Search Results

Search found 5638 results on 226 pages for 'scheduling algorithm'.

Page 134/226 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • Is there a Javascript library for creating vintage photos?

    - by Nguyen Thanh Tu
    I'm working on a Canvas object in HTML5, and I am attempting to make some photos look "better". I tried VintageJS, an existing photo-retouching Javascript library, and Picozu, a web application cloning some Adobe Photoshop functionalities, but I'm still not happy. Can you help me with an algorithm or point to an existing Javascript library that would allow me to make my photos look like the following example? http://i46.photobucket.com/albums/f137/thanhtu_zx/Untitled-1.jpg

    Read the article

  • Programming user interfaces using F# workflows

    F# asynchronous workflows can be used to solve a wide range of programming problems. In this article we'll look how to use asynchronous workflows for elegantly expressing the control flow of interaction with the user. We'll also look at clear functional way for encoding drag&drop-like algorithm.

    Read the article

  • Create a Self Signed Sertificate on WLS 10.3.5 Supporting SHA 256 Algorthim.

    - by adejuanc
    1) Set domain to call the keytool $. setDomainEnv.sh 2) Generate the key $ keytool -genkey -alias selfsignedcert -keyalg RSA -sigalg SHA256withRSA -keypass privatepassword -keystore identity.jks -storepass password -validity 365 What is your first and last name? [Unknown]: adejuan-desktop.cl.oracle.com What is the name of your organizational unit? [Unknown]: a What is the name of your organization? [Unknown]: e What is the name of your City or Locality? [Unknown]: i What is the name of your State or Province? [Unknown]: o What is the two-letter country code for this unit? [Unknown]: U Is CN=adejuan-desktop.cl.oracle.com, OU=a, O=e, L=i, ST=o, C=U correct? [no]: yes 3) Export the root certificate $ keytool -export -alias selfsignedcert -sigalg SHA256withRSA -file root.cer -keystore identity.jks Enter keystore password: Certificate stored in file <root.cer> 4) Import the root certificate to the trust store $ keytool -import -alias selfsignedcert -sigalg SHA256withRSA -trustcacerts -file root.cer -keystore trust.jks Enter keystore password: Re-enter new password: Owner: CN=adejuan-desktop.cl.oracle.com, OU=a, O=e, L=i, ST=o, C=U Issuer: CN=adejuan-desktop.cl.oracle.com, OU=a, O=e, L=i, ST=o, C=U Serial number: 4f17459a Valid from: Wed Jan 16 15:33:22CLST 2012 until: Thu Jan 15 15:33:22 CLST 2013 Certificate fingerprints: MD5: 7F:08:FA:DE:CD:D5:C3:D3:83:ED:B8:4F:F2:DA:4E:A1 SHA1: 87:E4:7C:B8:D7:1A:90:53:FE:1B:70:B6:32:22:5B:83:29:81:53:4B Signature algorithm name: SHA256withRSA Version: 3 Trust this certificate? [no]: yes Certificate was added to keystore 5) To check the contents of the keystore keytool -v -list -keystore identity.jks Enter keystore password: ***************** WARNING WARNING WARNING ***************** * The integrity of the information stored in your keystore * * has NOT been verified! In order to verify its integrity, * * you must provide your keystore password. * ***************** WARNING WARNING WARNING ***************** Keystore type: JKS Keystore provider: SUN Your keystore contains 1 entry Alias name: selfsignedcert Creation date: Jan 18, 2012 Entry type: PrivateKeyEntry Certificate chain length: 1 Certificate[1]: Owner: CN=adejuan-desktop.cl.oracle.com, OU=a, O=e, L=i, ST=o, C=U Issuer: CN=adejuan-desktop.cl.oracle.com, OU=a, O=e, L=i, ST=o, C=U Serial number: 4f17459a Valid from: Wed Jan 16 15:42:16CLST 2012 until: Thu Jan 15 15:42:16 CLST 2013 Certificate fingerprints: MD5: 7F:08:FA:DE:CD:D5:C3:D3:83:ED:B8:4F:F2:DA:4E:A1 SHA1: 87:E4:7C:B8:D7:1A:90:53:FE:1B:70:B6:32:22:5B:83:29:81:53:4B Signature algorithm name: SHA256withRSA Version: 3 ******************************************* ******************************************* 6) In some cases, this parameter is needed in the server start up parameters. -Dweblogic.ssl.JSSEEnabled=true Otherwise, enable it from the Server configuration -> SSL -> Use JSSE checkbox.

    Read the article

  • Graph Isomorphism > What kind of Graph is this?

    - by oodavid
    Essentially, this is a variation of Comparing Two Tree Structures, however I do not have "trees", but rather another type of graph. I need to know what kind of Graph I have in order to figure out if there's a Graph Isomorphism Special Case... As you can see, they are: Not Directed Not A Tree Cyclic Max 4 connections But I still don't know the correct terminology, nor the which Isomorphism algorithm to pursue, guidance appreciated.

    Read the article

  • Color schemes generation - theory and algorithms

    - by daniel.sedlacek
    Hi I will be generating charts and diagrams and I am looking for some theory on color schemes and algorithm examples. Example questions: How to generate complementary or analogous colors? How to generate pastel, cold and warm colors? How to generate any number of random but distinct colors? How to translate all that to the hex triplet (web color)? My implementation will be in AS3 but any examples in metacode are welcome.

    Read the article

  • C++ Programming: Implementation of the Licensing System For a Software Product

    This article is devoted to the development of the key licensing system for the applications. In the theoretical part of the article, we will examine the cryptography methods, which can be used while implementing the licensing system. Also we will discuss all pros and cons of these methods and select the possible ones for using in the application. In the practical part of the article, we will provide the implementation of the simplest licensing system, which guaranties the protection from cracking even if a hacker knows the source code of an algorithm.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Does swf provide better compress rate than zlib for png image?

    - by Huang F. Lei
    Somebody told me that when a png image is stored in swf, it's separated to several layer, hence the alpha channel can be compressed better. Is it true? Or, once png image is imported into a swf, it's format is changed, e.g converted into bitmap data, and than compressed by swf's compress algorithm. That's, it is not in png format anymore. I don't know how swf packing its resource, please tell me if you know.

    Read the article

  • The Template Method Design Pattern using C# .Net

    - by nijhawan.saurabh
    First of all I'll just put this pattern in context and describe its intent as in the GOF book:   Template Method: Define the skeleton of an algorithm in an operation, deferring some steps to Subclasses. Template Method lets subclasses redefine certain steps of an algorithm without changing the Algorithm's Structure.    Usage: When you are certain about the High Level steps involved in an Algorithm/Work flow you can use the Template Pattern which allows the Base Class to define the Sequence of the Steps but permits the Sub classes to alter the implementation of any/all steps.   Example in the .Net framework: The most common example is the Asp.Net Page Life Cycle. The Page Life Cycle has a few methods which are called in a sequence but we have the liberty to modify the functionality of any of the methods by overriding them.   Sample implementation of Template Method Pattern:   Let's see the class diagram first:            Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt; mso-ligatures:standard;}   And here goes the code:EmailBase.cs     1 using System;     2 using System.Collections.Generic;     3 using System.Linq;     4 using System.Text;     5 using System.Threading.Tasks;     6      7 namespace TemplateMethod     8 {     9     public abstract class EmailBase    10     {    11     12         public bool SendEmail()    13         {    14             if (CheckEmailAddress() == true) // Method1 in the sequence    15             {    16                 if (ValidateMessage() == true) // Method2 in the sequence    17                 {    18                     if (SendMail() == true) // Method3 in the sequence    19                     {    20                         return true;    21                     }    22                     else    23                     {    24                         return false;    25                     }    26     27                 }    28                 else    29                 {    30                     return false;    31                 }    32     33             }    34             else    35             {    36                 return false;    37     38             }    39     40     41         }    42     43         protected abstract bool CheckEmailAddress();    44         protected abstract bool ValidateMessage();    45         protected abstract bool SendMail();    46     47     48     }    49 }    50    EmailYahoo.cs      1 using System;     2 using System.Collections.Generic;     3 using System.Linq;     4 using System.Text;     5 using System.Threading.Tasks;     6      7 namespace TemplateMethod     8 {     9     public class EmailYahoo:EmailBase    10     {    11     12         protected override bool CheckEmailAddress()    13         {    14             Console.WriteLine("Checking Email Address : YahooEmail");    15             return true;    16         }    17         protected override bool ValidateMessage()    18         {    19             Console.WriteLine("Validating Email Message : YahooEmail");    20             return true;    21         }    22     23     24         protected override bool SendMail()    25         {    26             Console.WriteLine("Semding Email : YahooEmail");    27             return true;    28         }    29     30     31     }    32 }    33   EmailGoogle.cs      1 using System;     2 using System.Collections.Generic;     3 using System.Linq;     4 using System.Text;     5 using System.Threading.Tasks;     6      7 namespace TemplateMethod     8 {     9     public class EmailGoogle:EmailBase    10     {    11     12         protected override bool CheckEmailAddress()    13         {    14             Console.WriteLine("Checking Email Address : GoogleEmail");    15             return true;    16         }    17         protected override bool ValidateMessage()    18         {    19             Console.WriteLine("Validating Email Message : GoogleEmail");    20             return true;    21         }    22     23     24         protected override bool SendMail()    25         {    26             Console.WriteLine("Semding Email : GoogleEmail");    27             return true;    28         }    29     30     31     }    32 }    33   Program.cs      1 using System;     2 using System.Collections.Generic;     3 using System.Linq;     4 using System.Text;     5 using System.Threading.Tasks;     6      7 namespace TemplateMethod     8 {     9     class Program    10     {    11         static void Main(string[] args)    12         {    13             Console.WriteLine("Please choose an Email Account to send an Email:");    14             Console.WriteLine("Choose 1 for Google");    15             Console.WriteLine("Choose 2 for Yahoo");    16             string choice = Console.ReadLine();    17     18             if (choice == "1")    19             {    20                 EmailBase email = new EmailGoogle(); // Rather than newing it up here, you may use a factory to do so.    21                 email.SendEmail();    22     23             }    24             if (choice == "2")    25             {    26                 EmailBase email = new EmailYahoo(); // Rather than newing it up here, you may use a factory to do so.    27                 email.SendEmail();    28             }    29         }    30     }    31 }    32    Final Words: It's very obvious that why the Template Method Pattern is a popular pattern, everything at last revolves around Algorithms and if you are clear with the steps involved it makes real sense to delegate the duty of implementing the step's functionality to the sub classes. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0in; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt; mso-ligatures:standard;}

    Read the article

  • Using Code Rocket's Flowchart and Pseudocode Tool Support

    This article provides a walk through of a couple of iterations of using Code Rocket's pseudocode and flowchart tool support for designing and implementing a form of binary search algorithm using the Code Rocket plug-in for Visual Studio...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Order of learning sort algorithms

    - by user619818
    I have already studied bubblesort, insertion sort and selection sort and can implement them in C pretty much from knowledge of the algorithm. I want to go on to learn shellsort, merge sort, heapsort and quicksort, which I guess are a lot harder to understand. What order should I take these other sort algos? I am assuming a simpler sort algo helps learn a more complex one. Don't mind taking on some others if it helps the learning process.

    Read the article

  • Looking for a C# implementation of (Pk) Zip32

    - by bukko
    I need to implement Zip32 (PK compatible) in C#. I can't just call a separate dll or exe because (1) I don't want to write the uncompressed file to disk and (2) I want to avoid the possibly that someone could wrap that library - either of these would compromise security. My ideal solution would be to find a C# implementation of the Zip32 algorithm which I could use, and just modify it so I can pass a byte array or something. Does anyone have any suggestions or (I dare but hope) examples of C# PKZip implementations?

    Read the article

  • Bin packing part 6: Further improvements

    - by Hugo Kornelis
    In part 5 of my series on the bin packing problem, I presented a method that sits somewhere in between the true row-by-row iterative characteristics of the first three parts and the truly set-based approach of the fourth part. I did use iteration, but each pass through the loop would use a set-based statement to process a lot of rows at once. Since that statement is fairly complex, I am sure that a single execution of it is far from cheap – but the algorithm used is efficient enough that the entire...(read more)

    Read the article

  • Finding the lowest average Hamming distance when the order of the strings matter

    - by user1049697
    I have a sequence of binary strings that I want to find a match for among a set of longer sequences of binary strings. A match means that the compared sequence gives the lowest average Hamming distance when all elements in the shorter sequence have been matched against a sequence in one of the longer sets. Let me try to explain with an example. I have a set of video frames that have been hashed using a perceptual hashing algorithm so that the video frames that look the same has roughly the same hash. I want to match a short video clip against a set of longer videos, to see if the clip is contained in one of these. This means that I need to find out where the sequence of the hashed frames in the short video has the lowest average Hamming distance when compared with the long videos. The short video is the sub strings Sub1, Sub2 and Sub3, and I want to match them against the hashes of the long videos in Src. The clue here is that the strings need to match in the specific order that they are given in, e.g. that Sub1 always has to match the element before Sub2, and Sub2 always has to match the element before Sub3. In this example it would map thusly: Sub1-Src3, Sub2-Src4 and Sub3-Src5. So the question is this: is there an algorithm for finding the lowest average Hamming distance when the order of the elements compared matter? The naïve approach to compare the substring sequence to every source string won't cut it of course, so I need something that preferably can match a (much) shorter sub string to a set of million of elements. I have looked at MVP-trees, BK-trees and similar, but everything seems to only take into account one binary string and not a sequence of them. Sub1: 100111011111011101 Sub2: 110111000010010100 Sub3: 111111010110101101 Src1: 001011010001010110 Src2: 010111101000111001 Src3: 101111001110011101 Src4: 010111100011010101 Src5: 001111010110111101 Src6: 101011111111010101 I have added a calculation of the examples below. (The Hamming distances aren't correct, but it doesn't matter) **Run 1.** dist(Sub1, Src1) = 8 dist(Sub2, Src2) = 10 dist(Sub3, Src3) = 12 average = 10 **Run 2.** dist(Sub1, Src2) = 10 dist(Sub2, Src3) = 12 dist(Sub3, Src4) = 10 average = 11 **Run 3.** dist(Sub1, Src3) = 7 dist(Sub2, Src4) = 6 dist(Sub3, Src5) = 10 average = 8 **Run 4.** dist(Sub1, Src3) = 10 dist(Sub2, Src4) = 4 dist(Sub3, Src5) = 2 average = 5 So the winner here is sequence 4 with an average distance of 5.

    Read the article

  • Finding the Twins when Implementing Catmull-Clark subdivision using Half-Edge mesh [migrated]

    - by Ailurus
    Note: The description became a little longer than expected. Do you know a readable implementation of this algorithm using this mesh? Please let me know! I'm trying to implement Catmull-Clark subdivision using Matlab (because later on the results have to be compared with some other stuff already implemented in Matlab). First try was with a Vertex-Face mesh, the algorithm works but it is of course not very efficient (since you need neighbouring information for edges and faces). Therefore, I'm now using a Half-Edge mesh (info), see also the paper of Lutz Kettner. Wikipedia link to the idea behind Catmull-Clark SDV: Wiki. My problem lies in finding the Twin HalfEdges, I'm just not sure how to do this. Below I'm describing my thoughts on the implementation, trying to keep it concise. Half-Edge mesh (using indices to Vertices/HalfEdges/Faces): Vertex (x,y,z,Outgoing_HalfEdge) HalfEdge (HeadVertex (or TailVertex, which one should I use), Next, Face, Twin). Face (HalfEdge) To keep it simple for now, assume that every face is a quadrilateral. The actual mesh is a list of Vertices, HalfEdges and Faces. The new mesh will consist of NewVertices, NewHalfEdges and NewFaces, like this (note: Number_... is the number of ...): NumberNewVertices: Number_Faces + Number_HalfEdges/2 + Number_Vertices NumberNewHalfEdges: 4 * 4 * NumberFaces NumberNewfaces: 4 * NumberFaces Catmull-Clark: Find the FacePoint (centroid) of each Face: --> Just average the x,y,z values of the vertices, save as a NewVertex. Find the EdgePoint of each HalfEdge: --> To prevent duplicates (each HalfEdge has a Twin which would result in the same HalfEdge) --> Only calculate EdgePoints of the HalfEdge which has the lowest index of the Pair. Update old Vertices Ok, now all the new Vertices are calculated (however, their Outgoing_HalfEdge is still unknown). Next step to save the new HalfEdges and Faces. This is the part causing me problems! Loop through each old Face, there are 4 new Faces to be created (because of the quadrilateral assumption) First create the 4 new HalfEdges per New Face, starting at the FacePoint to the Edgepoint Next a new HalfEdge from the EdgePoint to an Updated Vertex Another new one from the Updated Vertex to the next EdgePoint Finally the fourth new HalfEdge from the EdgePoint back to the FacePoint. The HeadVertex of each new HalfEdge is known, the Next HalfEdge too. The Face is also known (since it is the new face you're creating!). Only the Twin HalfEdge is unknown, how should I know this? By the way, while looping through the Vertices of the new Face, assign the Outgoing_HalfEdge to the Vertices. This is probably the place to find out which HalfEdge is the Twin. Finally, after the 4 new HalfEdges are created, save the Face with the HalfVertex index the last newly created HalfVertex. I hope this is clear, if needed I can post my (obviously not-yet-finished) Matlab code.

    Read the article

  • Consuming the Amazon S3 service from a Win8 Metro Application

    - by cibrax
    As many of the existing Http APIs for Cloud Services, AWS also provides a set of different platform SDKs for hiding many of complexities present in the APIs. While there is a platform SDK for .NET, which is open source and available in C#, that SDK does not work in Win8 Metro Applications for the changes introduced in WinRT. WinRT offers a complete different set of APIs for doing I/O operations such as doing http calls or using cryptography for signing or encrypting data, two aspects that are absolutely necessary for consuming AWS. All the I/O APIs available as part of WinRT are asynchronous, and uses the TPL model for .NET applications (HTML and JavaScript Metro applications use a model based in promises, which is similar concept).  In the case of S3, the http Authorization header is used for two purposes, authenticating clients and make sure the messages were not altered while they were in transit. For doing that, it uses a signature or hash of the message content and some of the headers using a symmetric key (That's just one of the available mechanisms). Windows Azure for example also uses the same mechanism in many of its APIs. There are three challenges that any developer working for first time in Metro will have to face to consume S3, the new WinRT APIs, the asynchronous nature of them and the complexity introduced for generating the Authorization header. Having said that, I decided to write this post with some of the gotchas I found myself trying to consume this Amazon service. 1. Generating the signature for the Authorization header All the cryptography APIs in WinRT are available under Windows.Security.Cryptography namespace. Many of operations available in these APIs uses the concept of buffers (IBuffer) for representing a chunk of binary data. As you will see in the example below, these buffers are mainly generated with the use of static methods in a WinRT class CryptographicBuffer available as part of the namespace previously mentioned. private string DeriveAuthToken(string resource, string httpMethod, string timestamp) { var stringToSign = string.Format("{0}\n" + "\n" + "\n" + "\n" + "x-amz-date:{1}\n" + "/{2}/", httpMethod, timestamp, resource); var algorithm = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA1"); var keyMaterial = CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(this.secret)); var hmacKey = algorithm.CreateKey(keyMaterial); var signature = CryptographicEngine.Sign( hmacKey, CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(stringToSign)) ); return CryptographicBuffer.EncodeToBase64String(signature); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The algorithm that determines the information or content you need to use for generating the signature is very well described as part of the AWS documentation. In this case, this method is generating a signature required for creating a new bucket. A HmacSha1 hash is computed using a secret or symetric key provided by AWS in the management console. 2. Sending an Http Request to the S3 service WinRT also ships with the System.Net.Http.HttpClient that was first introduced some months ago with ASP.NET Web API. This client provides a rich interface on top the traditional WebHttpRequest class, and also solves some of limitations found in this last one. There are a few things that don't work with a raw WebHttpRequest such as setting the Host header, which is something absolutely required for consuming S3. Also, HttpClient is more friendly for doing unit tests, as it receives a HttpMessageHandler as part of the constructor that can fake to emulate a real http call. This is how the code for consuming the service with HttpClient looks like, public async Task<S3Response> CreateBucket(string name, string region = null, params string[] acl) { var timestamp = string.Format("{0:r}", DateTime.UtcNow); var auth = DeriveAuthToken(name, "PUT", timestamp); var request = new HttpRequestMessage(HttpMethod.Put, "http://s3.amazonaws.com/"); request.Headers.Host = string.Format("{0}.s3.amazonaws.com", name); request.Headers.TryAddWithoutValidation("Authorization", "AWS " + this.key + ":" + auth); request.Headers.Add("x-amz-date", timestamp); var client = new HttpClient(); var response = await client.SendAsync(request); return new S3Response { Succeed = response.StatusCode == HttpStatusCode.OK, Message = (response.Content != null) ? await response.Content.ReadAsStringAsync() : null }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You will notice a few additional things in this code. By default, HttpClient validates the values for some well-know headers, and Authorization is one of them. It won't allow you to set a value with ":" on it, which is something that S3 expects. However, that's not a problem at all, as you can skip the validation by using the TryAddWithoutValidation method. Also, the code is heavily relying on the new async and await keywords to transform all the asynchronous calls into synchronous ones. In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can use this handler for injecting any response while you are unit testing the code.

    Read the article

  • Consuming the Amazon S3 service from a Win8 Metro Application

    - by cibrax
    As many of the existing Http APIs for Cloud Services, AWS also provides a set of different platform SDKs for hiding many of complexities present in the APIs. While there is a platform SDK for .NET, which is open source and available in C#, that SDK does not work in Win8 Metro Applications for the changes introduced in WinRT. WinRT offers a complete different set of APIs for doing I/O operations such as doing http calls or using cryptography for signing or encrypting data, two aspects that are absolutely necessary for consuming AWS. All the I/O APIs available as part of WinRT are asynchronous, and uses the TPL model for .NET applications (HTML and JavaScript Metro applications use a model based in promises, which is similar concept).  In the case of S3, the http Authorization header is used for two purposes, authenticating clients and make sure the messages were not altered while they were in transit. For doing that, it uses a signature or hash of the message content and some of the headers using a symmetric key (That's just one of the available mechanisms). Windows Azure for example also uses the same mechanism in many of its APIs. There are three challenges that any developer working for first time in Metro will have to face to consume S3, the new WinRT APIs, the asynchronous nature of them and the complexity introduced for generating the Authorization header. Having said that, I decided to write this post with some of the gotchas I found myself trying to consume this Amazon service. 1. Generating the signature for the Authorization header All the cryptography APIs in WinRT are available under Windows.Security.Cryptography namespace. Many of operations available in these APIs uses the concept of buffers (IBuffer) for representing a chunk of binary data. As you will see in the example below, these buffers are mainly generated with the use of static methods in a WinRT class CryptographicBuffer available as part of the namespace previously mentioned. private string DeriveAuthToken(string resource, string httpMethod, string timestamp) { var stringToSign = string.Format("{0}\n" + "\n" + "\n" + "\n" + "x-amz-date:{1}\n" + "/{2}/", httpMethod, timestamp, resource); var algorithm = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA1"); var keyMaterial = CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(this.secret)); var hmacKey = algorithm.CreateKey(keyMaterial); var signature = CryptographicEngine.Sign( hmacKey, CryptographicBuffer.CreateFromByteArray(Encoding.UTF8.GetBytes(stringToSign)) ); return CryptographicBuffer.EncodeToBase64String(signature); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The algorithm that determines the information or content you need to use for generating the signature is very well described as part of the AWS documentation. In this case, this method is generating a signature required for creating a new bucket. A HmacSha1 hash is computed using a secret or symetric key provided by AWS in the management console. 2. Sending an Http Request to the S3 service WinRT also ships with the System.Net.Http.HttpClient that was first introduced some months ago with ASP.NET Web API. This client provides a rich interface on top the traditional WebHttpRequest class, and also solves some of limitations found in this last one. There are a few things that don't work with a raw WebHttpRequest such as setting the Host header, which is something absolutely required for consuming S3. Also, HttpClient is more friendly for doing unit tests, as it receives a HttpMessageHandler as part of the constructor that can fake to emulate a real http call. This is how the code for consuming the service with HttpClient looks like, public async Task<S3Response> CreateBucket(string name, string region = null, params string[] acl) { var timestamp = string.Format("{0:r}", DateTime.UtcNow); var auth = DeriveAuthToken(name, "PUT", timestamp); var request = new HttpRequestMessage(HttpMethod.Put, "http://s3.amazonaws.com/"); request.Headers.Host = string.Format("{0}.s3.amazonaws.com", name); request.Headers.TryAddWithoutValidation("Authorization", "AWS " + this.key + ":" + auth); request.Headers.Add("x-amz-date", timestamp); var client = new HttpClient(); var response = await client.SendAsync(request); return new S3Response { Succeed = response.StatusCode == HttpStatusCode.OK, Message = (response.Content != null) ? await response.Content.ReadAsStringAsync() : null }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You will notice a few additional things in this code. By default, HttpClient validates the values for some well-know headers, and Authorization is one of them. It won't allow you to set a value with ":" on it, which is something that S3 expects. However, that's not a problem at all, as you can skip the validation by using the TryAddWithoutValidation method. Also, the code is heavily relying on the new async and await keywords to transform all the asynchronous calls into synchronous ones. In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, In case you would want to unit test this code and faking the call to the real S3 service, you should have to modify it to inject a custom HttpMessageHandler into the HttpClient. The following implementation illustrates this concept, public class FakeHttpMessageHandler : HttpMessageHandler { HttpResponseMessage response; public FakeHttpMessageHandler(HttpResponseMessage response) { this.response = response; } protected override Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, System.Threading.CancellationToken cancellationToken) { var tcs = new TaskCompletionSource<HttpResponseMessage>(); tcs.SetResult(response); return tcs.Task; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can use this handler for injecting any response while you are unit testing the code.

    Read the article

  • how to programtically build a grid of interlocking but random sized squares

    - by Mrwolfy
    I want to create a two dimensional layout of rectangular shapes, a grid made up of random sized cubes. The cubed should fit together and have equal padding or margin (space between). Kind of like a comic book layout, or more like the image attached. How could I do this procedurally? Practically, I would probably be using Python and some graphic software to render an image, but I don't know the type of algorithm (or whatnot) I would need to use to generate the randomized grid.

    Read the article

  • ASP.NET Membership Password Hash -- .NET 3.5 to .NET 4 Upgrade Surprise!

    - by David Hoerster
    I'm in the process of evaluating how my team will upgrade our product from .NET 3.5 SP1 to .NET 4. I expected the upgrade to be pretty smooth with very few, if any, upgrade issues. To my delight, the upgrade wizard said that everything upgraded without a problem. I thought I was home free, until I decided to build and run the application. A big problem was staring me in the face -- I couldn't log on. Our product is using a custom ASP.NET Membership Provider, but essentially it's a modified SqlMembershipProvider with some additional properties. And my login was failing during the OnAuthenticate event handler of my ASP.NET Login control, right where it was calling my provider's ValidateUser method. After a little digging, it turns out that the password hash that the membership provider was using to compare against the stored password hash in the membership database tables was different. I compared the password hash from the .NET 4 code line, and it was a different generated hash than my .NET 3.5 code line. (Tip -- when upgrading, always keep a valid debug copy of your app handy in case you have to step through a lot of code.) So it was a strange situation, but at least I knew what the problem was. Now the question was, "Why was it happening?" Turns out that a breaking change in .NET 4 is that the default hash algorithm changed to SHA256. Hey, that's great -- stronger hashing algorithm. But what do I do with all the hashed passwords in my database that were created using SHA1? Well, you can make two quick changes to your app's web.config and everything will be OK. Basically, you need to override the default HashAlgorithmTypeproperty of your membership provider. Here are the two places to do that: 1. At the beginning of your element, add the following element: <system.web> <machineKey validation="SHA1" /> ... </system.web> 2. On your element under , add the following hashAlgorithmType attribute: <system.web> <membership defaultProvider="myMembership" hashAlgorithmType="SHA1"> ... </system.web> After that, you should be good to go! Hope this helps.

    Read the article

  • How would one go about integrated python into a c++ written game for the use of user-made scripts

    - by Spencer Killen
    I'm quite new to game development (not the site) and I'm currently just trying to educate myself about some certain things before I really begin working and a game. anyway, I'd like to know what basic algorithm/outline of how a game would be coded effeciently with the implementation of user coded scripts for gameplay and levels that are written in python, Is this even possible? would all the features of python be avalible? like say "multi-threading"?

    Read the article

  • Data structures in functional programming

    - by pwny
    I'm currently playing with LISP (particularly Scheme and Clojure) and I'm wondering how typical data structures are dealt with in functional programming languages. For example, let's say I would like to solve a problem using a graph pathfinding algorithm. How would one typically go about representing that graph in a functional programming language (primarily interested in pure functional style that can be applied to LISP)? Would I just forget about graphs altogether and solve the problem some other way?

    Read the article

  • Is there any hueristic to polygonize a closed 2d-raster shape with n triangles?

    - by Arthur Wulf White
    Lets say we have a 2d image black on white that shows a closed geometric shape. Is there any (not naive brute force) algorithm that approximates that shape as closely as possible with n triangles? If you want a formal definition for as closely as possible: Approximate the shape with a polygon that when rendered into a new 2d image will match the largest number of pixels possible with the original image.

    Read the article

  • DTracing TCP congestion control

    - by user12820842
    In a previous post, I showed how we can use DTrace to probe TCP receive and send window events. TCP receive and send windows are in effect both about flow-controlling how much data can be received - the receive window reflects how much data the local TCP is prepared to receive, while the send window simply reflects the size of the receive window of the peer TCP. Both then represent flow control as imposed by the receiver. However, consider that without the sender imposing flow control, and a slow link to a peer, TCP will simply fill up it's window with sent segments. Dealing with multiple TCP implementations filling their peer TCP's receive windows in this manner, busy intermediate routers may drop some of these segments, leading to timeout and retransmission, which may again lead to drops. This is termed congestion, and TCP has multiple congestion control strategies. We can see that in this example, we need to have some way of adjusting how much data we send depending on how quickly we receive acknowledgement - if we get ACKs quickly, we can safely send more segments, but if acknowledgements come slowly, we should proceed with more caution. More generally, we need to implement flow control on the send side also. Slow Start and Congestion Avoidance From RFC2581, let's examine the relevant variables: "The congestion window (cwnd) is a sender-side limit on the amount of data the sender can transmit into the network before receiving an acknowledgment (ACK). Another state variable, the slow start threshold (ssthresh), is used to determine whether the slow start or congestion avoidance algorithm is used to control data transmission" Slow start is used to probe the network's ability to handle transmission bursts both when a connection is first created and when retransmission timers fire. The latter case is important, as the fact that we have effectively lost TCP data acts as a motivator for re-probing how much data the network can handle from the sending TCP. The congestion window (cwnd) is initialized to a relatively small value, generally a low multiple of the sending maximum segment size. When slow start kicks in, we will only send that number of bytes before waiting for acknowledgement. When acknowledgements are received, the congestion window is increased in size until cwnd reaches the slow start threshold ssthresh value. For most congestion control algorithms the window increases exponentially under slow start, assuming we receive acknowledgements. We send 1 segment, receive an ACK, increase the cwnd by 1 MSS to 2*MSS, send 2 segments, receive 2 ACKs, increase the cwnd by 2*MSS to 4*MSS, send 4 segments etc. When the congestion window exceeds the slow start threshold, congestion avoidance is used instead of slow start. During congestion avoidance, the congestion window is generally updated by one MSS for each round-trip-time as opposed to each ACK, and so cwnd growth is linear instead of exponential (we may receive multiple ACKs within a single RTT). This continues until congestion is detected. If a retransmit timer fires, congestion is assumed and the ssthresh value is reset. It is reset to a fraction of the number of bytes outstanding (unacknowledged) in the network. At the same time the congestion window is reset to a single max segment size. Thus, we initiate slow start until we start receiving acknowledgements again, at which point we can eventually flip over to congestion avoidance when cwnd ssthresh. Congestion control algorithms differ most in how they handle the other indication of congestion - duplicate ACKs. A duplicate ACK is a strong indication that data has been lost, since they often come from a receiver explicitly asking for a retransmission. In some cases, a duplicate ACK may be generated at the receiver as a result of packets arriving out-of-order, so it is sensible to wait for multiple duplicate ACKs before assuming packet loss rather than out-of-order delivery. This is termed fast retransmit (i.e. retransmit without waiting for the retransmission timer to expire). Note that on Oracle Solaris 11, the congestion control method used can be customized. See here for more details. In general, 3 or more duplicate ACKs indicate packet loss and should trigger fast retransmit . It's best not to revert to slow start in this case, as the fact that the receiver knew it was missing data suggests it has received data with a higher sequence number, so we know traffic is still flowing. Falling back to slow start would be excessive therefore, so fast recovery is used instead. Observing slow start and congestion avoidance The following script counts TCP segments sent when under slow start (cwnd ssthresh). #!/usr/sbin/dtrace -s #pragma D option quiet tcp:::connect-request / start[args[1]-cs_cid] == 0/ { start[args[1]-cs_cid] = 1; } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd tcps_cwnd_ssthresh / { @c["Slow start", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } tcp:::send / start[args[1]-cs_cid] == 1 && args[3]-tcps_cwnd args[3]-tcps_cwnd_ssthresh / { @c["Congestion avoidance", args[2]-ip_daddr, args[4]-tcp_dport] = count(); } As we can see the script only works on connections initiated since it is started (using the start[] associative array with the connection ID as index to set whether it's a new connection (start[cid] = 1). From there we simply differentiate send events where cwnd ssthresh (congestion avoidance). Here's the output taken when I accessed a YouTube video (where rport is 80) and from an FTP session where I put a large file onto a remote system. # dtrace -s tcp_slow_start.d ^C ALGORITHM RADDR RPORT #SEG Slow start 10.153.125.222 20 6 Slow start 138.3.237.7 80 14 Slow start 10.153.125.222 21 18 Congestion avoidance 10.153.125.222 20 1164 We see that in the case of the YouTube video, slow start was exclusively used. Most of the segments we sent in that case were likely ACKs. Compare this case - where 14 segments were sent using slow start - to the FTP case, where only 6 segments were sent before we switched to congestion avoidance for 1164 segments. In the case of the FTP session, the FTP data on port 20 was predominantly sent with congestion avoidance in operation, while the FTP session relied exclusively on slow start. For the default congestion control algorithm - "newreno" - on Solaris 11, slow start will increase the cwnd by 1 MSS for every acknowledgement received, and by 1 MSS for each RTT in congestion avoidance mode. Different pluggable congestion control algorithms operate slightly differently. For example "highspeed" will update the slow start cwnd by the number of bytes ACKed rather than the MSS. And to finish, here's a neat oneliner to visually display the distribution of congestion window values for all TCP connections to a given remote port using a quantization. In this example, only port 80 is in use and we see the majority of cwnd values for that port are in the 4096-8191 range. # dtrace -n 'tcp:::send { @q[args[4]-tcp_dport] = quantize(args[3]-tcps_cwnd); }' dtrace: description 'tcp:::send ' matched 10 probes ^C 80 value ------------- Distribution ------------- count -1 | 0 0 |@@@@@@ 5 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 0 512 | 0 1024 | 0 2048 |@@@@@@@@@ 8 4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 23 8192 | 0

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >