Search Results

Search found 11679 results on 468 pages for 'maven assembly plugin'.

Page 134/468 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • carry flag and subtraction issue!

    - by Zia ur Rahman
    If a large number is subtracted from a smaller number then borrow is needed. The carry flag plays the role of borrow during the subtraction operation. Now suppose we want to subtract 56 from 66, obviously the borrow is needed and carry flag will be set. Now how this subtraction is performed to get the result -10, how computer will distinguish that the result is going to be a negative number. Please explain the process.

    Read the article

  • Within a DLL, how is the function table structured?

    - by Willi Ballenthin
    I've been looking into the implementation of a device library that doesn't explicitly support my operating system. In particular, I have a disassembled DLL, and a fair amount of supporting source code. Now, how is the function table/export table structured? My understanding is that the first structure of the .data section is a table of VRAs. Next is a table of strings linked by index to that first address table. This makes sense to me, as a linker could translate between symbols and addresses. How do functions referenced by ordinals fit into this picture? How does one know which function has such and such ordinal number, and how does the linker resolve this? In other words, given that some other DLL imports SOME_LIBRARY_ordinal_7, how does the linker know which function to work with? Thanks, all! edit More information... Im working with the FTDI libraries, and would like to resolve which function is being invoked. In particular, I see something like: extern FTD2XX_Ordinal_28: near how might I go about determining which function is being referenced, and how does the linker do this?

    Read the article

  • Count numbers in words.

    - by bachchan
    I need an assembler 8080 software which counts words (delimited by space) which have more than two number in it. Example : this sh0uld b3 l1ke th1s would print : 0 words but Example : this sh0uld b3 l1k3 th1s f000k would print : 2 words <- word l1k3 contain number 1,3 and f000k number 0,0,0 the output should be displayer in hexadecimal format (optional)

    Read the article

  • Lua-Objective-C bridge on the iphone

    - by John Smith
    I have partially ported the LuaObjCBridge to the iPhone. Most things work but there are still some issues I have to deal with. There are sections where #defines are defined with-respect-to intel or ppc. Is the ARM chip closer to intel or ppc? Here is the most relevant section where most of the defines are: #if defined(__ppc__)||defined(__PPC__)||defined(__powerpc__) #define LUA_OBJC_METHODCALL_INT_IS_SHORTEST_INTEGRAL_TYPE #define LUA_OBJC_METHODCALL_PASS_FLOATS_IN_MARG_HEADER #define LUA_OBJC_POWER_ALIGNMENT #elif defined(__i386__)||defined(__arm__) #warning LuaObjCBridge is not fully tested for use on Intel chips. #define LUA_OBJC_METHODCALL_RETURN_STRUCTS_DIRECTLY // Use this or the code was crashing for me for structs LUA_OBJC_METHODCALL_RETURN_STRUCTS_DIRECTLY_LIMIT #define LUA_OBJC_METHODCALL_USE_OBJC_MSGSENDV_FPRET #define LUA_OBJC_METHODCALL_RETURN_STRUCTS_DIRECTLY_LIMIT 8 #define LUA_OBJC_INTEL_ALIGNMENT #endif For now I added arm with i386, but I could be wrong

    Read the article

  • PPC breakpoints

    - by xtophyr
    How is a breakpoint implemented on PPC (On OS X, to be specific)? For example, on x86 it's typically done with the INT 3 instruction (0xCC) -- is there an instruction comparable to this for ppc? Or is there some other way they're set/implemented?

    Read the article

  • Need complete picture of virtual adress space

    - by claws
    Hello, This image gives a good picture about Virtual Adress space. But it only says half of the story. It only gives complete picture of User Adress space ie.. lower 50% (or 75% in some cases). What about the rest 50% (or 25%) which is occupied by the kernel. I know kernel also has so many different things like kernel modules , device drivers, core kernel itself. There must be some kind of layout right? What is its layout? If you say its Operating System dependent. I would say, there are two major operating systems Windows & Linux. Please give answer for any one these.

    Read the article

  • java-maven2: How to include the a jar as depedency in pom so that I will be able to access test clas

    - by flavour-of-bru
    Hi, I have a set of functional jars(more than 3) that tests my source code. These jars just contains test classes and assisting asserter classes. I am creating a new performance jar that would import all the functional tests from these jars so that all can be run simultaneously. But when I include them as test dependencies in pom of current jar, what all I get to see is the classes in src/main/java. How can I include these functional jars as dependent jars so that I can also reference classes in src/test/java. In other words, how do I reference the test classes in other jars. In what way should I include the dependency as. Thanks for your support.

    Read the article

  • What's the purpose of the rotate instructions (ROL, RCL on x86) ?

    - by lgratian
    I always wondered what's the purpose of the rotate instructions some CPUs have (ROL, RCL on x86, for example). What kind of software makes use of these instructions? I first thought they may be used for encryption/computing hash codes, but these libraries are written usually in C, which doesn't have operators that map to these instructions. Has anybody found an use for them? Why where they added to the instructions set?

    Read the article

  • Options for organizing android app with multiple independent apps

    - by lazyguy
    Problem Definition: We have a fairly large app which has multiple use cases such that they are all independent of each other. For example lets say we have a1, a2, a3 & a4 modules that are independent apps or use cases for our main app 'A'. The independent a1, a2, a3, a4 are all purchasable apps such that the user goes to our website instead of play store and activate either a1 or a2 by paying some fees on our website. So basically App 'A' is a free app in play-store and is sort of Dashboard with buttons to launch a1, a2, a3, a4. When the user click on lets say a1 button then we will check if a1 is already installed and launch it but if it is not present then give the user a link to download it. Option 1: Have a main app 'A' and a1, a2, a3, a4 as library project. But with this approach the main app A is too big in size. Option 2: Have a1, a2, a3, a4 build as separate .apk and then put in the assets folder of main app 'A' and then install them as needed. Again size of main app A is bigger. Option 3: Upload a1, a2, a3, a4 to a third party website or play store and download from it as needed. This way the main app remains lighter. Observation: In all these approaches there will be an independent app installed with its own icon on users phone. So basically user can launch from either the Dashboard (which will eventually launch an intent from Activity in a1 app) or user can directly launch app a1. Follow-up Question: Is there any other solution that anyone can suggest to tackle this kind of problem? Another things is by going this approach app a1, a2, a3, a4 can be developed & tested independently of each other.

    Read the article

  • Call 32-bit or 64-bit program from bootloader

    - by user1002358
    There seems to be quite a lot of identical information on the Internet about writing the following 3 bootloaders: Infinite loop jmp $ Print a single character Print "Hello World". This is fantastic, and I've gone through these 3 variations with very little trouble. I'd like to write some 32- or 64-bit code in C and compile it, and call that code from the bootloader... basically a bootloader that, for example, sets the computer up to run some simple numerical simulation. I'll start by listing primes, for example, and then maybe some input/output from the user to maybe compute a Fourier transform. I don't know. I haven't found any information on how to do this, but I can already foresee some problems before I even begin. First of all, compiling a C program compiles it into one of several different files, depending on the target. For Windows, it's a PE file. For Linux, it's a .out file. These files are both quite different. In my instance, the target isn't Windows or Linux, it's just whatever I have written in the bootloader. Secondly, where would the actual code reside? The bootloader is exactly 512 bytes, but the program I write in C will certainly compile to something much larger. It will need to sit on my (virtual) hard disk, probably in some sort of file system (which I haven't even defined!) and I will need to load the information from this file into memory before I can even think about executing it. But from my understanding, all this is many, many orders of magnitude more complex than a 12-line "Hello World" bootloader. So my question is: How do I call a large 32- or 64-bit program (written in C/C++) from my 16-bit bootloader.

    Read the article

  • x86 Instruction Format: "ba 0e 00 00 00" ... "mov $0xe,%edx"

    - by Andrew Tomazos - Fathomling
    I'm getting the following line in the disassembly from objdump -d of an x86 linux program... 4000b0: ba 0e 00 00 00 mov $0xe,%edx I'm trying to understand how the machine code "ba 0e 00 00 00" maps to "mov $0xe,%edx" In the manual move immediate 32-bit is: B8 + rd ... MOV r32, imm32 ie "B8" not "BA" In fact none of the MOV opcodes are "BA". If someone could break down "ba 0e 00 00 00" and explain bit-wise how to get to "mov $0xe,%edx" it would be most helpful.

    Read the article

  • How is the implicit segment register of a near pointer determined?

    - by Daniel Trebbien
    In section 4.3 of Intel 64® and IA-32 Architectures Software Developer's Manual. Volume 1: Basic Architecture, it says: A near pointer is a 32-bit offset ... within a segment. Near pointers are used for all memory references in a flat memory model or for references in a segmented model where the identity of the segment being accessed is implied. This leads me to wondering: how is the implied segment register determined? I know that (%eip) and displaced (%eip) (e.g. -4(%eip)) addresses use %cs by default, and that (%esp) and displaced (%esp) addresses use %ss, but what about (%eax), (%edx), (%edi), (%ebp) etc., and can the implicit segment register depend also on the instruction that the memory address operand appears in?

    Read the article

  • QuickBuild: How can I create a builder to open a tarball package (tar.gz) whose name will change wit

    - by Jin Kim
    I'm using PMEase QuickBuild to perform automated builds of our Maven2 projects and a nightly sanity test to ensure nothing is broken. The test needs to untar packages which are created by the automated Maven2 projects. The problem is that the package names change frequently due to project versions being incremented all the time. Does anyone know how I can configure QuickBuild to pick up the version (ideally from the POM file of the individual components), if this is possible at all?

    Read the article

  • would there be such case of jumping, if yes how?

    - by Pooria
    I have an issue in the mind and that is since the jump instruction changes EIP register by adding signed offsets to it(if I'm not making a mistake here), on IA-32 architecture how would going upward in memory from location 0x7FFFFFFF(biggest positive number in signed logic) to 0x80000000(least negative number in signed logic) be possible? or maybe there shouldn't be such jump due to the nature of signed logic?

    Read the article

  • Nested loop traversing arrays

    - by alecco
    There are 2 very big series of elements, the second 100 times bigger than the first. For each element of the first series, there are 0 or more elements on the second series. This can be traversed and processed with 2 nested loops. But the unpredictability of the amount of matching elements for each member of the first array makes things very, very slow. The actual processing of the 2nd series of elements involves logical and (&) and a population count. I couldn't find good optimizations using C but I am considering doing inline asm, doing rep* mov* or similar for each element of the first series and then doing the batch processing of the matching bytes of the second series, perhaps in buffers of 1MB or something. But the code would be get quite messy. Does anybody know of a better way? C preferred but x86 ASM OK too. Many thanks! Sample/demo code with simplified problem, first series are "people" and second series are "events", for clarity's sake. (the original problem is actually 100m and 10,000m entries!) #include <stdio.h> #include <stdint.h> #define PEOPLE 1000000 // 1m struct Person { uint8_t age; // Filtering condition uint8_t cnt; // Number of events for this person in E } P[PEOPLE]; // Each has 0 or more bytes with bit flags #define EVENTS 100000000 // 100m uint8_t P1[EVENTS]; // Property 1 flags uint8_t P2[EVENTS]; // Property 2 flags void init_arrays() { for (int i = 0; i < PEOPLE; i++) { // just some stuff P[i].age = i & 0x07; P[i].cnt = i % 220; // assert( sum < EVENTS ); } for (int i = 0; i < EVENTS; i++) { P1[i] = i % 7; // just some stuff P2[i] = i % 9; // just some other stuff } } int main(int argc, char *argv[]) { uint64_t sum = 0, fcur = 0; int age_filter = 7; // just some init_arrays(); // Init P, P1, P2 for (int64_t p = 0; p < PEOPLE ; p++) if (P[p].age < age_filter) for (int64_t e = 0; e < P[p].cnt ; e++, fcur++) sum += __builtin_popcount( P1[fcur] & P2[fcur] ); else fcur += P[p].cnt; // skip this person's events printf("(dummy %ld %ld)\n", sum, fcur ); return 0; } gcc -O5 -march=native -std=c99 test.c -o test

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >