Search Results

Search found 3374 results on 135 pages for 'richard green'.

Page 134/135 | < Previous Page | 130 131 132 133 134 135  | Next Page >

  • Camera for 2.5D Game

    - by me--
    I'm hoping someone can explain this to me like I'm 5, because I've been struggling with this for hours and simply cannot understand what I'm doing wrong. I've written a Camera class for my 2.5D game. The intention is to support world and screen spaces like this: The camera is the black thing on the right. The +Z axis is upwards in that image, with -Z heading downwards. As you can see, both world space and screen space have (0, 0) at their top-left. I started writing some unit tests to prove that my camera was working as expected, and that's where things started getting...strange. My tests plot coordinates in world, view, and screen spaces. Eventually I will use image comparison to assert that they are correct, but for now my test just displays the result. The render logic uses Camera.ViewMatrix to transform world space to view space, and Camera.WorldPointToScreen to transform world space to screen space. Here is an example test: [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render(camera, out worldRender, out viewRender, out screenRender, new Vector3(30, 0, 0), new Vector3(30, 40, 0)); this.ShowRenders(camera, worldRender, viewRender, screenRender); } And here's what pops up when I run this test: World space looks OK, although I suspect the z axis is going into the screen instead of towards the viewer. View space has me completely baffled. I was expecting the camera to be sitting above (0, 0) and looking towards the center of the scene. Instead, the z axis seems to be the wrong way around, and the camera is positioned in the opposite corner to what I expect! I suspect screen space will be another thing altogether, but can anyone explain what I'm doing wrong in my Camera class? UPDATE I made some progress in terms of getting things to look visually as I expect, but only through intuition: not an actual understanding of what I'm doing. Any enlightenment would be greatly appreciated. I realized that my view space was flipped both vertically and horizontally compared to what I expected, so I changed my view matrix to scale accordingly: this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom, this.zoom, 1) * Matrix.CreateScale(-1, -1, 1); I could combine the two CreateScale calls, but have left them separate for clarity. Again, I have no idea why this is necessary, but it fixed my view space: But now my screen space needs to be flipped vertically, so I modified my projection matrix accordingly: this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); And this results in what I was expecting from my first attempt: I have also just tried using Camera to render sprites via a SpriteBatch to make sure everything works there too, and it does. But the question remains: why do I need to do all this flipping of axes to get the space coordinates the way I expect? UPDATE 2 I've since improved my rendering logic in my test suite so that it supports geometries and so that lines get lighter the further away they are from the camera. I wanted to do this to avoid optical illusions and to further prove to myself that I'm looking at what I think I am. Here is an example: In this case, I have 3 geometries: a cube, a sphere, and a polyline on the top face of the cube. Notice how the darkening and lightening of the lines correctly identifies those portions of the geometries closer to the camera. If I remove the negative scaling I had to put in, I see: So you can see I'm still in the same boat - I still need those vertical and horizontal flips in my matrices to get things to appear correctly. In the interests of giving people a repro to play with, here is the complete code needed to generate the above. If you want to run via the test harness, just install the xunit package: Camera.cs: using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Graphics; using System.Diagnostics; public sealed class Camera { private readonly Viewport viewport; private readonly Matrix projectionMatrix; private Matrix? viewMatrix; private Vector3 location; private Vector3 target; private Vector3 up; private float zoom; public Camera(Viewport viewport) { this.viewport = viewport; // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.projectionMatrix = Matrix.CreatePerspectiveFieldOfView(0.7853982f, viewport.AspectRatio, 1, 2) * Matrix.CreateScale(1, -1, 1); // defaults this.location = new Vector3(this.viewport.Width / 2, this.viewport.Height, 100); this.target = new Vector3(this.viewport.Width / 2, this.viewport.Height / 2, 0); this.up = new Vector3(0, 0, 1); this.zoom = 1; } public Viewport Viewport { get { return this.viewport; } } public Vector3 Location { get { return this.location; } set { this.location = value; this.viewMatrix = null; } } public Vector3 Target { get { return this.target; } set { this.target = value; this.viewMatrix = null; } } public Vector3 Up { get { return this.up; } set { this.up = value; this.viewMatrix = null; } } public float Zoom { get { return this.zoom; } set { this.zoom = value; this.viewMatrix = null; } } public Matrix ProjectionMatrix { get { return this.projectionMatrix; } } public Matrix ViewMatrix { get { if (this.viewMatrix == null) { // for an explanation of the negative scaling, see: http://gamedev.stackexchange.com/questions/63409/ this.viewMatrix = Matrix.CreateLookAt(this.location, this.target, this.up) * Matrix.CreateScale(this.zoom) * Matrix.CreateScale(-1, -1, 1); } return this.viewMatrix.Value; } } public Vector2 WorldPointToScreen(Vector3 point) { var result = viewport.Project(point, this.ProjectionMatrix, this.ViewMatrix, Matrix.Identity); return new Vector2(result.X, result.Y); } public void WorldPointsToScreen(Vector3[] points, Vector2[] destination) { Debug.Assert(points != null); Debug.Assert(destination != null); Debug.Assert(points.Length == destination.Length); for (var i = 0; i < points.Length; ++i) { destination[i] = this.WorldPointToScreen(points[i]); } } } CameraFixture.cs: using Microsoft.Xna.Framework.Graphics; using System; using System.Collections.Generic; using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using Xunit; using XNA = Microsoft.Xna.Framework; public sealed class CameraFixture { [Fact] public void foo() { var camera = new Camera(new Viewport(0, 0, 250, 100)); DrawingVisual worldRender; DrawingVisual viewRender; DrawingVisual screenRender; this.Render( camera, out worldRender, out viewRender, out screenRender, new Sphere(30, 15) { WorldMatrix = XNA.Matrix.CreateTranslation(155, 50, 0) }, new Cube(30) { WorldMatrix = XNA.Matrix.CreateTranslation(75, 60, 15) }, new PolyLine(new XNA.Vector3(0, 0, 0), new XNA.Vector3(10, 10, 0), new XNA.Vector3(20, 0, 0), new XNA.Vector3(0, 0, 0)) { WorldMatrix = XNA.Matrix.CreateTranslation(65, 55, 30) }); this.ShowRenders(worldRender, viewRender, screenRender); } #region Supporting Fields private static readonly Pen xAxisPen = new Pen(Brushes.Red, 2); private static readonly Pen yAxisPen = new Pen(Brushes.Green, 2); private static readonly Pen zAxisPen = new Pen(Brushes.Blue, 2); private static readonly Pen viewportPen = new Pen(Brushes.Gray, 1); private static readonly Pen nonScreenSpacePen = new Pen(Brushes.Black, 0.5); private static readonly Color geometryBaseColor = Colors.Black; #endregion #region Supporting Methods private void Render(Camera camera, out DrawingVisual worldRender, out DrawingVisual viewRender, out DrawingVisual screenRender, params Geometry[] geometries) { var worldDrawingVisual = new DrawingVisual(); var viewDrawingVisual = new DrawingVisual(); var screenDrawingVisual = new DrawingVisual(); const int axisLength = 15; using (var worldDrawingContext = worldDrawingVisual.RenderOpen()) using (var viewDrawingContext = viewDrawingVisual.RenderOpen()) using (var screenDrawingContext = screenDrawingVisual.RenderOpen()) { // draw lines around the camera's viewport var viewportBounds = camera.Viewport.Bounds; var viewportLines = new Tuple<int, int, int, int>[] { Tuple.Create(viewportBounds.Left, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Top), Tuple.Create(viewportBounds.Left, viewportBounds.Top, viewportBounds.Right, viewportBounds.Top), Tuple.Create(viewportBounds.Right, viewportBounds.Top, viewportBounds.Right, viewportBounds.Bottom), Tuple.Create(viewportBounds.Right, viewportBounds.Bottom, viewportBounds.Left, viewportBounds.Bottom) }; foreach (var viewportLine in viewportLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item1, viewportLine.Item2, 0)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(viewportLine.Item3, viewportLine.Item4, 0)); worldDrawingContext.DrawLine(viewportPen, new Point(viewportLine.Item1, viewportLine.Item2), new Point(viewportLine.Item3, viewportLine.Item4)); viewDrawingContext.DrawLine(viewportPen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(viewportPen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // draw axes var axisLines = new Tuple<int, int, int, int, int, int, Pen>[] { Tuple.Create(0, 0, 0, axisLength, 0, 0, xAxisPen), Tuple.Create(0, 0, 0, 0, axisLength, 0, yAxisPen), Tuple.Create(0, 0, 0, 0, 0, axisLength, zAxisPen) }; foreach (var axisLine in axisLines) { var viewStart = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3), camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6), camera.ViewMatrix); var screenStart = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item1, axisLine.Item2, axisLine.Item3)); var screenEnd = camera.WorldPointToScreen(new XNA.Vector3(axisLine.Item4, axisLine.Item5, axisLine.Item6)); worldDrawingContext.DrawLine(axisLine.Item7, new Point(axisLine.Item1, axisLine.Item2), new Point(axisLine.Item4, axisLine.Item5)); viewDrawingContext.DrawLine(axisLine.Item7, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); screenDrawingContext.DrawLine(axisLine.Item7, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } // for all points in all geometries to be rendered, find the closest and furthest away from the camera so we can lighten lines that are further away var distancesToAllGeometrySections = from geometry in geometries let geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix from section in geometry.Sections from point in new XNA.Vector3[] { section.Item1, section.Item2 } let viewPoint = XNA.Vector3.Transform(point, geometryViewMatrix) select viewPoint.Length(); var furthestDistance = distancesToAllGeometrySections.Max(); var closestDistance = distancesToAllGeometrySections.Min(); var deltaDistance = Math.Max(0.000001f, furthestDistance - closestDistance); // draw each geometry for (var i = 0; i < geometries.Length; ++i) { var geometry = geometries[i]; // there's probably a more correct name for this, but basically this gets the geometry relative to the camera so we can check how far away each point is from the camera var geometryViewMatrix = geometry.WorldMatrix * camera.ViewMatrix; // we order roughly by those sections furthest from the camera to those closest, so that the closer ones "overwrite" the ones further away var orderedSections = from section in geometry.Sections let startPointRelativeToCamera = XNA.Vector3.Transform(section.Item1, geometryViewMatrix) let endPointRelativeToCamera = XNA.Vector3.Transform(section.Item2, geometryViewMatrix) let startPointDistance = startPointRelativeToCamera.Length() let endPointDistance = endPointRelativeToCamera.Length() orderby (startPointDistance + endPointDistance) descending select new { Section = section, DistanceToStart = startPointDistance, DistanceToEnd = endPointDistance }; foreach (var orderedSection in orderedSections) { var start = XNA.Vector3.Transform(orderedSection.Section.Item1, geometry.WorldMatrix); var end = XNA.Vector3.Transform(orderedSection.Section.Item2, geometry.WorldMatrix); var viewStart = XNA.Vector3.Transform(start, camera.ViewMatrix); var viewEnd = XNA.Vector3.Transform(end, camera.ViewMatrix); worldDrawingContext.DrawLine(nonScreenSpacePen, new Point(start.X, start.Y), new Point(end.X, end.Y)); viewDrawingContext.DrawLine(nonScreenSpacePen, new Point(viewStart.X, viewStart.Y), new Point(viewEnd.X, viewEnd.Y)); // screen rendering is more complicated purely because I wanted geometry to fade the further away it is from the camera // otherwise, it's very hard to tell whether the rendering is actually correct or not var startDistanceRatio = (orderedSection.DistanceToStart - closestDistance) / deltaDistance; var endDistanceRatio = (orderedSection.DistanceToEnd - closestDistance) / deltaDistance; // lerp towards white based on distance from camera, but only to a maximum of 90% var startColor = Lerp(geometryBaseColor, Colors.White, startDistanceRatio * 0.9f); var endColor = Lerp(geometryBaseColor, Colors.White, endDistanceRatio * 0.9f); var screenStart = camera.WorldPointToScreen(start); var screenEnd = camera.WorldPointToScreen(end); var brush = new LinearGradientBrush { StartPoint = new Point(screenStart.X, screenStart.Y), EndPoint = new Point(screenEnd.X, screenEnd.Y), MappingMode = BrushMappingMode.Absolute }; brush.GradientStops.Add(new GradientStop(startColor, 0)); brush.GradientStops.Add(new GradientStop(endColor, 1)); var pen = new Pen(brush, 1); brush.Freeze(); pen.Freeze(); screenDrawingContext.DrawLine(pen, new Point(screenStart.X, screenStart.Y), new Point(screenEnd.X, screenEnd.Y)); } } } worldRender = worldDrawingVisual; viewRender = viewDrawingVisual; screenRender = screenDrawingVisual; } private static float Lerp(float start, float end, float amount) { var difference = end - start; var adjusted = difference * amount; return start + adjusted; } private static Color Lerp(Color color, Color to, float amount) { var sr = color.R; var sg = color.G; var sb = color.B; var er = to.R; var eg = to.G; var eb = to.B; var r = (byte)Lerp(sr, er, amount); var g = (byte)Lerp(sg, eg, amount); var b = (byte)Lerp(sb, eb, amount); return Color.FromArgb(255, r, g, b); } private void ShowRenders(DrawingVisual worldRender, DrawingVisual viewRender, DrawingVisual screenRender) { var itemsControl = new ItemsControl(); itemsControl.Items.Add(new HeaderedContentControl { Header = "World", Content = new DrawingVisualHost(worldRender)}); itemsControl.Items.Add(new HeaderedContentControl { Header = "View", Content = new DrawingVisualHost(viewRender) }); itemsControl.Items.Add(new HeaderedContentControl { Header = "Screen", Content = new DrawingVisualHost(screenRender) }); var window = new Window { Title = "Renders", Content = itemsControl, ShowInTaskbar = true, SizeToContent = SizeToContent.WidthAndHeight }; window.ShowDialog(); } #endregion #region Supporting Types // stupidly simple 3D geometry class, consisting of a series of sections that will be connected by lines private abstract class Geometry { public abstract IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get; } public XNA.Matrix WorldMatrix { get; set; } } private sealed class Line : Geometry { private readonly XNA.Vector3 magnitude; public Line(XNA.Vector3 magnitude) { this.magnitude = magnitude; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { yield return Tuple.Create(XNA.Vector3.Zero, this.magnitude); } } } private sealed class PolyLine : Geometry { private readonly XNA.Vector3[] points; public PolyLine(params XNA.Vector3[] points) { this.points = points; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { if (this.points.Length < 2) { yield break; } var end = this.points[0]; for (var i = 1; i < this.points.Length; ++i) { var start = end; end = this.points[i]; yield return Tuple.Create(start, end); } } } } private sealed class Cube : Geometry { private readonly float size; public Cube(float size) { this.size = size; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var halfSize = this.size / 2; var frontBottomLeft = new XNA.Vector3(-halfSize, halfSize, -halfSize); var frontBottomRight = new XNA.Vector3(halfSize, halfSize, -halfSize); var frontTopLeft = new XNA.Vector3(-halfSize, halfSize, halfSize); var frontTopRight = new XNA.Vector3(halfSize, halfSize, halfSize); var backBottomLeft = new XNA.Vector3(-halfSize, -halfSize, -halfSize); var backBottomRight = new XNA.Vector3(halfSize, -halfSize, -halfSize); var backTopLeft = new XNA.Vector3(-halfSize, -halfSize, halfSize); var backTopRight = new XNA.Vector3(halfSize, -halfSize, halfSize); // front face yield return Tuple.Create(frontBottomLeft, frontBottomRight); yield return Tuple.Create(frontBottomLeft, frontTopLeft); yield return Tuple.Create(frontTopLeft, frontTopRight); yield return Tuple.Create(frontTopRight, frontBottomRight); // left face yield return Tuple.Create(frontTopLeft, backTopLeft); yield return Tuple.Create(backTopLeft, backBottomLeft); yield return Tuple.Create(backBottomLeft, frontBottomLeft); // right face yield return Tuple.Create(frontTopRight, backTopRight); yield return Tuple.Create(backTopRight, backBottomRight); yield return Tuple.Create(backBottomRight, frontBottomRight); // back face yield return Tuple.Create(backBottomLeft, backBottomRight); yield return Tuple.Create(backTopLeft, backTopRight); } } } private sealed class Sphere : Geometry { private readonly float radius; private readonly int subsections; public Sphere(float radius, int subsections) { this.radius = radius; this.subsections = subsections; } public override IEnumerable<Tuple<XNA.Vector3, XNA.Vector3>> Sections { get { var latitudeLines = this.subsections; var longitudeLines = this.subsections; // see http://stackoverflow.com/a/4082020/5380 var results = from latitudeLine in Enumerable.Range(0, latitudeLines) from longitudeLine in Enumerable.Range(0, longitudeLines) let latitudeRatio = latitudeLine / (float)latitudeLines let longitudeRatio = longitudeLine / (float)longitudeLines let nextLatitudeRatio = (latitudeLine + 1) / (float)latitudeLines let nextLongitudeRatio = (longitudeLine + 1) / (float)longitudeLines let z1 = Math.Cos(Math.PI * latitudeRatio) let z2 = Math.Cos(Math.PI * nextLatitudeRatio) let x1 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y1 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Cos(Math.PI * 2 * longitudeRatio) let y2 = Math.Sin(Math.PI * nextLatitudeRatio) * Math.Sin(Math.PI * 2 * longitudeRatio) let x3 = Math.Sin(Math.PI * latitudeRatio) * Math.Cos(Math.PI * 2 * nextLongitudeRatio) let y3 = Math.Sin(Math.PI * latitudeRatio) * Math.Sin(Math.PI * 2 * nextLongitudeRatio) let start = new XNA.Vector3((float)x1 * radius, (float)y1 * radius, (float)z1 * radius) let firstEnd = new XNA.Vector3((float)x2 * radius, (float)y2 * radius, (float)z2 * radius) let secondEnd = new XNA.Vector3((float)x3 * radius, (float)y3 * radius, (float)z1 * radius) select new { First = Tuple.Create(start, firstEnd), Second = Tuple.Create(start, secondEnd) }; foreach (var result in results) { yield return result.First; yield return result.Second; } } } } #endregion }

    Read the article

  • JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue

    - by John-Brown.Evans
    JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue ol{margin:0;padding:0} .c11_4{vertical-align:top;width:129.8pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c9_4{vertical-align:top;width:207pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt}.c14{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c17_4{vertical-align:top;width:129.8pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c7_4{vertical-align:top;width:130pt;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c19_4{vertical-align:top;width:468pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c22_4{background-color:#ffffff} .c20_4{list-style-type:disc;margin:0;padding:0} .c6_4{font-size:8pt;font-family:"Courier New"} .c24_4{color:inherit;text-decoration:inherit} .c23_4{color:#1155cc;text-decoration:underline} .c0_4{height:11pt;direction:ltr} .c10_4{font-size:10pt;font-family:"Courier New"} .c3_4{padding-left:0pt;margin-left:36pt} .c18_4{font-size:8pt} .c8_4{text-align:center} .c12_4{background-color:#ffff00} .c2_4{font-weight:bold} .c21_4{background-color:#00ff00} .c4_4{line-height:1.0} .c1_4{direction:ltr} .c15_4{background-color:#f3f3f3} .c13_4{font-family:"Courier New"} .c5_4{font-style:italic} .c16_4{border-collapse:collapse} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:bold;padding-bottom:0pt} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:11pt;font-family:"Arial";padding-bottom:0pt} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal;padding-bottom:0pt} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-style:italic;font-size:10pt;font-family:"Arial";padding-bottom:0pt} This post continues the series of JMS articles which demonstrate how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue In this example we will create a BPEL process which will write (enqueue) a message to a JMS queue using a JMS adapter. The JMS adapter will enqueue the full XML payload to the queue. This sample will use the following WebLogic Server objects. The first two, the Connection Factory and JMS Queue, were created as part of the first blog post in this series, JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g. If you haven't created those objects yet, please see that post for details on how to do so. The Connection Pool will be created as part of this example. Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue 1. Verify Connection Factory and JMS Queue As mentioned above, this example uses a WLS Connection Factory called TestConnectionFactory and a JMS queue TestJMSQueue. As these are prerequisites for this example, let us verify they exist. Log in to the WebLogic Server Administration Console. Select Services > JMS Modules > TestJMSModule You should see the following objects: If not, or if the TestJMSModule is missing, please see the abovementioned article and create these objects before continuing. 2. Create a JMS Adapter Connection Pool in WebLogic Server The BPEL process we are about to create uses a JMS adapter to write to the JMS queue. The JMS adapter is deployed to the WebLogic server and needs to be configured to include a connection pool which references the connection factory associated with the JMS queue. In the WebLogic Server Console Go to Deployments > Next and select (click on) the JmsAdapter Select Configuration > Outbound Connection Pools and expand oracle.tip.adapter.jms.IJmsConnectionFactory. This will display the list of connections configured for this adapter. For example, eis/aqjms/Queue, eis/aqjms/Topic etc. These JNDI names are actually quite confusing. We are expecting to configure a connection pool here, but the names refer to queues and topics. One would expect these to be called *ConnectionPool or *_CF or similar, but to conform to this nomenclature, we will call our entry eis/wls/TestQueue . This JNDI name is also the name we will use later, when creating a BPEL process to access this JMS queue! Select New, check the oracle.tip.adapter.jms.IJmsConnectionFactory check box and Next. Enter JNDI Name: eis/wls/TestQueue for the connection instance, then press Finish. Expand oracle.tip.adapter.jms.IJmsConnectionFactory again and select (click on) eis/wls/TestQueue The ConnectionFactoryLocation must point to the JNDI name of the connection factory associated with the JMS queue you will be writing to. In our example, this is the connection factory called TestConnectionFactory, with the JNDI name jms/TestConnectionFactory.( As a reminder, this connection factory is contained in the JMS Module called TestJMSModule, under Services > Messaging > JMS Modules > TestJMSModule which we verified at the beginning of this document. )Enter jms/TestConnectionFactory  into the Property Value field for Connection Factory Location. After entering it, you must press Return/Enter then Save for the value to be accepted. If your WebLogic server is running in Development mode, you should see the message that the changes have been activated and the deployment plan successfully updated. If not, then you will manually need to activate the changes in the WebLogic server console. Although the changes have been activated, the JmsAdapter needs to be redeployed in order for the changes to become effective. This should be confirmed by the message Remember to update your deployment to reflect the new plan when you are finished with your changes as can be seen in the following screen shot: The next step is to redeploy the JmsAdapter.Navigate back to the Deployments screen, either by selecting it in the left-hand navigation tree or by selecting the “Summary of Deployments” link in the breadcrumbs list at the top of the screen. Then select the checkbox next to JmsAdapter and press the Update button On the Update Application Assistant page, select “Redeploy this application using the following deployment files” and press Finish. After a few seconds you should get the message that the selected deployments were updated. The JMS adapter configuration is complete and it can now be used to access the JMS queue. To summarize: we have created a JMS adapter connection pool connector with the JNDI name jms/TestConnectionFactory. This is the JNDI name to be accessed by a process such as a BPEL process, when using the JMS adapter to access the previously created JMS queue with the JNDI name jms/TestJMSQueue. In the following step, we will set up a BPEL process to use this JMS adapter to write to the JMS queue. 3. Create a BPEL Composite with a JMS Adapter Partner Link This step requires that you have a valid Application Server Connection defined in JDeveloper, pointing to the application server on which you created the JMS Queue and Connection Factory. You can create this connection in JDeveloper under the Application Server Navigator. Give it any name and be sure to test the connection before completing it. This sample will use the connection name jbevans-lx-PS5, as that is the name of the connection pointing to my SOA PS5 installation. When using a JMS adapter from within a BPEL process, there are various configuration options, such as the operation type (consume message, produce message etc.), delivery mode and message type. One of these options is the choice of the format of the JMS message payload. This can be structured around an existing XSD, in which case the full XML element and tags are passed, or it can be opaque, meaning that the payload is sent as-is to the JMS adapter. In the case of an XSD-based message, the payload can simply be copied to the input variable of the JMS adapter. In the case of an opaque message, the JMS adapter’s input variable is of type base64binary. So the payload needs to be converted to base64 binary first. I will go into this in more detail in a later blog entry. This sample will pass a simple message to the adapter, based on the following simple XSD file, which consists of a single string element: stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org" targetNamespace="http://www.example.org" elementFormDefault="qualified" <xsd:element name="exampleElement" type="xsd:string"> </xsd:element> </xsd:schema> The following steps are all executed in JDeveloper. The SOA project will be created inside a JDeveloper Application. If you do not already have an application to contain the project, you can create a new one via File > New > General > Generic Application. Give the application any name, for example JMSTests and, when prompted for a project name and type, call the project JmsAdapterWriteWithXsd and select SOA as the project technology type. If you already have an application, continue below. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterWriteSchema. When prompted for the composite type, choose Composite With BPEL Process. When prompted for the BPEL Process, name it JmsAdapterWriteSchema too and choose Synchronous BPEL Process as the template. This will create a composite with a BPEL process and an exposed SOAP service. Double-click the BPEL process to open and begin editing it. You should see a simple BPEL process with a Receive and Reply activity. As we created a default process without an XML schema, the input and output variables are simple strings. Create an XSD File An XSD file is required later to define the message format to be passed to the JMS adapter. In this step, we create a simple XSD file, containing a string variable and add it to the project. First select the xsd item in the left-hand navigation tree to ensure that the XSD file is created under that item. Select File > New > General > XML and choose XML Schema. Call it stringPayload.xsd and when the editor opens, select the Source view. then replace the contents with the contents of the stringPayload.xsd example above and save the file. You should see it under the xsd item in the navigation tree. Create a JMS Adapter Partner Link We will create the JMS adapter as a service at the composite level. If it is not already open, double-click the composite.xml file in the navigator to open it. From the Component Palette, drag a JMS adapter over onto the right-hand swim lane, under External References. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterWrite Oracle Enterprise Messaging Service (OEMS): Oracle Weblogic JMS AppServer Connection: Use an existing application server connection pointing to the WebLogic server on which the above JMS queue and connection factory were created. You can use the “+” button to create a connection directly from the wizard, if you do not already have one. This example uses a connection called jbevans-lx-PS5. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Produce Message Operation Name: Produce_message Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created earlier. JNDI Name: The JNDI name to use for the JMS connection. This is probably the most important step in this exercise and the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) MessagesURL: We will use the XSD file we created earlier, stringPayload.xsd to define the message format for the JMS adapter. Press the magnifying glass icon to search for schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string. Press Next and Finish, which will complete the JMS Adapter configuration. Wire the BPEL Component to the JMS Adapter In this step, we link the BPEL process/component to the JMS adapter. From the composite.xml editor, drag the right-arrow icon from the BPEL process to the JMS adapter’s in-arrow. This completes the steps at the composite level. 4. Complete the BPEL Process Design Invoke the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterWriteSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterWrite partner link under one of the two swim lanes. We want it in the right-hand swim lane. If JDeveloper displays it in the left-hand lane, right-click it and choose Display > Move To Opposite Swim Lane. An Invoke activity is required in order to invoke the JMS adapter. Drag an Invoke activity between the Receive and Reply activities. Drag the right-hand arrow from the Invoke activity to the JMS adapter partner link. This will open the Invoke editor. The correct default values are entered automatically and are fine for our purposes. We only need to define the input variable to use for the JMS adapter. By pressing the green “+” symbol, a variable of the correct type can be auto-generated, for example with the name Invoke1_Produce_Message_InputVariable. Press OK after creating the variable. ( For some reason, while I was testing this, the JMS Adapter moved back to the left-hand swim lane again after this step. There is no harm in leaving it there, but I find it easier to follow if it is in the right-hand lane, because I kind-of think of the message coming in on the left and being routed through the right. But you can follow your personal preference here.) Assign Variables Drag an Assign activity between the Receive and Invoke activities. We will simply copy the input variable to the JMS adapter and, for completion, so the process has an output to print, again to the process’s output variable. Double-click the Assign activity and create two Copy rules: for the first, drag Variables > inputVariable > payload > client:process > client:input_string to Invoke1_Produce_Message_InputVariable > body > ns2:exampleElement for the second, drag the same input variable to outputVariable > payload > client:processResponse > client:result This will create two copy rules, similar to the following: Press OK. This completes the BPEL and Composite design. 5. Compile and Deploy the Composite We won’t go into too much detail on how to compile and deploy. In JDeveloper, compile the process by pressing the Make or Rebuild icons or by right-clicking the project name in the navigator and selecting Make... or Rebuild... If the compilation is successful, deploy it to the SOA server connection defined earlier. (Right-click the project name in the navigator, select Deploy to Application Server, choose the application server connection, choose the partition on the server (usually default) and press Finish. You should see the message ---- Deployment finished. ---- in the Deployment frame, if the deployment was successful. 6. Test the Composite This is the exciting part. Open two tabs in your browser and log in to the WebLogic Administration Console in one tab and the Enterprise Manager 11g Fusion Middleware Control (EM) for your SOA installation in the other. We will use the Console to monitor the messages being written to the queue and the EM to execute the composite. In the Console, go to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. Note the number of messages under Messages Current. In the EM, go to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterWriteSchema [1.0], then press the Test button. Under Input Arguments, enter any string into the text input field for the payload, for example Test Message then press Test Web Service. If the instance is successful you should see the same text in the Response message, “Test Message”. In the Console, refresh the Monitoring screen to confirm a new message has been written to the queue. Check the checkbox and press Show Messages. Click on the newest message and view its contents. They should include the full XML of the entered payload. 7. Troubleshooting If you get an exception similar to the following at runtime ... BINDING.JCA-12510 JCA Resource Adapter location error. Unable to locate the JCA Resource Adapter via .jca binding file element The JCA Binding Component is unable to startup the Resource Adapter specified in the element: location='eis/wls/QueueTest'. The reason for this is most likely that either 1) the Resource Adapters RAR file has not been deployed successfully to the WebLogic Application server or 2) the '' element in weblogic-ra.xml has not been set to eis/wls/QueueTest. In the last case you will have to add a new WebLogic JCA connection factory (deploy a RAR). Please correct this and then restart the Application Server at oracle.integration.platform.blocks.adapter.fw.AdapterBindingException. createJndiLookupException(AdapterBindingException.java:130) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.createJCAConnectionFactory (JCAConnectionManager.java:1387) at oracle.integration.platform.blocks.adapter.fw.jca.cci. JCAConnectionManager$JCAConnectionPool.newPoolObject (JCAConnectionManager.java:1285) ... then this is very likely due to an incorrect JNDI name entered for the JMS Connection in the JMS Adapter Wizard. Recheck those steps. The error message prints the name of the JNDI name used. In this example, it was incorrectly entered as eis/wls/QueueTest instead of eis/wls/TestQueue. This concludes this example. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • Toorcon14

    - by danx
    Toorcon 2012 Information Security Conference San Diego, CA, http://www.toorcon.org/ Dan Anderson, October 2012 It's almost Halloween, and we all know what that means—yes, of course, it's time for another Toorcon Conference! Toorcon is an annual conference for people interested in computer security. This includes the whole range of hackers, computer hobbyists, professionals, security consultants, press, law enforcement, prosecutors, FBI, etc. We're at Toorcon 14—see earlier blogs for some of the previous Toorcon's I've attended (back to 2003). This year's "con" was held at the Westin on Broadway in downtown San Diego, California. The following are not necessarily my views—I'm just the messenger—although I could have misquoted or misparaphrased the speakers. Also, I only reviewed some of the talks, below, which I attended and interested me. MalAndroid—the Crux of Android Infections, Aditya K. Sood Programming Weird Machines with ELF Metadata, Rebecca "bx" Shapiro Privacy at the Handset: New FCC Rules?, Valkyrie Hacking Measured Boot and UEFI, Dan Griffin You Can't Buy Security: Building the Open Source InfoSec Program, Boris Sverdlik What Journalists Want: The Investigative Reporters' Perspective on Hacking, Dave Maas & Jason Leopold Accessibility and Security, Anna Shubina Stop Patching, for Stronger PCI Compliance, Adam Brand McAfee Secure & Trustmarks — a Hacker's Best Friend, Jay James & Shane MacDougall MalAndroid—the Crux of Android Infections Aditya K. Sood, IOActive, Michigan State PhD candidate Aditya talked about Android smartphone malware. There's a lot of old Android software out there—over 50% Gingerbread (2.3.x)—and most have unpatched vulnerabilities. Of 9 Android vulnerabilities, 8 have known exploits (such as the old Gingerbread Global Object Table exploit). Android protection includes sandboxing, security scanner, app permissions, and screened Android app market. The Android permission checker has fine-grain resource control, policy enforcement. Android static analysis also includes a static analysis app checker (bouncer), and a vulnerablity checker. What security problems does Android have? User-centric security, which depends on the user to grant permission and make smart decisions. But users don't care or think about malware (the're not aware, not paranoid). All they want is functionality, extensibility, mobility Android had no "proper" encryption before Android 3.0 No built-in protection against social engineering and web tricks Alternative Android app markets are unsafe. Simply visiting some markets can infect Android Aditya classified Android Malware types as: Type A—Apps. These interact with the Android app framework. For example, a fake Netflix app. Or Android Gold Dream (game), which uploads user files stealthy manner to a remote location. Type K—Kernel. Exploits underlying Linux libraries or kernel Type H—Hybrid. These use multiple layers (app framework, libraries, kernel). These are most commonly used by Android botnets, which are popular with Chinese botnet authors What are the threats from Android malware? These incude leak info (contacts), banking fraud, corporate network attacks, malware advertising, malware "Hackivism" (the promotion of social causes. For example, promiting specific leaders of the Tunisian or Iranian revolutions. Android malware is frequently "masquerated". That is, repackaged inside a legit app with malware. To avoid detection, the hidden malware is not unwrapped until runtime. The malware payload can be hidden in, for example, PNG files. Less common are Android bootkits—there's not many around. What they do is hijack the Android init framework—alteering system programs and daemons, then deletes itself. For example, the DKF Bootkit (China). Android App Problems: no code signing! all self-signed native code execution permission sandbox — all or none alternate market places no robust Android malware detection at network level delayed patch process Programming Weird Machines with ELF Metadata Rebecca "bx" Shapiro, Dartmouth College, NH https://github.com/bx/elf-bf-tools @bxsays on twitter Definitions. "ELF" is an executable file format used in linking and loading executables (on UNIX/Linux-class machines). "Weird machine" uses undocumented computation sources (I think of them as unintended virtual machines). Some examples of "weird machines" are those that: return to weird location, does SQL injection, corrupts the heap. Bx then talked about using ELF metadata as (an uintended) "weird machine". Some ELF background: A compiler takes source code and generates a ELF object file (hello.o). A static linker makes an ELF executable from the object file. A runtime linker and loader takes ELF executable and loads and relocates it in memory. The ELF file has symbols to relocate functions and variables. ELF has two relocation tables—one at link time and another one at loading time: .rela.dyn (link time) and .dynsym (dynamic table). GOT: Global Offset Table of addresses for dynamically-linked functions. PLT: Procedure Linkage Tables—works with GOT. The memory layout of a process (not the ELF file) is, in order: program (+ heap), dynamic libraries, libc, ld.so, stack (which includes the dynamic table loaded into memory) For ELF, the "weird machine" is found and exploited in the loader. ELF can be crafted for executing viruses, by tricking runtime into executing interpreted "code" in the ELF symbol table. One can inject parasitic "code" without modifying the actual ELF code portions. Think of the ELF symbol table as an "assembly language" interpreter. It has these elements: instructions: Add, move, jump if not 0 (jnz) Think of symbol table entries as "registers" symbol table value is "contents" immediate values are constants direct values are addresses (e.g., 0xdeadbeef) move instruction: is a relocation table entry add instruction: relocation table "addend" entry jnz instruction: takes multiple relocation table entries The ELF weird machine exploits the loader by relocating relocation table entries. The loader will go on forever until told to stop. It stores state on stack at "end" and uses IFUNC table entries (containing function pointer address). The ELF weird machine, called "Brainfu*k" (BF) has: 8 instructions: pointer inc, dec, inc indirect, dec indirect, jump forward, jump backward, print. Three registers - 3 registers Bx showed example BF source code that implemented a Turing machine printing "hello, world". More interesting was the next demo, where bx modified ping. Ping runs suid as root, but quickly drops privilege. BF modified the loader to disable the library function call dropping privilege, so it remained as root. Then BF modified the ping -t argument to execute the -t filename as root. It's best to show what this modified ping does with an example: $ whoami bx $ ping localhost -t backdoor.sh # executes backdoor $ whoami root $ The modified code increased from 285948 bytes to 290209 bytes. A BF tool compiles "executable" by modifying the symbol table in an existing ELF executable. The tool modifies .dynsym and .rela.dyn table, but not code or data. Privacy at the Handset: New FCC Rules? "Valkyrie" (Christie Dudley, Santa Clara Law JD candidate) Valkyrie talked about mobile handset privacy. Some background: Senator Franken (also a comedian) became alarmed about CarrierIQ, where the carriers track their customers. Franken asked the FCC to find out what obligations carriers think they have to protect privacy. The carriers' response was that they are doing just fine with self-regulation—no worries! Carriers need to collect data, such as missed calls, to maintain network quality. But carriers also sell data for marketing. Verizon sells customer data and enables this with a narrow privacy policy (only 1 month to opt out, with difficulties). The data sold is not individually identifiable and is aggregated. But Verizon recommends, as an aggregation workaround to "recollate" data to other databases to identify customers indirectly. The FCC has regulated telephone privacy since 1934 and mobile network privacy since 2007. Also, the carriers say mobile phone privacy is a FTC responsibility (not FCC). FTC is trying to improve mobile app privacy, but FTC has no authority over carrier / customer relationships. As a side note, Apple iPhones are unique as carriers have extra control over iPhones they don't have with other smartphones. As a result iPhones may be more regulated. Who are the consumer advocates? Everyone knows EFF, but EPIC (Electrnic Privacy Info Center), although more obsecure, is more relevant. What to do? Carriers must be accountable. Opt-in and opt-out at any time. Carriers need incentive to grant users control for those who want it, by holding them liable and responsible for breeches on their clock. Location information should be added current CPNI privacy protection, and require "Pen/trap" judicial order to obtain (and would still be a lower standard than 4th Amendment). Politics are on a pro-privacy swing now, with many senators and the Whitehouse. There will probably be new regulation soon, and enforcement will be a problem, but consumers will still have some benefit. Hacking Measured Boot and UEFI Dan Griffin, JWSecure, Inc., Seattle, @JWSdan Dan talked about hacking measured UEFI boot. First some terms: UEFI is a boot technology that is replacing BIOS (has whitelisting and blacklisting). UEFI protects devices against rootkits. TPM - hardware security device to store hashs and hardware-protected keys "secure boot" can control at firmware level what boot images can boot "measured boot" OS feature that tracks hashes (from BIOS, boot loader, krnel, early drivers). "remote attestation" allows remote validation and control based on policy on a remote attestation server. Microsoft pushing TPM (Windows 8 required), but Google is not. Intel TianoCore is the only open source for UEFI. Dan has Measured Boot Tool at http://mbt.codeplex.com/ with a demo where you can also view TPM data. TPM support already on enterprise-class machines. UEFI Weaknesses. UEFI toolkits are evolving rapidly, but UEFI has weaknesses: assume user is an ally trust TPM implicitly, and attached to computer hibernate file is unprotected (disk encryption protects against this) protection migrating from hardware to firmware delays in patching and whitelist updates will UEFI really be adopted by the mainstream (smartphone hardware support, bank support, apathetic consumer support) You Can't Buy Security: Building the Open Source InfoSec Program Boris Sverdlik, ISDPodcast.com co-host Boris talked about problems typical with current security audits. "IT Security" is an oxymoron—IT exists to enable buiness, uptime, utilization, reporting, but don't care about security—IT has conflict of interest. There's no Magic Bullet ("blinky box"), no one-size-fits-all solution (e.g., Intrusion Detection Systems (IDSs)). Regulations don't make you secure. The cloud is not secure (because of shared data and admin access). Defense and pen testing is not sexy. Auditors are not solution (security not a checklist)—what's needed is experience and adaptability—need soft skills. Step 1: First thing is to Google and learn the company end-to-end before you start. Get to know the management team (not IT team), meet as many people as you can. Don't use arbitrary values such as CISSP scores. Quantitive risk assessment is a myth (e.g. AV*EF-SLE). Learn different Business Units, legal/regulatory obligations, learn the business and where the money is made, verify company is protected from script kiddies (easy), learn sensitive information (IP, internal use only), and start with low-hanging fruit (customer service reps and social engineering). Step 2: Policies. Keep policies short and relevant. Generic SANS "security" boilerplate policies don't make sense and are not followed. Focus on acceptable use, data usage, communications, physical security. Step 3: Implementation: keep it simple stupid. Open source, although useful, is not free (implementation cost). Access controls with authentication & authorization for local and remote access. MS Windows has it, otherwise use OpenLDAP, OpenIAM, etc. Application security Everyone tries to reinvent the wheel—use existing static analysis tools. Review high-risk apps and major revisions. Don't run different risk level apps on same system. Assume host/client compromised and use app-level security control. Network security VLAN != segregated because there's too many workarounds. Use explicit firwall rules, active and passive network monitoring (snort is free), disallow end user access to production environment, have a proxy instead of direct Internet access. Also, SSL certificates are not good two-factor auth and SSL does not mean "safe." Operational Controls Have change, patch, asset, & vulnerability management (OSSI is free). For change management, always review code before pushing to production For logging, have centralized security logging for business-critical systems, separate security logging from administrative/IT logging, and lock down log (as it has everything). Monitor with OSSIM (open source). Use intrusion detection, but not just to fulfill a checkbox: build rules from a whitelist perspective (snort). OSSEC has 95% of what you need. Vulnerability management is a QA function when done right: OpenVas and Seccubus are free. Security awareness The reality is users will always click everything. Build real awareness, not compliance driven checkbox, and have it integrated into the culture. Pen test by crowd sourcing—test with logging COSSP http://www.cossp.org/ - Comprehensive Open Source Security Project What Journalists Want: The Investigative Reporters' Perspective on Hacking Dave Maas, San Diego CityBeat Jason Leopold, Truthout.org The difference between hackers and investigative journalists: For hackers, the motivation varies, but method is same, technological specialties. For investigative journalists, it's about one thing—The Story, and they need broad info-gathering skills. J-School in 60 Seconds: Generic formula: Person or issue of pubic interest, new info, or angle. Generic criteria: proximity, prominence, timeliness, human interest, oddity, or consequence. Media awareness of hackers and trends: journalists becoming extremely aware of hackers with congressional debates (privacy, data breaches), demand for data-mining Journalists, use of coding and web development for Journalists, and Journalists busted for hacking (Murdock). Info gathering by investigative journalists include Public records laws. Federal Freedom of Information Act (FOIA) is good, but slow. California Public Records Act is a lot stronger. FOIA takes forever because of foot-dragging—it helps to be specific. Often need to sue (especially FBI). CPRA is faster, and requests can be vague. Dumps and leaks (a la Wikileaks) Journalists want: leads, protecting ourselves, our sources, and adapting tools for news gathering (Google hacking). Anonomity is important to whistleblowers. They want no digital footprint left behind (e.g., email, web log). They don't trust encryption, want to feel safe and secure. Whistleblower laws are very weak—there's no upside for whistleblowers—they have to be very passionate to do it. Accessibility and Security or: How I Learned to Stop Worrying and Love the Halting Problem Anna Shubina, Dartmouth College Anna talked about how accessibility and security are related. Accessibility of digital content (not real world accessibility). mostly refers to blind users and screenreaders, for our purpose. Accessibility is about parsing documents, as are many security issues. "Rich" executable content causes accessibility to fail, and often causes security to fail. For example MS Word has executable format—it's not a document exchange format—more dangerous than PDF or HTML. Accessibility is often the first and maybe only sanity check with parsing. They have no choice because someone may want to read what you write. Google, for example, is very particular about web browser you use and are bad at supporting other browsers. Uses JavaScript instead of links, often requiring mouseover to display content. PDF is a security nightmare. Executible format, embedded flash, JavaScript, etc. 15 million lines of code. Google Chrome doesn't handle PDF correctly, causing several security bugs. PDF has an accessibility checker and PDF tagging, to help with accessibility. But no PDF checker checks for incorrect tags, untagged content, or validates lists or tables. None check executable content at all. The "Halting Problem" is: can one decide whether a program will ever stop? The answer, in general, is no (Rice's theorem). The same holds true for accessibility checkers. Language-theoretic Security says complicated data formats are hard to parse and cannot be solved due to the Halting Problem. W3C Web Accessibility Guidelines: "Perceivable, Operable, Understandable, Robust" Not much help though, except for "Robust", but here's some gems: * all information should be parsable (paraphrasing) * if not parsable, cannot be converted to alternate formats * maximize compatibility in new document formats Executible webpages are bad for security and accessibility. They say it's for a better web experience. But is it necessary to stuff web pages with JavaScript for a better experience? A good example is The Drudge Report—it has hand-written HTML with no JavaScript, yet drives a lot of web traffic due to good content. A bad example is Google News—hidden scrollbars, guessing user input. Solutions: Accessibility and security problems come from same source Expose "better user experience" myth Keep your corner of Internet parsable Remember "Halting Problem"—recognize false solutions (checking and verifying tools) Stop Patching, for Stronger PCI Compliance Adam Brand, protiviti @adamrbrand, http://www.picfun.com/ Adam talked about PCI compliance for retail sales. Take an example: for PCI compliance, 50% of Brian's time (a IT guy), 960 hours/year was spent patching POSs in 850 restaurants. Often applying some patches make no sense (like fixing a browser vulnerability on a server). "Scanner worship" is overuse of vulnerability scanners—it gives a warm and fuzzy and it's simple (red or green results—fix reds). Scanners give a false sense of security. In reality, breeches from missing patches are uncommon—more common problems are: default passwords, cleartext authentication, misconfiguration (firewall ports open). Patching Myths: Myth 1: install within 30 days of patch release (but PCI §6.1 allows a "risk-based approach" instead). Myth 2: vendor decides what's critical (also PCI §6.1). But §6.2 requires user ranking of vulnerabilities instead. Myth 3: scan and rescan until it passes. But PCI §11.2.1b says this applies only to high-risk vulnerabilities. Adam says good recommendations come from NIST 800-40. Instead use sane patching and focus on what's really important. From NIST 800-40: Proactive: Use a proactive vulnerability management process: use change control, configuration management, monitor file integrity. Monitor: start with NVD and other vulnerability alerts, not scanner results. Evaluate: public-facing system? workstation? internal server? (risk rank) Decide:on action and timeline Test: pre-test patches (stability, functionality, rollback) for change control Install: notify, change control, tickets McAfee Secure & Trustmarks — a Hacker's Best Friend Jay James, Shane MacDougall, Tactical Intelligence Inc., Canada "McAfee Secure Trustmark" is a website seal marketed by McAfee. A website gets this badge if they pass their remote scanning. The problem is a removal of trustmarks act as flags that you're vulnerable. Easy to view status change by viewing McAfee list on website or on Google. "Secure TrustGuard" is similar to McAfee. Jay and Shane wrote Perl scripts to gather sites from McAfee and search engines. If their certification image changes to a 1x1 pixel image, then they are longer certified. Their scripts take deltas of scans to see what changed daily. The bottom line is change in TrustGuard status is a flag for hackers to attack your site. Entire idea of seals is silly—you're raising a flag saying if you're vulnerable.

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 1 of 2 &ndash; CLR Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible.  Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind…  In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve.  One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well.  In this review, I am going to cover some of the features of the ANTS profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program.  I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction The ANTS Profiler pack provided by Red Gate was something that I had not heard of before receiving an email regarding an offer to review it for a license.  Since I look to make my code efficient, it was a no brainer for me to try it out!  One thing that I have to say took me by surprise is that upon downloading the program and installing it you fill out a form for your usual contact information.  Sure enough within 2 hours, I received an email from a sales representative at Red Gate asking if she could help me to achieve the most out of my trial time so it wouldn’t go to waste.  After replying to her and explaining that I was looking to review its feature set, she put me in contact with someone that setup a demo session to give me a quick rundown of its features via an online meeting.  After having dealt with a massive ordeal with one of my utility companies and their complete lack of customer service, Red Gates friendly and helpful representatives were a breath of fresh air, and something I was thankful for. ANTS CLR Profiler The ANTS CLR profiler is the thing I want to focus on the most in this post, so I am going to dive right in now. Install was simple and took no time at all.  It installed both the profiler for the CLR and Memory, but also visual studio extensions to facilitate the usage of the profilers (click any images for full size images): The Visual Studio menu options (under ANTS menu) Starting the CLR Performance Profiler from the start menu yields this window If you follow the instructions after launching the program from the start menu (Click File > New Profiling Session to start a new project), you are given a dialog with plenty of options for profiling: The New Session dialog.  Lots of options.  One thing I noticed is that the buttons in the lower right were half-covered by the panel of the application.  If I had to guess, I would imagine that this is caused by my DPI settings being set to 125%.  This is a problem I have seen in other applications as well that don’t scale well to different dpi scales. The profiler options give you the ability to profile: .NET Executable ASP.NET web application (hosted in IIS) ASP.NET web application (hosted in IIS express) ASP.NET web application (hosted in Cassini Web Development Server) SharePoint web application (hosted in IIS) Silverlight 4+ application Windows Service COM+ server XBAP (local XAML browser application) Attach to an already running .NET 4 process Choosing each option provides a varying set of other variables/options that one can set including options such as application arguments, operating path, record I/O performance performance counters to record (43 counters in all!), etc…  All in all, they give you the ability to profile many different .Net project types, and make it simple to do so.  In most cases of my using this application, I would be using the built in Visual Studio extensions, as they automatically start a new profiling project in ANTS with the options setup, and start your program, however RedGate has made it easy enough to profile outside of Visual Studio as well. On the flip side of this, as someone who lives most of their work life in Visual Studio, one thing I do wish is that instead of opening an entirely separate application/gui to perform profiling after launching, that instead they would provide a Visual Studio panel with the information, and integrate more of the profiling project information into Visual Studio.  So, now that we have an idea of what options that the profiler gives us, its time to test its abilities and features. Horrendous Example Code – Prime Number Generator One of my interests besides development, is Physics and Math – what I went to college for.  I have especially always been interested in prime numbers, as they are something of a mystery…  So, I decided that I would go ahead and to test the abilities of the profiler, I would write a small program, website, and library to generate prime numbers in the quantity that you ask for.  I am going to start off with some terrible code, and show how I would see the profiler being used as a development tool. First off, the IPrimes interface (all code is downloadable at the end of the post): interface IPrimes { IEnumerable<int> GetPrimes(int retrieve); } Simple enough, right?  Anything that implements the interface will (hopefully) provide an IEnumerable of int, with the quantity specified in the parameter argument.  Next, I am going to implement this interface in the most basic way: public class DumbPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _analyzing = 4; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; //start dividing at 2 //divide until number is reached, or determined not prime for (int i = 2; i < _analyzing && isPrime; i++) { //if (i) goes into _analyzing without a remainder, //_analyzing is NOT prime if (_analyzing % i == 0) isPrime = false; } //if it is prime, add to found list if (isPrime) _foundPrimes.Add(_analyzing); //increment number to analyze next _analyzing++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } This is the simplest way to get primes in my opinion.  Checking each number by the straight definition of a prime – is it divisible by anything besides 1 and itself. I have included this code in a base class library for my solution, as I am going to use it to demonstrate a couple of features of ANTS.  This class library is consumed by a simple non-MVVM WPF application, and a simple MVC4 website.  I will not post the WPF code here inline, as it is simply an ObservableCollection<int>, a label, two textbox’s, and a button. Starting a new Profiling Session So, in Visual Studio, I have just completed my first stint developing the GUI and DumbPrimes IPrimes class, so now I want to check my codes efficiency by profiling it.  All I have to do is build the solution (surprised initiating a profiling session doesn’t do this, but I suppose I can understand it), and then click the ANTS menu, followed by Profile Performance.  I am then greeted by the profiler starting up and already monitoring my program live: You are provided with a realtime graph at the top, and a pane at the bottom giving you information on how to proceed.  I am going to start by asking my program to show me the first 15000 primes: After the program finally began responding again (I did all the work on the main UI thread – how bad!), I stopped the profiler, which did kill the process of my program too.  One important thing to note, is that the profiler by default wants to give you a lot of detail about the operation – line hit counts, time per line, percent time per line, etc…  The important thing to remember is that this itself takes a lot of time.  When running my program without the profiler attached, it can generate the 15000 primes in 5.18 seconds, compared to 74.5 seconds – almost a 1500 percent increase.  While this may seem like a lot, remember that there is a trade off.  It may be WAY more inefficient, however, I am able to drill down and make improvements to specific problem areas, and then decrease execution time all around. Analyzing the Profiling Session After clicking ‘Stop Profiling’, the process running my application stopped, and the entire execution time was automatically selected by ANTS, and the results shown below: Now there are a number of interesting things going on here, I am going to cover each in a section of its own: Real Time Performance Counter Bar (top of screen) At the top of the screen, is the real time performance bar.  As your application is running, this will constantly update with the currently selected performance counters status.  A couple of cool things to note are the fact that you can drag a selection around specific time periods to drill down the detail views in the lower 2 panels to information pertaining to only that period. After selecting a time period, you can bookmark a section and name it, so that it is easy to find later, or after reloaded at a later time.  You can also zoom in, out, or fit the graph to the space provided – useful for drilling down. It may be hard to see, but at the top of the processor time graph below the time ticks, but above the red usage graph, there is a green bar. This bar shows at what times a method that is selected in the ‘Call tree’ panel is called. Very cool to be able to click on a method and see at what times it made an impact. As I said before, ANTS provides 43 different performance counters you can hook into.  Click the arrow next to the Performance tab at the top will allow you to change between different counters if you have them selected: Method Call Tree, ADO.Net Database Calls, File IO – Detail Panel Red Gate really hit the mark here I think. When you select a section of the run with the graph, the call tree populates to fill a hierarchical tree of method calls, with information regarding each of the methods.   By default, methods are hidden where the source is not provided (framework type code), however, Red Gate has integrated Reflector into ANTS, so even if you don’t have source for something, you can select a method and get the source if you want.  Methods are also hidden where the impact is seen as insignificant – methods that are only executed for 1% of the time of the overall calling methods time; in other words, working on making them better is not where your efforts should be focused. – Smart! Source Panel – Detail Panel The source panel is where you can see line level information on your code, showing the code for the currently selected method from the Method Call Tree.  If the code is not available, Reflector takes care of it and shows the code anyways! As you can notice, there does seem to be a problem with how ANTS determines what line is the actual line that a call is completed on.  I have suspicions that this may be due to some of the inline code optimizations that the CLR applies upon compilation of the assembly.  In a method with comments, the problem is much more severe: As you can see here, apparently the most offending code in my base library was a comment – *gasp*!  Removing the comments does help quite a bit, however I hope that Red Gate works on their counter algorithm soon to improve the logic on positioning for statistics: I did a small test just to demonstrate the lines are correct without comments. For me, it isn’t a deal breaker, as I can usually determine the correct placements by looking at the application code in the region and determining what makes sense, but it is something that would probably build up some irritation with time. Feature – Suggest Method for Optimization A neat feature to really help those in need of a pointer, is the menu option under tools to automatically suggest methods to optimize/improve: Nice feature – clicking it filters the call tree and stars methods that it thinks are good candidates for optimization.  I do wish that they would have made it more visible for those of use who aren’t great on sight: Process Integration I do think that this could have a place in my process.  After experimenting with the profiler, I do think it would be a great benefit to do some development, testing, and then after all the bugs are worked out, use the profiler to check on things to make sure nothing seems like it is hogging more than its fair share.  For example, with this program, I would have developed it, ran it, tested it – it works, but slowly. After looking at the profiler, and seeing the massive amount of time spent in 1 method, I might go ahead and try to re-implement IPrimes (I actually would probably rewrite the offending code, but so that I can distribute both sets of code easily, I’m just going to make another implementation of IPrimes).  Using two pieces of knowledge about prime numbers can make this method MUCH more efficient – prime numbers fall into two buckets 6k+/-1 , and a number is prime if it is not divisible by any other primes before it: public class SmartPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _k = 1; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; int potentialPrime; //analyze 6k-1 //assign the value to potential potentialPrime = 6 * _k - 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); if (_foundPrimes.Count() == retrieve) break; //analyze 6k+1 //assign the value to potential potentialPrime = 6 * _k + 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); //increment k to analyze next _k++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } Now there are definitely more things I can do to help make this more efficient, but for the scope of this example, I think this is fine (but still hideous)! Profiling this now yields a happy surprise 27 seconds to generate the 15000 primes with the profiler attached, and only 1.43 seconds without.  One important thing I wanted to call out though was the performance graph now: Notice anything odd?  The %Processor time is above 100%.  This is because there is now more than 1 core in the operation.  A better label for the chart in my mind would have been %Core time, but to each their own. Another odd thing I noticed was that the profiler seemed to be spot on this time in my DumbPrimes class with line details in source, even with comments..  Odd. Profiling Web Applications The last thing that I wanted to cover, that means a lot to me as a web developer, is the great amount of work that Red Gate put into the profiler when profiling web applications.  In my solution, I have a simple MVC4 application setup with 1 page, a single input form, that will output prime values as my WPF app did.  Launching the profiler from Visual Studio as before, nothing is really different in the profiler window, however I did receive a UAC prompt for a Red Gate helper app to integrate with the web server without notification. After requesting 500, 1000, 2000, and 5000 primes, and looking at the profiler session, things are slightly different from before: As you can see, there are 4 spikes of activity in the processor time graph, but there is also something new in the call tree: That’s right – ANTS will actually group method calls by get/post operations, so it is easier to find out what action/page is giving the largest problems…  Pretty cool in my mind! Overview Overall, I think that Red Gate ANTS CLR Profiler has a lot to offer, however I think it also has a long ways to go.  3 Biggest Pros: Ability to easily drill down from time graph, to method calls, to source code Wide variety of counters to choose from when profiling your application Excellent integration/grouping of methods being called from web applications by request – BRILLIANT! 3 Biggest Cons: Issue regarding line details in source view Nit pick – Processor time vs. Core time Nit pick – Lack of full integration with Visual Studio Ratings Ease of Use (7/10) – I marked down here because of the problems with the line level details and the extra work that that entails, and the lack of better integration with Visual Studio. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Especially with its large variety of performance counters, a definite plus! Features (9/10) – Besides the real time performance monitoring, and the drill downs that I’ve shown here, ANTS also has great integration with ADO.Net, with the ability to show database queries run by your application in the profiler.  This, with the line level details, the web request grouping, reflector integration, and various options to customize your profiling session I think create a great set of features! Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (8/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (8/10) – Overall, I am happy with the Performance Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  I WOULD recommend you trying the application and seeing if it would fit into your process, BUT, remember there are still some kinks in it to hopefully be worked out. My next post will definitely be shorter (hopefully), but thank you for reading up to here, or skipping ahead!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue

    - by John-Brown.Evans
    JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c12_5{vertical-align:top;width:468pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c8_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 0pt 5pt} .c10_5{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c14_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c21_5{background-color:#ffffff} .c18_5{color:#1155cc;text-decoration:underline} .c16_5{color:#666666;font-size:12pt} .c5_5{background-color:#f3f3f3;font-weight:bold} .c19_5{color:inherit;text-decoration:inherit} .c3_5{height:11pt;text-align:center} .c11_5{font-weight:bold} .c20_5{background-color:#00ff00} .c6_5{font-style:italic} .c4_5{height:11pt} .c17_5{background-color:#ffff00} .c0_5{direction:ltr} .c7_5{font-family:"Courier New"} .c2_5{border-collapse:collapse} .c1_5{line-height:1.0} .c13_5{background-color:#f3f3f3} .c15_5{height:0pt} .c9_5{text-align:center} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} Welcome to another post in the series of blogs which demonstrates how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue Today we will create a BPEL process which will read (dequeue) the message from the JMS queue, which we enqueued in the last example. The JMS adapter will dequeue the full XML payload from the queue. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we designed and deployed a BPEL composite, which took a simple XML payload and enqueued it to the JMS queue. In this example, we will read that same message from the queue, using a JMS adapter and a BPEL process. As many of the configuration steps required to read from that queue were done in the previous samples, this one will concentrate on the new steps. A summary of the required objects is listed below. To find out how to create them please see the previous samples. They also include instructions on how to verify the objects are set up correctly. WebLogic Server Objects Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue Schema XSD File The following XSD file is used for the message format. It was created in the previous example and will be copied to the new process. stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                 xmlns="http://www.example.org"                 targetNamespace="http://www.example.org"                 elementFormDefault="qualified">   <xsd:element name="exampleElement" type="xsd:string">   </xsd:element> </xsd:schema> JMS Message After executing the previous samples, the following XML message should be in the JMS queue located at jms/TestJMSQueue: <?xml version="1.0" encoding="UTF-8" ?><exampleElement xmlns="http://www.example.org">Test Message</exampleElement> JDeveloper Connection You will need a valid Application Server Connection in JDeveloper pointing to the SOA server which the process will be deployed to. 2. Create a BPEL Composite with a JMS Adapter Partner Link In the previous example, we created a composite in JDeveloper called JmsAdapterWriteSchema. In this one, we will create a new composite called JmsAdapterReadSchema. There are probably many ways of incorporating a JMS adapter into a SOA composite for incoming messages. One way is design the process in such a way that the adapter polls for new messages and when it dequeues one, initiates a SOA or BPEL instance. This is possibly the most common use case. Other use cases include mid-flow adapters, which are activated from within the BPEL process. In this example we will use a polling adapter, because it is the most simple to set up and demonstrate. But it has one disadvantage as a demonstrative model. When a polling adapter is active, it will dequeue all messages as soon as they reach the queue. This makes it difficult to monitor messages we are writing to the queue, because they will disappear from the queue as soon as they have been enqueued. To work around this, we will shut down the composite after deploying it and restart it as required. (Another solution for this would be to pause the consumption for the queue and resume consumption again if needed. This can be done in the WLS console JMS-Modules -> queue -> Control -> Consumption -> Pause/Resume.) We will model the composite as a one-way incoming process. Usually, a BPEL process will do something useful with the message after receiving it, such as passing it to a database or file adapter, a human workflow or external web service. But we only want to demonstrate how to dequeue a JMS message using BPEL and a JMS adapter, so we won’t complicate the design with further activities. However, we do want to be able to verify that we have read the message correctly, so the BPEL process will include a small piece of embedded java code, which will print the message to standard output, so we can view it in the SOA server’s log file. Alternatively, you can view the instance in the Enterprise Manager and verify the message. The following steps are all executed in JDeveloper. Create the project in the same JDeveloper application used for the previous examples or create a new one. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterReadSchema. When prompted for the composite type, choose Empty Composite. Create a JMS Adapter Partner Link In the composite editor, drag a JMS adapter over from the Component Palette to the left-hand swim lane, under Exposed Services. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterRead Oracle Enterprise Messaging Service (OEMS): Oracle WebLogic JMS AppServer Connection: Use an application server connection pointing to the WebLogic server on which the JMS queue and connection factory mentioned under Prerequisites above are located. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Consume Message Operation Name: Consume_message Consume Operation Parameters Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created in a previous example. JNDI Name: The JNDI name to use for the JMS connection. As in the previous example, this is probably the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) Messages/Message SchemaURL: We will use the XSD file created during the previous example, in the JmsAdapterWriteSchema project to define the format for the incoming message payload and, at the same time, demonstrate how to import an existing XSD file into a JDeveloper project. Press the magnifying glass icon to search for schema files. In the Type Chooser, press the Import Schema File button. Select the magnifying glass next to URL to search for schema files. Navigate to the location of the JmsAdapterWriteSchema project > xsd and select the stringPayload.xsd file. Check the “Copy to Project” checkbox, press OK and confirm the following Localize Files popup. Now that the XSD file has been copied to the local project, it can be selected from the project’s schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string . Press Next and Finish, which will complete the JMS Adapter configuration.Save the project. Create a BPEL Component Drag a BPEL Process from the Component Palette (Service Components) to the Components section of the composite designer. Name it JmsAdapterReadSchema and select Template: Define Service Later and press OK. Wire the JMS Adapter to the BPEL Component Now wire the JMS adapter to the BPEL process, by dragging the arrow from the adapter to the BPEL process. A Transaction Properties popup will be displayed. Set the delivery mode to async.persist. This completes the steps at the composite level. 3 . Complete the BPEL Process Design Invoke the BPEL Flow via the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterReadSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterRead partner link in the left-hand swim lane. Drag a Receive activity onto the BPEL flow diagram, then drag a wire (left-hand yellow arrow) from it to the JMS adapter. This will open the Receive activity editor. Auto-generate the variable by pressing the green “+” button and check the “Create Instance” checkbox. This will result in a BPEL instance being created when a new JMS message is received. At this point it would actually be OK to compile and deploy the composite and it would pick up any messages from the JMS queue. In fact, you can do that to test it, if you like. But it is very rudimentary and would not be doing anything useful with the message. Also, you could only verify the actual message payload by looking at the instance’s flow in the Enterprise Manager. There are various other possibilities; we could pass the message to another web service, write it to a file using a file adapter or to a database via a database adapter etc. But these will all introduce unnecessary complications to our sample. So, to keep it simple, we will add a small piece of Java code to the BPEL process which will write the payload to standard output. This will be written to the server’s log file, which will be easy to monitor. Add a Java Embedding Activity First get the full name of the process’s input variable, as this will be needed for the Java code. Go to the Structure pane and expand Variables > Process > Variables. Then expand the input variable, for example, "Receive1_Consume_Message_InputVariable > body > ns2:exampleElement”, and note variable’s name and path, if they are different from this one. Drag a Java Embedding activity from the Component Palette (Oracle Extensions) to the BPEL flow, after the Receive activity, then open it to edit. Delete the example code and replace it with the following, replacing the variable parts with those in your sample, if necessary.: System.out.println("JmsAdapterReadSchema process picked up a message"); oracle.xml.parser.v2.XMLElement inputPayload =    (oracle.xml.parser.v2.XMLElement)getVariableData(                           "Receive1_Consume_Message_InputVariable",                           "body",                           "/ns2:exampleElement");   String inputString = inputPayload.getFirstChild().getNodeValue(); System.out.println("Input String is " + inputPayload.getFirstChild().getNodeValue()); Tip. If you are not sure of the exact syntax of the input variable, create an Assign activity in the BPEL process and copy the variable to another, temporary one. Then check the syntax created by the BPEL designer. This completes the BPEL process design in JDeveloper. Save, compile and deploy the process to the SOA server. 3. Test the Composite Shut Down the JmsAdapterReadSchema Composite After deploying the JmsAdapterReadSchema composite to the SOA server it is automatically activated. If there are already any messages in the queue, the adapter will begin polling them. To ease the testing process, we will deactivate the process first Log in to the Enterprise Manager (Fusion Middleware Control) and navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterReadSchema [1.0] . Press the Shut Down button to disable the composite and confirm the following popup. Monitor Messages in the JMS Queue In a separate browser window, log in to the WebLogic Server Console and navigate to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. This is the location of the JMS queue we created in an earlier sample (see the prerequisites section of this sample). Check whether there are any messages already in the queue. If so, you can dequeue them using the QueueReceive Java program created in an earlier sample. This will ensure that the queue is empty and doesn’t contain any messages in the wrong format, which would cause the JmsAdapterReadSchema to fail. Send a Test Message In the Enterprise Manager, navigate to the JmsAdapterWriteSchema created earlier, press Test and send a test message, for example “Message from JmsAdapterWriteSchema”. Confirm that the message was written correctly to the queue by verifying it via the queue monitor in the WLS Console. Monitor the SOA Server’s Output A program deployed on the SOA server will write its standard output to the terminal window in which the server was started, unless this has been redirected to somewhere else, for example to a file. If it has not been redirected, go to the terminal session in which the server was started, otherwise open and monitor the file to which it was redirected. Re-Enable the JmsAdapterReadSchema Composite In the Enterprise Manager, navigate to the JmsAdapterReadSchema composite again and press Start Up to re-enable it. This should cause the JMS adapter to dequeue the test message and the following output should be written to the server’s standard output: JmsAdapterReadSchema process picked up a message. Input String is Message from JmsAdapterWriteSchema Note that you can also monitor the payload received by the process, by navigating to the the JmsAdapterReadSchema’s Instances tab in the Enterprise Manager. Then select the latest instance and view the flow of the BPEL component. The Receive activity will contain and display the dequeued message too. 4 . Troubleshooting This sample demonstrates how to dequeue an XML JMS message using a BPEL process and no additional functionality. For example, it doesn’t contain any error handling. Therefore, any errors in the payload will result in exceptions being written to the log file or standard output. If you get any errors related to the payload, such as Message handle error ... ORABPEL-09500 ... XPath expression failed to execute. An error occurs while processing the XPath expression; the expression is /ns2:exampleElement. ... etc. check that the variable used in the Java embedding part of the process was entered correctly. Possibly follow the tip mentioned in previous section. If this doesn’t help, you can delete the Java embedding part and simply verify the message via the flow diagram in the Enterprise Manager. Or use a different method, such as writing it to a file via a file adapter. This concludes this example. In the next post, we will begin with an AQ JMS example, which uses JMS to write to an Advanced Queue stored in the database. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

  • Bindable richTextBox still hanging in memory {WPF, Caliburn.Micro}

    - by Paul
    Hi, I use in WFP Caliburn.Micro Framework. I need bindable richTextbox for Document property. I found many ways how do it bindable richTextBox. But I have one problem. From parent window I open child window. Child window consist bindable richTextBox user control. After I close child window and use memory profiler view class with bindabelrichTextBox control and view model class is still hanging in memory. - this cause memory leaks. If I use richTextBox from .NET Framework or richTextBox from Extended WPF Toolkit it doesn’t cause this memory leak problem. I can’t identified problem in bindable richTextBox class. Here is ist class for bindable richTextBox: Base class can be from .NET or Extended toolkit. /// <summary> /// Represents a bindable rich editing control which operates on System.Windows.Documents.FlowDocument /// objects. /// </summary> public class BindableRichTextBox : RichTextBox { /// <summary> /// Identifies the <see cref="Document"/> dependency property. /// </summary> public static readonly DependencyProperty DocumentProperty = DependencyProperty.Register("Document", typeof(FlowDocument), typeof(BindableRichTextBox)); /// <summary> /// Initializes a new instance of the <see cref="BindableRichTextBox"/> class. /// </summary> public BindableRichTextBox() : base() { } /// <summary> /// Initializes a new instance of the <see cref="BindableRichTextBox"/> class. /// </summary> /// <param title="document">A <see cref="T:System.Windows.Documents.FlowDocument"></see> to be added as the initial contents of the new <see cref="T:System.Windows.Controls.BindableRichTextBox"></see>.</param> public BindableRichTextBox(FlowDocument document) : base(document) { } /// <summary> /// Raises the <see cref="E:System.Windows.FrameworkElement.Initialized"></see> event. This method is invoked whenever <see cref="P:System.Windows.FrameworkElement.IsInitialized"></see> is set to true internally. /// </summary> /// <param title="e">The <see cref="T:System.Windows.RoutedEventArgs"></see> that contains the event data.</param> protected override void OnInitialized(EventArgs e) { // Hook up to get notified when DocumentProperty changes. DependencyPropertyDescriptor descriptor = DependencyPropertyDescriptor.FromProperty(DocumentProperty, typeof(BindableRichTextBox)); descriptor.AddValueChanged(this, delegate { // If the underlying value of the dependency property changes, // update the underlying document, also. base.Document = (FlowDocument)GetValue(DocumentProperty); }); // By default, we support updates to the source when focus is lost (or, if the LostFocus // trigger is specified explicity. We don't support the PropertyChanged trigger right now. this.LostFocus += new RoutedEventHandler(BindableRichTextBox_LostFocus); base.OnInitialized(e); } /// <summary> /// Handles the LostFocus event of the BindableRichTextBox control. /// </summary> /// <param title="sender">The source of the event.</param> /// <param title="e">The <see cref="System.Windows.RoutedEventArgs"/> instance containing the event data.</param> void BindableRichTextBox_LostFocus(object sender, RoutedEventArgs e) { // If we have a binding that is set for LostFocus or Default (which we are specifying as default) // then update the source. Binding binding = BindingOperations.GetBinding(this, DocumentProperty); if (binding.UpdateSourceTrigger == UpdateSourceTrigger.Default || binding.UpdateSourceTrigger == UpdateSourceTrigger.LostFocus) { BindingOperations.GetBindingExpression(this, DocumentProperty).UpdateSource(); } } /// <summary> /// Gets or sets the <see cref="T:System.Windows.Documents.FlowDocument"></see> that represents the contents of the <see cref="T:System.Windows.Controls.BindableRichTextBox"></see>. /// </summary> /// <value></value> /// <returns>A <see cref="T:System.Windows.Documents.FlowDocument"></see> object that represents the contents of the <see cref="T:System.Windows.Controls.BindableRichTextBox"></see>.By default, this property is set to an empty <see cref="T:System.Windows.Documents.FlowDocument"></see>. Specifically, the empty <see cref="T:System.Windows.Documents.FlowDocument"></see> contains a single <see cref="T:System.Windows.Documents.Paragraph"></see>, which contains a single <see cref="T:System.Windows.Documents.Run"></see> which contains no text.</returns> /// <exception cref="T:System.ArgumentException">Raised if an attempt is made to set this property to a <see cref="T:System.Windows.Documents.FlowDocument"></see> that represents the contents of another <see cref="T:System.Windows.Controls.RichTextBox"></see>.</exception> /// <exception cref="T:System.ArgumentNullException">Raised if an attempt is made to set this property to null.</exception> /// <exception cref="T:System.InvalidOperationException">Raised if this property is set while a change block has been activated.</exception> public new FlowDocument Document { get { return (FlowDocument)GetValue(DocumentProperty); } set { SetValue(DocumentProperty, value); } } } Thank fro help and advice. Qucik example: Child window with .NET richTextBox <Window x:Class="WpfApplication2.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="Window1" Height="300" Width="300"> <Grid> <RichTextBox Background="Green" VerticalScrollBarVisibility="Auto" HorizontalScrollBarVisibility="Auto" FontSize="13" Margin="4,4,4,4" Grid.Row="0"/> </Grid> </Window> This window I open from parent window: var w = new Window1(); w.Show(); Then close this window, check with memory profiler and it memory doesn’t exist any object of window1 - richTextBox. It’s Ok. But then I try bindable richTextBox: Child window 2: <Window x:Class="WpfApplication2.Window2" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Controls="clr-namespace:WpfApplication2.Controls" Title="Window2" Height="300" Width="300"> <Grid> <Controls:BindableRichTextBox Background="Red" VerticalScrollBarVisibility="Auto" HorizontalScrollBarVisibility="Auto" FontSize="13" Margin="4,4,4,4" Grid.Row="0" /> </Grid> </Window> Open child window 2, close this child window and in memory are still alive object of this child window also bindable richTextBox object.

    Read the article

  • What is the fastest cyclic synchronization in Java (ExecutorService vs. CyclicBarrier vs. X)?

    - by Alex Dunlop
    Which Java synchronization construct is likely to provide the best performance for a concurrent, iterative processing scenario with a fixed number of threads like the one outlined below? After experimenting on my own for a while (using ExecutorService and CyclicBarrier) and being somewhat surprised by the results, I would be grateful for some expert advice and maybe some new ideas. Existing questions here do not seem to focus primarily on performance, hence this new one. Thanks in advance! The core of the app is a simple iterative data processing algorithm, parallelized to the spread the computational load across 8 cores on a Mac Pro, running OS X 10.6 and Java 1.6.0_07. The data to be processed is split into 8 blocks and each block is fed to a Runnable to be executed by one of a fixed number of threads. Parallelizing the algorithm was fairly straightforward, and it functionally works as desired, but its performance is not yet what I think it could be. The app seems to spend a lot of time in system calls synchronizing, so after some profiling I wonder whether I selected the most appropriate synchronization mechanism(s). A key requirement of the algorithm is that it needs to proceed in stages, so the threads need to sync up at the end of each stage. The main thread prepares the work (very low overhead), passes it to the threads, lets them work on it, then proceeds when all threads are done, rearranges the work (again very low overhead) and repeats the cycle. The machine is dedicated to this task, Garbage Collection is minimized by using per-thread pools of pre-allocated items, and the number of threads can be fixed (no incoming requests or the like, just one thread per CPU core). V1 - ExecutorService My first implementation used an ExecutorService with 8 worker threads. The program creates 8 tasks holding the work and then lets them work on it, roughly like this: // create one thread per CPU executorService = Executors.newFixedThreadPool( 8 ); ... // now process data in cycles while( ...) { // package data into 8 work items ... // create one Callable task per work item ... // submit the Callables to the worker threads executorService.invokeAll( taskList ); } This works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as much as the processing algorithm would be expected to allow (some work items will finish faster than others, then idle). However, as the work items become smaller (and this is not really under the program's control), the user CPU load shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.8% 85% 1.30 64k 2.5% 77% 5.6 16k 4% 64% 22.5 4096 8% 56% 86 1024 13% 38% 227 256 17% 19% 420 64 19% 17% 948 16 19% 13% 1626 Legend: - block size = size of the work item (= computational steps) - system = system load, as shown in OS X Activity Monitor (red bar) - user = user load, as shown in OS X Activity Monitor (green bar) - cycles/sec = iterations through the main while loop, more is better The primary area of concern here is the high percentage of time spent in the system, which appears to be driven by thread synchronization calls. As expected, for smaller work items, ExecutorService.invokeAll() will require relatively more effort to sync up the threads versus the amount of work being performed in each thread. But since ExecutorService is more generic than it would need to be for this use case (it can queue tasks for threads if there are more tasks than cores), I though maybe there would be a leaner synchronization construct. V2 - CyclicBarrier The next implementation used a CyclicBarrier to sync up the threads before receiving work and after completing it, roughly as follows: main() { // create the barrier barrier = new CyclicBarrier( 8 + 1 ); // create Runable for thread, tell it about the barrier Runnable task = new WorkerThreadRunnable( barrier ); // start the threads for( int i = 0; i < 8; i++ ) { // create one thread per core new Thread( task ).start(); } while( ... ) { // tell threads about the work ... // N threads + this will call await(), then system proceeds barrier.await(); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; } public void run() { while( true ) { // wait for work barrier.await(); // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as before. However, as the work items become smaller, the load still shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.7% 78% 6.1 16k 5.5% 52% 25 4096 9% 29% 64 1024 11% 15% 117 256 12% 8% 169 64 12% 6.5% 285 16 12% 6% 377 For large work items, synchronization is negligible and the performance is identical to V1. But unexpectedly, the results of the (highly specialized) CyclicBarrier seem MUCH WORSE than those for the (generic) ExecutorService: throughput (cycles/sec) is only about 1/4th of V1. A preliminary conclusion would be that even though this seems to be the advertised ideal use case for CyclicBarrier, it performs much worse than the generic ExecutorService. V3 - Wait/Notify + CyclicBarrier It seemed worth a try to replace the first cyclic barrier await() with a simple wait/notify mechanism: main() { // create the barrier // create Runable for thread, tell it about the barrier // start the threads while( ... ) { // tell threads about the work // for each: workerThreadRunnable.setWorkItem( ... ); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; @NotNull volatile private Callable<Integer> workItem; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; this.workItem = NO_WORK; } final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { synchronized( this ) { workItem = callable; notify(); } } public void run() { while( true ) { // wait for work while( true ) { synchronized( this ) { if( workItem != NO_WORK ) break; try { wait(); } catch( InterruptedException e ) { e.printStackTrace(); } } } // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.4% 80% 6.3 16k 4.6% 60% 30.1 4096 8.6% 41% 98.5 1024 12% 23% 202 256 14% 11.6% 299 64 14% 10.0% 518 16 14.8% 8.7% 679 The throughput for small work items is still much worse than that of the ExecutorService, but about 2x that of the CyclicBarrier. Eliminating one CyclicBarrier eliminates half of the gap. V4 - Busy wait instead of wait/notify Since this app is the primary one running on the system and the cores idle anyway if they're not busy with a work item, why not try a busy wait for work items in each thread, even if that spins the CPU needlessly. The worker thread code changes as follows: class WorkerThreadRunnable implements Runnable { // as before final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { workItem = callable; } public void run() { while( true ) { // busy-wait for work while( true ) { if( workItem != NO_WORK ) break; } // do the work ... // wait for everyone else to finish barrier.await(); } } } Also works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.2% 81% 6.3 16k 4.2% 62% 33 4096 7.5% 40% 107 1024 10.4% 23% 210 256 12.0% 12.0% 310 64 11.9% 10.2% 550 16 12.2% 8.6% 741 For small work items, this increases throughput by a further 10% over the CyclicBarrier + wait/notify variant, which is not insignificant. But it is still much lower-throughput than V1 with the ExecutorService. V5 - ? So what is the best synchronization mechanism for such a (presumably not uncommon) problem? I am weary of writing my own sync mechanism to completely replace ExecutorService (assuming that it is too generic and there has to be something that can still be taken out to make it more efficient). It is not my area of expertise and I'm concerned that I'd spend a lot of time debugging it (since I'm not even sure my wait/notify and busy wait variants are correct) for uncertain gain. Any advice would be greatly appreciated.

    Read the article

  • Simple Grouping With TableSorter Plugin

    - by HurnsMobile
    Im playing around with the Tablesorter plug-in for jQuery and was trying to get a very simple grouping functionality added into it. Using the follow html/js works great until you click sort again and reverse the order. The headers get moved to the bottom of the group when this happens. The following is my (admitedly hacky) attempt at it. Does anyone have any ideas? <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> <title>Table Manipulation Test</title> <link type="text/css" href="css/ui-lightness/jquery-ui-1.8.1.custom.css" rel="stylesheet" /> <link rel="stylesheet" href="tablesorter/themes/green/style.css" type="text/css"/> <script type="text/javascript" src="js/jquery-1.4.2.min.js"></script> <script type="text/javascript" src="js/jquery-ui-1.8.1.custom.min.js"></script> <script type="text/javascript" src="tablesorter/jquery.tablesorter.min.js"></script> <script type="text/javascript"> $(document).ready(function() { $("#test_table").tablesorter({ sortForce: [[3,0]] }); $(".group_details").hide(); $(".group_header").click(function(){ var group = $(this).attr("group"); var $expander = $(this).children("td.expanderguy") if ($("." + group + ":visible").length){ $("." + group + "").fadeOut('fast'); $expander.html("<img src='icons/plus.gif'>"); } else{ $("." + group + "").fadeIn('fast'); $expander.html("<img src='icons/minus.gif'>"); } }); } ); </script> <style type="text/css"> .group_header td{ background-color: #888888; !important } </style> </head> <body> <table id="test_table" class="tablesorter"> <thead> <tr><th>First Name</th><th>Last Name</th><th>Email</th><th>Due Date</th><th>Amount Due</th></tr> </thead> <tbody> <tr class="group_header" group="group1"><td class="expanderguy"><img src="icons/plus.gif"></td><td></td><td></td><td>Monday, June 7</td><td></td></tr> <tr class="group_details group1"><td>Flavian</td><td>Wenceslas</td><td>[email protected]</td><td>Monday, June 7</td><td>$100</td></tr> <tr class="group_details group1"><td>Gordian</td><td>Ives</td><td>[email protected]</td><td>Monday, June 7</td><td>$1700</td></tr> <tr class="group_details group1"><td>Saladin</td><td>Tarquin</td><td>[email protected]</td><td>Monday, June 7</td><td>$1700</td></tr> <tr class="group_details group1"><td>Urban</td><td>Cyprian</td><td>[email protected]</td><td>Monday, June 7</td><td>$1500</td></tr> <tr class="group_details group1"><td>Sargon</td><td>Swithun</td><td>[email protected]</td><td>Monday, June 7</td><td>$1100</td></tr> <tr class="group_details group1"><td>Pompey</td><td>Ladislas</td><td>[email protected]</td><td>Monday, June 7</td><td>$300</td></tr> <tr class="group_details group1"><td>Attila</td><td>Hiawatha</td><td>[email protected]</td><td>Monday, June 7</td><td>$200</td></tr> <tr class="group_header" group="group2"><td class="expanderguy"><img src="icons/plus.gif"></td><td></td><td></td><td>Tuesday, June 8</td><td></td></tr> <tr class="group_details group2"><td>Bruce</td><td>Fenton</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$1700</td></tr> <tr class="group_details group2"><td>Wade</td><td>Sequoia</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$1400</td></tr> <tr class="group_details group2"><td>Eddie</td><td>Jerold</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$1100</td></tr> <tr class="group_details group2"><td>Lynn</td><td>Lucan</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$1200</td></tr> <tr class="group_details group2"><td>Taegan</td><td>Tadg</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$100</td></tr> <tr class="group_details group2"><td>Clyde</td><td>Reed</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$6100</td></tr> <tr class="group_details group2"><td>Alaois</td><td>Art</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$2100</td></tr> <tr class="group_details group2"><td>Gilbert</td><td>Patsy</td><td>[email protected]</td><td>Tuesday, June 8</td><td>$1500</td></tr> <tr class="group_header" group="group3"><td class="expanderguy"><img src="icons/plus.gif"></td><td></td><td></td><td>Wednesday, June 9</td><td></td></tr> <tr class="group_details group3" ><td>Clem</td><td>Eben</td><td>[email protected]</td><td>Wednesday, June 9</td><td>$2100</td></tr> <tr class="group_details group3" ><td>Elijah</td><td>Julyan</td><td>[email protected]</td><td>Wednesday, June 9</td><td>$2100</td></tr> <tr class="group_details group3" ><td>Marvyn</td><td>Damian</td><td>[email protected]</td><td>Wednesday, June 9</td><td>$1100</td></tr> <tr class="group_details group3" ><td>Sawyer</td><td>Ryker</td><td>[email protected]</td><td>Wednesday, June 9</td><td>$500</td></tr> </tbody> </table> </body>

    Read the article

  • Axis value changes in barchart while swapping the phone using Achartengine

    - by Vasu
    Hi I have included the Barchart using AchartEngine API .When I swap the orientation of the screen the yaxis value is altered as same values. For eg. initially it is (0,10) , (10,25) but after swapping its changes to (0,10), (10,10) i could not understand why it is happening . And I have place string in x axis instead of numbers , I used addtextlabel method but the string is overlapped on the number . I need to display only the names. could you help on this. I have included my code here. public class Analytics extends Activity implements OnClickListener { private Button settings_btn; private RelativeLayout relativeLayout3; private boolean isClicked = false; private static final int SERIES_NR = 1; static int multiple_of_five; private GraphicalView mChartView; XYMultipleSeriesRenderer renderer; static int value=20; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.analytics); settings_btn = (Button) findViewById(R.id.settings_btn); relativeLayout3 = (RelativeLayout) findViewById(R.id.relativeLayout3); settings_btn.setOnClickListener(this); if (SharedValues.isClicked) { relativeLayout3.setVisibility(View.VISIBLE); } else { relativeLayout3.setVisibility(View.GONE); } renderer = getBarDemoRenderer(); setChartSettings(renderer); if (mChartView == null) { RelativeLayout layout = (RelativeLayout) findViewById(R.id.relativeLayout5); // mChartView= ChartFactory.getLineChartView(this, getDemoDataset(), getDemoRenderer()); mChartView = ChartFactory.getBarChartView(getApplicationContext(),getBarDemoDataset(),renderer,Type.DEFAULT); layout.addView(mChartView,new LayoutParams(LayoutParams.FILL_PARENT, 280)); } else { mChartView.repaint(); } // Intent intent = ChartFactory.getLineChartIntent(this, getDemoDataset(), getDemoRenderer()); // intent = ChartFactory.getBarChartIntent(this, getBarDemoDataset(), renderer, Type.DEFAULT); // startActivity(intent); } @Override protected void onResume() { super.onResume(); } public XYMultipleSeriesRenderer getBarDemoRenderer() { XYMultipleSeriesRenderer renderer = new XYMultipleSeriesRenderer(); renderer.setAxisTitleTextSize(16); renderer.setChartTitleTextSize(20); renderer.setLabelsTextSize(15); renderer.setLegendTextSize(15); // renderer.setApplyBackgroundColor(true); // renderer.setBackgroundColor(R.color.chart_bg); // renderer.setMarginsColor(R.color.settings_bg_color); // renderer.setBackgroundColor(getResources().getColor(R.color.background)); renderer.setPanEnabled(false, false); renderer.setZoomEnabled(false, false); renderer.setMargins(new int[] {0, 10, 0, 0}); SimpleSeriesRenderer r = new SimpleSeriesRenderer(); // r.setColor(Color.MAGENTA); // renderer.addSeriesRenderer(r); r = new SimpleSeriesRenderer(); r.setColor(Color.CYAN); renderer.addSeriesRenderer(r); return renderer; } private void setChartSettings(XYMultipleSeriesRenderer renderer) { // renderer.setChartTitle("Chart demo"); // renderer.setXTitle("x values"); // renderer.setYTitle("y values"); renderer.setXAxisMin(2); renderer.setMarginsColor(Color.parseColor("#00F5DA81")); renderer.addXTextLabel(1.0, "Q1"); renderer.addXTextLabel(3.0, "Q2"); renderer.addXTextLabel(5.0, "Q3"); renderer.addXTextLabel(7.0, "Q4"); renderer.addXTextLabel(9.0, "Q5"); renderer.setXAxisMax(20); renderer.setYAxisMin(0); renderer.setYAxisMax(100); renderer.setZoomEnabled(false, false); // renderer.setApplyBackgroundColor(true); // renderer.setMarginsColor(R.color.settings_bg_color); renderer.setBackgroundColor(Color.TRANSPARENT); // renderer.setBackgroundColor(R.color.chart_bg); } private XYMultipleSeriesDataset getDemoDataset() { XYMultipleSeriesDataset dataset = new XYMultipleSeriesDataset(); final int nr = 10; Random r = new Random(); for (int i = 0; i < SERIES_NR; i++) { XYSeries series = new XYSeries(""); for (int k = 0; k < nr; k++) { if(k%2==1) { series.add(0, 0); } else { series.add(k, 20); } } dataset.addSeries(series); } return dataset; } private XYMultipleSeriesRenderer getDemoRenderer() { XYMultipleSeriesRenderer renderer = new XYMultipleSeriesRenderer(); renderer.setAxisTitleTextSize(6); renderer.setChartTitleTextSize(10); renderer.setLabelsTextSize(5); renderer.setLegendTextSize(5); renderer.setPointSize(5f); // renderer.setMarginsColor(R.color.settings_bg_color); // renderer.setApplyBackgroundColor(true); // renderer.setBackgroundColor(R.color.chart_bg); renderer.setMargins(new int[] {20, 30, 15, 0}); XYSeriesRenderer r = new XYSeriesRenderer(); r.setColor(Color.BLUE); r.setPointStyle(PointStyle.SQUARE); r.setFillBelowLine(true); r.setFillBelowLineColor(Color.WHITE); r.setFillPoints(true); renderer.addSeriesRenderer(r); r = new XYSeriesRenderer(); r.setPointStyle(PointStyle.CIRCLE); r.setColor(Color.GREEN); r.setFillPoints(true); renderer.addSeriesRenderer(r); renderer.setAxesColor(Color.DKGRAY); renderer.setLabelsColor(Color.LTGRAY); return renderer; } private XYMultipleSeriesDataset getBarDemoDataset() { XYMultipleSeriesDataset dataset = new XYMultipleSeriesDataset(); final int nr = 10; Random r = new Random(); for (int i = 0; i < SERIES_NR; i++) { CategorySeries series = new CategorySeries("Quadrant"); for (int k = 0; k < nr; k++) { value=value+5; // multiple_of_five=k+5; // Log.i("multiple_of_five", ""+multiple_of_five); // series.add(20 +multiple_of_five ); if(k%2==1){ series.add(value ); } else { series.add(0); } } dataset.addSeries(series.toXYSeries()); } return dataset; } @Override public void onClick(View v) { if (v == settings_btn) { if (SharedValues.isClicked) { relativeLayout3.setVisibility(View.GONE); SharedValues.isClicked = false; } else { relativeLayout3.setVisibility(View.VISIBLE); SharedValues.isClicked = true; } } } }

    Read the article

  • IOException: Unable To Delete Images Due To File Lock

    - by Arslan Pervaiz
    I am Unable To Delete Image File From My Server Path It Gaves Error That The Process Cannot Access The File "FileName" Because it is being Used By Another Process. I Tried Many Methods But Still All In Vain. Please Help me Out in This Issue. Here is My Code Snippet. using System; using System.Data; using System.Web; using System.Data.SqlClient; using System.Web.UI; using System.Web.UI.HtmlControls; using System.Globalization; using System.Web.Security; using System.Text; using System.DirectoryServices; using System.Collections; using System.IO; using System.Drawing; using System.Drawing.Imaging; using System.Drawing.Drawing2D; //============ Main Block ================= byte[] data = (byte[])ds.Tables[0].Rows[0][0]; MemoryStream ms = new MemoryStream(data); Image returnImage = Image.FromStream(ms); returnImage.Save(Server.MapPath(".\\TmpImages\\SavedImage.jpg"), System.Drawing.Imaging.ImageFormat.Jpeg); returnImage.Dispose(); \\ I Tried this Dispose Method To Unlock The File But Nothing Done. ms.Close(); \\ I Tried The Memory Stream Close Method Also But Its Also Not Worked For Me. watermark(); \\ Here is My Water Mark Method That Print Water Mark Image on My Saved Image (Image That is Converted From Byte Array) DeleteImages(); \\ Here is My Delete Method That I Call To Delete The Images //===== ==== My Delete Method To Delete Files================== public void DeleteImages() { try { File.Delete(Server.MapPath(".\\TmpImages\\WaterMark.jpg")); \\This Image Deleted Fine. File.Delete(Server.MapPath(".\\TmpImages\\SavedImage.jpg")); \\ Exception Thrown On Deleting of This Image. } catch (Exception ex) { LogManager.LogException(ex, "Error in Deleting Images."); Master.ShowMessage(ex.Message, true); } } \ ==== Method Declartion That Make Watermark of One Image On Another Image.======= public void watermark() { //create a image object containing the photograph to watermark Image imgPhoto = Image.FromFile(Server.MapPath(".\\TmpImages\\SavedImage.jpg")); int phWidth = imgPhoto.Width; int phHeight = imgPhoto.Height; //create a Bitmap the Size of the original photograph Bitmap bmPhoto = new Bitmap(phWidth, phHeight, PixelFormat.Format24bppRgb); bmPhoto.SetResolution(imgPhoto.HorizontalResolution, imgPhoto.VerticalResolution); //load the Bitmap into a Graphics object Graphics grPhoto = Graphics.FromImage(bmPhoto); //create a image object containing the watermark Image imgWatermark = new Bitmap(Server.MapPath(".\\TmpImages\\PrintasWatermark.jpg")); int wmWidth = imgWatermark.Width; int wmHeight = imgWatermark.Height; //Set the rendering quality for this Graphics object grPhoto.SmoothingMode = SmoothingMode.AntiAlias; //Draws the photo Image object at original size to the graphics object. grPhoto.DrawImage( imgPhoto, // Photo Image object new Rectangle(0, 0, phWidth, phHeight), // Rectangle structure 0, // x-coordinate of the portion of the source image to draw. 0, // y-coordinate of the portion of the source image to draw. phWidth, // Width of the portion of the source image to draw. phHeight, // Height of the portion of the source image to draw. GraphicsUnit.Pixel); // Units of measure //------------------------------------------------------- //to maximize the size of the Copyright message we will //test multiple Font sizes to determine the largest posible //font we can use for the width of the Photograph //define an array of point sizes you would like to consider as possiblities //------------------------------------------------------- //Define the text layout by setting the text alignment to centered StringFormat StrFormat = new StringFormat(); StrFormat.Alignment = StringAlignment.Center; //define a Brush which is semi trasparent black (Alpha set to 153) SolidBrush semiTransBrush2 = new SolidBrush(Color.FromArgb(153, 0, 0, 0)); //define a Brush which is semi trasparent white (Alpha set to 153) SolidBrush semiTransBrush = new SolidBrush(Color.FromArgb(153, 255, 255, 255)); //------------------------------------------------------------ //Step #2 - Insert Watermark image //------------------------------------------------------------ //Create a Bitmap based on the previously modified photograph Bitmap Bitmap bmWatermark = new Bitmap(bmPhoto); bmWatermark.SetResolution(imgPhoto.HorizontalResolution, imgPhoto.VerticalResolution); //Load this Bitmap into a new Graphic Object Graphics grWatermark = Graphics.FromImage(bmWatermark); //To achieve a transulcent watermark we will apply (2) color //manipulations by defineing a ImageAttributes object and //seting (2) of its properties. ImageAttributes imageAttributes = new ImageAttributes(); //The first step in manipulating the watermark image is to replace //the background color with one that is trasparent (Alpha=0, R=0, G=0, B=0) //to do this we will use a Colormap and use this to define a RemapTable ColorMap colorMap = new ColorMap(); //My watermark was defined with a background of 100% Green this will //be the color we search for and replace with transparency colorMap.OldColor = Color.FromArgb(255, 0, 255, 0); colorMap.NewColor = Color.FromArgb(0, 0, 0, 0); ColorMap[] remapTable = { colorMap }; imageAttributes.SetRemapTable(remapTable, ColorAdjustType.Bitmap); //The second color manipulation is used to change the opacity of the //watermark. This is done by applying a 5x5 matrix that contains the //coordinates for the RGBA space. By setting the 3rd row and 3rd column //to 0.3f we achive a level of opacity float[][] colorMatrixElements = { new float[] {1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, new float[] {0.0f, 1.0f, 0.0f, 0.0f, 0.0f}, new float[] {0.0f, 0.0f, 1.0f, 0.0f, 0.0f}, new float[] {0.0f, 0.0f, 0.0f, 0.3f, 0.0f}, new float[] {0.0f, 0.0f, 0.0f, 0.0f, 1.0f}}; ColorMatrix wmColorMatrix = new ColorMatrix(colorMatrixElements); imageAttributes.SetColorMatrix(wmColorMatrix, ColorMatrixFlag.Default, ColorAdjustType.Bitmap); //For this example we will place the watermark in the upper right //hand corner of the photograph. offset down 10 pixels and to the //left 10 pixles int xPosOfWm = ((phWidth - wmWidth) - 10); int yPosOfWm = 10; grWatermark.DrawImage(imgWatermark, new Rectangle(xPosOfWm, yPosOfWm, wmWidth, wmHeight), //Set the detination Position 0, // x-coordinate of the portion of the source image to draw. 0, // y-coordinate of the portion of the source image to draw. wmWidth, // Watermark Width wmHeight, // Watermark Height GraphicsUnit.Pixel, // Unit of measurment imageAttributes); //ImageAttributes Object //Replace the original photgraphs bitmap with the new Bitmap imgPhoto = bmWatermark; grPhoto.Dispose(); grWatermark.Dispose(); //save new image to file system. imgPhoto.Save(Server.MapPath(".\\TmpImages\\WaterMark.jpg"), ImageFormat.Jpeg); imgPhoto.Dispose(); imgWatermark.Dispose(); }

    Read the article

  • java.lang.ArrayIndexOutOfBoundsException

    - by thefonso
    Here is the code. import java.applet.Applet; import java.awt.Button; import java.awt.Color; import java.awt.Graphics; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; public class GuessingGame extends Applet{ /** * */ private static final long serialVersionUID = 1L; private final int START_X = 20; private final int START_Y = 40; private final int ROWS = 4; private final int COLS = 4; private final int BOX_WIDTH = 20; private final int BOX_HEIGHT = 20; //this is used to keep track of boxes that have been matched. private boolean matchedBoxes[][]; //this is used to keep track of two boxes that have been clicked. private MaskableBox chosenBoxes[]; private MaskableBox boxes[][]; private Color boxColors[][]; private Button resetButton; public void init() { boxes = new MaskableBox[ROWS][COLS]; boxColors = new Color[ROWS][COLS]; resetButton = new Button("Reset Colors"); resetButton.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { randomizeColors(); buildBoxes(); repaint(); } }); add(resetButton); //separate building colors so we can add a button later //to re-randomize them. randomizeColors(); buildBoxes(); } public void paint(Graphics g) { for (int row =0; row < boxes.length; row ++) { for (int col = 0; col < boxes[row].length; col++) { if(boxes[row][col].isClicked()) { //boxes[row][col].setMaskColor(Color.black); //boxes[row][col].setMask(!boxes[row][col].isMask()); //boxes[row][col].setClicked(false); //} if (!matchedBoxes[row][col]) { gameLogic(boxes[row][col]); //boxes[row][col].draw(g); } } } } //loop through the boxes and draw them. for (int row = 0; row < boxes.length; row++) { for (int col = 0; col < boxes[row].length; col++) { boxes[row][col].draw(g); } } } public void gameLogic(MaskableBox box) { if ((chosenBoxes[0] != null)&&(chosenBoxes[1] != null)) { if(chosenBoxes[0].getBackColor() == chosenBoxes[1].getBackColor()) { for (int i=0; 0 <= chosenBoxes.length; ++i ) { for(int row = 0; row < boxes.length; row++) { for(int col = 0; col < boxes[row].length; col++) { if( boxes[row][col] == chosenBoxes[i] ) { System.out.println("boxes [row][col] == chosenBoxes[] at index: " + i ); matchedBoxes[row][col] = true; break; } } } } }else { chosenBoxes[0].setMask(true); chosenBoxes[1].setMask(true); } chosenBoxes = new MaskableBox[2]; }else { if (chosenBoxes[0] == null) { chosenBoxes[0] = box; chosenBoxes[0].setMask(false); return; }else{ if (chosenBoxes[1] == null) { chosenBoxes[1] = box; chosenBoxes[1].setMask(false); } } } } private void removeMouseListeners() { for(int row = 0; row < boxes.length; row ++) { for(int col = 0; col < boxes[row].length; col++) { removeMouseListener(boxes[row][col]); } } } private void buildBoxes() { // need to clear any chosen boxes when building new array. chosenBoxes = new MaskableBox[2]; // create a new matchedBoxes array matchedBoxes = new boolean [ROWS][COLS]; removeMouseListeners(); for(int row = 0; row < boxes.length; row++) { for(int col = 0; col < boxes[row].length; col++) { boxes[row][col] = new MaskableBox(START_X + col * BOX_WIDTH, START_Y + row * BOX_HEIGHT, BOX_WIDTH, BOX_HEIGHT, Color.gray, boxColors[row][col], true, true, this); addMouseListener(boxes[row][col]); } } } private void randomizeColors() { int[] chosenColors = {0,0,0,0,0,0,0,0}; Color[] availableColors = {Color.red, Color.blue, Color.green, Color.yellow, Color.cyan, Color.magenta, Color.pink, Color.orange }; for(int row = 0; row < boxes.length; row++) { for (int col = 0; col < boxes[row].length; col++) { for (;;) { int rnd = (int) (Math.random() * 8); if (chosenColors[rnd]< 2) { chosenColors[rnd]++; boxColors[row][col] = availableColors[rnd]; break; } } } } } } here is the second batch of code containing maskablebox import java.awt.Color; import java.awt.Container; import java.awt.Graphics; public class MaskableBox extends ClickableBox { private boolean mask; private Color maskColor; Container parent; public MaskableBox(int x, int y, int width, int height, Color borderColor, Color backColor, boolean drawBorder, boolean mask, Container parent ) { super(x, y, width, height, borderColor, backColor, drawBorder, parent); this.parent = parent; this.mask = mask; } public void draw(Graphics g) { if(mask=false) { super.draw(g); // setOldColor(g.getColor()); // g.setColor(maskColor); // g.fillRect(getX(),getY(),getWidth(), getHeight()); // if(isDrawBorder()) { // g.setColor(getBorderColor()); // g.drawRect(getX(),getY(),getWidth(),getHeight()); // } // g.setColor(getOldColor()); }else { if(mask=true) { //super.draw(g); setOldColor(g.getColor()); g.setColor(maskColor); g.fillRect(getX(),getY(),getWidth(), getHeight()); if(isDrawBorder()) { g.setColor(getBorderColor()); g.drawRect(getX(),getY(),getWidth(),getHeight()); } g.setColor(getOldColor()); } } } public boolean isMask() { return mask; } public void setMask(boolean mask) { this.mask = mask; } public Color getMaskColor() { return maskColor; } public void setMaskColor(Color maskColor) { this.maskColor = maskColor; } } I keep getting these error messages. I'm going nuts trying to figure this out. can anyone tell me what I'm doing wrong? boxes [row][col] == chosenBoxes[] at index: 0 boxes [row][col] == chosenBoxes[] at index: 1 Exception in thread "AWT-EventQueue-1" java.lang.ArrayIndexOutOfBoundsException: 2 at GuessingGame.gameLogic(GuessingGame.java:77) at GuessingGame.paint(GuessingGame.java:55) at java.awt.Container.update(Container.java:1801) at sun.awt.RepaintArea.updateComponent(RepaintArea.java:239) at sun.awt.RepaintArea.paint(RepaintArea.java:216) at sun.awt.windows.WComponentPeer.handleEvent(WComponentPeer.java:306) at java.awt.Component.dispatchEventImpl(Component.java:4706) at java.awt.Container.dispatchEventImpl(Container.java:2099) at java.awt.Component.dispatchEvent(Component.java:4460) at java.awt.EventQueue.dispatchEvent(EventQueue.java:599) at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:269) at java.awt.EventDispatchThread.pumpEventsForFilter(EventDispatchThread.java:184) at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:174) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:169) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:161) at java.awt.EventDispatchThread.run(EventDispatchThread.java:122)

    Read the article

  • Bizarre Son of Suckerfish ie6/ie7 problem - 2 letters from right-most dropdown menu also appearing o

    - by Kevin Burke
    I'm interning for an NGO in India and trying to fix their website, including updating their menu so it's not the last item on the page to load, and it's centered on the screen. Everything works well enough but when I try out my new menu in IE6, I get this weird error where the content below the menu is padded an extra 30px or so and the material in the right-most drop down appears on the far left of the screen, always visible. When I drop down the rightmost link ("Publications") the content appears both in the correct location and in the same spot on the far left of the screen, and changes color when I hover as well. It's tough to describe, so it would probably be best if you took a look: visit http://sevamandir.org/a30/aboutus.htm in your IE6/IE7 browser to see for yourself. I really appreciate your help. Also I'm using a 1000px wide monitor, if there's more hijinks going on outside that space I'd like to know about that too. I took a look at the problem again and it's even weirder than I thought. Only two letters of the bottom-most drop down menu item are shown, no matter how many items are in the left-most drop down menu. When I delete the left-most drop down menu, the bottom item from the next left-most item shows up in the same space. The padding between the menu and the content is always the same. When I hover over the real menu item, the two letters on the left hand side change color to match the hover color. Unfortunately many people that visit our website are using old browsers so IE6 support is pretty crucial, this problem is really weird though, and I would appreciate some help. I uploaded a file with the entire style.css sheet in the and HTML code below, at http://sevamandir.org/a30/aboutus.htm. Here's the relevant code: in the html head: <script> sfHover = function() { var sfEls = document.getElementById("nav").getElementsByTagName("LI"); for (var i=0; i<sfEls.length; i++) { sfEls[i].onmouseover=function() { this.className+=" sfhover"; } sfEls[i].onmouseout=function() { this.className=this.className.replace(new RegExp(" sfhover\\b"), ""); } } } if (window.attachEvent) window.attachEvent("onload", sfHover); </script> text surrounding the menu - the menu is simply <ul id="nav"><li></li></ul> etc. <!--begin catchphrase--> <div style="float:left; height:27px; width:520px; margin:0px; font:16px Arial, Helvetica, sans-serif; font-weight:bold; color:#769841;"> Transforming lives through democratic &amp; participatory development </div> <?php include("menu.php"); ?> </div><!-- end header --> <!--begin main text div--> <div id="maincontent"> Relevant menu CSS: #nav, #nav ul { font:bold 11px Verdana, sans-serif; float: left; width: 980px; list-style: none; line-height: 1; background: white; font-weight: bold; padding: 0; border: solid #769841; border-width: 0; margin: 0 0 1em 0; } #nav a { display: block; width: 140px; /*this is the total width of the upper menu*/ w\idth: 120px; /*this is the width less horizontal padding */ padding: 5px 10px 5px 10px; /*horiz padding is the 2nd & 4th items here - goes Top Right Bottom Left */ color: #ffffff; background:#b6791e; text-decoration: none; } #nav a.daddy { background: url(rightarrow2.gif) center right no-repeat; } #nav li { float: left; padding: 0; width: 140px; /*this needs to be updated to match top #nav a */ background:#b6791e; } #nav li:hover, #nav li a:hover, #nav li:hover a { background:#769841; } #nav li:hover li a { background:#ffffff; color:#769841; } #nav li ul { position: absolute; left: -999em; height: auto; width: 14.4em; w\idth: 13.9em; font-weight: bold; border-width: 0.25em; /*green border around dropdown menu*/ margin: 0; } #nav li ul a { background:#ffffff; color:#769841; } #nav li li { padding-right: 1em; width: 13em; background:#ffffff; } #nav li ul a { width: 13em; w\idth: 9em; } #nav li ul ul { margin: -1.75em 0 0 14em; } #nav li:hover ul ul, #nav li:hover ul ul ul, #nav li.sfhover ul ul, #nav li.sfhover ul ul ul { left: -999em; } #nav li:hover ul, #nav li li:hover ul, #nav li li li:hover ul, #nav li.sfhover ul, #nav li li.sfhover ul, #nav li li li.sfhover ul { left: auto; } #nav li:hover, #nav li.sfhover, { background: #769841; color:#ffe400; } #nav li a:hover, #nav li li a:hover, #nav li:hover li:hover, #nav li.sfhover a:hover { background: #769841; color:#ffe400; }

    Read the article

  • Create an axpanding image with CSS and div or span

    - by user1594895
    I have a complex image cutted up in alot of slice. You can see http://jsfiddle.net/yefQR/ <!--Force IE6 into quirks mode with this comment tag--> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /> <title>Page Title</title> <style type="text/css"> body{ margin: 0; padding: 0; border: 0; overflow: hidden; height: 100%; max-height: 100%; } #framecontentTop, #framecontentBottom{ position: absolute; top: 0; left: 0; width: 100%; height: 130px; /*Height of top frame div*/ overflow: hidden; /*Disable scrollbars. Set to "scroll" to enable*/ background-color: navy; color: white; } #framecontentBottom{ top: auto; bottom: 0; height: 110px; /*Height of bottom frame div*/ overflow: hidden; /*Disable scrollbars. Set to "scroll" to enable*/ background-color: navy; color: white; } #maincontent{ position: fixed; top: 130px; /*Set top value to HeightOfTopFrameDiv*/ left: 0; right: 0; bottom: 110px; /*Set bottom value to HeightOfBottomFrameDiv*/ overflow: auto; background: #fff; } .innertube{ margin: 15px; /*Margins for inner DIV inside each DIV (to provide padding)*/ } * html body{ /*IE6 hack*/ padding: 130px 0 110px 0; /*Set value to (HeightOfTopFrameDiv 0 HeightOfBottomFrameDiv 0)*/ } * html #maincontent{ /*IE6 hack*/ height: 100%; width: 100%; } </style> </head> <body> <div id="framecontentTop"> <div class="innertube"> <div id="screenshot%20tsam%20900r2c2" style=" background-color: green;position:absolute; left:4px; top:6px; width:20px; height:68px; z-index:1; visibility:visible; "> </div> <div id="screenshot%20tsam%20900r2c3" style="background-color: yellow; position:absolute; left:24px; top:6px;width:47px; height:68px;z-index:2; visibility:visible;"></div> <div id="screenshot%20tsam%20900r2c4" style="background-color: red; position:absolute; left:71px; top:6px;width:165px; height:68px;z-index:3; visibility:visible;"></div> <div id="screenshot%20tsam%20900r2c5" style="background-color: black; position:absolute; left:236px; top:6px;width:62px; height:68px;z-index:4; visibility:visible;"></div> <div id="screenshot%20tsam%20900r2c6" style="background-color: pink; position:absolute; left:298px; top:6px;width:147px; height:68px;z-index:5; visibility:visible;"></div> <div id="screenshot%20tsam%20900r2c7" style="background-color: orange; position:absolute; left:445px; top:6px;width:311px; height:37px;z-index:6; visibility:visible;"></div> <div id="screenshot%20tsam%20900r2c9" style="background-color: cyan; position:absolute; left:756px; top:6px;width:108px; height:37px;z-index:7; visibility:visible;"></div> <div id="screenshot%20tsam%20900r2c11" style="background-color: white; position:absolute; left:864px; top:6px;width:27px; height:37px;z-index:8; visibility:visible;"></div> <div id="screenshot%20tsam%20900r3c7" style="background-color: DodgerBlue; position:absolute; left:445px; top:43px;width:8px; height:31px;z-index:9; visibility:visible;"></div> <div id="screenshot%20tsam%20900r3c8" style="background-color: Gold; position:absolute; left:453px; top:43px;width:355px; height:31px;z-index:10; visibility:visible;"></div> <div id="screenshot%20tsam%20900r3c10" style="background-color: LightCyan ; position:absolute; left:808px; top:43px;width:83px; height:31px;z-index:11; visibility:visible;"></div> </div> </div> <div id="framecontentBottom"> <div class="innertube"> <h3>Sample text here</h3> </div> </div> <div id="maincontent"> <div class="innertube"> <h1>Lorem</h1> <p> Lorem ipsum </p> <p style="text-align: center">Vestibulum </p> </div> </div> </body> </html> Id like to make : 1) the header image autoexpanding using the repeated-y css property of DodgerBlue color and Orange div because thy are the only 2 part of image axpandible. 2) Is it possible to define a minimum size of header, and is possible to make the entire body minimum size based that size so the browser cant get smaller an if the window get smaller, scrollbar is show.

    Read the article

  • Java MVC project - either I can't update the drawing, or I can't see it

    - by user1881164
    I've got a project based around the Model-View-Controller paradigm, and I've been having a lot of trouble with getting it to work properly. The program has 4 panels, which are supposed to allow me to modify an oval drawn on the screen in various ways. These seem to work fine, and after considerable trouble I was able to get them to display in the JFrame which holds the whole shebang. I've managed to get them to display by breaking away from the provided instructions, but when I do that, I can't seem to get the oval to update. However, if I follow the directions to the letter, I only ever see an empty frame. The project had pretty specific directions, which I followed up to a point, but some of the documentation was unclear. I think what I'm missing must be something simple, since nothing is jumping out at me as not making sense. I have to admit though that my Java experience is limited and my experience with GUI design/paradigms is even more so. Anyway, I've been searching the web and this site extensively trying to figure out what's wrong, but this is a somewhat specific example and honestly I just don't know enough about this to generalize any of the answers I've found online and figure out what's missing. I've been poring over this code for far too long now so I'm really hoping someone can help me out. public class Model { private Controller controller; private View view; private MvcFrame mvcFrame; private int radius = 44; private Color color = Color.BLUE; private boolean solid = true; //bunch of mutators and accessors for the above variables public Model() { controller = new Controller(this); view = new View(this); mvcFrame = new MvcFrame(this); } } Here's the model class. This seems to be fairly simple. I think my understanding of what's going on here is solid, and nothing seems to be wrong. Included mostly for context. public class Controller extends JPanel{ private Model model; public Controller(Model model) { this.model = model; setBorder(BorderFactory.createLineBorder(Color.GREEN)); setLayout(new GridLayout(4,1)); add(new RadiusPanel(model)); add(new ColorPanel(model)); add(new SolidPanel(model)); add(new TitlePanel(model)); } } This is the Controller class. As far as I can tell, the setBorder, setLayout, and series of adds do nothing here. I had them commented out, but this is the way that the instructions told me to do things, so either there's a mistake there or something about my setup is wrong. However, when I did it this way, I would get an empty window (JFrame) but none of the panels would show up in it. What I did to fix this is put those add functions in the mvcFrame class: public class MvcFrame extends JFrame { private Model model; public MvcFrame(Model model){ this.model = model; //setLayout(new GridLayout(4,1)); //add(new RadiusPanel(model)); //add(new ColorPanel(model)); //add(new SolidPanel(model)); //add(new TitlePanel(model)); //add(new View(model)); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); setLocationRelativeTo(null); setSize(800,600); setVisible(true); } } So here's where things kind of started getting weird. The first block of commented out code is the same as what's in the Controller class. The reason I have it commented out is because that was just a lucky guess - it's not supposed to be like that according to the instructions. However, this did work for getting the panels to show up - but at that point I was still tearing my hair out trying to get the oval to display. The other commented line ( add(new View(model)); ) was a different attempt at making things work. In this case, I put those add functions in the View class (see commented out code below). This actually worked to display both the oval and the panels, but that method wouldn't allow me to update the oval. Also, though I just had the oval displaying, I can't seem to figure out what exactly made that happen, and I can't seem to make it come back. public class View extends JPanel{ private Model model; public View(Model model) { this.model = model; //setLayout(new GridLayout(4,1)); //add(new RadiusPanel(model)); //add(new ColorPanel(model)); //add(new SolidPanel(model)); //add(new TitlePanel(model)); repaint(); } @Override protected void paintComponent(Graphics g){ super.paintComponent(g); //center of view panel, in pixels: int xCenter = getWidth()/2; int yCenter = getHeight()/2; int radius = model.getRadius(); int xStart = xCenter - radius; int yStart = yCenter - radius; int xWidth = 2 * radius; int yHeight = 2 * radius; g.setColor(model.getColor()); g.clearRect(0, 0, getWidth(), getHeight()); if (model.isSolid()){ g.fillOval(xStart, yStart, xWidth, yHeight); } else { g.drawOval(xStart, yStart, xWidth, yHeight); } } } Kinda same idea as before - the commented out code is stuff I added to try to get things working, but is not based on the provided directions. In the case where that stuff was uncommented, I had the add(new View(model)); line from the mvcFrame line uncommented as well. The various panel classes (SolidPanel, ColorPanel, etc) simply extend a class called ControlPanel which extends JPanel. These all seem to work as expected, not having much issue with them. There is also a driver which launches the GUI. This also seems to work as expected. The main problem I'm having is that I can't get the oval to show up, and the one time I could make it show up, none of the options for changing it seemed to work. I feel like I'm close but I'm just at a loss for other things to try out at this point. Anyone who can help will have my sincerest gratitude.

    Read the article

  • Array comparion for multidimensinal array in php

    - by Learner
    Array 1 = pr($plan_data); Array ( [0] => Array ( [AveragePrice] => 9.631161 [EFLUrl] => http://www.championenergyservices.com/register/EFL_API.asp?rateid=161456 [EarlyTerminationFee] => 150 [HurricaneRecovery] => 0.132 [MeterSurcharge] => 3.05 [OffCycle] => 5 [PUCAssessment] => 0.00167 [PlanDescription] => Savings Champ-6 [PlanId] => 57 [PlanIssueDate] => 12/10/2012 [PlanMonthlyFee] => 0 [PlanName] => PN1058 [PlanRate] => 9.3 [PlanRenewablePercent] => 7.2 [PlanTerm] => 6 [PriorityMoveIn] => 36 [ProviderDisplayName] => CenterPoint Energy [ProviderId] => 21 [ProviderInternalName] => CNP_COAST [RateId] => 161456 [RegularMoveIn] => 16 [TDSPPassThrough] => 0.03791 [TOCUrl] => http://www.championenergyservices.com/register/termsandconditions.asp?rateid=161456 [YRACUrl] => http://www.championenergyservices.com/register/\affiliatefiles\YRAC.PDF [provider] => ces [ProductType] => Fixed [Rep] => Champion Energy Services [Zone] => 77479 ) [1] => Array ( [AveragePrice] => 10.1311693 [EFLUrl] => http://www.championenergyservices.com/register/EFL_API.asp?rateid=161458 [EarlyTerminationFee] => 150 [HurricaneRecovery] => 0.132 [MeterSurcharge] => 3.05 [OffCycle] => 5 [PUCAssessment] => 0.00167 [PlanDescription] => Savings Champ-12 [PlanId] => 59 [PlanIssueDate] => 12/10/2012 [PlanMonthlyFee] => 0 [PlanName] => PN1060 [PlanRate] => 9.8 [PlanRenewablePercent] => 7.2 [PlanTerm] => 12 [PriorityMoveIn] => 36 [ProviderDisplayName] => CenterPoint Energy [ProviderId] => 21 [ProviderInternalName] => CNP_COAST [RateId] => 161458 [RegularMoveIn] => 16 [TDSPPassThrough] => 0.03791 [TOCUrl] => http://www.championenergyservices.com/register/termsandconditions.asp?rateid=161458 [YRACUrl] => http://www.championenergyservices.com/register/\affiliatefiles\YRAC.PDF [provider] => ces [ProductType] => Fixed [Rep] => Champion Energy Services [Zone] => 77479 ) [2] => Array ( [AveragePrice] => 10.4311743 [EFLUrl] => http://www.championenergyservices.com/register/EFL_API.asp?rateid=161459 [EarlyTerminationFee] => 150 [HurricaneRecovery] => 0.132 [MeterSurcharge] => 3.05 [OffCycle] => 5 [PUCAssessment] => 0.00167 [PlanDescription] => Green Power-12 [PlanId] => 60 [PlanIssueDate] => 12/10/2012 [PlanMonthlyFee] => 0 [PlanName] => PN1061 [PlanRate] => 10.1 [PlanRenewablePercent] => 100 [PlanTerm] => 12 [PriorityMoveIn] => 36 [ProviderDisplayName] => CenterPoint Energy [ProviderId] => 21 [ProviderInternalName] => CNP_COAST [RateId] => 161459 [RegularMoveIn] => 16 [TDSPPassThrough] => 0.03791 [TOCUrl] => http://www.championenergyservices.com/register/termsandconditions.asp?rateid=161459 [YRACUrl] => http://www.championenergyservices.com/register/\affiliatefiles\YRAC.PDF [provider] => ces [ProductType] => Fixed [Rep] => Champion Energy Services [Zone] => 77479 ) ) Array 2 = pr($temp_val); Array ( [0] => Array ( [id] => 6 [PlanId] => 60 [PlanName] => Bounce 12 + A/C Protection [PlanDescription] => Bounce 12 + A/C Protection - CNP [PlanTerm] => 12 [PlanRate] => [RateId] => [PlanIssueDate] => [PlanMonthlyFee] => [EarlyTerminationFee] => 200.00000 [AveragePrice] => 12.00000 [HurricaneRecovery] => [PlanRenewablePercent] => [ProviderDisplayName] => [ProviderId] => 1 [provider] => bounce [ProductZoneId] => 353 [Zone] => 77479 [ProviderInternalName] => [RegularMoveIn] => [PriorityMoveIn] => [OffCycle] => [TDSPPassThrough] => [PUCAssessment] => [EFLUrl] => [EFLLinkUrl] => http://www.bounceenergy.com/efls/bounce12.pdf [TOCUrl] => [TOCLUrl] => http://www.bounceenergy.com/terms-of-service-fixed.pdf [YRACUrl] => [YRACLUrl] => http://www.bounceenergy.com/yraac.pdf [REP_Name] => [REP_PUCT] => [customer_service_email] => [toll_free_number] => [status] => active [created] => 2012-12-14 12:40:05 [modified] => 2012-12-14 ) [1] => Array ( [id] => 18 [PlanId] => 17 [PlanName] => Online Only - 12 [PlanDescription] => Online Only - 12 [PlanTerm] => 12 [PlanRate] => [RateId] => 386 [PlanIssueDate] => [PlanMonthlyFee] => 100.00000 [EarlyTerminationFee] => 175.00000 [AveragePrice] => 10.00000 [HurricaneRecovery] => [PlanRenewablePercent] => [ProviderDisplayName] => [ProviderId] => 2 [provider] => fulcrum [ProductZoneId] => [Zone] => 77479 [ProviderInternalName] => [RegularMoveIn] => [PriorityMoveIn] => [OffCycle] => [TDSPPassThrough] => [PUCAssessment] => [EFLUrl] => [EFLLinkUrl] => [TOCUrl] => [TOCLUrl] => [YRACUrl] => [YRACLUrl] => [REP_Name] => [REP_PUCT] => [customer_service_email] => [toll_free_number] => [status] => active [created] => 2012-12-14 12:40:15 [modified] => 2012-12-14 ) ) I want to compare this two array and if any key value is different i want to take it an different array.. $result_val= array_diff_assoc($plan_data, $temp_val); Please help me out !!

    Read the article

  • High Load mysql on Debian server stops every day. Why?

    - by Oleg Abrazhaev
    I have Debian server with 32 gb memory. And there is apache2, memcached and nginx on this server. Memory load always on maximum. Only 500m free. Most memory leak do MySql. Apache only 70 clients configured, other services small memory usage. When mysql use all memory it stops. And nothing works, need mysql reboot. Mysql configured use maximum 24 gb memory. I have hight weight InnoDB bases. (400000 rows, 30 gb). And on server multithread daemon, that makes many inserts in this tables, thats why InnoDB. There is my mysql config. [mysqld] # # * Basic Settings # default-time-zone = "+04:00" user = mysql pid-file = /var/run/mysqld/mysqld.pid socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp language = /usr/share/mysql/english skip-external-locking default-time-zone='Europe/Moscow' # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. # # * Fine Tuning # #low_priority_updates = 1 concurrent_insert = ALWAYS wait_timeout = 600 interactive_timeout = 600 #normal key_buffer_size = 2024M #key_buffer_size = 1512M #70% hot cache key_cache_division_limit= 70 #16-32 max_allowed_packet = 32M #1-16M thread_stack = 8M #40-50 thread_cache_size = 50 #orderby groupby sort sort_buffer_size = 64M #same myisam_sort_buffer_size = 400M #temp table creates when group_by tmp_table_size = 3000M #tables in memory max_heap_table_size = 3000M #on disk open_files_limit = 10000 table_cache = 10000 join_buffer_size = 5M # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP #myisam_use_mmap = 1 max_connections = 200 thread_concurrency = 8 # # * Query Cache Configuration # #more ignored query_cache_limit = 50M query_cache_size = 210M #on query cache query_cache_type = 1 # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. #log = /var/log/mysql/mysql.log # # Error logging goes to syslog. This is a Debian improvement :) # # Here you can see queries with especially long duration log_slow_queries = /var/log/mysql/mysql-slow.log long_query_time = 1 log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. #server-id = 1 #log_bin = /var/log/mysql/mysql-bin.log server-id = 1 log-bin = /var/lib/mysql/mysql-bin #replicate-do-db = gate log-bin-index = /var/lib/mysql/mysql-bin.index log-error = /var/lib/mysql/mysql-bin.err relay-log = /var/lib/mysql/relay-bin relay-log-info-file = /var/lib/mysql/relay-bin.info relay-log-index = /var/lib/mysql/relay-bin.index binlog_do_db = 24avia expire_logs_days = 10 max_binlog_size = 100M read_buffer_size = 4024288 innodb_buffer_pool_size = 5000M innodb_flush_log_at_trx_commit = 2 innodb_thread_concurrency = 8 table_definition_cache = 2000 group_concat_max_len = 16M #binlog_do_db = gate #binlog_ignore_db = include_database_name # # * BerkeleyDB # # Using BerkeleyDB is now discouraged as its support will cease in 5.1.12. #skip-bdb # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # You might want to disable InnoDB to shrink the mysqld process by circa 100MB. #skip-innodb # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 500M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 32M key_buffer_size = 512M # # * NDB Cluster # # See /usr/share/doc/mysql-server-*/README.Debian for more information. # # The following configuration is read by the NDB Data Nodes (ndbd processes) # not from the NDB Management Nodes (ndb_mgmd processes). # # [MYSQL_CLUSTER] # ndb-connectstring=127.0.0.1 # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/ Please, help me make it stable. Memory used /etc/mysql # free total used free shared buffers cached Mem: 32930800 32766424 164376 0 139208 23829196 -/+ buffers/cache: 8798020 24132780 Swap: 33553328 44660 33508668 Maybe my problem not in memory, but MySQL stops every day. As you can see, cache memory free 24 gb. Thank to Michael Hampton? for correction. Load overage on server 3.5. Maybe hdd or another problem? Maybe my config not optimal for 30gb InnoDB ? I'm already try mysqltuner and tunung-primer.sh , but they marked all green. Mysqltuner output mysqltuner >> MySQLTuner 1.0.1 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.5.24-9-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: -Archive -BDB -Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 112G (Tables: 1528) [--] Data in InnoDB tables: 39G (Tables: 340) [--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 17) [!!] Total fragmented tables: 344 -------- Performance Metrics ------------------------------------------------- [--] Up for: 8h 18m 33s (14M q [478.333 qps], 259K conn, TX: 9B, RX: 5B) [--] Reads / Writes: 84% / 16% [--] Total buffers: 10.5G global + 81.1M per thread (200 max threads) [OK] Maximum possible memory usage: 26.3G (83% of installed RAM) [OK] Slow queries: 1% (259K/14M) [!!] Highest connection usage: 100% (201/200) [OK] Key buffer size / total MyISAM indexes: 1.5G/5.6G [OK] Key buffer hit rate: 100.0% (6B cached / 1M reads) [OK] Query cache efficiency: 74.3% (8M cached / 11M selects) [OK] Query cache prunes per day: 0 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 247K sorts) [!!] Joins performed without indexes: 106025 [!!] Temporary tables created on disk: 49% (351K on disk / 715K total) [OK] Thread cache hit rate: 99% (249 created / 259K connections) [!!] Table cache hit rate: 15% (2K open / 13K opened) [OK] Open file limit used: 15% (3K/20K) [OK] Table locks acquired immediately: 99% (4M immediate / 4M locks) [!!] InnoDB data size / buffer pool: 39.4G/5.9G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Reduce or eliminate persistent connections to reduce connection usage Adjust your join queries to always utilize indexes Temporary table size is already large - reduce result set size Reduce your SELECT DISTINCT queries without LIMIT clauses Increase table_cache gradually to avoid file descriptor limits Variables to adjust: max_connections (> 200) wait_timeout (< 600) interactive_timeout (< 600) join_buffer_size (> 5.0M, or always use indexes with joins) table_cache (> 10000) innodb_buffer_pool_size (>= 39G) Mysql primer output -- MYSQL PERFORMANCE TUNING PRIMER -- - By: Matthew Montgomery - MySQL Version 5.5.24-9-log x86_64 Uptime = 0 days 8 hrs 20 min 50 sec Avg. qps = 478 Total Questions = 14369568 Threads Connected = 16 Warning: Server has not been running for at least 48hrs. It may not be safe to use these recommendations To find out more information on how each of these runtime variables effects performance visit: http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html Visit http://www.mysql.com/products/enterprise/advisors.html for info about MySQL's Enterprise Monitoring and Advisory Service SLOW QUERIES The slow query log is enabled. Current long_query_time = 1.000000 sec. You have 260626 out of 14369701 that take longer than 1.000000 sec. to complete Your long_query_time seems to be fine BINARY UPDATE LOG The binary update log is enabled Binlog sync is not enabled, you could loose binlog records during a server crash WORKER THREADS Current thread_cache_size = 50 Current threads_cached = 45 Current threads_per_sec = 0 Historic threads_per_sec = 0 Your thread_cache_size is fine MAX CONNECTIONS Current max_connections = 200 Current threads_connected = 11 Historic max_used_connections = 201 The number of used connections is 100% of the configured maximum. You should raise max_connections INNODB STATUS Current InnoDB index space = 214 M Current InnoDB data space = 39.40 G Current InnoDB buffer pool free = 0 % Current innodb_buffer_pool_size = 5.85 G Depending on how much space your innodb indexes take up it may be safe to increase this value to up to 2 / 3 of total system memory MEMORY USAGE Max Memory Ever Allocated : 23.46 G Configured Max Per-thread Buffers : 15.84 G Configured Max Global Buffers : 7.54 G Configured Max Memory Limit : 23.39 G Physical Memory : 31.40 G Max memory limit seem to be within acceptable norms KEY BUFFER Current MyISAM index space = 5.61 G Current key_buffer_size = 1.47 G Key cache miss rate is 1 : 5578 Key buffer free ratio = 77 % Your key_buffer_size seems to be fine QUERY CACHE Query cache is enabled Current query_cache_size = 200 M Current query_cache_used = 101 M Current query_cache_limit = 50 M Current Query cache Memory fill ratio = 50.59 % Current query_cache_min_res_unit = 4 K MySQL won't cache query results that are larger than query_cache_limit in size SORT OPERATIONS Current sort_buffer_size = 64 M Current read_rnd_buffer_size = 256 K Sort buffer seems to be fine JOINS Current join_buffer_size = 5.00 M You have had 106606 queries where a join could not use an index properly You have had 8 joins without keys that check for key usage after each row join_buffer_size >= 4 M This is not advised You should enable "log-queries-not-using-indexes" Then look for non indexed joins in the slow query log. OPEN FILES LIMIT Current open_files_limit = 20210 files The open_files_limit should typically be set to at least 2x-3x that of table_cache if you have heavy MyISAM usage. Your open_files_limit value seems to be fine TABLE CACHE Current table_open_cache = 10000 tables Current table_definition_cache = 2000 tables You have a total of 1910 tables You have 2151 open tables. The table_cache value seems to be fine TEMP TABLES Current max_heap_table_size = 2.92 G Current tmp_table_size = 2.92 G Of 366426 temp tables, 49% were created on disk Perhaps you should increase your tmp_table_size and/or max_heap_table_size to reduce the number of disk-based temporary tables Note! BLOB and TEXT columns are not allow in memory tables. If you are using these columns raising these values might not impact your ratio of on disk temp tables. TABLE SCANS Current read_buffer_size = 3 M Current table scan ratio = 2846 : 1 read_buffer_size seems to be fine TABLE LOCKING Current Lock Wait ratio = 1 : 185 You may benefit from selective use of InnoDB. If you have long running SELECT's against MyISAM tables and perform frequent updates consider setting 'low_priority_updates=1'

    Read the article

  • OS X won't see Windows 7 in network (and vice versa)

    - by meds
    I've enabled SMB sharing in OS X Lion and have added folders to share, it says 'Windows Sharing: On' with a green circle next to it (from the sharing window) and that to access the volume I will need to to go to \\192.168.0.17. It also says that the OS X should be visible as 'macbook' in the network. Both my WIndows 7 and OS X are connected to the same network, yet when I try to go to \\192.168.0.17 or from the Mac try to go to my Windows system (smb://192.168.0.6) the two OSs don't see each other. Any ideas why? Attempting to ping the Mac from Windows results in this output in the command prompt: Pinging 192.168.0.17 with 32 bytes of data: Reply from 192.168.0.6: Destination host unreachable. Request timed out. Request timed out. Request timed out. Ping statistics for 192.168.0.17: Packets: Sent = 4, Received = 1, Lost = 3 (75% loss), ipconfig in Windows is: Wireless LAN adapter Wireless Network Connection: Connection-specific DNS Suffix . : Link-local IPv6 Address . . . . . : fe80::8918:efd1:b05c:890f%21 IPv4 Address. . . . . . . . . . . : 192.168.0.6 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.0.1 Ethernet adapter Bluetooth Network Connection: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : Ethernet adapter VMware Network Adapter VMnet1: Connection-specific DNS Suffix . : Link-local IPv6 Address . . . . . : fe80::98ab:63fc:3c07:d837%13 IPv4 Address. . . . . . . . . . . : 192.168.74.1 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : Ethernet adapter VMware Network Adapter VMnet8: Connection-specific DNS Suffix . : Link-local IPv6 Address . . . . . : fe80::80ff:c575:7b50:3a10%14 IPv4 Address. . . . . . . . . . . : 192.168.21.1 Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : Tunnel adapter isatap.{2E97D0AE-9E18-4072-AC23-1979BA0DCB79}: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : Tunnel adapter isatap.{E260CE43-E9A7-4DE0-A88E-4EAFF68ACDDB}: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : Tunnel adapter isatap.{A5130812-59CE-4DDF-9C35-9433BCED9831}: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : Tunnel adapter Teredo Tunneling Pseudo-Interface: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : Tunnel adapter isatap.{134BCAE7-CFFF-4A98-8DA0-3708806AABEB}: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : Tunnel adapter isatap.{8D9E3B8F-161C-4ACE-B211-3EDD694416B2}: Media State . . . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . : in OS X: lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1 inet 127.0.0.1 netmask 0xff000000 inet6 ::1 prefixlen 128 gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280 stf0: flags=0<> mtu 1280 en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 options=2b<RXCSUM,TXCSUM,VLAN_HWTAGGING,TSO4> ether c8:2a:14:01:24:c1 media: autoselect (none) status: inactive en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether e0:f8:47:0c:fe:04 inet6 fe80::e2f8:47ff:fe0c:fe04%en1 prefixlen 64 scopeid 0x5 inet 192.168.0.17 netmask 0xffffff00 broadcast 192.168.0.255 media: autoselect status: active p2p0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 2304 ether 02:f8:47:0c:fe:04 media: autoselect status: inactive fw0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 4078 lladdr 70:cd:60:ff:fe:d8:f1:32 media: autoselect <full-duplex> status: inactive

    Read the article

  • Tip/Trick: Fix Common SEO Problems Using the URL Rewrite Extension

    - by ScottGu
    Search engine optimization (SEO) is important for any publically facing web-site.  A large % of traffic to sites now comes directly from search engines, and improving your site’s search relevancy will lead to more users visiting your site from search engine queries.  This can directly or indirectly increase the money you make through your site. This blog post covers how you can use the free Microsoft URL Rewrite Extension to fix a bunch of common SEO problems that your site might have.  It takes less than 15 minutes (and no code changes) to apply 4 simple URL Rewrite rules to your site, and in doing so cause search engines to drive more visitors and traffic to your site.  The techniques below work equally well with both ASP.NET Web Forms and ASP.NET MVC based sites.  They also works with all versions of ASP.NET (and even work with non-ASP.NET content). [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Measuring the SEO of your website with the Microsoft SEO Toolkit A few months ago I blogged about the free SEO Toolkit that we’ve shipped.  This useful tool enables you to automatically crawl/scan your site for SEO correctness, and it then flags any SEO issues it finds.  I highly recommend downloading and using the tool against any public site you work on.  It makes it easy to spot SEO issues you might have in your site, and pinpoint ways to optimize it further. Below is a simple example of a report I ran against one of my sites (www.scottgu.com) prior to applying the URL Rewrite rules I’ll cover later in this blog post:   Search Relevancy and URL Splitting Two of the important things that search engines evaluate when assessing your site’s “search relevancy” are: How many other sites link to your content.  Search engines assume that if a lot of people around the web are linking to your content, then it is likely useful and so weight it higher in relevancy. The uniqueness of the content it finds on your site.  If search engines find that the content is duplicated in multiple places around the Internet (or on multiple URLs on your site) then it is likely to drop the relevancy of the content. One of the things you want to be very careful to avoid when building public facing sites is to not allow different URLs to retrieve the same content within your site.  Doing so will hurt with both of the situations above.  In particular, allowing external sites to link to the same content with multiple URLs will cause your link-count and page-ranking to be split up across those different URLs (and so give you a smaller page rank than what it would otherwise be if it was just one URL).  Not allowing external sites to link to you in different ways sounds easy in theory – but you might wonder what exactly this means in practice and how you avoid it. 4 Really Common SEO Problems Your Sites Might Have Below are 4 really common scenarios that can cause your site to inadvertently expose multiple URLs for the same content.  When this happens external sites linking to yours will end up splitting their page links across multiple URLs - and as a result cause you to have a lower page ranking with search engines than you deserve. SEO Problem #1: Default Document IIS (and other web servers) supports the concept of a “default document”.  This allows you to avoid having to explicitly specify the page you want to serve at either the root of the web-site/application, or within a sub-directory.  This is convenient – but means that by default this content is available via two different publically exposed URLs (which is bad).  For example: http://scottgu.com/ http://scottgu.com/default.aspx SEO Problem #2: Different URL Casings Web developers often don’t realize URLs are case sensitive to search engines on the web.  This means that search engines will treat the following links as two completely different URLs: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx SEO Problem #3: Trailing Slashes Consider the below two URLs – they might look the same at first, but they are subtly different. The trailing slash creates yet another situation that causes search engines to treat the URLs as different and so split search rankings: http://scottgu.com http://scottgu.com/ SEO Problem #4: Canonical Host Names Sometimes sites support scenarios where they support a web-site with both a leading “www” hostname prefix as well as just the hostname itself.  This causes search engines to treat the URLs as different and split search rankling: http://scottgu.com/albums.aspx/ http://www.scottgu.com/albums.aspx/ How to Easily Fix these SEO Problems in 10 minutes (or less) using IIS Rewrite If you haven’t been careful when coding your sites, chances are you are suffering from one (or more) of the above SEO problems.  Addressing these issues will improve your search engine relevancy ranking and drive more traffic to your site. The “good news” is that fixing the above 4 issues is really easy using the URL Rewrite Extension.  This is a completely free Microsoft extension available for IIS 7.x (on Windows Server 2008, Windows Server 2008 R2, Windows 7 and Windows Vista).  The great thing about using the IIS Rewrite extension is that it allows you to fix the above problems *without* having to change any code within your applications.  You can easily install the URL Rewrite Extension in under 3 minutes using the Microsoft Web Platform Installer (a free tool we ship that automates setting up web servers and development machines).  Just click the green “Install Now” button on the URL Rewrite Spotlight page to install it on your Windows Server 2008, Windows 7 or Windows Vista machine: Once installed you’ll find that a new “URL Rewrite” icon is available within the IIS 7 Admin Tool: Double-clicking the icon will open up the URL Rewrite admin panel – which will display the list of URL Rewrite rules configured for a particular application or site: Notice that our rewrite rule list above is currently empty (which is the default when you first install the extension).  We can click the “Add Rule…” link button in the top-right of the panel to add and enable new URL Rewriting logic for our site.  Scenario 1: Handling Default Document Scenarios One of the SEO problems I discussed earlier in this post was the scenario where the “default document” feature of IIS causes you to inadvertently expose two URLs for the same content on your site.  For example: http://scottgu.com/ http://scottgu.com/default.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the second URL to instead go to the first one.  We will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  Let’s look at how we can create such a rule.  We’ll begin by clicking the “Add Rule” link in the screenshot above.  This will cause the below dialog to display: We’ll select the “Blank Rule” template within the “Inbound rules” section to create a new custom URL Rewriting rule.  This will display an empty pane like below: Don’t worry – setting up the above rule is easy.  The following 4 steps explain how to do so: Step 1: Name the Rule Our first step will be to name the rule we are creating.  Naming it with a descriptive name will make it easier to find and understand later.  Let’s name this rule our “Default Document URL Rewrite” rule: Step 2: Setup the Regular Expression that Matches this Rule Our second step will be to specify a regular expression filter that will cause this rule to execute when an incoming URL matches the regex pattern.   Don’t worry if you aren’t good with regular expressions - I suck at them too. The trick is to know someone who is good at them or copy/paste them from a web-site.  Below we are going to specify the following regular expression as our pattern rule: (.*?)/?Default\.aspx$ This pattern will match any URL string that ends with Default.aspx. The "(.*?)" matches any preceding character zero or more times. The "/?" part says to match the slash symbol zero or one times. The "$" symbol at the end will ensure that the pattern will only match strings that end with Default.aspx.  Combining all these regex elements allows this rule to work not only for the root of your web site (e.g. http://scottgu.com/default.aspx) but also for any application or subdirectory within the site (e.g. http://scottgu.com/photos/default.aspx.  Because the “ignore case” checkbox is selected it will match both “Default.aspx” as well as “default.aspx” within the URL.   One nice feature built-into the rule editor is a “Test pattern” button that you can click to bring up a dialog that allows you to test out a few URLs with the rule you are configuring: Above I've added a “products/default.aspx” URL and clicked the “Test” button.  This will give me immediate feedback on whether the rule will execute for it.  Step 3: Setup a Permanent Redirect Action We’ll then setup an action to occur when our regular expression pattern matches the incoming URL: In the dialog above I’ve changed the “Action Type” drop down to be a “Redirect” action.  The “Redirect Type” will be a HTTP 301 Permanent redirect – which means search engines will follow it. I’ve also set the “Redirect URL” property to be: {R:1}/ This indicates that we want to redirect the web client requesting the original URL to a new URL that has the originally requested URL path - minus the "Default.aspx" in it.  For example, requests for http://scottgu.com/default.aspx will be redirected to http://scottgu.com/, and requests for http://scottgu.com/photos/default.aspx will be redirected to http://scottgu.com/photos/ The "{R:N}" regex construct, where N >= 0, is called a back-reference and N is the back-reference index. In the case of our pattern "(.*?)/?Default\.aspx$", if the input URL is "products/Default.aspx" then {R:0} will contain "products/Default.aspx" and {R:1} will contain "products".  We are going to use this {R:1}/ value to be the URL we redirect users to.  Step 4: Apply and Save the Rule Our final step is to click the “Apply” button in the top right hand of the IIS admin tool – which will cause the tool to persist the URL Rewrite rule into our application’s root web.config file (under a <system.webServer/rewrite> configuration section): <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Because IIS 7.x and ASP.NET share the same web.config files, you can actually just copy/paste the above code into your web.config files using Visual Studio and skip the need to run the admin tool entirely.  This also makes adding/deploying URL Rewrite rules with your ASP.NET applications really easy. Step 5: Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com/ http://scottgu.com/default.aspx Notice that the second URL automatically redirects to the first one.  Because it is a permanent redirect, search engines will follow the URL and should update the page ranking of http://scottgu.com to include links to http://scottgu.com/default.aspx as well. Scenario 2: Different URL Casing Another common SEO problem I discussed earlier in this post is that URLs are case sensitive to search engines on the web.  This means that search engines will treat the following links as two completely different URLs: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL to instead go to the second (all lower-case) one.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve. To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: Unlike the previous scenario (where we created a “Blank Rule”), with this scenario we can take advantage of a built-in “Enforce lowercase URLs” rule template.  When we click the “ok” button we’ll see the following dialog which asks us if we want to create a rule that enforces the use of lowercase letters in URLs: When we click the “Yes” button we’ll get a pre-written rule that automatically performs a permanent redirect if an incoming URL has upper-case characters in it – and automatically send users to a lower-case version of the URL: We can click the “Apply” button to use this rule “as-is” and have it apply to all incoming URLs to our site.  Because my www.scottgu.com site uses ASP.NET Web Forms, I’m going to make one small change to the rule we generated above – which is to add a condition that will ensure that URLs to ASP.NET’s built-in “WebResource.axd” handler are excluded from our case-sensitivity URL Rewrite logic.  URLs to the WebResource.axd handler will only come from server-controls emitted from my pages – and will never be linked to from external sites.  While my site will continue to function fine if we redirect these URLs to automatically be lower-case – doing so isn’t necessary and will add an extra HTTP redirect to many of my pages.  The good news is that adding a condition that prevents my URL Rewriting rule from happening with certain URLs is easy.  We simply need to expand the “Conditions” section of the form above We can then click the “Add” button to add a condition clause.  This will bring up the “Add Condition” dialog: Above I’ve entered {URL} as the Condition input – and said that this rule should only execute if the URL does not match a regex pattern which contains the string “WebResource.axd”.  This will ensure that WebResource.axd URLs to my site will be allowed to execute just fine without having the URL be re-written to be all lower-case. Note: If you have static resources (like references to .jpg, .css, and .js files) within your site that currently use upper-case characters you’ll probably want to add additional condition filter clauses so that URLs to them also don’t get redirected to be lower-case (just add rules for patterns like .jpg, .gif, .js, etc).  Your site will continue to work fine if these URLs get redirected to be lower case (meaning the site won’t break) – but it will cause an extra HTTP redirect to happen on your site for URLs that don’t need to be redirected for SEO reasons.  So setting up a condition clause makes sense to add. When I click the “ok” button above and apply our lower-case rewriting rule the admin tool will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com/Albums.aspx http://scottgu.com/albums.aspx Notice that the first URL (which has a capital “A”) automatically does a redirect to a lower-case version of the URL.  Scenario 3: Trailing Slashes Another common SEO problem I discussed earlier in this post is the scenario of trailing slashes within URLs.  The trailing slash creates yet another situation that causes search engines to treat the URLs as different and so split search rankings: http://scottgu.com http://scottgu.com/ We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL (that does not have a trailing slash) to instead go to the second one that does.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: The URL Rewrite admin tool has a built-in “Append or remove the trailing slash symbol” rule template.  When we select it and click the “ok” button we’ll see the following dialog which asks us if we want to create a rule that automatically redirects users to a URL with a trailing slash if one isn’t present: Like within our previous lower-casing rewrite rule we’ll add one additional condition clause that will exclude WebResource.axd URLs from being processed by this rule.  This will avoid an unnecessary redirect for happening for those URLs. When we click the “OK” button we’ll get a pre-written rule that automatically performs a permanent redirect if the URL doesn’t have a trailing slash – and if the URL is not processed by either a directory or a file.  This will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>                 <rule name="Trailing Slash" stopProcessing="true">                     <match url="(.*[^/])$" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />                         <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://scottgu.com http://scottgu.com/ Notice that the first URL (which has no trailing slash) automatically does a redirect to a URL with the trailing slash.  Because it is a permanent redirect, search engines will follow the URL and update the page ranking. Scenario 4: Canonical Host Names The final SEO problem I discussed earlier are scenarios where a site works with both a leading “www” hostname prefix as well as just the hostname itself.  This causes search engines to treat the URLs as different and split search rankling: http://www.scottgu.com/albums.aspx http://scottgu.com/albums.aspx We can fix this by adding a new IIS Rewrite rule that automatically redirects anyone who navigates to the first URL (that has a www prefix) to instead go to the second URL.  Like before, we will setup the HTTP redirect to be a “permanent redirect” – which will indicate to search engines that they should follow the redirect and use the new URL they are redirected to as the identifier of the content they retrieve.  To create such a rule we’ll click the “Add Rule” link in the URL Rewrite admin tool again.  This will cause the “Add Rule” dialog to appear again: The URL Rewrite admin tool has a built-in “Canonical domain name” rule template.  When we select it and click the “ok” button we’ll see the following dialog which asks us if we want to create a redirect rule that automatically redirects users to a primary host name URL: Above I’m entering the primary URL address I want to expose to the web: scottgu.com.  When we click the “OK” button we’ll get a pre-written rule that automatically performs a permanent redirect if the URL has another leading domain name prefix.  This will save the following additional rule to our web.config file: <configuration>     <system.webServer>         <rewrite>             <rules>                 <rule name="Cannonical Hostname">                     <match url="(.*)" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{HTTP_HOST}" pattern="^scottgu\.com$" negate="true" />                     </conditions>                     <action type="Redirect" url="http://scottgu.com/{R:1}" />                 </rule>                 <rule name="Default Document" stopProcessing="true">                     <match url="(.*?)/?Default\.aspx$" />                     <action type="Redirect" url="{R:1}/" />                 </rule>                 <rule name="Lower Case URLs" stopProcessing="true">                     <match url="[A-Z]" ignoreCase="false" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{ToLower:{URL}}" />                 </rule>                 <rule name="Trailing Slash" stopProcessing="true">                     <match url="(.*[^/])$" />                     <conditions logicalGrouping="MatchAll" trackAllCaptures="false">                         <add input="{REQUEST_FILENAME}" matchType="IsDirectory" negate="true" />                         <add input="{REQUEST_FILENAME}" matchType="IsFile" negate="true" />                         <add input="{URL}" pattern="WebResource.axd" negate="true" />                     </conditions>                     <action type="Redirect" url="{R:1}/" />                 </rule>             </rules>         </rewrite>     </system.webServer> </configuration> Try the Rule Out Now that we’ve saved the rule, let’s try it out on our site.  Try the following two URLs on my site: http://www.scottgu.com/albums.aspx http://scottgu.com/albums.aspx Notice that the first URL (which has the “www” prefix) now automatically does a redirect to the second URL which does not have the www prefix.  Because it is a permanent redirect, search engines will follow the URL and update the page ranking. 4 Simple Rules for Improved SEO The above 4 rules are pretty easy to setup and should take less than 15 minutes to configure on existing sites you already have.  The beauty of using a solution like the URL Rewrite Extension is that you can take advantage of it without having to change code within your web-site – and without having to break any existing links already pointing at your site.  Users who follow existing links will be automatically redirected to the new URLs you wish to publish.  And search engines will start to give your site a higher search relevancy ranking – which will list your site higher in search results and drive more traffic to it. Customizing your URL Rewriting rules further is easy to-do either by editing the web.config file directly, or alternatively, just double click the URL Rewrite icon within the IIS 7.x admin tool and it will list all the active rules for your web-site or application: Clicking any of the rules above will open the rules editor back up and allow you to tweak/customize/save them further. Summary Measuring and improving SEO is something every developer building a public-facing web-site needs to think about and focus on.  If you haven’t already, download and use the SEO Toolkit to analyze the SEO of your sites today. New URL Routing features in ASP.NET MVC and ASP.NET Web Forms 4 make it much easier to build applications that have more control over the URLs that are published.  Tools like the URL Rewrite Extension that I’ve talked about in this blog post make it much easier to improve the URLs that are published from sites you already have built today – without requiring you to change a lot of code. The URL Rewrite Extension provides a bunch of additional great capabilities – far beyond just SEO - as well.  I’ll be covering these additional capabilities more in future blog posts. Hope this helps, Scott

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Jframe using multiple classes?

    - by user2945880
    and im trying to make it so it can show multiple classes at once Jframe: import javax.swing.JFrame; import java.awt.BorderLayout; public class Concert { public static void main(String[] args) { JFrame frame = new JFrame(); frame.setSize(1000, 800); frame.setTitle("Concert!"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); Concertbackground component = new Concertbackground(); BandComponent component1 = new BandComponent(); frame.add(component, BorderLayout.NORTH); frame.add(component1, BorderLayout.CENTER); frame.setVisible(true); } } These are the two classes mentioned in the Jframe: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Rectangle; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import javax.swing.JComponent; import java.awt.Polygon; /* BandComponent.java Justin Walker 10/27/13 */ public class BandComponent extends JComponent { public void paintComponent(Graphics g) { // Recover Graphics2D Graphics2D g2 = (Graphics2D) g; int xScale = 250; int yScale = 100; int x = 343; int y = 343; //singer Polygon sing = new Polygon(); sing.addPoint(667 ,208 + xScale); sing.addPoint(676,213 + xScale); sing.addPoint(678,217 + xScale); sing.addPoint(682,221 + xScale); sing.addPoint(681,224 + xScale); sing.addPoint(680,231 + xScale); sing.addPoint(676,242 + xScale); sing.addPoint(672,244 + xScale); sing.addPoint(672,250 + xScale); sing.addPoint(682,248 + xScale); sing.addPoint(713,244 + xScale); sing.addPoint(734,247 + xScale); sing.addPoint(750,247 + xScale); sing.addPoint(794,232 + xScale); sing.addPoint(800,231 + xScale); sing.addPoint(801,223 + xScale); sing.addPoint(807,219 + xScale); sing.addPoint(806,221 + xScale); sing.addPoint(806,229 + xScale); sing.addPoint(818,222 + xScale); sing.addPoint(820,223 + xScale); sing.addPoint(825,227 + xScale); sing.addPoint(825,240 + xScale); sing.addPoint(817,243 + xScale); sing.addPoint(807,245 + xScale); sing.addPoint(803,247 + xScale); sing.addPoint(801,252 + xScale); sing.addPoint(781,257 + xScale); sing.addPoint(762,264 + xScale); sing.addPoint(734,271 + xScale); sing.addPoint(701,286 + xScale); sing.addPoint(691,296 + xScale); sing.addPoint(693,311 + xScale); sing.addPoint(690,317 + xScale); sing.addPoint(690,335 + xScale); sing.addPoint(691,339 + xScale); sing.addPoint(689,343 + xScale); sing.addPoint(712,382 + xScale); sing.addPoint(725,400 + xScale); sing.addPoint(731,418 + xScale); sing.addPoint(731,428 + xScale); sing.addPoint(738,454 + xScale); sing.addPoint(741,460 + xScale); sing.addPoint(746,468 + xScale); sing.addPoint(766,468 + xScale); sing.addPoint(771,481 + xScale);// sing.addPoint(723,482 + xScale); sing.addPoint(720,462 + xScale); sing.addPoint(718,454 + xScale); sing.addPoint(709,436 + xScale); sing.addPoint(703,436 + xScale); sing.addPoint(699,417 + xScale); sing.addPoint(686,396 + xScale); sing.addPoint(678,395 + xScale); sing.addPoint(676,437 + xScale); sing.addPoint(673,439 + xScale); sing.addPoint(638,435 + xScale); sing.addPoint(640,398 + xScale); sing.addPoint(634,410 + xScale); sing.addPoint(625,416 + xScale); sing.addPoint(622,436 + xScale); sing.addPoint(622,443 + xScale); sing.addPoint(615,447 + xScale); sing.addPoint(609,456 + xScale); sing.addPoint(606,481 + xScale);// sing.addPoint(557,481 + xScale); sing.addPoint(560,467 + xScale); sing.addPoint(579,467 + xScale); sing.addPoint(587,464 + xScale); sing.addPoint(593,452 + xScale); sing.addPoint(594,441 + xScale); sing.addPoint(592,434 + xScale); sing.addPoint(600,416 + xScale); sing.addPoint(608,405 + xScale); sing.addPoint(609,394 + xScale); sing.addPoint(617,376 + xScale); sing.addPoint(619,363 + xScale); sing.addPoint(632,334 + xScale); sing.addPoint(637,324 + xScale); sing.addPoint(635,314 + xScale); sing.addPoint(639,296 + xScale); sing.addPoint(627,285 + xScale); sing.addPoint(600,279 + xScale); sing.addPoint(582,278 + xScale); sing.addPoint(575,275 + xScale); sing.addPoint(546,256 + xScale); sing.addPoint(536,252 + xScale); sing.addPoint(533,350 + xScale); sing.addPoint(534,361 + xScale); sing.addPoint(532,367 + xScale); sing.addPoint(529,369 + xScale); sing.addPoint(524,363 + xScale); sing.addPoint(525,355 + xScale); sing.addPoint(531,254 + xScale); sing.addPoint(527,249 + xScale); sing.addPoint(527,242 + xScale); sing.addPoint(529,237 + xScale); sing.addPoint(532,237 + xScale); sing.addPoint(536,178 + xScale); sing.addPoint(534,129 + xScale); sing.addPoint(535,123 + xScale); sing.addPoint(541,120 + xScale); sing.addPoint(545,123 + xScale); sing.addPoint(547,131 + xScale); sing.addPoint(545,173 + xScale); sing.addPoint(538,233 + xScale); sing.addPoint(549,239 + xScale); sing.addPoint(558,241 + xScale); sing.addPoint(585,257 + xScale); sing.addPoint(599,257 + xScale); sing.addPoint(627,254 + xScale); sing.addPoint(647,251 + xScale); sing.addPoint(653,248 + xScale); sing.addPoint(652,235 + xScale); sing.addPoint(648,226 + xScale); sing.addPoint(652,218 + xScale); sing.addPoint(661,212 + xScale); g2.setColor(Color.black); g2.fill(sing); g2.draw(sing); //guitar Polygon guitar = new Polygon(); guitar.addPoint(148,28); guitar.addPoint(158,32); guitar.addPoint(164,38); guitar.addPoint(168,46); guitar.addPoint(169,52); guitar.addPoint(167,60); guitar.addPoint(164,65); guitar.addPoint(165,70); guitar.addPoint(161,76); guitar.addPoint(158,92); guitar.addPoint(162,97); guitar.addPoint(161,102); guitar.addPoint(158,106); guitar.addPoint(155,108); guitar.addPoint(151,127); guitar.addPoint(152,133); guitar.addPoint(155,137); guitar.addPoint(151,146); guitar.addPoint(153,147); guitar.addPoint(160,142); guitar.addPoint(162,133); guitar.addPoint(162,123); guitar.addPoint(161,113); guitar.addPoint(162,110); guitar.addPoint(164,117); guitar.addPoint(169,131); guitar.addPoint(171,144); guitar.addPoint(170,159); guitar.addPoint(166,167); guitar.addPoint(166,171); guitar.addPoint(174,174); guitar.addPoint(183,184); guitar.addPoint(191,195); guitar.addPoint(196,198); guitar.addPoint(198,200); guitar.addPoint(199,210); guitar.addPoint(211,225); guitar.addPoint(212,233); guitar.addPoint(220,248); guitar.addPoint(233,260); guitar.addPoint(245,266); guitar.addPoint(248,268); guitar.addPoint(249,277); guitar.addPoint(205,275); guitar.addPoint(204,262); guitar.addPoint(187,238); guitar.addPoint(178,224); guitar.addPoint(177,216); guitar.addPoint(156,201); guitar.addPoint(146,197); guitar.addPoint(134,211); guitar.addPoint(128,229); guitar.addPoint(125,244);// guitar.addPoint(121,246); guitar.addPoint(107,248); guitar.addPoint(100,252); guitar.addPoint(97,258); guitar.addPoint(96,253); guitar.addPoint(89,258); guitar.addPoint(65,267); guitar.addPoint(63,274); guitar.addPoint(64,283); guitar.addPoint(41,282); guitar.addPoint(44,270); guitar.addPoint(47,264); guitar.addPoint(51,255); guitar.addPoint(73,238); guitar.addPoint(79,228); guitar.addPoint(97,222); guitar.addPoint(101,204); guitar.addPoint(102,181); guitar.addPoint(100,170); guitar.addPoint(95,161); guitar.addPoint(97,154); guitar.addPoint(91,152); guitar.addPoint(77,131); guitar.addPoint(65,123); guitar.addPoint(61,105); guitar.addPoint(64,94); guitar.addPoint(72,91); guitar.addPoint(78,82); guitar.addPoint(78,76); guitar.addPoint(70,73); guitar.addPoint(70,67); guitar.addPoint(93,51); guitar.addPoint(101,48); guitar.addPoint(111,52); guitar.addPoint(118,59); guitar.addPoint(119,70); guitar.addPoint(117,78); guitar.addPoint(113,79); guitar.addPoint(112,86); guitar.addPoint(111,88); guitar.addPoint(109,89); guitar.addPoint(109,92); guitar.addPoint(122,99);// guitar.addPoint(124,99); guitar.addPoint(133,96); guitar.addPoint(145,93); //guitar.addPoint(138,124); guitar.addPoint(150,69); guitar.addPoint(150,62); guitar.addPoint(155,58); guitar.addPoint(154,53); guitar.addPoint(149,50); guitar.addPoint(154,46); guitar.addPoint(153,38); guitar.addPoint(147,28); g2.setColor(Color.black); g2.fill(guitar); g2.draw(guitar); Polygon guitar2 = new Polygon (); guitar2.addPoint(141,108); guitar2.addPoint(139,126); guitar2.addPoint(135,122); guitar2.addPoint(128,122); guitar2.addPoint(129,116); guitar2.addPoint(143,108); g2.setColor(Color.white); g2.fill(guitar2); g2.draw(guitar2); //bass guitar Polygon bassgt = new Polygon (); bassgt.addPoint(871,21); bassgt.addPoint(879,24); bassgt.addPoint(885,32); bassgt.addPoint(886,42); bassgt.addPoint(895,47); bassgt.addPoint(904,56); bassgt.addPoint(907,69); bassgt.addPoint(909,83); bassgt.addPoint(910,91); bassgt.addPoint(941,81); bassgt.addPoint(946,75); bassgt.addPoint(945,67); bassgt.addPoint(950,67); bassgt.addPoint(955,75); bassgt.addPoint(960,68); bassgt.addPoint(963,74); bassgt.addPoint(967,72); bassgt.addPoint(971,66); bassgt.addPoint(973,70); bassgt.addPoint(981,67); bassgt.addPoint(984,71); bassgt.addPoint(982,76); bassgt.addPoint(987,80); bassgt.addPoint(986,82); bassgt.addPoint(980,83); bassgt.addPoint(979,90); bassgt.addPoint(974,85); bassgt.addPoint(970,86); bassgt.addPoint(973,91); bassgt.addPoint(965,86); bassgt.addPoint(960,90); bassgt.addPoint(961,100); bassgt.addPoint(955,92); bassgt.addPoint(944,91); bassgt.addPoint(907,103); bassgt.addPoint(906,109); bassgt.addPoint(893,114); bassgt.addPoint(895,123); bassgt.addPoint(900,131); bassgt.addPoint(904,134); bassgt.addPoint(908,145); bassgt.addPoint(911,159); bassgt.addPoint(918,171); bassgt.addPoint(919,190); bassgt.addPoint(923,198); bassgt.addPoint(919,201); bassgt.addPoint(919,210); bassgt.addPoint(927,220); bassgt.addPoint(942,226); bassgt.addPoint(944,234); bassgt.addPoint(909,230); bassgt.addPoint(905,214); bassgt.addPoint(899,204); bassgt.addPoint(893,203); bassgt.addPoint(889,171); bassgt.addPoint(877,151); bassgt.addPoint(861,152); bassgt.addPoint(852,169); bassgt.addPoint(849,203); bassgt.addPoint(841,210); bassgt.addPoint(840,228); bassgt.addPoint(828,233); bassgt.addPoint(806,235); bassgt.addPoint(805,228); bassgt.addPoint(822,219); bassgt.addPoint(824,204); bassgt.addPoint(817,201); bassgt.addPoint(822,196); bassgt.addPoint(822,184); bassgt.addPoint(828,162); bassgt.addPoint(829,152); bassgt.addPoint(820,149); bassgt.addPoint(811,144); bassgt.addPoint(806,134); bassgt.addPoint(805,117); bassgt.addPoint(820,107); bassgt.addPoint(819,89); bassgt.addPoint(811,83); bassgt.addPoint(811,77); bassgt.addPoint(824,66); bassgt.addPoint(825,61); bassgt.addPoint(842,53); bassgt.addPoint(852,43); bassgt.addPoint(853,29); bassgt.addPoint(870,20); g2.setColor(Color.black); g2.fill(bassgt); g2.draw(bassgt); Polygon bassgt2 = new Polygon(); bassgt2.addPoint(845,78); bassgt2.addPoint(845,98); bassgt2.addPoint(843,98); bassgt2.addPoint(842,105); bassgt2.addPoint(839,109); bassgt2.addPoint(834,103); bassgt2.addPoint(832,85); bassgt2.addPoint(845,78); g2.setColor(Color.white); g2.fill(bassgt2); g2.draw(bassgt2); Polygon drums = new Polygon (); drums.addPoint(713,104); drums.addPoint(706,121); drums.addPoint(721,377); drums.addPoint(248,380); drums.addPoint(253,228); drums.addPoint(250,206); drums.addPoint(237,178); drums.addPoint(206,166); drums.addPoint(201,154); drums.addPoint(198,152); drums.addPoint(208,148); drums.addPoint(236,150); drums.addPoint(247,130); drums.addPoint(227,119); drums.addPoint(219,105); drums.addPoint(222,96); drums.addPoint(233,88); drums.addPoint(251,84); drums.addPoint(272,83); drums.addPoint(300,91); drums.addPoint(285,72); drums.addPoint(294,57); drums.addPoint(319,46); drums.addPoint(372,45); drums.addPoint(406,50); drums.addPoint(428,65); drums.addPoint(433,74); drums.addPoint(450,58); drums.addPoint(478,48); drums.addPoint(514,48); drums.addPoint(544,51); drums.addPoint(566,52); drums.addPoint(577,67); drums.addPoint(575,79); drums.addPoint(561,95); drums.addPoint(545,98); drums.addPoint(525,105); drums.addPoint(524,147); drums.addPoint(524,183); drums.addPoint(645,175); drums.addPoint(662,143); drums.addPoint(617,152); drums.addPoint(608,148); drums.addPoint(614,139); drums.addPoint(633,128); drums.addPoint(661,116); drums.addPoint(659,107); drums.addPoint(625,114); drums.addPoint(592,113); drums.addPoint(571,111); drums.addPoint(565,102); drums.addPoint(576,86); drums.addPoint(616,70); drums.addPoint(647,66); drums.addPoint(679,67); drums.addPoint(695,72); drums.addPoint(699,90); drums.addPoint(678,100); drums.addPoint(667,103); drums.addPoint(672,113); drums.addPoint(689,105); drums.addPoint(709,106); g2.setColor(Color.black); g2.fill(drums); g2.draw(drums); } } The second class: import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Rectangle; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import javax.swing.JComponent; import java.awt.GradientPaint; /* component that draws the concert background */ public class Concertbackground extends JComponent { public void paintComponent(Graphics g) { super.paintComponent(g); // Recover Graphics2D Graphics2D g2 = (Graphics2D) g; //Background Top g2.setColor(Color.BLUE); Rectangle backgroundTop = new Rectangle (0, 0, getWidth(), getHeight() / 4); g2.fill(backgroundTop); // Background bottom g2.setColor(Color.GREEN); Rectangle backgroundBottom = new Rectangle (0, getHeight() / 2, getWidth(), getHeight() / 2); g2.fill(backgroundBottom); // Speaker base g2.setColor(Color.BLACK); Rectangle base = new Rectangle (0, 0, 50, 100); g2.fill(base); // Speakers circles gray top g2.setColor(Color.DARK_GRAY); Ellipse2D.Double speakerTop = new Ellipse2D.Double(10, 10, 30, 30); g2.fill(speakerTop); //speakers circles black top g2.setColor(Color.BLACK); Ellipse2D.Double speakerTop1 = new Ellipse2D.Double(15, 15, 20, 20); g2.fill(speakerTop1); // Speakers circles gray bottom g2.setColor(Color.DARK_GRAY); Ellipse2D.Double speakerBottom = new Ellipse2D.Double(10, 50, 30, 30); g2.fill(speakerBottom); //speakers circles black bottom g2.setColor(Color.BLACK); Ellipse2D.Double speakerBottom1 = new Ellipse2D.Double(15, 55, 20, 20); g2.fill(speakerBottom1); } } My main question is how do I change my Jframe so it can use as many classes as I want, It cant be the size of my classes because they were used with the same 1000, 800 Jframe to make the classes. I also need to be able to add more than just these two classes to my Jframe.

    Read the article

  • Suckerfish Menu Not Working. Nested UL not displaying block

    - by Brett
    I'm going out of my mind with this one. I'm trying to build a suckerfish css drop down menu. I have the first level working ok but I can't get the nested ul (under the Glossary tab) to display in block format and show my a background color. I've been at this for three days and I'm about to go crazy. If anyone can help I'd really appreciate it. You can see it here: www.brettlockhart.com/blast/ body { min-width:640px; margin:0px; padding:0px 40px 0px 40px; background-color:#eee; } /*Nav One styles*/ nav#navOne ul { width:100%; min-width:640px; height:25px; margin:0px auto; padding:0px; background-image:url(/blast/images/navOneBg.png); border-radius:0px 0px 8px 8px; text-align:right; float:right; } nav#navOne ul li { position:relative; display:inline; margin: 0px 0px 0px 10px auto; padding:3px 0px; border-left:1px #0b4c8f solid; line-height:23px; } nav#navOne ul li:last-child { margin-right:10px; } .arrowDown { margin: auto; font-family:Tahoma, Geneva, sans-serif; font-size:.7em; color:#FFF; padding: 0px 5px 0px 0px; } nav#navOne ul li a { margin: 0px auto; padding: 4px 10px 4px 15px; font-family:Tahoma, Geneva, sans-serif; font-size:.7em; color:#FFF; border-left:1px #5d9ee0 solid; text-decoration:none; line-height:23px; } /*Nav One rollover*/ nav#navOne ul li ul { display:none; background-image:none; } nav#navOne ul li:hover ul { display:block !important; } nav#navOne ul li:hover nav#navOne ul li ul li { background-color:#69C !important; left:0px; top:26px; z-index:10; } h1 { float:left; width:158px; text-indent:-9999px; background-image:url(/blast/images/logo.png); background-repeat:no-repeat; } #search { float:right; width:280px; margin:0px; padding:0px; } /*Nav Two styles*/ nav#navTwo h3 { display:inline; } nav#navTwo ul { width:100%; height:50px; margin:0 auto; padding:0px; border:1px solid red; clear:both; } nav#navTwo ul li { display:inline; border: 1px solid green; margin-top:20px; } <header> <nav id="navOne"> <ul> <li><a href="#">Sign In</a></li> <li><a href="#">Register</a></li> <li><a href="#">Print Page</a></li> <li id="glossary"><a href="#">Glossary</a> <ul> <li><a href="#">Item Placeholder</a></li> <li><a href="#">Item Placeholder</a></li> <li><a href="#">Item Placeholder</a></li> <li><a href="#">Item Placeholder</a></li> <li><a href="#">Item Placeholder</a></li> <li><a href="#">Item Placeholder</a></li> </ul> </li> <li><a href="#">Text Size: A A A</a></li> <li><a href="#">Select Your Location</a> <span class="arrowDown">&#x2C5;</span></li> </ul> </nav><!--/navOne--> <h1>Logo</h1> <div id="search"> <form action="?" method="get"> <fieldset> <input type="text" id="searchField"> <input type="submit" id="searchSubmit" value="Submit"> Search:<label for="radioHere">here</label> <input type="radio" id="radioHere" name="here" value="here"> <label for="radioWeb">the web</label> <input type="radio" id="radioWeb" name="the web" value="the web"> </fieldset> </form> </div><!--/search--> <nav id="navTwo"> <ul> <li><h3>Residential:</h3></li> <li>TV</li> <li>Internet</li> <li>Phone</li> <li>Pricing</li> <li class="navTwoSelected">Music</li> <li>Order</li> <li>Billing</li> <li>Support</li> <li>|</li> <li>Business</li> <li>About Us</li> </ul> </nav><!--/navTwo--> <nav id="navThree"> <ul> <li>Today</li> <li>Watch</li> <li>Surf</li> <li>Play</li> <li class="navThreeSelected">Listen</li> <li>Learn</li> <li>Local</li> </ul> <h3>Tools:</h3> <ul> <li>Webmail</li> <li>Account</li> <li>Billing</li> <li>Order Services</li> </ul> </nav><!--/navThree--> <nav id="navFour"> <h3>Your are here:</h3> <ul id="breadcrumbs"> <li>Residential ></li> <li>My Place ></li> <li>Listen ></li> <li class="currentPage">Music</li> </ul> </nav><!--/navFour--> </header>

    Read the article

< Previous Page | 130 131 132 133 134 135  | Next Page >