Lists[ListId];         SPFieldCollection fields = listMain.Fields;           //Main Table to render all fields         spTableCntl = new Table();         spTableCntl.BorderWidth = new Unit(0);         spTableCntl.CellPadding = 0;         spTableCntl.CellSpacing = 0;         spTableCntl.Width = new Unit(100, UnitType.Percentage);         spTableCntl.CssClass = "ms-formtable";           SPContext controlContext = SPContext.GetContext(this.Context, ItemId, ListId, pWeb);           foreach (SPField listField in fields)         {             string fieldDisplayName = listField.Title;             string fieldInternalName = listField.InternalName;               //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;               FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }               //Add row to display a field row             TableRow spCntlRow = new TableRow();             spTableCntl.Rows.Add(spCntlRow);               //Add the cells for containing field lable and control             TableCell spCellLabel = new TableCell();             spCellLabel.Width = new Unit(30, UnitType.Percentage);             spCellLabel.CssClass = "ms-formlabel";             spCntlRow.Cells.Add(spCellLabel);             TableCell spCellControl = new TableCell();             spCellControl.Width = new Unit(70, UnitType.Percentage);             spCellControl.CssClass = "ms-formbody";             spCntlRow.Cells.Add(spCellControl);               //Add the control to the table cells             spCellLabel.Controls.Add(fieldLabel);             spCellControl.Controls.Add(fieldControl);               //Add description if there is any in case of New and Edit Mode             if (_ControlMode != SPControlMode.Display && listField.Description != string.Empty)             {                 FieldDescription fieldDesc = new FieldDescription();                 fieldDesc.FieldName = fieldInternalName;                 fieldDesc.ListId = ListId;                 spCellControl.Controls.Add(fieldDesc);             }               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }         }         fields = null;     }   First of all, I have declared List object and got list fields in field collection object called “fields”. Then I have added a table for the container of all controls and assign CSS class as "ms-formtable" so that it gives consistent look and feel of SharePoint. Now it’s time to navigate through all fields and add them if required. Here we don’t need to add hidden or system fields. We also don’t want to display read-only fields in new and edit forms. Following lines does this job.             //Skip if the field is system field or hidden             if (listField.Hidden || listField.ShowInVersionHistory == false)                 continue;               //Skip if the control mode is display and field is read-only             if (_ControlMode != SPControlMode.Display && listField.ReadOnlyField == true)                 continue;   Let’s move to the next line of code.             FieldLabel fieldLabel = new FieldLabel();             fieldLabel.FieldName = listField.InternalName;             fieldLabel.ListId = ListId;               BaseFieldControl fieldControl = listField.FieldRenderingControl;             fieldControl.ListId = ListId;             //Assign unique id using Field Internal Name             fieldControl.ID = string.Format("Field_{0}", fieldInternalName);             fieldControl.EnableViewState = true;               //Assign control mode             fieldLabel.ControlMode = _ControlMode;             fieldControl.ControlMode = _ControlMode;   We have used “FieldLabel” control for displaying field title. The advantage of using Field Label is, SharePoint automatically adds red star besides field label to identify it as mandatory field if there is any. Here is most important part to understand. The “BaseFieldControl”. It will render the respective web controls according to type of the field. For example, if it’s single line of text, then Textbox, if it’s look up then it renders dropdown. Additionally, the “ControlMode” property tells compiler that which mode (display/edit/new) controls need to be rendered with. In display mode, it will render label with field value. In edit mode, it will render respective control with item value and in new mode it will render respective control with empty value. Please note that, it’s not always the case when dropdown field will be rendered for Lookup field or Choice field. You need to understand which controls are rendered for which list fields. I am planning to write a separate blog which I hope to publish it very soon. Moreover, we also need to assign list field specific properties like List Id, Field Name etc to identify which SharePoint List field is attached with the control.             switch (_ControlMode)             {                 case SPControlMode.New:                     fieldLabel.RenderContext = SPContext.GetContext(pWeb);                     fieldControl.RenderContext = SPContext.GetContext(pWeb);                     break;                 case SPControlMode.Edit:                 case SPControlMode.Display:                     fieldLabel.RenderContext = controlContext;                     fieldLabel.ItemContext = controlContext;                     fieldLabel.ItemId = ItemId;                       fieldControl.RenderContext = controlContext;                     fieldControl.ItemContext = controlContext;                     fieldControl.ItemId = ItemId;                     break;             }   Here, I have separate code for new mode and Edit/Display mode because we will not have Item Id to assign in New Mode. We also need to set CSS class for cell containing Label and Controls so that those controls get rendered with SharePoint theme.             spCellLabel.CssClass = "ms-formlabel";             spCellControl.CssClass = "ms-formbody";   “FieldDescription” control is used to add field description if there is any.    Now it’s time to add some more customization,               //Disable Name(Title) in Edit Mode             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Name")             {                 TextBox txtTitlefield = (TextBox)fieldControl.Controls[0].FindControl("TextField");                 txtTitlefield.Enabled = false;             }   The above code will disable the title field in edit mode. You can add more code here to achieve more customization according to your requirement. Some of the examples are as follow:             //Adding post back event on UserField to auto populate some other dependent field             //in new mode and disable it in edit mode             if (_ControlMode != SPControlMode.Display && fieldDisplayName == "Manager")             {                 if (fieldControl.Controls[0].FindControl("UserField") != null)                 {                     PeopleEditor pplEditor = (PeopleEditor)fieldControl.Controls[0].FindControl("UserField");                     if (_ControlMode == SPControlMode.New)                         pplEditor.AutoPostBack = true;                     else                         pplEditor.Enabled = false;                 }             }               //Add JavaScript Event on Dropdown field. Don't forget to add the JavaScript function on the page.             if (_ControlMode == SPControlMode.Edit && fieldDisplayName == "Designation")             {                 DropDownList ddlCategory = (DropDownList)fieldControl.Controls[0];                 ddlCategory.Attributes.Add("onchange", string.Format("javascript:DropdownChangeEvent('{0}');return false;", ddlCategory.ClientID));             }    Following are the screenshots of my Custom ListForm WebPart. Let’s play a game, check out your OOB List forms of SharePoint, compare with these screens and find out differences.   DispForm.aspx:   EditForm.aspx:   NewForm.aspx:   Enjoy the SharePoint Soup!!! ­­­­­­­­­­­­­­­­­­­­

    Read the article

  • Sorting and Filtering By Model-Based LOV Display Value

    - by Steven Davelaar
    If you use a model-based LOV and you use display type "choice", then ADF nicely displays the display value, even if the table is read-only. In the screen shot below, you see the RegionName attribute displayed instead of the RegionId. This is accomplished by the model-based LOV, I did not modify the Countries view object to include a join with Regions.  Also note the sort icon, the table is sorted by RegionId. This sorting typically results in a bug reported by your test team. Europe really shouldn't come before America when sorting ascending, right? To fix this, we could of course change the Countries view object query and add a join with the Regions table to include the RegionName attribute. If the table is updateable, we still need the choice list, so we need to move the model-based LOV from the RegionId attribute to the RegionName attribute and hide the RegionId attribute in the table. But that is a lot of work for such a simple requirement, in particular if we have lots of model-based choice lists in our view object. Fortunately, there is an easier way to do this, with some generic code in your view object base class that fixes this at once for all model-based choice lists that we have defined in our application. The trick is to override the method getSortCriteria() in the base view object class. By default, this method returns null because the sorting is done in the database through a SQL Order By clause. However, if the getSortCriteria method does return a sort criteria the framework will perform in memory sorting which is what we need to achieve sorting by region name. So, inside this method we need to evaluate the Order By clause, and if the order by column matches an attribute that has a model-based LOV choicelist defined with a display attribute that is different from the value attribute, we need to return a sort criterria. Here is the complete code of this method: public SortCriteria[] getSortCriteria() {   String orderBy = getOrderByClause();          if (orderBy!=null )   {     boolean descending = false;     if (orderBy.endsWith(" DESC"))      {       descending = true;       orderBy = orderBy.substring(0,orderBy.length()-5);     }     // extract column name, is part after the dot     int dotpos = orderBy.lastIndexOf(".");     String columnName = orderBy.substring(dotpos+1);     // loop over attributes and find matching attribute     AttributeDef orderByAttrDef = null;     for (AttributeDef attrDef : getAttributeDefs())     {       if (columnName.equals(attrDef.getColumnName()))       {         orderByAttrDef = attrDef;         break;       }     }     if (orderByAttrDef!=null && "choice".equals(orderByAttrDef.getProperty("CONTROLTYPE"))          && orderByAttrDef.getListBindingDef()!=null)     {       String orderbyAttr = orderByAttrDef.getName();       String[] displayAttrs = orderByAttrDef.getListBindingDef().getListDisplayAttrNames();       String[] listAttrs = orderByAttrDef.getListBindingDef().getListAttrNames();       // if first list display attributes is not the same as first list attribute, than the value       // displayed is different from the value copied back to the order by attribute, in which case we need to       // use our custom comparator       if (displayAttrs!=null && listAttrs!=null && displayAttrs.length>0 && !displayAttrs[0].equals(listAttrs[0]))       {                  SortCriteriaImpl sc1 = new SortCriteriaImpl(orderbyAttr, descending);         SortCriteria[] sc = new SortCriteriaImpl[]{sc1};         return sc;                           }     }     }   return super.getSortCriteria(); } If this method returns a sort criteria, then the framework will call the sort method on the view object. The sort method uses a Comparator object to determine the sequence in which the rows should be returned. This comparator is retrieved by calling the getRowComparator method on the view object. So, to ensure sorting by our display value, we need to override this method to return our custom comparator: public Comparator getRowComparator() {   return new LovDisplayAttributeRowComparator(getSortCriteria()); } The custom comparator class extends the default RowComparator class and overrides the method compareRows and looks up the choice display value to compare the two rows. The complete code of this class is included in the sample application.  With this code in place, clicking on the Region sort icon nicely sorts the countries by RegionName, as you can see below. When using the Query-By-Example table filter at the top of the table, you typically want to use the same choice list to filter the rows. One way to do that is documented in ADF code corner sample 16 - How To Customize the ADF Faces Table Filter.The solution in this sample is perfectly fine to use. This sample requires you to define a separate iterator binding and associated tree binding to populate the choice list in the table filter area using the af:iterator tag. You might be able to reuse the same LOV view object instance in this iterator binding that is used as view accessor for the model-bassed LOV. However, I have seen quite a few customers who have a generic LOV view object (mapped to one "refcodes" table) with the bind variable values set in the LOV view accessor. In such a scenario, some duplicate work is needed to get a dedicated view object instance with the correct bind variables that can be used in the iterator binding. Looking for ways to maximize reuse, wouldn't it be nice if we could just reuse our model-based LOV to populate this filter choice list? Well we can. Here are the basic steps: 1. Create an attribute list binding in the page definition that we can use to retrieve the list of SelectItems needed to populate the choice list <list StaticList="false" Uses="LOV_RegionId"               IterBinding="CountriesView1Iterator" id="RegionId"/>  We need this "current row" list binding because the implicit list binding used by the item in the table is not accessible outside a table row, we cannot use the expression #{row.bindings.RegionId} in the table filter facet. 2. Create a Map-style managed bean with the get method retrieving the list binding as key, and returning the list of SelectItems. To return this list, we take the list of selectItems contained by the list binding and replace the index number that is normally used as key value with the actual attribute value that is set by the choice list. Here is the code of the get method:  public Object get(Object key) {   if (key instanceof FacesCtrlListBinding)   {     // we need to cast to internal class FacesCtrlListBinding rather than JUCtrlListBinding to     // be able to call getItems method. To prevent this import, we could evaluate an EL expression     // to get the list of items     FacesCtrlListBinding lb = (FacesCtrlListBinding) key;     if (cachedFilterLists.containsKey(lb.getName()))     {       return cachedFilterLists.get(lb.getName());     }     List<SelectItem> items = (List<SelectItem>)lb.getItems();     if (items==null || items.size()==0)     {       return items;     }     List<SelectItem> newItems = new ArrayList<SelectItem>();     JUCtrlValueDef def = ((JUCtrlValueDef)lb.getDef());     String valueAttr = def.getFirstAttrName();     // the items list has an index number as value, we need to replace this with the actual     // value of the attribute that is copied back by the choice list     for (int i = 0; i < items.size(); i++)     {       SelectItem si = (SelectItem) items.get(i);       Object value = lb.getValueFromList(i);       if (value instanceof Row)       {         Row row = (Row) value;         si.setValue(row.getAttribute(valueAttr));                 }       else       {         // this is the "empty" row, set value to empty string so all rows will be returned         // as user no longer wants to filter on this attribute         si.setValue("");       }       newItems.add(si);     }     cachedFilterLists.put(lb.getName(), newItems);     return newItems;   }   return null; } Note that we added caching to speed up performance, and to handle the situation where table filters or search criteria are set such that no rows are retrieved in the table. When there are no rows, there is no current row and the getItems method on the list binding will return no items.  An alternative approach to create the list of SelectItems would be to retrieve the iterator binding from the list binding and loop over the rows in the iterator binding rowset. Then we wouldn't need the import of the ADF internal oracle.adfinternal.view.faces.model.binding.FacesCtrlListBinding class, but then we need to figure out the display attributes from the list binding definition, and possible separate them with a dash if multiple display attributes are defined in the LOV. Doable but less reuse and more work. 3. Inside the filter facet for the column create an af:selectOneChoice with the value property of the f:selectItems tag referencing the get method of the managed bean:  <f:facet name="filter">   <af:selectOneChoice id="soc0" autoSubmit="true"                       value="#{vs.filterCriteria.RegionId}">     <!-- attention: the RegionId list binding must be created manually in the page definition! -->                       <f:selectItems id="si0"                    value="#{viewScope.TableFilterChoiceList[bindings.RegionId]}"/>   </af:selectOneChoice> </f:facet> Note that the managed bean is defined in viewScope for the caching to take effect. Here is a screen shot of the tabe filter in action: You can download the sample application here. 

    Read the article

  • iPhone SDK Tableview Datasource singleton error

    - by mrburns05
    I basically followed apple "TheElements" sample and changed "PeriodicElements" .h & .m to my own "SortedItems" .h & .m During compile I get this error: "Undefined symbols: "_OBJC_CLASS_$_SortedItems", referenced from: __objc_classrefs__DATA@0 in SortedByNameTableDataSource.o ld: symbol(s) not found collect2: ld returned 1 exit status " here is my SortedItems.m file #import "SortedItems.h" #import "item.h" #import "MyAppDelegate.h" @interface SortedItems(mymethods) // these are private methods that outside classes need not use - (void)presortItemsByPhysicalState; - (void)presortItemInitialLetterIndexes; - (void)presortItemNamesForInitialLetter:(NSString *)aKey; - (void)presortItemsWithPhysicalState:(NSString *)state; - (NSArray *)presortItemsByNumber; - (NSArray *)presortItemsBySymbol; - (void)setupItemsArray; @end @implementation SortedItems @synthesize statesDictionary; @synthesize itemsDictionary; @synthesize nameIndexesDictionary; @synthesize itemNameIndexArray; @synthesize itemsSortedByNumber; @synthesize itemsSortedBySymbol; @synthesize itemPhysicalStatesArray; static SortedItems *sharedSortedItemsInstance = nil; + (SortedItems*)sharedSortedItems { @synchronized(self) { if (sharedSortedItemsInstance == nil) { [[self alloc] init]; // assignment not done here } } return sharedSortedItemsInstance; // note: Xcode (3.2) static analyzer will report this singleton as a false positive // '(Potential leak of an object allocated') } + (id)allocWithZone:(NSZone *)zone { @synchronized(self) { if (sharedSortedItemsInstance == nil) { sharedSortedItemsInstance = [super allocWithZone:zone]; return sharedSortedItemsInstance; // assignment and return on first allocation } } return nil; //on subsequent allocation attempts return nil } - (id)copyWithZone:(NSZone *)zone { return self; } - (id)retain { return self; } - (unsigned)retainCount { return UINT_MAX; //denotes an object that cannot be released } - (void)release { //do nothing } - (id)autorelease { return self; } // setup the data collection - init { if (self = [super init]) { [self setupItemsArray]; } return self; } - (void)setupItemsArray { NSDictionary *eachItem; // create dictionaries that contain the arrays of Item data indexed by // name self.itemsDictionary = [NSMutableDictionary dictionary]; // physical state self.statesDictionary = [NSMutableDictionary dictionary]; // unique first characters (for the Name index table) self.nameIndexesDictionary = [NSMutableDictionary dictionary]; // create empty array entries in the states Dictionary or each physical state [statesDictionary setObject:[NSMutableArray array] forKey:@"Solid"]; [statesDictionary setObject:[NSMutableArray array] forKey:@"Liquid"]; [statesDictionary setObject:[NSMutableArray array] forKey:@"Gas"]; [statesDictionary setObject:[NSMutableArray array] forKey:@"Artificial"]; MyAppDelegate *ad = (MyAppDelegate *)[[UIApplication sharedApplication]delegate]; NSMutableArray *rawItemsArray = [[NSMutableArray alloc] init]; [rawItemsArray addObjectsFromArray:ad.items]; // iterate over the values in the raw Items dictionary for (eachItem in rawItemsArray) { // create an atomic Item instance for each Item *anItem = [[Item alloc] initWithDictionary:eachItem]; // store that item in the Items dictionary with the name as the key [itemsDictionary setObject:anItem forKey:anItem.title]; // add that Item to the appropriate array in the physical state dictionary [[statesDictionary objectForKey:anItem.acct] addObject:anItem]; // get the Item's initial letter NSString *firstLetter = [anItem.title substringToIndex:1]; NSMutableArray *existingArray; // if an array already exists in the name index dictionary // simply add the Item to it, otherwise create an array // and add it to the name index dictionary with the letter as the key if (existingArray = [nameIndexesDictionary valueForKey:firstLetter]) { [existingArray addObject:anItem]; } else { NSMutableArray *tempArray = [NSMutableArray array]; [nameIndexesDictionary setObject:tempArray forKey:firstLetter]; [tempArray addObject:anItem]; } // release the Item, it is held by the various collections [anItem release]; } // release the raw Item data [rawItemsArray release]; // create the dictionary containing the possible Item states // and presort the states data self.itemPhysicalStatesArray = [NSArray arrayWithObjects:@"something",@"somethingElse",@"whatever",@"stuff",nil]; [self presortItemsByPhysicalState]; // presort the dictionaries now // this could be done the first time they are requested instead [self presortItemInitialLetterIndexes]; self.itemsSortedByNumber = [self presortItemsByNumber]; self.itemsSortedBySymbol = [self presortItemsBySymbol]; } // return the array of Items for the requested physical state - (NSArray *)itemsWithPhysicalState:(NSString*)aState { return [statesDictionary objectForKey:aState]; } // presort each of the arrays for the physical states - (void)presortItemsByPhysicalState { for (NSString *stateKey in itemPhysicalStatesArray) { [self presortItemsWithPhysicalState:stateKey]; } } - (void)presortItemsWithPhysicalState:(NSString *)state { NSSortDescriptor *nameDescriptor = [[NSSortDescriptor alloc] initWithKey:@"title" ascending:YES selector:@selector(localizedCaseInsensitiveCompare:)] ; NSArray *descriptors = [NSArray arrayWithObject:nameDescriptor]; [[statesDictionary objectForKey:state] sortUsingDescriptors:descriptors]; [nameDescriptor release]; } // return an array of Items for an initial letter (ie A, B, C, ...) - (NSArray *)itemsWithInitialLetter:(NSString*)aKey { return [nameIndexesDictionary objectForKey:aKey]; } // presort the name index arrays so the items are in the correct order - (void)presortItemsInitialLetterIndexes { self.itemNameIndexArray = [[nameIndexesDictionary allKeys] sortedArrayUsingSelector:@selector(localizedCaseInsensitiveCompare:)]; for (NSString *eachNameIndex in itemNameIndexArray) { [self presortItemNamesForInitialLetter:eachNameIndex]; } } - (void)presortItemNamesForInitialLetter:(NSString *)aKey { NSSortDescriptor *nameDescriptor = [[NSSortDescriptor alloc] initWithKey:@"title" ascending:YES selector:@selector(localizedCaseInsensitiveCompare:)] ; NSArray *descriptors = [NSArray arrayWithObject:nameDescriptor]; [[nameIndexesDictionary objectForKey:aKey] sortUsingDescriptors:descriptors]; [nameDescriptor release]; } // presort the ItemsSortedByNumber array - (NSArray *)presortItemsByNumber { NSSortDescriptor *nameDescriptor = [[NSSortDescriptor alloc] initWithKey:@"acct" ascending:YES selector:@selector(compare:)] ; NSArray *descriptors = [NSArray arrayWithObject:nameDescriptor]; NSArray *sortedItems = [[itemsDictionary allValues] sortedArrayUsingDescriptors:descriptors]; [nameDescriptor release]; return sortedItems; } // presort the itemsSortedBySymbol array - (NSArray *)presortItemsBySymbol { NSSortDescriptor *symbolDescriptor = [[NSSortDescriptor alloc] initWithKey:@"title" ascending:YES selector:@selector(localizedCaseInsensitiveCompare:)] ; NSArray *descriptors = [NSArray arrayWithObject:symbolDescriptor]; NSArray *sortedItems = [[itemsDictionary allValues] sortedArrayUsingDescriptors:descriptors]; [symbolDescriptor release]; return sortedItems; } @end I followed the sample exactly - don't know where I went wrong. Here is my "SortedByNameTableDataSource.m" #import "SortedByNameTableDataSource.h" #import "SortedItems.h" #import "Item.h" #import "ItemCell.h" #import "GradientView.h" #import "UIColor-Expanded.h" #import "MyAppDelegate.h" @implementation SortedByNameTableDataSource - (NSString *)title { return @"Title"; } - (UITableViewStyle)tableViewStyle { return UITableViewStylePlain; }; // return the atomic element at the index - (Item *)itemForIndexPath:(NSIndexPath *)indexPath { return [[[SortedItems sharedSortedItems] itemsWithInitialLetter:[[[SortedItems sharedSortedItems] itemNameIndexArray] objectAtIndex:indexPath.section]] objectAtIndex:indexPath.row]; } // UITableViewDataSource methods - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *MyIdentifier = @"ItemCell"; ItemCell *itemCell = (ItemCell *)[tableView dequeueReusableCellWithIdentifier:MyIdentifier]; if (itemCell == nil) { itemCell = [[[ItemCell alloc] initWithFrame:CGRectZero reuseIdentifier:MyIdentifier] autorelease]; itemCell = CGRectMake(0.0, 0.0, 320.0, ROW_HEIGHT); itemCell.backgroundView = [[[GradientView alloc] init] autorelease]; } itemCell.todo = [self itemForIndexPath:indexPath]; return itemCell; } - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { // this table has multiple sections. One for each unique character that an element begins with // [A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z] // return the count of that array return [[[SortedItems sharedSortedItems] itemNameIndexArray] count]; } - (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView { // returns the array of section titles. There is one entry for each unique character that an element begins with // [A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z] return [[SortedItems sharedSortedItems] itemNameIndexArray]; } - (NSInteger)tableView:(UITableView *)tableView sectionForSectionIndexTitle:(NSString *)title atIndex:(NSInteger)index { return index; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { // the section represents the initial letter of the element // return that letter NSString *initialLetter = [[[SortedItems sharedSortedItems] itemNameIndexArray] objectAtIndex:section]; // get the array of elements that begin with that letter NSArray *itemsWithInitialLetter = [[SortedItems sharedSortedItems] itemsWithInitialLetter:initialLetter]; // return the count return [itemsWithInitialLetter count]; } - (NSString *)tableView:(UITableView *)tableView titleForHeaderInSection:(NSInteger)section { // this table has multiple sections. One for each unique character that an element begins with // [A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z] // return the letter that represents the requested section // this is actually a delegate method, but we forward the request to the datasource in the view controller return [[[SortedItems sharedSortedItems] itemNameIndexArray] objectAtIndex:section]; } @end

    Read the article

  • Hosted bug tracking system with mercurial repositories (Summary of options & request for opinions)

    - by Mark Booth
    The Question What hosted mercurial repository/bug tracking system or systems have you used? Would you recommend it to others? Are there serious flaws, either in the repository hosting or the bug tracking features that would make it difficult to recommend it? Do you have any other experiences with it or opinions of it that you would like to share? If you have used other non mercurial hosted repository/bug tracking systems, how does it compare? (If I understand correctly, the best format for this type of community-wiki style question is one answer per option, if you have experienced if several) Background I have been looking into options for setting up a bug/issue tracking database and found some valuable advice in this thread and this. But then I got to thinking that a hosted solution might not only solve the problem of tracking bugs, but might also solve the problem we have accessing our mercurial source code repositories while at customer sites around the world. Since we currently have no way to serve mercurial repositories over ssl, when I am at a customer site I have to connect my laptop via VPN to my work network and access the mercurial repositories over a samba share (even if it is just to synce twice a day). This is excruciatingly slow on high latency networks and can be impossible with some customers' firewalls. Even if we could run a TRAC or Redmine server here (thanks turnkey), I'm not sure it would be much quicker as our internet connection is over-stretched as it is. What I would like is for developers to be able to be able to push/pull to/from a remote repository, servicing engineers to be able to pull from a remote repository and for customers (both internal and external) to be able to submit bug/issue reports. Initial options The two options I found were Assembla and Jira. Looking at Assembla I thought the 'group' price looked reasonable, but after enquiring, found that each workspace could only contain a single repository. Since each of our products might have up to a dozen repositories (mostly for libraries) which need to be managed seperately for each product, I could see it getting expensive really quickly. On the plus side, it appears that 'users' are just workspace members, so you can have as many client users (people who can only submit support tickets and track their own tickets) without using up your user allocation. Jira only charges based on the number of users, unfortunately client users also count towards this, if you want them to be able to track their tickets. If you only want clients to be able to submit untracked issues, you can let them submit anonymously, but that doesn't feel very professional to me. More options Looking through MercurialHosting page that @Paidhi suggested, I've added the options which appear to offer private repositories, along with another that I found with a web search. Prices are as per their website today (29th March 2010). Corrections welcome in the future. Anyway, here is my summary, according to the information given on their websites: Assembla, http://www.assembla.com/, looks to be a reasonable price, but suffers only one repository per workspace, so three projects with 6 repos each would use up most of the spaces associated with a $99/month professional account (20 spaces). Bug tracking is based on Trac. Mercurial+Trac support was announced in a blog entry in 2007, but they only list SVN and Git on their Features web page. Cost: $24, $49, $99 & $249/month for 40, 40, unlimited, unlimited users and 1, 10, 20, 100 workspaces. SSL based push/pull? Website https login. BitBucket, http://bitbucket.org/plans/, is primarily a mercurial hosting site for open source projects, with SSL support, but they have an integrated bug tracker and they are cheap for private repositories. It has it’s own issues tracker, but also integrates with Lighthouse & FogBugz. Cost: $0, $5, $12, $50 & $100/month for 1, 5, 15, 25 & 150 private repositories. SSL based push/pull. No https on website login, but supports OpenID, so you can chose an OpenID provider with https login. Codebase HQ, http://www.codebasehq.com/, supports Hg and is almost as cheap as BitBucket. Cost: £5, £13, £21 & £40/month for 3, 15, 30 & 60 active projects, unlimited repositories, unlimited users (except 10 users at £5/month) and 0.5, 2, 4 & 10GB. SSL based push/pull? Website https login? Firefly, http://www.activestate.com/firefly/, by ActiveState looks interesting, but the website is a little light on details, such as whether you can only have one repository per project or not. Cost: $9, $19, & £39/month for 1, 5 & 30 private projects, with a 0.5, 1.5 & 3 GB storage limit. SSL based push/pull? Website https login. Jira, http://www.atlassian.com/software/jira/, isn’t limited by the number of repositories you can have, but by ‘user’. It could work out quite expensive if we want client users to be able to track their issues, since they would need a full user account to be created for them. Also, while there is a Mercurial extension to support jira, there is no ‘Advanced integration’ for Mercurial from Atlassian Fisheye. Cost: $150, $300, $400, $500, $700/month for 10, 25, 50, 100, 100+ users. SSL based push/pull? Website https login. Kiln & FogBugz On Demand, http://fogcreek.com/Kiln/IntrotoOnDemand.html, integrates Kilns mercurial DVCS features with FogBugz, where the combined package is much cheaper than the component parts. Also, the Fogbugz integration is supposedly excellent. *8’) Cost: £30/developer/month ($5/d/m more than either on their own). SSL based push/pull? SourceRepo, http://sourcerepo.com/, also supports HG and is even cheaper than BitBucket & Codebase. Cost: $4, $7 & $13/month for 1, unlimited & unlimited repositories/trac/redmine instances and 500MB, 1GB & 3GB storage. SSL based push/pull. Website https login. Edit: 29th March 2010 & Bounty I split this question into sections, made the questions themselves more explicit, added other options from the research I have done since my first posting and made this community wiki, since I now understand what CW is for. *8') Also, I've added a bounty to encourage people to offer their opinions. At the end of the bounty period, I will award the bounty to whoever writes the best review (good or bad), irrespective of the number of up/down votes it gets. Given that it's probably more important to avoid bad providers than find the absolute best one, 'bad reviews' could be considered more important than good ones.

    Read the article

  • creating objects from trivial graph format text file. java. dijkstra algorithm.

    - by user560084
    i want to create objects, vertex and edge, from trivial graph format txt file. one of programmers here suggested that i use trivial graph format to store data for dijkstra algorithm. the problem is that at the moment all the information, e.g., weight, links, is in the sourcecode. i want to have a separate text file for that and read it into the program. i thought about using a code for scanning through the text file by using scanner. but i am not quite sure how to create different objects from the same file. could i have some help please? the file is v0 Harrisburg v1 Baltimore v2 Washington v3 Philadelphia v4 Binghamton v5 Allentown v6 New York # v0 v1 79.83 v0 v5 81.15 v1 v0 79.75 v1 v2 39.42 v1 v3 103.00 v2 v1 38.65 v3 v1 102.53 v3 v5 61.44 v3 v6 96.79 v4 v5 133.04 v5 v0 81.77 v5 v3 62.05 v5 v4 134.47 v5 v6 91.63 v6 v3 97.24 v6 v5 87.94 and the dijkstra algorithm code is Downloaded from: http://en.literateprograms.org/Special:Downloadcode/Dijkstra%27s_algorithm_%28Java%29 */ import java.util.PriorityQueue; import java.util.List; import java.util.ArrayList; import java.util.Collections; class Vertex implements Comparable<Vertex> { public final String name; public Edge[] adjacencies; public double minDistance = Double.POSITIVE_INFINITY; public Vertex previous; public Vertex(String argName) { name = argName; } public String toString() { return name; } public int compareTo(Vertex other) { return Double.compare(minDistance, other.minDistance); } } class Edge { public final Vertex target; public final double weight; public Edge(Vertex argTarget, double argWeight) { target = argTarget; weight = argWeight; } } public class Dijkstra { public static void computePaths(Vertex source) { source.minDistance = 0.; PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>(); vertexQueue.add(source); while (!vertexQueue.isEmpty()) { Vertex u = vertexQueue.poll(); // Visit each edge exiting u for (Edge e : u.adjacencies) { Vertex v = e.target; double weight = e.weight; double distanceThroughU = u.minDistance + weight; if (distanceThroughU < v.minDistance) { vertexQueue.remove(v); v.minDistance = distanceThroughU ; v.previous = u; vertexQueue.add(v); } } } } public static List<Vertex> getShortestPathTo(Vertex target) { List<Vertex> path = new ArrayList<Vertex>(); for (Vertex vertex = target; vertex != null; vertex = vertex.previous) path.add(vertex); Collections.reverse(path); return path; } public static void main(String[] args) { Vertex v0 = new Vertex("Nottinghill_Gate"); Vertex v1 = new Vertex("High_Street_kensignton"); Vertex v2 = new Vertex("Glouchester_Road"); Vertex v3 = new Vertex("South_Kensignton"); Vertex v4 = new Vertex("Sloane_Square"); Vertex v5 = new Vertex("Victoria"); Vertex v6 = new Vertex("Westminster"); v0.adjacencies = new Edge[]{new Edge(v1, 79.83), new Edge(v6, 97.24)}; v1.adjacencies = new Edge[]{new Edge(v2, 39.42), new Edge(v0, 79.83)}; v2.adjacencies = new Edge[]{new Edge(v3, 38.65), new Edge(v1, 39.42)}; v3.adjacencies = new Edge[]{new Edge(v4, 102.53), new Edge(v2, 38.65)}; v4.adjacencies = new Edge[]{new Edge(v5, 133.04), new Edge(v3, 102.53)}; v5.adjacencies = new Edge[]{new Edge(v6, 81.77), new Edge(v4, 133.04)}; v6.adjacencies = new Edge[]{new Edge(v0, 97.24), new Edge(v5, 81.77)}; Vertex[] vertices = { v0, v1, v2, v3, v4, v5, v6 }; computePaths(v0); for (Vertex v : vertices) { System.out.println("Distance to " + v + ": " + v.minDistance); List<Vertex> path = getShortestPathTo(v); System.out.println("Path: " + path); } } } and the code for scanning file is import java.util.Scanner; import java.io.File; import java.io.FileNotFoundException; public class DataScanner1 { //private int total = 0; //private int distance = 0; private String vector; private String stations; private double [] Edge = new double []; /*public int getTotal(){ return total; } */ /* public void getMenuInput(){ KeyboardInput in = new KeyboardInput; System.out.println("Enter the destination? "); String val = in.readString(); return val; } */ public void readFile(String fileName) { try { Scanner scanner = new Scanner(new File(fileName)); scanner.useDelimiter (System.getProperty("line.separator")); while (scanner.hasNext()) { parseLine(scanner.next()); } scanner.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } public void parseLine(String line) { Scanner lineScanner = new Scanner(line); lineScanner.useDelimiter("\\s*,\\s*"); vector = lineScanner.next(); stations = lineScanner.next(); System.out.println("The current station is " + vector + " and the destination to the next station is " + stations + "."); //total += distance; //System.out.println("The total distance is " + total); } public static void main(String[] args) { /* if (args.length != 1) { System.err.println("usage: java TextScanner2" + "file location"); System.exit(0); } */ DataScanner1 scanner = new DataScanner1(); scanner.readFile(args[0]); //int total =+ distance; //System.out.println(""); //System.out.println("The total distance is " + scanner.getTotal()); } }

    Read the article

  • Moving items from one tableView to another tableView with extra's

    - by Totumus Maximus
    Let's say I have 2 UITableViews next to eachother on an ipad in landscape-mode. Now I want to move multiple items from one tableView to the other. They are allowed to be inserted on the bottom of the other tableView. Both have multiSelection activated. Now the movement itself is no problem with normal cells. But in my program each cell has an object which contains the consolidationState of the cell. There are 4 states a cell can have: Basic, Holding, Parent, Child. Basic = an ordinary cell. Holding = a cell which contains multiple childs but which wont be shown in this state. Parent = a cell which contains multiple childs and are shown directly below this cell. Child = a cell created by the Parent cell. The object in each cell also has some array which contains its children. The object also holds a quantityValue, which is displayed on the cell itself. Now the movement gets tricky. Holding and Parent cells can't move at all. Basic cells can move freely. Child cells can move freely but based on how many Child cells are left in the Parent. The parent will change or be deleted all together. If a Parent cell has more then 1 Child cell left it will stay a Parent cell. Else the Parent has no or 1 Child cell left and is useless. It will then be deleted. The items that are moved will always be of the same state. They will all be Basic cells. This is how I programmed the movement: *First I determine which of the tableViews is the sender and which is the receiver. *Second I ask all indexPathsForSelectedRows and sort them from highest row to lowest. *Then I build the data to be transferred. This I do by looping through the selectedRows and ask their object from the sender's listOfItems. *When I saved all the data I need I delete all the items from the sender TableView. This is why I sorted the selectedRows so I can start at the highest indexPath.row and delete without screwing up the other indexPaths. *When I loop through the selectedRows I check whether I found a cell with state Basic or Child. *If its a Basic cell I do nothing and just delete the cell. (this works fine with all Basic Cells) *If its a Child cell I go and check it's Parent cell immidiately. Since all Child cells are directly below the Parent cell and no other the the Parent's Childs are below that Parent I can safely get the path of the selected Childcell and move upwards and find it's Parent cell. When this Parent cell is found (this will always happen, no exceptions) it has to change accordingly. *The Parent cell will either be deleted or the object inside will have its quantity and children reduced. *After the Parent cell has changed accordingly the Child cell is deleted similarly like the Basic cells *After the deletion of the cells the receiver tableView will build new indexPaths so the movedObjects will have a place to go. *I then insert the objects into the listOfItems of the receiver TableView. The code works in the following ways: Only Basic cells are moved. Basic cells and just 1 child for each parent is moved. A single Basic/Child cell is moved. The code doesn't work when: I select more then 1 or all childs of some parent cell. The problem happens somewhere into updating the parent cells. I'm staring blindly at the code now so maybe a fresh look will help fix things. Any help will be appreciated. Here is the method that should do the movement: -(void)moveSelectedItems { UITableView *senderTableView = //retrieves the table with the data here. UITableView *receiverTableView = //retrieves the table which gets the data here. NSArray *selectedRows = senderTableView.indexPathsForSelectedRows; //sort selected rows from lowest indexPath.row to highest selectedRows = [selectedRows sortedArrayUsingSelector:@selector(compare:)]; //build up target rows (all objects to be moved) NSMutableArray *targetRows = [[NSMutableArray alloc] init]; for (int i = 0; i<selectedRows.count; i++) { NSIndexPath *path = [selectedRows objectAtIndex:i]; [targetRows addObject:[senderTableView.listOfItems objectAtIndex:path.row]]; } //delete rows at active for (int i = selectedRows.count-1; i >= 0; i--) { NSIndexPath *path = [selectedRows objectAtIndex:i]; //check what item you are deleting. act upon the status. Parent- and HoldingCells cant be selected so only check for basic and childs MyCellObject *item = [senderTableView.listOfItems objectAtIndex:path.row]; if (item.consolidatedState == ConsolidationTypeChild) { for (int j = path.row; j >= 0; j--) { MyCellObject *consolidatedItem = [senderTableView.listOfItems objectAtIndex:j]; if (consolidatedItem.consolidatedState == ConsolidationTypeParent) { //copy the consolidated item but with 1 less quantity MyCellObject *newItem = [consolidatedItem copyWithOneLessQuantity]; //creates a copy of the object with 1 less quantity. if (newItem.quantity > 1) { newItem.consolidatedState = ConsolidationTypeParent; [senderTableView.listOfItems replaceObjectAtIndex:j withObject:newItem]; } else if (newItem.quantity == 1) { newItem.consolidatedState = ConsolidationTypeBasic; [senderTableView.listOfItems removeObjectAtIndex:j]; MyCellObject *child = [senderTableView.listOfItems objectAtIndex:j+1]; child.consolidatedState = ConsolidationTypeBasic; [senderTableView.listOfItems replaceObjectAtIndex:j+1 withObject:child]; } else { [senderTableView.listOfItems removeObject:consolidatedItem]; } [senderTableView reloadData]; } } } [senderTableView.listOfItems removeObjectAtIndex:path.row]; } [senderTableView deleteRowsAtIndexPaths:selectedRows withRowAnimation:UITableViewRowAnimationTop]; //make new indexpaths for row animation NSMutableArray *newRows = [[NSMutableArray alloc] init]; for (int i = 0; i < targetRows.count; i++) { NSIndexPath *newPath = [NSIndexPath indexPathForRow:i+receiverTableView.listOfItems.count inSection:0]; [newRows addObject:newPath]; DLog(@"%i", i); //scroll to newest items [receiverTableView setContentOffset:CGPointMake(0, fmaxf(receiverTableView.contentSize.height - recieverTableView.frame.size.height, 0.0)) animated:YES]; } //add rows at target for (int i = 0; i < targetRows.count; i++) { MyCellObject *insertedItem = [targetRows objectAtIndex:i]; //all moved items will be brought into the standard (basic) consolidationType insertedItem.consolidatedState = ConsolidationTypeBasic; [receiverTableView.ListOfItems insertObject:insertedItem atIndex:receiverTableView.ListOfItems.count]; } [receiverTableView insertRowsAtIndexPaths:newRows withRowAnimation:UITableViewRowAnimationNone]; } If anyone has some fresh ideas of why the movement is bugging out let me know. If you feel like you need some extra information I'll be happy to add it. Again the problem is in the movement of ChildCells and updating the ParentCells properly. I could use some fresh looks and outsider ideas on this. Thanks in advance. *updated based on comments

    Read the article

  • Impossible to do POSTs with appengine-jruby/RoR: Reflection is not allowed

    - by Joel Cuevas
    I'm trying to build a site with RoR on Google App Engine. I'm using the google-appengine gem (http://appengine-jruby.googlecode.com) and following the instructions in (http://gist.github.com/268192). The problem is that I can't submit ANY form! I've already tried this in two diferent clean Win 7 Pro envs and the result is the same. After install Ruby 1.8.6 (One-Click Installer): 1. gem update --system 2. gem install rails 3. gem install google-appengine 4. gem install rails_dm_datastore 5. gem install activerecord-nulldb-adapter 6. curl -O http://appengine-jruby.googlecode.com/hg/demos/rails2/rails2_appengine.rb 7. ruby rails2_appengine.rb (previously downloaded) 8. rails myproj 9. chmod myproj 10. ruby script/generate dd_model MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f 11. ruby script/generate scaffold MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f --skip-migration 12. dev_appserver.rb -p 3000 . At this point, I manually test the scaffold in (http://localhost:3000/my_models). The index is OK, then I create a new registry with the generated form, everything's fine, but when I try to create a second one, I get a "java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage" in the console. As far as I read this is a won't-fix behavior in JRuby 1.4.1, but it's converted to a debug only warning in 1.5.0, so I proceed to install the pre release. 13. gem install appengine-jruby-jars --pre With this, that exception is solved and everything works great... until I move the project to the GAE server. 14. ruby appcfg.rb update . And now, in (http://myproj.appspot.com/my_models), again, the index is fine, also the new form, but in the moment that I submit it with valid data, I get a 500 error: "java.lang.IllegalAccessException: Reflection is not allowed on public int". As I said, this behavior is not present in the local SDK. In both cases, I'm completely unable to post anything. This is what I have right now in the GAE environment: Ruby version 1.8.7 (java) RubyGems disabled Rack version 1.1 Rails version 2.3.5 Action Pack version 2.3.5 Active Support version 2.3.5 DataMapper version 0.10.2 Environment production JRuby Runtime version 1.5.0.pre JRuby-Rack version 0.9.7 AppEngine SDK version Google App Engine/1.3.3 AppEngine APIs version 0.0.15 And this are my intalled gems: actionmailer (2.3.5) actionpack (2.3.5) activerecord (2.3.5) activerecord-nulldb-adapter (0.2.0) activeresource (2.3.5) activesupport (2.3.5) addressable (2.1.2) appengine-apis (0.0.15) appengine-jruby-jars (0.0.8.pre, 0.0.7) appengine-rack (0.0.8) appengine-sdk (1.3.3.1) appengine-tools (0.0.12) bundler08 (0.8.5) dm-appengine (0.0.8) dm-ar-finders (0.10.2) dm-core (0.10.2) dm-timestamps (0.10.2) dm-validations (0.10.2) extlib (0.9.14) fxri (0.3.7, 0.3.6) google-appengine (0.0.12) hpricot (0.8.2 x86-mswin32, 0.6 mswin32) jruby-rack (0.9.8, 0.9.7) log4r (1.1.7, 1.0.5) rack (1.1.0, 1.0.1) rails (2.3.5) rails_appengine (0.0.3) rails_dm_datastore (0.2.9) rake (0.8.7, 0.7.3) rubygems-update (1.3.7, 1.3.6) rubyzip (0.9.4) sources (0.0.1) win32-api (1.4.6 x86-mswin32-60, 1.0.4 mswin32) win32-clipboard (0.5.2, 0.4.3) win32-dir (0.3.6, 0.3.2) win32-eventlog (0.5.2, 0.4.6) win32-file (0.6.3, 0.5.4) win32-file-stat (1.3.4, 1.2.7) win32-process (0.6.2, 0.5.3) win32-sapi (0.1.5, 0.1.4) win32-sound (0.4.2, 0.4.1) windows-api (0.4.0, 0.2.0) windows-pr (1.0.9, 0.7.2) I'm unable to attach the full logs of the exceptions because of the character limits, but I can provide them under request. Here's an abstract of them: DummyDynamicScope (dev and prod envs): 14-may-2010 7:18:40 com.google.appengine.tools.development.ApiProxyLocalImpl log SEVERE: [1273821520195000] javax.servlet.ServletContext log: Application Error java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage at org.jruby.runtime.scope.DummyDynamicScope.getBackRef(DummyDynamicScope.java:49) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1404) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1396) at org.jruby.RubyRegexp.search(RubyRegexp.java:1386) at org.jruby.RubyRegexp.op_match(RubyRegexp.java:1301) at org.jruby.RubyString.op_match(RubyString.java:1446) at org.jruby.RubyString$i_method_1_0$RUBYINVOKER$op_match.call(org/jruby/RubyString$i_method_1_0$RUBYINVOKER$op_match.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodOneOrN.call(JavaMethod.java:721) at org.jruby.RubyClass.finvoke(RubyClass.java:472) at org.jruby.RubyObject.send(RubyObject.java:1442) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrNBlock.call(JavaMethod.java:276) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:330) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:189) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:102) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:144) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:280) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:69) at org.jruby.ast.FCallManyArgsNode.interpret(FCallManyArgsNode.java:60) at org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) at org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:229) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:193) at org.jruby.RubyClass.finvoke(RubyClass.java:491) at org.jruby.RubyObject.send(RubyObject.java:1448) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrThreeOrNBlock.call(JavaMethod.java:293) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:350) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:229) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:221) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:201) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:227) at org.jruby.ast.FCallThreeArgNode.interpret(FCallThreeArgNode.java:40) Reflection (only prod env): Java::JavaLang::SecurityException (java.lang.IllegalAccessException: Reflection is not allowed on public int java.lang.String$CaseInsensitiveComparator.compare(java.lang.String,java.lang.String)): com.google.appengine.runtime.Request.process-92563a0605f433ea(Request.java) java.lang.reflect.AccessibleObject.setAccessible(AccessibleObject.java:40) org.jruby.javasupport.JavaMethod.<init>(JavaMethod.java:176) org.jruby.javasupport.JavaMethod.create(JavaMethod.java:183) org.jruby.java.invokers.MethodInvoker.createCallable(MethodInvoker.java:23) org.jruby.java.invokers.RubyToJavaInvoker.<init>(RubyToJavaInvoker.java:63) org.jruby.java.invokers.MethodInvoker.<init>(MethodInvoker.java:13) org.jruby.java.invokers.InstanceMethodInvoker.<init>(InstanceMethodInvoker.java:15) org.jruby.javasupport.JavaClass$InstanceMethodInvokerInstaller.install(JavaClass.java:339) org.jruby.javasupport.JavaClass.installClassMethods(JavaClass.java:723) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:586) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getInstance(Java.java:354) org.jruby.javasupport.JavaUtil.convertJavaToUsableRubyObject(JavaUtil.java:143) org.jruby.javasupport.JavaClass$ConstantField.install(JavaClass.java:360) org.jruby.javasupport.JavaClass.installClassFields(JavaClass.java:711) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:585) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getProxyOrPackageUnderPackage(Java.java:885) org.jruby.javasupport.Java.get_proxy_or_package_under_package(Java.java:918) org.jruby.javasupport.JavaUtilities.get_proxy_or_package_under_package(JavaUtilities.java:54) org.jruby.javasupport.JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.call(org/jruby/javasupport/JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.gen:65535) org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:329) org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:188) org.jruby.ast.CallTwoArgNode.interpret(CallTwoArgNode.java:59) org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) org.jruby.ast.BlockNode.interpret(BlockNode.java:71) org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:113) org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:138) org.jruby.javasupport.util.RuntimeHelpers$MethodMissingMethod.call(RuntimeHelpers.java:389) org.jruby.internal.runtime.methods.DynamicMethod.call(DynamicMethod.java:182) What should I do now? Any hint would be wellcome. Thanks!

    Read the article

  • Binary Cosine Cofficient

    - by hairyyak
    I was given the following forumulae for calculating this sim=|QnD| / v|Q|v|D| I went ahed and implemented a class to compare strings consisting of a series of words #pragma once #include <vector> #include <string> #include <iostream> #include <vector> using namespace std; class StringSet { public: StringSet(void); StringSet( const string the_strings[], const int no_of_strings); ~StringSet(void); StringSet( const vector<string> the_strings); void add_string( const string the_string); bool remove_string( const string the_string); void clear_set(void); int no_of_strings(void) const; friend ostream& operator <<(ostream& outs, StringSet& the_strings); friend StringSet operator *(const StringSet& first, const StringSet& second); friend StringSet operator +(const StringSet& first, const StringSet& second); double binary_coefficient( const StringSet& the_second_set); private: vector<string> set; }; #include "StdAfx.h" #include "StringSet.h" #include <iterator> #include <algorithm> #include <stdexcept> #include <iostream> #include <cmath> StringSet::StringSet(void) { } StringSet::~StringSet(void) { } StringSet::StringSet( const vector<string> the_strings) { set = the_strings; } StringSet::StringSet( const string the_strings[], const int no_of_strings) { copy( the_strings, &the_strings[no_of_strings], back_inserter(set)); } void StringSet::add_string( const string the_string) { try { if( find( set.begin(), set.end(), the_string) == set.end()) { set.push_back(the_string); } else { //String is already in the set. throw domain_error("String is already in the set"); } } catch( domain_error e) { cout << e.what(); exit(1); } } bool StringSet::remove_string( const string the_string) { //Found the occurrence of the string. return it an iterator pointing to it. vector<string>::iterator iter; if( ( iter = find( set.begin(), set.end(), the_string) ) != set.end()) { set.erase(iter); return true; } return false; } void StringSet::clear_set(void) { set.clear(); } int StringSet::no_of_strings(void) const { return set.size(); } ostream& operator <<(ostream& outs, StringSet& the_strings) { vector<string>::const_iterator const_iter = the_strings.set.begin(); for( ; const_iter != the_strings.set.end(); const_iter++) { cout << *const_iter << " "; } cout << endl; return outs; } //This function returns the union of the two string sets. StringSet operator *(const StringSet& first, const StringSet& second) { vector<string> new_string_set; new_string_set = first.set; for( unsigned int i = 0; i < second.set.size(); i++) { vector<string>::const_iterator const_iter = find(new_string_set.begin(), new_string_set.end(), second.set[i]); //String is new - include it. if( const_iter == new_string_set.end() ) { new_string_set.push_back(second.set[i]); } } StringSet the_set(new_string_set); return the_set; } //This method returns the intersection of the two string sets. StringSet operator +(const StringSet& first, const StringSet& second) { //For each string in the first string look though the second and see if //there is a matching pair, in which case include the string in the set. vector<string> new_string_set; vector<string>::const_iterator const_iter = first.set.begin(); for ( ; const_iter != first.set.end(); ++const_iter) { //Then search through the entire second string to see if //there is a duplicate. vector<string>::const_iterator const_iter2 = second.set.begin(); for( ; const_iter2 != second.set.end(); const_iter2++) { if( *const_iter == *const_iter2 ) { new_string_set.push_back(*const_iter); } } } StringSet new_set(new_string_set); return new_set; } double StringSet::binary_coefficient( const StringSet& the_second_set) { double coefficient; StringSet intersection = the_second_set + set; coefficient = intersection.no_of_strings() / sqrt((double) no_of_strings()) * sqrt((double)the_second_set.no_of_strings()); return coefficient; } However when I try and calculate the coefficient using the following main function: // Exercise13.cpp : main project file. #include "stdafx.h" #include <boost/regex.hpp> #include "StringSet.h" using namespace System; using namespace System::Runtime::InteropServices; using namespace boost; //This function takes as input a string, which //is then broken down into a series of words //where the punctuaction is ignored. StringSet break_string( const string the_string) { regex re; cmatch matches; StringSet words; string search_pattern = "\\b(\\w)+\\b"; try { // Assign the regular expression for parsing. re = search_pattern; } catch( regex_error& e) { cout << search_pattern << " is not a valid regular expression: \"" << e.what() << "\"" << endl; exit(1); } sregex_token_iterator p(the_string.begin(), the_string.end(), re, 0); sregex_token_iterator end; for( ; p != end; ++p) { string new_string(p->first, p->second); String^ copy_han = gcnew String(new_string.c_str()); String^ copy_han2 = copy_han->ToLower(); char* str2 = (char*)(void*)Marshal::StringToHGlobalAnsi(copy_han2); string new_string2(str2); words.add_string(new_string2); } return words; } int main(array<System::String ^> ^args) { StringSet words = break_string("Here is a string, with some; words"); StringSet words2 = break_string("There is another string,"); cout << words.binary_coefficient(words2); return 0; } I get an index which is 1.5116 rather than a value from 0 to 1. Does anybody have a clue why this is the case? Any help would be appreciated.

    Read the article

  • Questions related to writing your own file downloader using multiple threads java

    - by Shekhar
    Hello In my current company, i am doing a PoC on how we can write a file downloader utility. We have to use socket programming(TCP/IP) for downloading the files. One of the requirements of the client is that a file(which will be large in size) should be transfered in chunks for example if we have a file of 5Mb size then we can have 5 threads which transfer 1 Mb each. I have written a small application which downloads a file. You can download the eclipe project from http://www.fileflyer.com/view/QM1JSC0 A brief explanation of my classes FileSender.java This class provides the bytes of file. It has a method called sendBytesOfFile(long start,long end, long sequenceNo) which gives the number of bytes. import java.io.File; import java.io.IOException; import java.util.zip.CRC32; import org.apache.commons.io.FileUtils; public class FileSender { private static final String FILE_NAME = "C:\\shared\\test.pdf"; public ByteArrayWrapper sendBytesOfFile(long start,long end, long sequenceNo){ try { File file = new File(FILE_NAME); byte[] fileBytes = FileUtils.readFileToByteArray(file); System.out.println("Size of file is " +fileBytes.length); System.out.println(); System.out.println("Start "+start +" end "+end); byte[] bytes = getByteArray(fileBytes, start, end); ByteArrayWrapper wrapper = new ByteArrayWrapper(bytes, sequenceNo); return wrapper; } catch (IOException e) { throw new RuntimeException(e); } } private byte[] getByteArray(byte[] bytes, long start, long end){ long arrayLength = end-start; System.out.println("Start : "+start +" end : "+end + " Arraylength : "+arrayLength +" length of source array : "+bytes.length); byte[] arr = new byte[(int)arrayLength]; for(int i = (int)start, j =0; i < end;i++,j++){ arr[j] = bytes[i]; } return arr; } public static long fileSize(){ File file = new File(FILE_NAME); return file.length(); } } Second Class is FileReceiver.java - This class receives the file. Small Explanation what this file does This class finds the size of the file to be fetched from Sender Depending upon the size of the file it finds the start and end position till the bytes needs to be read. It starts n number of threads giving each thread start,end, sequence number and a list which all the threads share. Each thread reads the number of bytes and creates a ByteArrayWrapper. ByteArrayWrapper objects are added to the list Then i have while loop which basically make sure that all threads have done their work finally it sorts the list based on the sequence number. then the bytes are joined, and a complete byte array is formed which is converted to a file. Code of File Receiver package com.filedownloader; import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.List; import java.util.zip.CRC32; import org.apache.commons.io.FileUtils; public class FileReceiver { public static void main(String[] args) { FileReceiver receiver = new FileReceiver(); receiver.receiveFile(); } public void receiveFile(){ long startTime = System.currentTimeMillis(); long numberOfThreads = 10; long filesize = FileSender.fileSize(); System.out.println("File size received "+filesize); long start = filesize/numberOfThreads; List<ByteArrayWrapper> list = new ArrayList<ByteArrayWrapper>(); for(long threadCount =0; threadCount<numberOfThreads ;threadCount++){ FileDownloaderTask task = new FileDownloaderTask(threadCount*start,(threadCount+1)*start,threadCount,list); new Thread(task).start(); } while(list.size() != numberOfThreads){ // this is done so that all the threads should complete their work before processing further. //System.out.println("Waiting for threads to complete. List size "+list.size()); } if(list.size() == numberOfThreads){ System.out.println("All bytes received "+list); Collections.sort(list, new Comparator<ByteArrayWrapper>() { @Override public int compare(ByteArrayWrapper o1, ByteArrayWrapper o2) { long sequence1 = o1.getSequence(); long sequence2 = o2.getSequence(); if(sequence1 < sequence2){ return -1; }else if(sequence1 > sequence2){ return 1; } else{ return 0; } } }); byte[] totalBytes = list.get(0).getBytes(); byte[] firstArr = null; byte[] secondArr = null; for(int i = 1;i<list.size();i++){ firstArr = totalBytes; secondArr = list.get(i).getBytes(); totalBytes = concat(firstArr, secondArr); } System.out.println(totalBytes.length); convertToFile(totalBytes,"c:\\tmp\\test.pdf"); long endTime = System.currentTimeMillis(); System.out.println("Total time taken with "+numberOfThreads +" threads is "+(endTime-startTime)+" ms" ); } } private byte[] concat(byte[] A, byte[] B) { byte[] C= new byte[A.length+B.length]; System.arraycopy(A, 0, C, 0, A.length); System.arraycopy(B, 0, C, A.length, B.length); return C; } private void convertToFile(byte[] totalBytes,String name) { try { FileUtils.writeByteArrayToFile(new File(name), totalBytes); } catch (IOException e) { throw new RuntimeException(e); } } } Code of ByteArrayWrapper package com.filedownloader; import java.io.Serializable; public class ByteArrayWrapper implements Serializable{ private static final long serialVersionUID = 3499562855188457886L; private byte[] bytes; private long sequence; public ByteArrayWrapper(byte[] bytes, long sequenceNo) { this.bytes = bytes; this.sequence = sequenceNo; } public byte[] getBytes() { return bytes; } public long getSequence() { return sequence; } } Code of FileDownloaderTask import java.util.List; public class FileDownloaderTask implements Runnable { private List<ByteArrayWrapper> list; private long start; private long end; private long sequenceNo; public FileDownloaderTask(long start,long end,long sequenceNo,List<ByteArrayWrapper> list) { this.list = list; this.start = start; this.end = end; this.sequenceNo = sequenceNo; } @Override public void run() { ByteArrayWrapper wrapper = new FileSender().sendBytesOfFile(start, end, sequenceNo); list.add(wrapper); } } Questions related to this code 1) Does file downloading becomes fast when multiple threads is used? In this code i am not able to see the benefit. 2) How should i decide how many threads should i create ? 3) Are their any opensource libraries which does that 4) The file which file receiver receives is valid and not corrupted but checksum (i used FileUtils of common-io) does not match. Whats the problem? 5) This code gives out of memory when used with large file(above 100 Mb) i.e. because byte array which is created. How can i avoid? I know this is a very bad code but i have to write this in one day -:). Please suggest any other good way to do this? Thanks Shekhar

    Read the article

  • Autocorrelation returns random results with mic input (using a high pass filter)

    - by Niall
    Hello, Sorry to ask a similar question to the one i asked before (FFT Problem (Returns random results)), but i've looked up pitch detection and autocorrelation and have found some code for pitch detection using autocorrelation. Im trying to do pitch detection of a users singing. Problem is, it keeps returning random results. I've got some code from http://code.google.com/p/yaalp/ which i've converted to C++ and modified (below). My sample rate is 2048, and data size is 1024. I'm detecting pitch of both a sine wave and mic input. The frequency of the sine wave is 726.0, and its detecting it to be 722.950820 (which im ok with), but its detecting the pitch of the mic as a random number from around 100 to around 1050. I'm now using a High pass filter to remove the DC offset, but it's not working. Am i doing it right, and if so, what else can i do to fix it? Any help would be greatly appreciated! double* doHighPassFilter(short *buffer) { // Do FFT: int bufferLength = 1024; float *real = malloc(bufferLength*sizeof(float)); float *real2 = malloc(bufferLength*sizeof(float)); for(int x=0;x<bufferLength;x++) { real[x] = buffer[x]; } fft(real, bufferLength); for(int x=0;x<bufferLength;x+=2) { real2[x] = real[x]; } for (int i=0; i < 30; i++) //Set freqs lower than 30hz to zero to attenuate the low frequencies real2[i] = 0; // Do inverse FFT: inversefft(real2,bufferLength); double* real3 = (double*)real2; return real3; } double DetectPitch(short* data) { int sampleRate = 2048; //Create sine wave double *buffer = malloc(1024*sizeof(short)); double amplitude = 0.25 * 32768; //0.25 * max length of short double frequency = 726.0; for (int n = 0; n < 1024; n++) { buffer[n] = (short)(amplitude * sin((2 * 3.14159265 * n * frequency) / sampleRate)); } doHighPassFilter(data); printf("Pitch from sine wave: %f\n",detectPitchCalculation(buffer, 50.0, 1000.0, 1, 1)); printf("Pitch from mic: %f\n",detectPitchCalculation(data, 50.0, 1000.0, 1, 1)); return 0; } // These work by shifting the signal until it seems to correlate with itself. // In other words if the signal looks very similar to (signal shifted 200 data) than the fundamental period is probably 200 data // Note that the algorithm only works well when there's only one prominent fundamental. // This could be optimized by looking at the rate of change to determine a maximum without testing all periods. double detectPitchCalculation(double* data, double minHz, double maxHz, int nCandidates, int nResolution) { //-------------------------1-------------------------// // note that higher frequency means lower period int nLowPeriodInSamples = hzToPeriodInSamples(maxHz, 2048); int nHiPeriodInSamples = hzToPeriodInSamples(minHz, 2048); if (nHiPeriodInSamples <= nLowPeriodInSamples) printf("Bad range for pitch detection."); if (1024 < nHiPeriodInSamples) printf("Not enough data."); double *results = new double[nHiPeriodInSamples - nLowPeriodInSamples]; //-------------------------2-------------------------// for (int period = nLowPeriodInSamples; period < nHiPeriodInSamples; period += nResolution) { double sum = 0; // for each sample, find correlation. (If they are far apart, small) for (int i = 0; i < 1024 - period; i++) sum += data[i] * data[i + period]; double mean = sum / 1024.0; results[period - nLowPeriodInSamples] = mean; } //-------------------------3-------------------------// // find the best indices int *bestIndices = findBestCandidates(nCandidates, results, nHiPeriodInSamples - nLowPeriodInSamples - 1); //note findBestCandidates modifies parameter // convert back to Hz double *res = new double[nCandidates]; for (int i=0; i < nCandidates;i++) res[i] = periodInSamplesToHz(bestIndices[i]+nLowPeriodInSamples, 2048); double pitch2 = res[0]; free(res); free(results); return pitch2; } /// Finds n "best" values from an array. Returns the indices of the best parts. /// (One way to do this would be to sort the array, but that could take too long. /// Warning: Changes the contents of the array!!! Do not use result array afterwards. int* findBestCandidates(int n, double* inputs,int length) { //int length = inputs.Length; if (length < n) printf("Length of inputs is not long enough."); int *res = new int[n]; double minValue = 0; for (int c = 0; c < n; c++) { // find the highest. double fBestValue = minValue; int nBestIndex = -1; for (int i = 0; i < length; i++) { if (inputs[i] > fBestValue) { nBestIndex = i; fBestValue = inputs[i]; } } // record this highest value res[c] = nBestIndex; // now blank out that index. if(nBestIndex!=-1) inputs[nBestIndex] = minValue; } return res; } int hzToPeriodInSamples(double hz, int sampleRate) { return (int)(1 / (hz / (double)sampleRate)); } double periodInSamplesToHz(int period, int sampleRate) { return 1 / (period / (double)sampleRate); } Thanks, Niall. Edit: Changed the code to implement a high pass filter with a cutoff of 30hz (from What Are High-Pass and Low-Pass Filters?, can anyone tell me how to convert the low-pass filter using convolution to a high-pass one?) but it's still returning random results. Plugging it into a VST host and using VST plugins to compare spectrums isn't an option to me unfortunately.

    Read the article

  • Sorting and Re-arranging List of HashMaps

    - by HonorGod
    I have a List which is straight forward representation of a database table. I am trying to sort and apply some magic after the data is loaded into List of HashMaps. In my case this is the only hard and fast way of doing it becoz I have a rules engine that actually updates the values in the HashMap after several computations. Here is a sample data representation of the HashMap (List of HashMap) - {fromDate=Wed Mar 17 10:54:12 EDT 2010, eventId=21, toDate=Tue Mar 23 10:54:12 EDT 2010, actionId=1234} {fromDate=Wed Mar 17 10:54:12 EDT 2010, eventId=11, toDate=Wed Mar 17 10:54:12 EDT 2010, actionId=456} {fromDate=Sat Mar 20 10:54:12 EDT 2010, eventId=20, toDate=Thu Apr 01 10:54:12 EDT 2010, actionId=1234} {fromDate=Wed Mar 24 10:54:12 EDT 2010, eventId=22, toDate=Sat Mar 27 10:54:12 EDT 2010, actionId=1234} {fromDate=Wed Mar 17 10:54:12 EDT 2010, eventId=11, toDate=Fri Mar 26 10:54:12 EDT 2010, actionId=1234} {fromDate=Sat Mar 20 10:54:12 EDT 2010, eventId=11, toDate=Wed Mar 31 10:54:12 EDT 2010, actionId=1234} {fromDate=Mon Mar 15 10:54:12 EDT 2010, eventId=12, toDate=Wed Mar 17 10:54:12 EDT 2010, actionId=567} I am trying to achieve couple of things - 1) Sort the list by actionId and eventId after which the data would look like - {fromDate=Wed Mar 17 10:54:12 EDT 2010, eventId=11, toDate=Wed Mar 17 10:54:12 EDT 2010, actionId=456} {fromDate=Mon Mar 15 10:54:12 EDT 2010, eventId=12, toDate=Wed Mar 17 10:54:12 EDT 2010, actionId=567} {fromDate=Wed Mar 24 10:54:12 EDT 2010, eventId=22, toDate=Sat Mar 27 10:54:12 EDT 2010, actionId=1234} {fromDate=Wed Mar 17 10:54:12 EDT 2010, eventId=21, toDate=Tue Mar 23 10:54:12 EDT 2010, actionId=1234} {fromDate=Sat Mar 20 10:54:12 EDT 2010, eventId=20, toDate=Thu Apr 01 10:54:12 EDT 2010, actionId=1234} {fromDate=Wed Mar 17 10:54:12 EDT 2010, eventId=11, toDate=Fri Mar 26 10:54:12 EDT 2010, actionId=1234} {fromDate=Sat Mar 20 10:54:12 EDT 2010, eventId=11, toDate=Wed Mar 31 10:54:12 EDT 2010, actionId=1234} 2) If we group the above list by actionId they would be resolved into 3 groups - actionId=1234, actionId=567 and actionId=456. Now here is my question - For each group having the same eventId, I need to update the records so that they have wider fromDate to toDate. Meaning, if you consider the last two rows they have same actionId = 1234 and same eventId = 11. Now we can to pick the least fromDate from those 2 records which is Wed Mar 17 10:54:12 and farther toDate which is Wed Mar 31 10:54:12 and update those 2 record's fromDate and toDate to Wed Mar 17 10:54:12 and Wed Mar 31 10:54:12 respectively. Any ideas? PS: I already have some pseudo code to start with. import java.util.ArrayList; import java.util.Calendar; import java.util.Collections; import java.util.Comparator; import java.util.Date; import java.util.HashMap; import java.util.List; import org.apache.commons.lang.builder.CompareToBuilder; public class Tester { boolean ascending = true ; boolean sortInstrumentIdAsc = true ; boolean sortEventTypeIdAsc = true ; public static void main(String args[]) { Tester tester = new Tester() ; tester.printValues() ; } public void printValues () { List<HashMap<String,Object>> list = new ArrayList<HashMap<String,Object>>() ; HashMap<String,Object> map = new HashMap<String,Object>(); map.put("actionId", new Integer(1234)) ; map.put("eventId", new Integer(21)) ; map.put("fromDate", getDate(1) ) ; map.put("toDate", getDate(7) ) ; list.add(map); map = new HashMap<String,Object>(); map.put("actionId", new Integer(456)) ; map.put("eventId", new Integer(11)) ; map.put("fromDate", getDate(1)) ; map.put("toDate", getDate(1) ) ; list.add(map); map = new HashMap<String,Object>(); map.put("actionId", new Integer(1234)) ; map.put("eventId", new Integer(20)) ; map.put("fromDate", getDate(4) ) ; map.put("toDate", getDate(16) ) ; list.add(map); map = new HashMap<String,Object>(); map.put("actionId", new Integer(1234)) ; map.put("eventId", new Integer(22)) ; map.put("fromDate",getDate(8) ) ; map.put("toDate", getDate(11)) ; list.add(map); map = new HashMap<String,Object>(); map.put("actionId", new Integer(1234)) ; map.put("eventId", new Integer(11)) ; map.put("fromDate",getDate(1) ) ; map.put("toDate", getDate(10) ) ; list.add(map); map = new HashMap<String,Object>(); map.put("actionId", new Integer(1234)) ; map.put("eventId", new Integer(11)) ; map.put("fromDate",getDate(4) ) ; map.put("toDate", getDate(15) ) ; list.add(map); map = new HashMap<String,Object>(); map.put("actionId", new Integer(567)) ; map.put("eventId", new Integer(12)) ; map.put("fromDate", getDate(-1) ) ; map.put("toDate",getDate(1)) ; list.add(map); System.out.println("\n Before Sorting \n "); for(int j = 0 ; j < list.size() ; j ++ ) System.out.println(list.get(j)); Collections.sort ( list , new HashMapComparator2 () ) ; System.out.println("\n After Sorting \n "); for(int j = 0 ; j < list.size() ; j ++ ) System.out.println(list.get(j)); } public static Date getDate(int days) { Calendar cal = Calendar.getInstance(); cal.setTime(new Date()); cal.add(Calendar.DATE, days); return cal.getTime() ; } public class HashMapComparator2 implements Comparator { public int compare ( Object object1 , Object object2 ) { if ( ascending == true ) { return new CompareToBuilder() .append(( ( HashMap ) object1 ).get ( "actionId" ), ( ( HashMap ) object2 ).get ( "actionId" )) .append(( ( HashMap ) object2 ).get ( "eventId" ), ( ( HashMap ) object1 ).get ( "eventId" )) .toComparison(); } else { return new CompareToBuilder() .append(( ( HashMap ) object2 ).get ( "actionId" ), ( ( HashMap ) object1 ).get ( "actionId" )) .append(( ( HashMap ) object2 ).get ( "eventId" ), ( ( HashMap ) object1 ).get ( "eventId" )) .toComparison(); } } } }

    Read the article

  • Can this Query be corrected or different table structure needed? (database dumps provided)

    - by sandeepan
    This is a bit lengthy but I have provided sufficient details and kept things very clear. Please see if you can help. (I will surely accept answer if it solves my problem) I am sure a person experienced with this can surely help or suggest me to decide the tables structure. About the system:- There are tutors who create classes A tags based search approach is being followed Tag relations are created/edited when new tutors registers/edits profile data and when tutors create classes (this makes tutors and classes searcheable).For simplicity, let us consider only tutor name and class name are the fields which are matched against search keywords. In this example, I am considering - tutor "Sandeepan Nath" has created a class called "first class" tutor "Bob Cratchit" has created a class called "new class" Desired search results- AND logic to be appied on the search keywords and match against class and tutor data(class name + tutor name), in other words, All those classes be shown such that all the search terms are present in the class name or its tutor name. Example to be clear - Searching "first class" returns class with id_wc = 1. Working Searching "Sandeepan class" should also return class with id_wc = 1. Not working in System 2. Problem with profile editing and searching To tell in one sentence, I am facing a conflict between the ease of profile edition (edition of tag relations when tutor profiles are edited) and the ease of search logic. In the beginning, we had one table structure and search was easy but tag edition logic was very clumsy and unmaintainable(Check System 1 in the section below) . So we created separate tag relations tables to make profile edition simpler but search has become difficult. Please dump the tables so that you can run the search query I have given below and see the results. System 1 (previous system - search easy - profile edition difficult):- Only one table called All_Tag_Relations table had the all the tag relations. The tags table below is common to both systems 1 and 2. CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `all_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 1, 1, NULL), (2, 2, 1, NULL), (3, 1, 1, 1), (4, 2, 1, 1), (5, 3, 1, 1), (6, 4, 1, 1), (7, 6, 2, NULL), (8, 7, 2, NULL), (9, 6, 2, 2), (10, 7, 2, 2), (11, 5, 2, 2), (12, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); Please note that for every class, the tag rels of its tutor have to be duplicated. Example, for class with id_wc=1, the tag rel records with id_tag_rel = 3 and 4 are actually extras if you compare with the tag rel records with id_tag_rel = 1 and 2. System 2 (present system - profile edition easy, search difficult) Two separate tables Tutors_Tag_Relations and Webclasses_Tag_Relations have the corresponding tag relations data (Please dump into a separate database)- CREATE TABLE IF NOT EXISTS `tutors_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `tutors_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`) VALUES (1, 1, 1), (2, 2, 1), (3, 6, 2), (4, 7, 2); CREATE TABLE IF NOT EXISTS `webclasses_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `webclasses_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `webclasses_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 3, 1, 1), (2, 4, 1, 1), (3, 5, 2, 2), (4, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; insert into All_Tag_Relations select NULL,id_tag,id_tutor,NULL from Tutors_Tag_Relations; insert into All_Tag_Relations select NULL,id_tag,id_tutor,id_wc from Webclasses_Tag_Relations; Here you can see how easily tutor first name can be edited only in one place. But search has become really difficult, so on being advised to use a Temporary table, I am creating one at every search request, then dumping all the necessary data and then searching from it, I am creating this All_Tag_Relations table at search run time. Here I am just dumping all the data from the two tables Tutors_Tag_Relations and Webclasses_Tag_Relations. But, I am still not able to get classes if I search with tutor name This is the query which searches "first class". Running them on both the systems shows correct results (returns the class with id_wc = 1). SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =3)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =3 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 But, searching for "Sandeepan class" works only with the 1st system Here is the query which searches "Sandeepan class" SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =1)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =1 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 Can anybody alter this query and somehow do a proper join or something to get correct results. That solves my problem in a nice way. As you can figure out, the reason why it does not work in system 2 is that in system 1, for every class, one additional tag relation linking class and tutor name is present. e.g. for class first class, (records with id_tag_rel 3 and 4) which returns the class on searching with tutor name. So, you see the trade-off between the search and profile edition difficulty with the two systems. How do I overcome both. I have to reach a conclusion soon. So far my reasoning is it is definitely not good from a code maintainability point of view to follow the single tag rel table structure of system one, because in a real system while editing a field like "tutor qualifications", there can be as many records in tag rels table as there are words in qualification of a tutor (one word in a field = one tag relation). Now suppose a tutor has 100 classes. When he edits his qualification, all the tag rel rows corresponding to him are deleted and then as many copies are to be created (as per the new qualification data) as there are classes. This becomes particularly difficult if later more searcheable fields are added. The code cannot be robust. Is the best solution to follow system 2 (edition has to be in one table - no extra work for each and every class) and somehow re-create the all_tag_relations table like system 1 (from the tables tutor_tag_relations and webclasses_tag_relations), creating the extra tutor tag rels for each and every class by a tutor (which is currently missing in system 2's temporary all_tag_relations table). That would be a time consuming logic script. I doubt that table can be recreated without resorting to PHP sript (mysql alone cannot do that). But the problem is that running all this at search time will make search definitely slow. So, how do such systems work? How are such situations handled? I thought about we can run a cron which initiates that PHP script, say every 1 minute and replaces the existing all_tag_relations table as per new tag rels from tutor_tag_relations and webclasses_tag_relations (replaces means creates a new table, deletes the original and renames the new one as all_tag_relations, otherwise search won't work during that period- or is there any better way to that?). Anyway, the result would be that any changes by tutors will reflect in search in the next 1 minute and not immediately. An alternateve would be to initate that PHP script every time a tutor edits his profile. But here again, since many users may edit their profiles concurrently, will the creation of so many tables be a burden and can mysql make the server slow? Any help would be appreciated and working solution will be accepted as answer. Thanks, Sandeepan

    Read the article

  • Will these optimizations to my Ruby implementation of diff improve performance in a Rails app?

    - by grg-n-sox
    <tl;dr> In source version control diff patch generation, would it be worth it to use the optimizations listed at the very bottom of this writing (see <optimizations>) in my Ruby implementation of diff for making diff patches? </tl;dr> <introduction> I am programming something I have never done before and there might already be tools out there to do the exact thing I am programming but at this point I am having too much fun to care so I am still going to do it from scratch, even if there is a tool for this. So anyways, I am working on a Ruby on Rails app and need a certain feature. Basically I want each entry in a table of mine, let's say for example a table of video games, to have a stored chunk of text that represents a review or something of the sort for that table entry. However, I want this text to be both editable by any registered user and also keep track of different submissions in a version control system. The simplest solution I could think of is just implement a solution that keeps track of the text body and the diff patch history of different versions of the text body as objects in Ruby and then serialize it, preferably in human readable form (so I'll most likely use YAML for this) for editing if needed due to corruption by a software bug or a mistake is made by an admin doing some version editing. So at first I just tried to dive in head first into this feature to find that the problem of generating a diff patch is more difficult that I thought to do efficiently. So I did some research and came across some ideas. Some I have implemented already and some I have not. However, it all pretty much revolves around the longest common subsequence problem, as you would already know if you have already done anything with diff or diff-like features, and optimization the function that solves it. Currently I have it so it truncates the compared versions of the text body from the beginning and end until non-matching lines are found. Then it solves the problem using a comparison matrix, but instead of incrementing the value stored in a cell when it finds a matching line like in most longest common subsequence algorithms I have seen examples of, I increment when I have a non-matching line so as to calculate edit distance instead of longest common subsequence. Although as far as I can tell between the two approaches, they are essentially two sides of the same coin so either could be used to derive an answer. It then back-traces through the comparison matrix and notes when there was an incrementation and in which adjacent cell (West, Northwest, or North) to determine that line's diff entry and assumes all other lines to be unchanged. Normally I would leave it at that, but since this is going into a Rails environment and not just some stand-alone Ruby script, I started getting worried about needing to optimize at least enough so if a spammer that somehow knew how I implemented the version control system and knew my worst case scenario entry still wouldn't be able to hit the server that bad. After some searching and reading of research papers and articles through the internet, I've come across several that seem decent but all seem to have pros and cons and I am having a hard time deciding how well in this situation that the pros and cons balance out. So are the ones listed here worth it? I have listed them with known pros and cons. </introduction> <optimizations> Chop the compared sequences into multiple chucks of subsequences by splitting where lines are unchanged, and then truncating each section of unchanged lines at the beginning and end of each section. Then solve the edit distance of each subsequence. Pro: Changes the time increase as the changed area gets bigger from a quadratic increase to something more similar to a linear increase. Con: Figuring out where to split already seems like you have to solve edit distance except now you don't care how it is changed. Would be fine if this was solvable by a process closer to solving hamming distance but a single insertion would throw this off. Use a cryptographic hash function to both convert all sequence elements into integers and ensure uniqueness. Then solve the edit distance comparing the hash integers instead of the sequence elements themselves. Pro: The operation of comparing two integers is faster than the operation of comparing two strings, so a slight performance gain is received after every comparison, which can be a lot overall. Con: Using a cryptographic hash function takes time to convert all the sequence elements and may end up costing more time to do the conversion that you gain back from the integer comparisons. You could use the built in hash function for a string but that will not guarantee uniqueness. Use lazy evaluation to only calculate the three center-most diagonals of the comparison matrix and then only calculate additional diagonals as needed. And then also use this approach to possibly remove the need on some comparisons to compare all three adjacent cells as desribed here. Pro: Can turn an algorithm that always takes O(n * m) time and make it so only worst case scenario is that time, best case becomes practically linear, and average case is somewhere between the two. Con: It is an algorithm I've only seen implemented in functional programming languages and I am having a difficult time comprehending how to convert this into Ruby based on how it is described at the site linked to above. Make a C module and do the hard work at the native level in C and just make a Ruby wrapper for it so Ruby can make all the calls to it that it needs. Pro: I have to imagine that evaluating something like this in could be a LOT faster. Con: I have no idea how Rails handles apps with ruby code that has C extensions and it hurts the portability of the app. This is an optimization for after the solving of edit distance, but idea is to store additional combined diffs with the ones produced by each version to make a delta-tree data structure with the most recently made diff as the root node of the tree so getting to any version takes worst case time of O(log n) instead of O(n). Pro: Would make going back to an old version a lot faster. Con: It would mean every new commit, the delta-tree would get a new root node that will cost time to reorganize the delta-tree for an operation that will be carried out a lot more often than going back a version, not to mention the unlikelihood it will be an old version. </optimizations> So are these things worth the effort?

    Read the article

  • EKCalendar not added to iCal

    - by Alex75
    I have a strange behavior on my iPhone. I'm creating an application that uses calendar events (EventKit). The class that use is as follows: the .h one #import "GenericManager.h" #import <EventKit/EventKit.h> #define oneDay 60*60*24 #define oneHour 60*60 @protocol CalendarManagerDelegate; @interface CalendarManager : GenericManager /* * metodo che aggiunge un evento ad un calendario di nome Name nel giorno onDate. * L'evento da aggiungere viene recuperato tramite il dataSource che è quindi * OBBLIGATORIO (!= nil). * * Restituisce YES solo se il delegate è conforme al protocollo CalendarManagerDataSource. * NO altrimenti */ + (BOOL) addEventForCalendarWithName:(NSString *) name fromDate:(NSDate *)fromDate toDate: (NSDate *) toDate withDelegate:(id<CalendarManagerDelegate>) delegate; /* * metodo che aggiunge un evento per giorno compreso tra fromDate e toDate ad un * calendario di nome Name. L'evento da aggiungere viene recuperato tramite il dataSource * che è quindi OBBLIGATORIO (!= nil). * * Restituisce YES solo se il delegate è conforme al protocollo CalendarManagerDataSource. * NO altrimenti */ + (BOOL) addEventsForCalendarWithName:(NSString *) name fromDate:(NSDate *)fromDate toDate: (NSDate *) toDate withDelegate:(id<CalendarManagerDelegate>) delegate; @end @protocol CalendarManagerDelegate <NSObject> // viene inviato quando il calendario necessita informazioni sull' evento da aggiungere - (void) calendarManagerDidCreateEvent:(EKEvent *) event; @end the .m one // // CalendarManager.m // AppCampeggioSingolo // // Created by CreatiWeb Srl on 12/17/12. // Copyright (c) 2012 CreatiWeb Srl. All rights reserved. // #import "CalendarManager.h" #import "Commons.h" #import <objc/message.h> @interface CalendarManager () @end @implementation CalendarManager + (void)requestToEventStore:(EKEventStore *)eventStore delegate:(id)delegate fromDate:(NSDate *)fromDate toDate: (NSDate *) toDate name:(NSString *)name { if([eventStore respondsToSelector:@selector(requestAccessToEntityType:completion:)]) { // ios >= 6.0 [eventStore requestAccessToEntityType:EKEntityTypeEvent completion:^(BOOL granted, NSError *error) { if (granted) { [self addEventForCalendarWithName:name fromDate: fromDate toDate: toDate inEventStore:eventStore withDelegate:delegate]; } else { } }]; } else if (class_getClassMethod([EKCalendar class], @selector(calendarIdentifier)) != nil) { // ios >= 5.0 && ios < 6.0 [self addEventForCalendarWithName:name fromDate:fromDate toDate:toDate inEventStore:eventStore withDelegate:delegate]; } else { // ios < 5.0 EKCalendar *myCalendar = [eventStore defaultCalendarForNewEvents]; EKEvent *event = [self generateEventForCalendar:myCalendar fromDate: fromDate toDate: toDate inEventStore:eventStore withDelegate:delegate]; [eventStore saveEvent:event span:EKSpanThisEvent error:nil]; } } /* * metodo che recupera l'identificativo del calendario associato all'app o nil se non è mai stato creato. */ + (NSString *) identifierForCalendarName: (NSString *) name { NSString * confFileName = [self pathForFile:kCurrentCalendarFileName]; NSDictionary *confCalendar = [NSDictionary dictionaryWithContentsOfFile:confFileName]; NSString *currentIdentifier = [confCalendar objectForKey:name]; return currentIdentifier; } /* * memorizza l'identifier del calendario */ + (void) saveCalendarIdentifier:(NSString *) identifier andName: (NSString *) name { if (identifier != nil) { NSString * confFileName = [self pathForFile:kCurrentCalendarFileName]; NSMutableDictionary *confCalendar = [NSMutableDictionary dictionaryWithContentsOfFile:confFileName]; if (confCalendar == nil) { confCalendar = [NSMutableDictionary dictionaryWithCapacity:1]; } [confCalendar setObject:identifier forKey:name]; [confCalendar writeToFile:confFileName atomically:YES]; } } + (EKCalendar *)getCalendarWithName:(NSString *)name inEventStore:(EKEventStore *)eventStore withLocalSource: (EKSource *)localSource forceCreation:(BOOL) force { EKCalendar *myCalendar; NSString *identifier = [self identifierForCalendarName:name]; if (force || identifier == nil) { NSLog(@"create new calendar"); if (class_getClassMethod([EKCalendar class], @selector(calendarForEntityType:eventStore:)) != nil) { // da ios 6.0 in avanti myCalendar = [EKCalendar calendarForEntityType:EKEntityTypeEvent eventStore:eventStore]; } else { myCalendar = [EKCalendar calendarWithEventStore:eventStore]; } myCalendar.title = name; myCalendar.source = localSource; NSError *error = nil; BOOL result = [eventStore saveCalendar:myCalendar commit:YES error:&error]; if (result) { NSLog(@"Saved calendar %@ to event store. %@",myCalendar,eventStore); } else { NSLog(@"Error saving calendar: %@.", error); } [self saveCalendarIdentifier:myCalendar.calendarIdentifier andName:name]; } // You can also configure properties like the calendar color etc. The important part is to store the identifier for later use. On the other hand if you already have the identifier, you can just fetch the calendar: else { myCalendar = [eventStore calendarWithIdentifier:identifier]; NSLog(@"fetch an old-one = %@",myCalendar); } return myCalendar; } + (EKCalendar *)addEventForCalendarWithName: (NSString *) name fromDate:(NSDate *)fromDate toDate: (NSDate *) toDate inEventStore:(EKEventStore *)eventStore withDelegate: (id<CalendarManagerDelegate>) delegate { // da ios 5.0 in avanti EKCalendar *myCalendar; EKSource *localSource = nil; for (EKSource *source in eventStore.sources) { if (source.sourceType == EKSourceTypeLocal) { localSource = source; break; } } @synchronized(self) { myCalendar = [self getCalendarWithName:name inEventStore:eventStore withLocalSource:localSource forceCreation:NO]; if (myCalendar == nil) myCalendar = [self getCalendarWithName:name inEventStore:eventStore withLocalSource:localSource forceCreation:YES]; NSLog(@"End synchronized block %@",myCalendar); } EKEvent *event = [self generateEventForCalendar:myCalendar fromDate:fromDate toDate:toDate inEventStore:eventStore withDelegate:delegate]; [eventStore saveEvent:event span:EKSpanThisEvent error:nil]; return myCalendar; } + (EKEvent *) generateEventForCalendar: (EKCalendar *) calendar fromDate:(NSDate *)fromDate toDate: (NSDate *) toDate inEventStore:(EKEventStore *) eventStore withDelegate:(id<CalendarManagerDelegate>) delegate { EKEvent *event = [EKEvent eventWithEventStore:eventStore]; event.startDate=fromDate; event.endDate=toDate; [delegate calendarManagerDidCreateEvent:event]; [event setCalendar:calendar]; // ricerca dell'evento nel calendario, se ne trovo uno uguale non lo inserisco NSPredicate *predicate = [eventStore predicateForEventsWithStartDate:fromDate endDate:toDate calendars:[NSArray arrayWithObject:calendar]]; NSArray *matchEvents = [eventStore eventsMatchingPredicate:predicate]; if ([matchEvents count] > 0) { // ne ho trovati di gia' presenti, vediamo se uno e' quello che vogliamo inserire BOOL found = NO; for (EKEvent *fetchEvent in matchEvents) { if ([fetchEvent.title isEqualToString:event.title] && [fetchEvent.notes isEqualToString:event.notes]) { found = YES; break; } } if (found) { // esiste già e quindi non lo inserisco NSLog(@"OH NOOOOOO!!"); event = nil; } } return event; } #pragma mark - Public Methods + (BOOL) addEventForCalendarWithName:(NSString *) name fromDate:(NSDate *)fromDate toDate: (NSDate *) toDate withDelegate:(id<CalendarManagerDelegate>) delegate { BOOL retVal = YES; EKEventStore *eventStore=[[EKEventStore alloc] init]; if ([delegate conformsToProtocol:@protocol(CalendarManagerDelegate)]) { [self requestToEventStore:eventStore delegate:delegate fromDate:fromDate toDate: toDate name:name]; } else { retVal = NO; } return retVal; } + (BOOL) addEventsForCalendarWithName:(NSString *) name fromDate:(NSDate *)fromDate toDate: (NSDate *) toDate withDelegate:(id<CalendarManagerDelegate>) delegate { BOOL retVal = YES; NSDate *dateCursor = fromDate; EKEventStore *eventStore=[[EKEventStore alloc] init]; if ([delegate conformsToProtocol:@protocol(CalendarManagerDelegate)]) { while (retVal && ([dateCursor compare:toDate] == NSOrderedAscending)) { NSDate *finish = [dateCursor dateByAddingTimeInterval:oneDay]; [self requestToEventStore:eventStore delegate:delegate fromDate: dateCursor toDate: finish name:name]; dateCursor = [dateCursor dateByAddingTimeInterval:oneDay]; } } else { retVal = NO; } return retVal; } @end In practice, on my iphone I get the log: fetch an old-one = (null) 19/12/2012 11:33:09.520 AppCampeggioSingolo [730:8 b1b] create new calendar 19/12/2012 11:33:09.558 AppCampeggioSingolo [730:8 b1b] Saved calendar EKCalendar every time I add an event, then I look and I can not find it on iCal calendar event he added. On the iPhone of a friend of mine, however, everything is working correctly. I doubt that the problem stems from the code, but just do not understand what it could be. I searched all day yesterday and part of today on google but have not found anything yet. Any help will be greatly appreciated EDIT: I forgot the call wich is [CalendarManager addEventForCalendarWithName: @"myCalendar" fromDate:fromDate toDate: toDate withDelegate:self]; in the delegate method simply set title and notes of the event like this - (void) calendarManagerDidCreateEvent:(EKEvent *) event { event.title = @"the title"; event.notes = @"some notes"; }

    Read the article

  • Inserting Records in Ascending Order function- C homework assignment

    - by Aaron McRuer
    Good day, Stack Overflow. I have a homework assignment that I'm working on this weekend that I'm having a bit of a problem with. We have a struct "Record" (which contains information about cars for a dealership) that gets placed in a particular spot in a linked list according to 1) its make and 2) according to its model year. This is done when initially building the list, when a "int insertRecordInAscendingOrder" function is called in Main. In "insertRecordInAscendingOrder", a third function, "createRecord" is called, where the linked list is created. The function then goes to the function "compareCars" to determine what elements get put where. Depending on the value returned by this function, insertRecordInAscendingOrder then places the record where it belongs. The list is then printed out. There's more to the assignment, but I'll cross that bridge when I come to it. Ideally, and for the assignment to be considered correct, the linked list must be ordered as: Chevrolet 2012 25 Chevrolet 2013 10 Ford 2010 5 Ford 2011 3 Ford 2012 15 Honda 2011 9 Honda 2012 3 Honda 2013 12 Toyota 2009 2 Toyota 2011 7 Toyota 2013 20 from the a text file that has the data ordered the following way: Ford 2012 15 Ford 2011 3 Ford 2010 5 Toyota 2011 7 Toyota 2012 20 Toyota 2009 2 Honda 2011 9 Honda 2012 3 Honda 2013 12 Chevrolet 2013 10 Chevrolet 2012 25 Notice that the alphabetical order of the "make" field takes precedence, then, the model year is arranged from oldest to newest. However, the program produces this as the final list: Chevrolet 2012 25 Chevrolet 2013 10 Honda 2011 9 Honda 2012 3 Honda 2013 12 Toyota 2009 2 Toyota 2011 7 Toyota 2012 20 Ford 2010 5 Ford 2011 3 Ford 2012 15 I sat down with a grad student and tried to work out all of this yesterday, but we just couldn't figure out why it was kicking the Ford nodes down to the end of the list. Here's the code. As you'll notice, I included a printList call at each instance of the insertion of a node. This way, you can see just what is happening when the nodes are being put in "order". It is in ANSI C99. All function calls must be made as they are specified, so unfortunately, there's no real way of getting around this problem by creating a more efficient algorithm. #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_LINE 50 #define MAX_MAKE 20 typedef struct record { char *make; int year; int stock; struct record *next; } Record; int compareCars(Record *car1, Record *car2); void printList(Record *head); Record* createRecord(char *make, int year, int stock); int insertRecordInAscendingOrder(Record **head, char *make, int year, int stock); int main(int argc, char **argv) { FILE *inFile = NULL; char line[MAX_LINE + 1]; char *make, *yearStr, *stockStr; int year, stock, len; Record* headRecord = NULL; /*Input and file diagnostics*/ if (argc!=2) { printf ("Filename not provided.\n"); return 1; } if((inFile=fopen(argv[1], "r"))==NULL) { printf("Can't open the file\n"); return 2; } /*obtain values for linked list*/ while (fgets(line, MAX_LINE, inFile)) { make = strtok(line, " "); yearStr = strtok(NULL, " "); stockStr = strtok(NULL, " "); year = atoi(yearStr); stock = atoi(stockStr); insertRecordInAscendingOrder(&headRecord,make, year, stock); } printf("The original list in ascending order: \n"); printList(headRecord); } /*use strcmp to compare two makes*/ int compareCars(Record *car1, Record *car2) { int compStrResult; compStrResult = strcmp(car1->make, car2->make); int compYearResult = 0; if(car1->year > car2->year) { compYearResult = 1; } else if(car1->year == car2->year) { compYearResult = 0; } else { compYearResult = -1; } if(compStrResult == 0 ) { if(compYearResult == 1) { return 1; } else if(compYearResult == -1) { return -1; } else { return compStrResult; } } else if(compStrResult == 1) { return 1; } else { return -1; } } int insertRecordInAscendingOrder(Record **head, char *make, int year, int stock) { Record *previous = *head; Record *newRecord = createRecord(make, year, stock); Record *current = *head; int compResult; if(*head == NULL) { *head = newRecord; printf("Head is null, list was empty\n"); printList(*head); return 1; } else if ( compareCars(newRecord, *head)==-1) { *head = newRecord; (*head)->next = current; printf("New record was less than the head, replacing\n"); printList(*head); return 1; } else { printf("standard case, searching and inserting\n"); previous = *head; while ( current != NULL &&(compareCars(newRecord, current)==1)) { printList(*head); previous = current; current = current->next; } printList(*head); previous->next = newRecord; previous->next->next = current; } return 1; } /*creates records from info passed in from main via insertRecordInAscendingOrder.*/ Record* createRecord(char *make, int year, int stock) { printf("CreateRecord\n"); Record *theRecord; int len; if(!make) { return NULL; } theRecord = malloc(sizeof(Record)); if(!theRecord) { printf("Unable to allocate memory for the structure.\n"); return NULL; } theRecord->year = year; theRecord->stock = stock; len = strlen(make); theRecord->make = malloc(len + 1); strncpy(theRecord->make, make, len); theRecord->make[len] = '\0'; theRecord->next=NULL; return theRecord; } /*prints list. lists print.*/ void printList(Record *head) { int i; int j = 50; Record *aRecord; aRecord = head; for(i = 0; i < j; i++) { printf("-"); } printf("\n"); printf("%20s%20s%10s\n", "Make", "Year", "Stock"); for(i = 0; i < j; i++) { printf("-"); } printf("\n"); while(aRecord != NULL) { printf("%20s%20d%10d\n", aRecord->make, aRecord->year, aRecord->stock); aRecord = aRecord->next; } printf("\n"); } The text file you'll need for a command line argument can be saved under any name you like; here are the contents you'll need: Ford 2012 15 Ford 2011 3 Ford 2010 5 Toyota 2011 7 Toyota 2012 20 Toyota 2009 2 Honda 2011 9 Honda 2012 3 Honda 2013 12 Chevrolet 2013 10 Chevrolet 2012 25 Thanks in advance for your help. I shall continue to plow away at it myself.

    Read the article

  • Can this Query can be corrected or different table structure needed? (question is clear, detailed, d

    - by sandeepan
    This is a bit lengthy but I have provided sufficient details and kept things very clear. Please see if you can help. (I will surely accept answer if it solves my problem) I am sure a person experienced with this can surely help or suggest me to decide the tables structure. About the system:- There are tutors who create classes A tags based search approach is being followed Tag relations are created/edited when new tutors registers/edits profile data and when tutors create classes (this makes tutors and classes searcheable).For simplicity, let us consider only tutor name and class name are the fields which are matched against search keywords. In this example, I am considering - tutor "Sandeepan Nath" has created a class called "first class" tutor "Bob Cratchit" has created a class called "new class" Desired search results- AND logic to be appied on the search keywords and match against class and tutor data(class name + tutor name), in other words, All those classes be shown such that all the search terms are present in the class name or its tutor name. Example to be clear - Searching "first class" returns class with id_wc = 1. Working Searching "Sandeepan class" should also return class with id_wc = 1. Not working in System 2. Problem with profile editing and searching To tell in one sentence, I am facing a conflict between the ease of profile edition (edition of tag relations when tutor profiles are edited) and the ease of search logic. In the beginning, we had one table structure and search was easy but tag edition logic was very clumsy and unmaintainable(Check System 1 in the section below) . So we created separate tag relations tables to make profile edition simpler but search has become difficult. Please dump the tables so that you can run the search query I have given below and see the results. System 1 (previous system - search easy - profile edition difficult):- Only one table called All_Tag_Relations table had the all the tag relations. The tags table below is common to both systems 1 and 2. CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `all_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 1, 1, NULL), (2, 2, 1, NULL), (3, 1, 1, 1), (4, 2, 1, 1), (5, 3, 1, 1), (6, 4, 1, 1), (7, 6, 2, NULL), (8, 7, 2, NULL), (9, 6, 2, 2), (10, 7, 2, 2), (11, 5, 2, 2), (12, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); Please note that for every class, the tag rels of its tutor have to be duplicated. Example, for class with id_wc=1, the tag rel records with id_tag_rel = 3 and 4 are actually extras if you compare with the tag rel records with id_tag_rel = 1 and 2. System 2 (present system - profile edition easy, search difficult) Two separate tables Tutors_Tag_Relations and Webclasses_Tag_Relations have the corresponding tag relations data (Please dump into a separate database)- CREATE TABLE IF NOT EXISTS `tutors_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `tutors_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`) VALUES (1, 1, 1), (2, 2, 1), (3, 6, 2), (4, 7, 2); CREATE TABLE IF NOT EXISTS `webclasses_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `webclasses_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `webclasses_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 3, 1, 1), (2, 4, 1, 1), (3, 5, 2, 2), (4, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; insert into All_Tag_Relations select NULL,id_tag,id_tutor,NULL from Tutors_Tag_Relations; insert into All_Tag_Relations select NULL,id_tag,id_tutor,id_wc from Webclasses_Tag_Relations; Here you can see how easily tutor first name can be edited only in one place. But search has become really difficult, so on being advised to use a Temporary table, I am creating one at every search request, then dumping all the necessary data and then searching from it, I am creating this All_Tag_Relations table at search run time. Here I am just dumping all the data from the two tables Tutors_Tag_Relations and Webclasses_Tag_Relations. But, I am still not able to get classes if I search with tutor name This is the query which searches "first class". Running them on both the systems shows correct results (returns the class with id_wc = 1). SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =3)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =3 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 But, searching for "Sandeepan class" works only with the 1st system Here is the query which searches "Sandeepan class" SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =1)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =1 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 Can anybody alter this query and somehow do a proper join or something to get correct results. That solves my problem in a nice way. As you can figure out, the reason why it does not work in system 2 is that in system 1, for every class, one additional tag relation linking class and tutor name is present. e.g. for class first class, (records with id_tag_rel 3 and 4) which returns the class on searching with tutor name. So, you see the trade-off between the search and profile edition difficulty with the two systems. How do I overcome both. I have to reach a conclusion soon. So far my reasoning is it is definitely not good from a code maintainability point of view to follow the single tag rel table structure of system one, because in a real system while editing a field like "tutor qualifications", there can be as many records in tag rels table as there are words in qualification of a tutor (one word in a field = one tag relation). Now suppose a tutor has 100 classes. When he edits his qualification, all the tag rel rows corresponding to him are deleted and then as many copies are to be created (as per the new qualification data) as there are classes. This becomes particularly difficult if later more searcheable fields are added. The code cannot be robust. Is the best solution to follow system 2 (edition has to be in one table - no extra work for each and every class) and somehow re-create the all_tag_relations table like system 1 (from the tables tutor_tag_relations and webclasses_tag_relations), creating the extra tutor tag rels for each and every class by a tutor (which is currently missing in system 2's temporary all_tag_relations table). That would be a time consuming logic script. I doubt that table can be recreated without resorting to PHP sript (mysql alone cannot do that). But the problem is that running all this at search time will make search definitely slow. So, how do such systems work? How are such situations handled? I thought about we can run a cron which initiates that PHP script, say every 1 minute and replaces the existing all_tag_relations table as per new tag rels from tutor_tag_relations and webclasses_tag_relations (replaces means creates a new table, deletes the original and renames the new one as all_tag_relations, otherwise search won't work during that period- or is there any better way to that?). Anyway, the result would be that any changes by tutors will reflect in search in the next 1 minute and not immediately. An alternateve would be to initate that PHP script every time a tutor edits his profile. But here again, since many users may edit their profiles concurrently, will the creation of so many tables be a burden and can mysql make the server slow? Any help would be appreciated and working solution will be accepted as answer. Thanks, Sandeepan

    Read the article

  • g++ SSE intrinsics dilemma - value from intrinsic "saturates"

    - by Sriram
    Hi, I wrote a simple program to implement SSE intrinsics for computing the inner product of two large (100000 or more elements) vectors. The program compares the execution time for both, inner product computed the conventional way and using intrinsics. Everything works out fine, until I insert (just for the fun of it) an inner loop before the statement that computes the inner product. Before I go further, here is the code: //this is a sample Intrinsics program to compute inner product of two vectors and compare Intrinsics with traditional method of doing things. #include <iostream> #include <iomanip> #include <xmmintrin.h> #include <stdio.h> #include <time.h> #include <stdlib.h> using namespace std; typedef float v4sf __attribute__ ((vector_size(16))); double innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume len1 = len2. float result = 0.0; for(int i = 0; i < len1; i++) { for(int j = 0; j < len1; j++) { result += (arr1[i] * arr2[i]); } } //float y = 1.23e+09; //cout << "y = " << y << endl; return result; } double sse_v4sf_innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume that len1 = len2. if(len1 != len2) { cout << "Lengths not equal." << endl; exit(1); } /*steps: * 1. load a long-type (4 float) into a v4sf type data from both arrays. * 2. multiply the two. * 3. multiply the same and store result. * 4. add this to previous results. */ v4sf arr1Data, arr2Data, prevSums, multVal, xyz; //__builtin_ia32_xorps(prevSums, prevSums); //making it equal zero. //can explicitly load 0 into prevSums using loadps or storeps (Check). float temp[4] = {0.0, 0.0, 0.0, 0.0}; prevSums = __builtin_ia32_loadups(temp); float result = 0.0; for(int i = 0; i < (len1 - 3); i += 4) { for(int j = 0; j < len1; j++) { arr1Data = __builtin_ia32_loadups(&arr1[i]); arr2Data = __builtin_ia32_loadups(&arr2[i]); //store the contents of two arrays. multVal = __builtin_ia32_mulps(arr1Data, arr2Data); //multiply. xyz = __builtin_ia32_addps(multVal, prevSums); prevSums = xyz; } } //prevSums will hold the sums of 4 32-bit floating point values taken at a time. Individual entries in prevSums also need to be added. __builtin_ia32_storeups(temp, prevSums); //store prevSums into temp. cout << "Values of temp:" << endl; for(int i = 0; i < 4; i++) cout << temp[i] << endl; result += temp[0] + temp[1] + temp[2] + temp[3]; return result; } int main() { clock_t begin, end; int length = 100000; float *arr1, *arr2; double result_Conventional, result_Intrinsic; // printStats("Allocating memory."); arr1 = new float[length]; arr2 = new float[length]; // printStats("End allocation."); srand(time(NULL)); //init random seed. // printStats("Initializing array1 and array2"); begin = clock(); for(int i = 0; i < length; i++) { // for(int j = 0; j < length; j++) { // arr1[i] = rand() % 10 + 1; arr1[i] = 2.5; // arr2[i] = rand() % 10 - 1; arr2[i] = 2.5; // } } end = clock(); cout << "Time to initialize array1 and array2 = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("Finished initialization."); // printStats("Begin inner product conventionally."); begin = clock(); result_Conventional = innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product conventionally = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("End inner product conventionally."); // printStats("Begin inner product using Intrinsics."); begin = clock(); result_Intrinsic = sse_v4sf_innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product with intrinsics = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; //printStats("End inner product using Intrinsics."); cout << "Results: " << endl; cout << " result_Conventional = " << result_Conventional << endl; cout << " result_Intrinsics = " << result_Intrinsic << endl; return 0; } I use the following g++ invocation to build this: g++ -W -Wall -O2 -pedantic -march=i386 -msse intrinsics_SSE_innerProduct.C -o innerProduct Each of the loops above, in both the functions, runs a total of N^2 times. However, given that arr1 and arr2 (the two floating point vectors) are loaded with a value 2.5, the length of the array is 100,000, the result in both cases should be 6.25e+10. The results I get are: Results: result_Conventional = 6.25e+10 result_Intrinsics = 5.36871e+08 This is not all. It seems that the value returned from the function that uses intrinsics "saturates" at the value above. I tried putting other values for the elements of the array and different sizes too. But it seems that any value above 1.0 for the array contents and any size above 1000 meets with the same value we see above. Initially, I thought it might be because all operations within SSE are in floating point, but floating point should be able to store a number that is of the order of e+08. I am trying to see where I could be going wrong but cannot seem to figure it out. I am using g++ version: g++ (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2). Any help on this is most welcome. Thanks, Sriram.

    Read the article

  • Please Critique this PHP Login Script

    - by NightMICU
    Greetings, A site I developed was recently compromised, most likely by a brute force or Rainbow Table attack. The original log-in script did not have a SALT, passwords were stored in MD5. Below is an updated script, complete with SALT and IP address banning. In addition, it will send a Mayday email & SMS and disable the account should the same IP address or account attempt 4 failed log-ins. Please look it over and let me know what could be improved, what is missing, and what is just plain strange. Many thanks! <?php //Start session session_start(); //Include DB config include $_SERVER['DOCUMENT_ROOT'] . '/includes/pdo_conn.inc.php'; //Error message array $errmsg_arr = array(); $errflag = false; //Function to sanitize values received from the form. Prevents SQL injection function clean($str) { $str = @trim($str); if(get_magic_quotes_gpc()) { $str = stripslashes($str); } return $str; } //Define a SALT, the one here is for demo define('SALT', '63Yf5QNA'); //Sanitize the POST values $login = clean($_POST['login']); $password = clean($_POST['password']); //Encrypt password $encryptedPassword = md5(SALT . $password); //Input Validations //Obtain IP address and check for past failed attempts $ip_address = $_SERVER['REMOTE_ADDR']; $checkIPBan = $db->prepare("SELECT COUNT(*) FROM ip_ban WHERE ipAddr = ? OR login = ?"); $checkIPBan->execute(array($ip_address, $login)); $numAttempts = $checkIPBan->fetchColumn(); //If there are 4 failed attempts, send back to login and temporarily ban IP address if ($numAttempts == 1) { $getTotalAttempts = $db->prepare("SELECT attempts FROM ip_ban WHERE ipAddr = ? OR login = ?"); $getTotalAttempts->execute(array($ip_address, $login)); $totalAttempts = $getTotalAttempts->fetch(); $totalAttempts = $totalAttempts['attempts']; if ($totalAttempts >= 4) { //Send Mayday SMS $to = "[email protected]"; $subject = "Banned Account - $login"; $mailheaders = 'From: [email protected]' . "\r\n"; $mailheaders .= 'Reply-To: [email protected]' . "\r\n"; $mailheaders .= 'MIME-Version: 1.0' . "\r\n"; $mailheaders .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n"; $msg = "<p>IP Address - " . $ip_address . ", Username - " . $login . "</p>"; mail($to, $subject, $msg, $mailheaders); $setAccountBan = $db->query("UPDATE ip_ban SET isBanned = 1 WHERE ipAddr = '$ip_address'"); $setAccountBan->execute(); $errmsg_arr[] = 'Too Many Login Attempts'; $errflag = true; } } if($login == '') { $errmsg_arr[] = 'Login ID missing'; $errflag = true; } if($password == '') { $errmsg_arr[] = 'Password missing'; $errflag = true; } //If there are input validations, redirect back to the login form if($errflag) { $_SESSION['ERRMSG_ARR'] = $errmsg_arr; session_write_close(); header('Location: http://somewhere.com/login.php'); exit(); } //Query database $loginSQL = $db->prepare("SELECT password FROM user_control WHERE username = ?"); $loginSQL->execute(array($login)); $loginResult = $loginSQL->fetch(); //Compare passwords if($loginResult['password'] == $encryptedPassword) { //Login Successful session_regenerate_id(); //Collect details about user and assign session details $getMemDetails = $db->prepare("SELECT * FROM user_control WHERE username = ?"); $getMemDetails->execute(array($login)); $member = $getMemDetails->fetch(); $_SESSION['SESS_MEMBER_ID'] = $member['user_id']; $_SESSION['SESS_USERNAME'] = $member['username']; $_SESSION['SESS_FIRST_NAME'] = $member['name_f']; $_SESSION['SESS_LAST_NAME'] = $member['name_l']; $_SESSION['SESS_STATUS'] = $member['status']; $_SESSION['SESS_LEVEL'] = $member['level']; //Get Last Login $_SESSION['SESS_LAST_LOGIN'] = $member['lastLogin']; //Set Last Login info $updateLog = $db->prepare("UPDATE user_control SET lastLogin = DATE_ADD(NOW(), INTERVAL 1 HOUR), ip_addr = ? WHERE user_id = ?"); $updateLog->execute(array($ip_address, $member['user_id'])); session_write_close(); //If there are past failed log-in attempts, delete old entries if ($numAttempts > 0) { //Past failed log-ins from this IP address. Delete old entries $deleteIPBan = $db->prepare("DELETE FROM ip_ban WHERE ipAddr = ?"); $deleteIPBan->execute(array($ip_address)); } if ($member['level'] != "3" || $member['status'] == "Suspended") { header("location: http://somewhere.com"); } else { header('Location: http://somewhere.com'); } exit(); } else { //Login failed. Add IP address and other details to ban table if ($numAttempts < 1) { //Add a new entry to IP Ban table $addBanEntry = $db->prepare("INSERT INTO ip_ban (ipAddr, login, attempts) VALUES (?,?,?)"); $addBanEntry->execute(array($ip_address, $login, 1)); } else { //increment Attempts count $updateBanEntry = $db->prepare("UPDATE ip_ban SET ipAddr = ?, login = ?, attempts = attempts+1 WHERE ipAddr = ? OR login = ?"); $updateBanEntry->execute(array($ip_address, $login, $ip_address, $login)); } header('Location: http://somewhere.com/login.php'); exit(); } ?>

    Read the article

  • iOS TableView crash loading different data

    - by jollyr0ger
    Hi to all! I'm developing a simple iOS app where there is a table view with some categories (CategoryViewController). When clicking one of this category the view will be passed to a RecipesListController with another table view with recipes. This recipes are loaded from different plist based on the category clicked. The first time I click on a category, the recipes list is loaded and shown correctely. If i back to the category list and click any of the category (also the same again) the app crash. And I don't know how. The viewWillAppear is ececuted correctely but after crash. Can you help me? If you need the entire project I can zip it for you. Ok? Here is the code of the CategoryViewController.h #import <Foundation/Foundation.h> #import "RecipeRowViewController.h" @class RecipesListController; @interface CategoryViewController : UITableViewController { NSArray *recipeCategories; RecipesListController *childController; } @property (nonatomic, retain) NSArray *recipeCategories; @end The CategoryViewControoler.m #import "CategoryViewCotroller.h" #import "NavAppDelegate.h" #import "RecipesListController.h" @implementation CategoryViewController @synthesize recipeCategories; - (void)viewDidLoad { // Create the categories NSArray *array = [[NSArray alloc] initWithObjects:@"Antipasti", @"Focacce", @"Primi", @"Secondi", @"Contorni", @"Dolci", nil]; self.recipeCategories = array; [array release]; // Set background image UIImageView *bgImg = [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"sfondo_app.png"]]; [self.tableView setBackgroundView:bgImg]; [bgImg release]; [self.tableView reloadData]; [super viewDidLoad]; } - (void)viewDidUnload { self.recipeCategories = nil; // [childController release]; [super viewDidUnload]; } - (void)dealloc { [recipeCategories release]; // [childController release]; [super dealloc]; } #pragma mark - #pragma mark Table data source methods - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { return [recipeCategories count]; } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *CellId = @"RecipesCategoriesCellId"; // Try to reuse a cell or create a new one UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellId]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellId] autorelease]; } // Get the right value and assign to the cell NSUInteger row = [indexPath row]; NSString *rowString = [recipeCategories objectAtIndex:row]; cell.textLabel.text = rowString; cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator; [rowString release]; return cell; } #pragma mark - #pragma mark Table view delegate methods - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath { if (childController == nil) { childController = [[RecipesListController alloc] initWithStyle:UITableViewStyleGrouped]; } childController.title = @"Ricette"; childController.category = [indexPath row]; [self.navigationController pushViewController:childController animated:YES]; } @end The RecipesListController.h #import <Foundation/Foundation.h> #import "RecipeRowViewController.h" #define kRecipeArrayLink 0 #define kRecipeArrayDifficulty 1 #define kRecipeArrayFoodType 2 #define kRecipeAntipasti 0 #define kRecipeFocacce 1 #define kRecipePrimi 2 #define kRecipeSecondi 3 #define kRecipeContorni 4 #define kRecipeDolci 5 @class DisclosureDetailController; @interface RecipesListController : UITableViewController { NSInteger category; NSDictionary *recipesArray; NSArray *recipesNames; NSArray *recipesLinks; DisclosureDetailController *childController; } @property (nonatomic) NSInteger category; @property (nonatomic, retain) NSDictionary *recipesArray; @property (nonatomic, retain) NSArray *recipesNames; @property (nonatomic, retain) NSArray *recipesLinks; @end The RecipesListcontroller.m #import "RecipesListController.h" #import "NavAppDelegate.h" #import "DisclosureDetailController.h" @implementation RecipesListController @synthesize category, recipesArray, recipesNames, recipesLinks; - (void)viewDidLoad { // Set background image UIImageView *bgImg = [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"sfondo_app.png"]]; [self.tableView setBackgroundView:bgImg]; [bgImg release]; [self.tableView reloadData]; [super viewDidLoad]; } - (void)viewWillAppear:(BOOL)animated { if (self.recipesArray != nil) { // Release the arrays [self.recipesArray release]; [self.recipesNames release]; } // Load the dictionary NSString *path = nil; // Load a different dictionary, based on the category if (self.category == kRecipeAntipasti) { path = [[NSBundle mainBundle] pathForResource:@"recipes_antipasti" ofType:@"plist"]; } else if (self.category == kRecipeFocacce) { path = [[NSBundle mainBundle] pathForResource:@"recipes_focacce" ofType:@"plist"]; } else if (self.category == kRecipePrimi) { path = [[NSBundle mainBundle] pathForResource:@"recipes_primi" ofType:@"plist"]; } else if (self.category == kRecipeSecondi) { path = [[NSBundle mainBundle] pathForResource:@"recipes_secondi" ofType:@"plist"]; } else if (self.category == kRecipeContorni) { path = [[NSBundle mainBundle] pathForResource:@"recipes_contorni" ofType:@"plist"]; } else if (self.category == kRecipeDolci) { path = [[NSBundle mainBundle] pathForResource:@"recipes_dolci" ofType:@"plist"]; } NSDictionary *dict = [[NSDictionary alloc] initWithContentsOfFile:path]; self.recipesArray = dict; [dict release]; // Save recipes names NSArray *array = [[recipesArray allKeys] sortedArrayUsingSelector: @selector(compare:)]; self.recipesNames = array; [self.tableView reloadData]; [super viewWillAppear:animated]; } - (void)viewDidUnload { self.recipesArray = nil; self.recipesNames = nil; self.recipesLinks = nil; // [childController release]; [super viewDidUnload]; } - (void)dealloc { [recipesArray release]; [recipesNames release]; [recipesLinks release]; // [childController release]; [super dealloc]; } #pragma mark - #pragma mark Table data source methods - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { return [recipesNames count]; } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *RecipesListCellId = @"RecipesListCellId"; // Try to reuse a cell or create a new one UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:RecipesListCellId]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:RecipesListCellId] autorelease]; } // Get the right value and assign to the cell NSUInteger row = [indexPath row]; NSString *rowString = [recipesNames objectAtIndex:row]; cell.textLabel.text = rowString; cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator; [rowString release]; return cell; } #pragma mark - #pragma mark Table view delegate methods - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath { if (childController == nil) { childController = [[DisclosureDetailController alloc] initWithNibName:@"DisclosureDetail" bundle:nil]; } childController.title = @"Dettagli"; NSUInteger row = [indexPath row]; childController.recipeName = [recipesNames objectAtIndex:row]; NSArray *recipeRawArray = [recipesArray objectForKey:childController.recipeName]; childController.recipeLink = [recipeRawArray objectAtIndex:kRecipeArrayLink]; childController.recipeDifficulty = [recipeRawArray objectAtIndex:kRecipeArrayDifficulty]; [self.navigationController pushViewController:childController animated:YES]; } @end This is the crash log Program received signal: “EXC_BAD_ACCESS”. (gdb) bt #0 0x00f0da63 in objc_msgSend () #1 0x04b27ca0 in ?? () #2 0x00002665 in -[RecipesListController viewWillAppear:] (self=0x4b38a00, _cmd=0x6d81a2, animated=1 '\001') at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/RecipesListController.m:67 #3 0x00370c9a in -[UINavigationController _startTransition:fromViewController:toViewController:] () #4 0x0036b606 in -[UINavigationController _startDeferredTransitionIfNeeded] () #5 0x0037283e in -[UINavigationController pushViewController:transition:forceImmediate:] () #6 0x04f49549 in -[UINavigationControllerAccessibility(SafeCategory) pushViewController:transition:forceImmediate:] () #7 0x0036b4a0 in -[UINavigationController pushViewController:animated:] () #8 0x00003919 in -[CategoryViewController tableView:didSelectRowAtIndexPath:] (self=0x4b27ca0, _cmd=0x6d19e3, tableView=0x500c200, indexPath=0x4b2d650) at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/CategoryViewCotroller.m:104 #9 0x0032a794 in -[UITableView _selectRowAtIndexPath:animated:scrollPosition:notifyDelegate:] () #10 0x00320d50 in -[UITableView _userSelectRowAtPendingSelectionIndexPath:] () #11 0x000337f6 in __NSFireDelayedPerform () #12 0x00d8cfe3 in __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ () #13 0x00d8e594 in __CFRunLoopDoTimer () #14 0x00ceacc9 in __CFRunLoopRun () #15 0x00cea240 in CFRunLoopRunSpecific () #16 0x00cea161 in CFRunLoopRunInMode () #17 0x016e0268 in GSEventRunModal () #18 0x016e032d in GSEventRun () #19 0x002c342e in UIApplicationMain () #20 0x00001c08 in main (argc=1, argv=0xbfffef58) at /Users/claudiocanino/Documents/iOS/CottoMangiato/main.m:15 Another bt log: (gdb) bt #0 0x00cd76a1 in __CFBasicHashDeallocate () #1 0x00cc2bcb in _CFRelease () #2 0x00002dd6 in -[RecipesListController setRecipesArray:] (self=0x6834d50, _cmd=0x4293, _value=0x4e3bc70) at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/RecipesListController.m:16 #3 0x00002665 in -[RecipesListController viewWillAppear:] (self=0x6834d50, _cmd=0x6d81a2, animated=1 '\001') at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/RecipesListController.m:67 #4 0x00370c9a in -[UINavigationController _startTransition:fromViewController:toViewController:] () #5 0x0036b606 in -[UINavigationController _startDeferredTransitionIfNeeded] () #6 0x0037283e in -[UINavigationController pushViewController:transition:forceImmediate:] () #7 0x091ac549 in -[UINavigationControllerAccessibility(SafeCategory) pushViewController:transition:forceImmediate:] () #8 0x0036b4a0 in -[UINavigationController pushViewController:animated:] () #9 0x00003919 in -[CategoryViewController tableView:didSelectRowAtIndexPath:] (self=0x4b12970, _cmd=0x6d19e3, tableView=0x5014400, indexPath=0x4b2bd00) at /Users/claudiocanino/Documents/iOS/CottoMangiato/Classes/CategoryViewCotroller.m:104 #10 0x0032a794 in -[UITableView _selectRowAtIndexPath:animated:scrollPosition:notifyDelegate:] () #11 0x00320d50 in -[UITableView _userSelectRowAtPendingSelectionIndexPath:] () #12 0x000337f6 in __NSFireDelayedPerform () #13 0x00d8cfe3 in __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ () #14 0x00d8e594 in __CFRunLoopDoTimer () #15 0x00ceacc9 in __CFRunLoopRun () #16 0x00cea240 in CFRunLoopRunSpecific () #17 0x00cea161 in CFRunLoopRunInMode () #18 0x016e0268 in GSEventRunModal () #19 0x016e032d in GSEventRun () #20 0x002c342e in UIApplicationMain () #21 0x00001c08 in main (argc=1, argv=0xbfffef58) at /Users/claudiocanino/Documents/iOS/CottoMangiato/main.m:15 Thanks

    Read the article

  • I have made two template classes,could any one tell me if these things are useful?

    - by soul
    Recently i made two template classes,according to the book "Modern C++ design". I think these classes are useful but no one in my company agree with me,so could any one tell me if these things are useful? The first one is a parameter wrapper,it can package function paramters to a single dynamic object.It looks like TypeList in "Modern C++ design". You can use it like this: some place of your code: int i = 7; bool b = true; double d = 3.3; CParam *p1 = CreateParam(b,i); CParam *p2 = CreateParam(i,b,d); other place of your code: int i = 0; bool b = false; double d = 0.0; GetParam(p1,b,i); GetParam(p2,i,b,d); The second one is a generic callback wrapper,it has some special point compare to other wrappers: 1.This template class has a dynamic base class,which let you use a single type object represent all wrapper objects. 2.It can wrap the callback together with it's parameters,you can excute the callback sometimes later with the parameters. You can use it like this: somewhere of your code: void Test1(int i) { } void Test2(bool b,int i) { } CallbackFunc * p1 = CreateCallback(Test1,3); CallbackFunc * p2 = CreateCallback(Test2,false,99); otherwhere of your code: p1->Excute(); p2->Excute(); Here is a part of the codes: parameter wrapper: class NullType; struct CParam { virtual ~CParam(){} }; template<class T1,class T2> struct CParam2 : public CParam { CParam2(T1 &t1,T2 &t2):v1(t1),v2(t2){} CParam2(){} T1 v1; T2 v2; }; template<class T1> struct CParam2<T1,NullType> : public CParam { CParam2(T1 &t1):v1(t1){} CParam2(){} T1 v1; }; template<class T1> CParam * CreateParam(T1 t1) { return (new CParam2<T1,NullType>(t1)); } template<class T1,class T2> CParam * CreateParam(T1 t1,T2 t2) { return (new CParam2<T1,T2>(t1,t2)); } template<class T1,class T2,class T3> CParam * CreateParam(T1 t1,T2 t2,T3 t3) { CParam2<T2,T3> t(t2,t3); return new CParam2<T1,CParam2<T2,T3> >(t1,t); } template<class T1> void GetParam(CParam *p,T1 &t1) { PARAM1(T1)* p2 = dynamic_cast<CParam2<T1,NullType>*>(p); t1 = p2->v1; } callback wrapper: #define PARAM1(T1) CParam2<T1,NullType> #define PARAM2(T1,T2) CParam2<T1,T2> #define PARAM3(T1,T2,T3) CParam2<T1,CParam2<T2,T3> > class CallbackFunc { public: virtual ~CallbackFunc(){} virtual void Excute(void){} }; template<class T> class CallbackFunc2 : public CallbackFunc { public: CallbackFunc2():m_b(false){} CallbackFunc2(T &t):m_t(t),m_b(true){} T m_t; bool m_b; }; template<class M,class T> class StaticCallbackFunc : public CallbackFunc2<T> { public: StaticCallbackFunc(M m):m_m(m){} StaticCallbackFunc(M m,T t):CallbackFunc2<T>(t),m_m(m){} virtual void Excute(void){assert(CallbackFunc2<T>::m_b);CallMethod(CallbackFunc2<T>::m_t);} private: template<class T1> void CallMethod(PARAM1(T1) &t){m_m(t.v1);} template<class T1,class T2> void CallMethod(PARAM2(T1,T2) &t){m_m(t.v1,t.v2);} template<class T1,class T2,class T3> void CallMethod(PARAM3(T1,T2,T3) &t){m_m(t.v1,t.v2.v1,t.v2.v2);} private: M m_m; }; template<class M> class StaticCallbackFunc<M,void> : public CallbackFunc { public: StaticCallbackFunc(M method):m_m(method){} virtual void Excute(void){m_m();} private: M m_m; }; template<class C,class M,class T> class MemberCallbackFunc : public CallbackFunc2<T> { public: MemberCallbackFunc(C *pC,M m):m_pC(pC),m_m(m){} MemberCallbackFunc(C *pC,M m,T t):CallbackFunc2<T>(t),m_pC(pC),m_m(m){} virtual void Excute(void){assert(CallbackFunc2<T>::m_b);CallMethod(CallbackFunc2<T>::m_t);} template<class T1> void CallMethod(PARAM1(T1) &t){(m_pC->*m_m)(t.v1);} template<class T1,class T2> void CallMethod(PARAM2(T1,T2) &t){(m_pC->*m_m)(t.v1,t.v2);} template<class T1,class T2,class T3> void CallMethod(PARAM3(T1,T2,T3) &t){(m_pC->*m_m)(t.v1,t.v2.v1,t.v2.v2);} private: C *m_pC; M m_m; }; template<class T1> CallbackFunc *CreateCallback(CallbackFunc *p,T1 t1) { CParam2<T1,NullType> t(t1); return new StaticCallbackFunc<CallbackFunc *,CParam2<T1,NullType> >(p,t); } template<class C,class T1> CallbackFunc *CreateCallback(C *pC,void(C::*pF)(T1),T1 t1) { CParam2<T1,NullType>t(t1); return new MemberCallbackFunc<C,void(C::*)(T1),CParam2<T1,NullType> >(pC,pF,t); } template<class T1> CParam2<T1,NullType> CreateCallbackParam(T1 t1) { return CParam2<T1,NullType>(t1); } template<class T1> void ExcuteCallback(CallbackFunc *p,T1 t1) { CallbackFunc2<CParam2<T1,NullType> > *p2 = dynamic_cast<CallbackFunc2<CParam2<T1,NullType> > *>(p); p2->m_t.v1 = t1; p2->m_b = true; p->Excute(); }

    Read the article

  • C++ function not found during compilation

    - by forthewinwin
    For a homework assignment: I'm supposed to create randomized alphabetial keys, print them to a file, and then hash each of them into a hash table using the function "goodHash", found in my below code. When I try to run the below code, it says my "goodHash" "identifier isn't found". What's wrong with my code? #include <iostream> #include <vector> #include <cstdlib> #include "math.h" #include <fstream> #include <time.h> using namespace std; // "makeKey" function to create an alphabetical key // based on 8 randomized numbers 0 - 25. string makeKey() { int k; string key = ""; for (k = 0; k < 8; k++) { int keyNumber = (rand() % 25); if (keyNumber == 0) key.append("A"); if (keyNumber == 1) key.append("B"); if (keyNumber == 2) key.append("C"); if (keyNumber == 3) key.append("D"); if (keyNumber == 4) key.append("E"); if (keyNumber == 5) key.append("F"); if (keyNumber == 6) key.append("G"); if (keyNumber == 7) key.append("H"); if (keyNumber == 8) key.append("I"); if (keyNumber == 9) key.append("J"); if (keyNumber == 10) key.append("K"); if (keyNumber == 11) key.append("L"); if (keyNumber == 12) key.append("M"); if (keyNumber == 13) key.append("N"); if (keyNumber == 14) key.append("O"); if (keyNumber == 15) key.append("P"); if (keyNumber == 16) key.append("Q"); if (keyNumber == 17) key.append("R"); if (keyNumber == 18) key.append("S"); if (keyNumber == 19) key.append("T"); if (keyNumber == 20) key.append("U"); if (keyNumber == 21) key.append("V"); if (keyNumber == 22) key.append("W"); if (keyNumber == 23) key.append("X"); if (keyNumber == 24) key.append("Y"); if (keyNumber == 25) key.append("Z"); } return key; } // "makeFile" function to produce the desired text file. // Note this only works as intended if you include the ".txt" extension, // and that a file of the same name doesn't already exist. void makeFile(string fileName, int n) { ofstream ourFile; ourFile.open(fileName); int k; // For use in below loop to compare with n. int l; // For use in the loop inside the below loop. string keyToPassTogoodHash = ""; for (k = 1; k <= n; k++) { for (l = 0; l < 8; l++) { // For-loop to write to the file ONE key ourFile << makeKey()[l]; keyToPassTogoodHash += (makeKey()[l]); } ourFile << " " << k << "\n";// Writes two spaces and the data value goodHash(keyToPassTogoodHash); // I think this has to do with the problem makeKey(); // Call again to make a new key. } } // Primary function to create our desired file! void mainFunction(string fileName, int n) { makeKey(); makeFile(fileName, n); } // Hash Table for Part 2 struct Node { int key; string value; Node* next; }; const int hashTableSize = 10; Node* hashTable[hashTableSize]; // "goodHash" function for Part 2 void goodHash(string key) { int x = 0; int y; int keyConvertedToNumber = 0; // For-loop to produce a numeric value based on the alphabetic key, // which is then hashed into hashTable using the hash function // declared below the loop (hashFunction). for (y = 0; y < 8; y++) { if (key[y] == 'A' || 'B' || 'C') x = 0; if (key[y] == 'D' || 'E' || 'F') x = 1; if (key[y] == 'G' || 'H' || 'I') x = 2; if (key[y] == 'J' || 'K' || 'L') x = 3; if (key[y] == 'M' || 'N' || 'O') x = 4; if (key[y] == 'P' || 'Q' || 'R') x = 5; if (key[y] == 'S' || 'T') x = 6; if (key[y] == 'U' || 'V') x = 7; if (key[y] == 'W' || 'X') x = 8; if (key[y] == 'Y' || 'Z') x = 9; keyConvertedToNumber = x + keyConvertedToNumber; } int hashFunction = keyConvertedToNumber % hashTableSize; Node *temp; temp = new Node; temp->value = key; temp->next = hashTable[hashFunction]; hashTable[hashFunction] = temp; } // First two lines are for Part 1, to call the functions key to Part 1. int main() { srand ( time(NULL) ); // To make sure our randomization works. mainFunction("sandwich.txt", 5); // To test program cin.get(); return 0; } I realize my code is cumbersome in some sections, but I'm a noob at C++ and don't know much to do it better. I'm guessing another way I could do it is to AFTER writing the alphabetical keys to the file, read them from the file and hash each key as I do that, but I wouldn't know how to go about coding that.

    Read the article

< Previous Page | 130 131 132 133 134 135  | Next Page >