Search Results

Search found 17487 results on 700 pages for 'static members'.

Page 134/700 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Securing smtp with login

    - by Paul Peelen
    I have a ispconfig server, and it seems that someone is using it to send spam. I got about 130 "Mail Delivery System" email about declined send email. This spammer uses my email address as sent from adress, so I get all these email adresses to my mail. I am using Postfix and Courier. I installed my server according to this guide: http://www.howtoforge.com/perfect-server-debian-lenny-ispconfig3-p3 I did this a few months ago. My question: Can I secure my server to require login to be able to send email, and if so... how? Thanks! EDIT Some data from mail.log, these kind of error show up constantly: Jun 15 17:58:16 bolt postfix/qmgr[10712]: CC7DA1242AE: from=<paul@*****.se>, size=3782, nrcpt=1 (queue active) Jun 15 17:58:16 bolt postfix/smtp[11337]: CC7DA1242AE: to=<[email protected]>, relay=none, delay=4641, delays=4640/0.01/0.32/0, dsn=4.4.3, status=deferred (Host or domain name not found. Name service error for name=cmlisboa.pt type=MX: Host not found, try again) Jun 15 17:58:19 bolt postfix/smtpd[10836]: connect from static-200-105-220-154.acelerate.net[200.105.220.154] Jun 15 17:58:20 bolt postfix/smtpd[10836]: NOQUEUE: reject: RCPT from static-200-105-220-154.acelerate.net[200.105.220.154]: 550 5.1.1 <advertising@*****.com>: Recipient address rejected: User unknown in virtual mailbox table; from=<[email protected]> to=<advertising@*****.com> proto=ESMTP helo=<static-200-105-220-154.acelerate.net> Jun 15 17:58:20 bolt postfix/smtpd[10836]: lost connection after DATA (0 bytes) from static-200-105-220-154.acelerate.net[200.105.220.154] Jun 15 17:58:20 bolt postfix/smtpd[10836]: disconnect from static-200-105-220-154.acelerate.net[200.105.220.154] Jun 15 17:58:29 bolt postfix/smtpd[10834]: connect from unknown[62.176.172.226] Jun 15 17:58:32 bolt postfix/smtpd[10834]: 386791241F9: client=unknown[62.176.172.226] Jun 15 17:58:34 bolt postfix/cleanup[10975]: 386791241F9: message-id=<[email protected]> Jun 15 17:58:34 bolt postfix/qmgr[10712]: 386791241F9: from=<[email protected]>, size=867, nrcpt=1 (queue active) Jun 15 17:58:35 bolt postfix/smtpd[10834]: disconnect from unknown[62.176.172.226] Jun 15 17:58:35 bolt amavis[11084]: (11084-17) Blocked SPAM, [62.176.172.226] [62.176.172.226] <[email protected]> -> <*****@*****>, Message-ID: <[email protected]>, mail_id: XczovKoMBYNr, Hits: 18.471, size: 867, 833 ms Jun 15 17:58:35 bolt postfix/smtp[10732]: 386791241F9: to=<*****@*****>, relay=127.0.0.1[127.0.0.1]:10024, delay=3.5, delays=2.7/0/0/0.83, dsn=2.7.0, status=sent (250 2.7.0 Ok, discarded, id=11084-17 - SPAM) Jun 15 17:58:35 bolt postfix/qmgr[10712]: 386791241F9: removed Jun 15 17:58:43 bolt postfix/smtpd[10836]: warning: 178.121.154.194: address not listed for hostname mm-194-154-121-178.dynamic.pppoe.mgts.by Jun 15 17:58:43 bolt postfix/smtpd[10836]: connect from unknown[178.121.154.194] Jun 15 17:58:45 bolt postfix/smtpd[10727]: connect from unknown[180.134.223.86] EDIT #2 Got some more info from the logs, this is a send request: mail.info.1:Jun 15 16:41:57 bolt amavis[5399]: (05399-06) Passed CLEAN, [110.139.48.64] [110.139.48.64] <paul@*****.se> -> <[email protected]>, Message-ID: <CHILKAT-MID-7c54ebcf-5501-de9b-f0b1-4f0234290d8d@HP-IRISH>, mail_id: 35l56Ramx6Nc, Hits: -2.941, size: 3329, queued_as: 2485770086, 136 ms mail.info.1:Jun 15 16:41:57 bolt postfix/smtp[4743]: 375C570082: to=<[email protected]>, relay=127.0.0.1[127.0.0.1]:10024, delay=4.8, delays=4.7/0/0/0.14, dsn=2.0.0, status=sent (250 2.0.0 Ok, id=05399-06, from MTA([127.0.0.1]:10025): 250 2.0.0 Ok: queued as 2485770086) Which apparently got thrue. Any ideas how to restrict this?

    Read the article

  • Handling WCF Service Paths in Silverlight 4 – Relative Path Support

    - by dwahlin
    If you’re building Silverlight applications that consume data then you’re probably making calls to Web Services. We’ve been successfully using WCF along with Silverlight for several client Line of Business (LOB) applications and passing a lot of data back and forth. Due to the pain involved with updating the ServiceReferences.ClientConfig file generated by a Silverlight service proxy (see Tim Heuer’s post on that subject to see different ways to deal with it) we’ve been using our own technique to figure out the service URL. Going that route makes it a peace of cake to switch between development, staging and production environments. To start, we have a ServiceProxyBase class that handles identifying the URL to use based on the XAP file’s location (this assumes that the service is in the same Web project that serves up the XAP file). The GetServiceUrlBase() method handles this work: public class ServiceProxyBase { public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrlBase = GetServiceUrlBase(); } } public string ServiceUrlBase { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrlBase() { if (!IsDesignTime) { string url = Application.Current.Host.Source.OriginalString; return url.Substring(0, url.IndexOf("/ClientBin", StringComparison.InvariantCultureIgnoreCase)); } return null; } } Silverlight 4 now supports relative paths to services which greatly simplifies things.  We changed the code above to the following: public class ServiceProxyBase { private const string ServiceUrlPath = "../Services/JobPlanService.svc"; public ServiceProxyBase() { if (!IsDesignTime) { ServiceUrl = ServiceUrlPath; } } public string ServiceUrl { get; set; } public static bool IsDesignTime { get { return (Application.Current == null) || (Application.Current.GetType() == typeof (Application)); } } public static string GetServiceUrl() { if (!IsDesignTime) { return ServiceUrlPath; } return null; } } Our ServiceProxy class derives from ServiceProxyBase and handles creating the ABC’s (Address, Binding, Contract) needed for a WCF service call. Looking through the code (mainly the constructor) you’ll notice that the service URI is created by supplying the base path to the XAP file along with the relative path defined in ServiceProxyBase:   public class ServiceProxy : ServiceProxyBase, IServiceProxy { private const string CompletedEventargs = "CompletedEventArgs"; private const string Completed = "Completed"; private const string Async = "Async"; private readonly CustomBinding _Binding; private readonly EndpointAddress _EndPointAddress; private readonly Uri _ServiceUri; private readonly Type _ProxyType = typeof(JobPlanServiceClient); public ServiceProxy() { _ServiceUri = new Uri(Application.Current.Host.Source, ServiceUrl); var elements = new BindingElementCollection { new BinaryMessageEncodingBindingElement(), new HttpTransportBindingElement { MaxBufferSize = 2147483647, MaxReceivedMessageSize = 2147483647 } }; // order of entries in collection is significant: dumb _Binding = new CustomBinding(elements); _EndPointAddress = new EndpointAddress(_ServiceUri); } #region IServiceProxy Members /// <summary> /// Used to call a WCF service operation. /// </summary> /// <typeparam name="T">The type of EventArgs that will be returned by the service operation.</typeparam> /// <param name="callback">The method to call once the WCF call returns (the callback).</param> /// <param name="parameters">Any parameters that the service operation expects.</param> public void CallService<T>(EventHandler<T> callback, params object[] parameters) where T : EventArgs { try { var proxy = new JobPlanServiceClient(_Binding, _EndPointAddress); string action = typeof (T).Name.Replace(CompletedEventargs, String.Empty); _ProxyType.GetEvent(action + Completed).AddEventHandler(proxy, callback); _ProxyType.InvokeMember(action + Async, BindingFlags.InvokeMethod, null, proxy, parameters); } catch (Exception exp) { MessageBox.Show("Unable to use ServiceProxy.CallService to retrieve data: " + exp.Message); } } #endregion } The relative path support for calling services in Silverlight 4 definitely simplifies code and is yet another good reason to move from Silverlight 3 to Silverlight 4.   For more information about onsite, online and video training, mentoring and consulting solutions for .NET, SharePoint or Silverlight please visit http://www.thewahlingroup.com.

    Read the article

  • Silverlight Recruiting Application Part 5 - Jobs Module / View

    Now we starting getting into a more code-heavy portion of this series, thankfully though this means the groundwork is all set for the most part and after adding the modules we will have a complete application that can be provided with full source. The Jobs module will have two concerns- adding and maintaining jobs that can then be broadcast out to the website. How they are displayed on the site will be handled by our admin system (which will just poll from this common database), so we aren't too concerned with that, but rather with getting the information into the system and allowing the backend administration/HR users to keep things up to date. Since there is a fair bit of information that we want to display, we're going to move editing to a separate view so we can get all that information in an easy-to-use spot. With all the files created for this module, the project looks something like this: And now... on to the code. XAML for the Job Posting View All we really need for the Job Posting View is a RadGridView and a few buttons. This will let us both show off records and perform operations on the records without much hassle. That XAML is going to look something like this: 01.<Grid x:Name="LayoutRoot" 02.Background="White"> 03.<Grid.RowDefinitions> 04.<RowDefinition Height="30" /> 05.<RowDefinition /> 06.</Grid.RowDefinitions> 07.<StackPanel Orientation="Horizontal"> 08.<Button x:Name="xAddRecordButton" 09.Content="Add Job" 10.Width="120" 11.cal:Click.Command="{Binding AddRecord}" 12.telerik:StyleManager.Theme="Windows7" /> 13.<Button x:Name="xEditRecordButton" 14.Content="Edit Job" 15.Width="120" 16.cal:Click.Command="{Binding EditRecord}" 17.telerik:StyleManager.Theme="Windows7" /> 18.</StackPanel> 19.<telerikGrid:RadGridView x:Name="xJobsGrid" 20.Grid.Row="1" 21.IsReadOnly="True" 22.AutoGenerateColumns="False" 23.ColumnWidth="*" 24.RowDetailsVisibilityMode="VisibleWhenSelected" 25.ItemsSource="{Binding MyJobs}" 26.SelectedItem="{Binding SelectedJob, Mode=TwoWay}" 27.command:SelectedItemChangedEventClass.Command="{Binding SelectedItemChanged}"> 28.<telerikGrid:RadGridView.Columns> 29.<telerikGrid:GridViewDataColumn Header="Job Title" 30.DataMemberBinding="{Binding JobTitle}" 31.UniqueName="JobTitle" /> 32.<telerikGrid:GridViewDataColumn Header="Location" 33.DataMemberBinding="{Binding Location}" 34.UniqueName="Location" /> 35.<telerikGrid:GridViewDataColumn Header="Resume Required" 36.DataMemberBinding="{Binding NeedsResume}" 37.UniqueName="NeedsResume" /> 38.<telerikGrid:GridViewDataColumn Header="CV Required" 39.DataMemberBinding="{Binding NeedsCV}" 40.UniqueName="NeedsCV" /> 41.<telerikGrid:GridViewDataColumn Header="Overview Required" 42.DataMemberBinding="{Binding NeedsOverview}" 43.UniqueName="NeedsOverview" /> 44.<telerikGrid:GridViewDataColumn Header="Active" 45.DataMemberBinding="{Binding IsActive}" 46.UniqueName="IsActive" /> 47.</telerikGrid:RadGridView.Columns> 48.</telerikGrid:RadGridView> 49.</Grid> I'll explain what's happening here by line numbers: Lines 11 and 16: Using the same type of click commands as we saw in the Menu module, we tie the button clicks to delegate commands in the viewmodel. Line 25: The source for the jobs will be a collection in the viewmodel. Line 26: We also bind the selected item to a public property from the viewmodel for use in code. Line 27: We've turned the event into a command so we can handle it via code in the viewmodel. So those first three probably make sense to you as far as Silverlight/WPF binding magic is concerned, but for line 27... This actually comes from something I read onDamien Schenkelman's blog back in the day for creating an attached behavior from any event. So, any time you see me using command:Whatever.Command, the backing for it is actually something like this: SelectedItemChangedEventBehavior.cs: 01.public class SelectedItemChangedEventBehavior : CommandBehaviorBase<Telerik.Windows.Controls.DataControl> 02.{ 03.public SelectedItemChangedEventBehavior(DataControl element) 04.: base(element) 05.{ 06.element.SelectionChanged += new EventHandler<SelectionChangeEventArgs>(element_SelectionChanged); 07.} 08.void element_SelectionChanged(object sender, SelectionChangeEventArgs e) 09.{ 10.// We'll only ever allow single selection, so will only need item index 0 11.base.CommandParameter = e.AddedItems[0]; 12.base.ExecuteCommand(); 13.} 14.} SelectedItemChangedEventClass.cs: 01.public class SelectedItemChangedEventClass 02.{ 03.#region The Command Stuff 04.public static ICommand GetCommand(DependencyObject obj) 05.{ 06.return (ICommand)obj.GetValue(CommandProperty); 07.} 08.public static void SetCommand(DependencyObject obj, ICommand value) 09.{ 10.obj.SetValue(CommandProperty, value); 11.} 12.public static readonly DependencyProperty CommandProperty = 13.DependencyProperty.RegisterAttached("Command", typeof(ICommand), 14.typeof(SelectedItemChangedEventClass), new PropertyMetadata(OnSetCommandCallback)); 15.public static void OnSetCommandCallback(DependencyObject dependencyObject, DependencyPropertyChangedEventArgs e) 16.{ 17.DataControl element = dependencyObject as DataControl; 18.if (element != null) 19.{ 20.SelectedItemChangedEventBehavior behavior = GetOrCreateBehavior(element); 21.behavior.Command = e.NewValue as ICommand; 22.} 23.} 24.#endregion 25.public static SelectedItemChangedEventBehavior GetOrCreateBehavior(DataControl element) 26.{ 27.SelectedItemChangedEventBehavior behavior = element.GetValue(SelectedItemChangedEventBehaviorProperty) as SelectedItemChangedEventBehavior; 28.if (behavior == null) 29.{ 30.behavior = new SelectedItemChangedEventBehavior(element); 31.element.SetValue(SelectedItemChangedEventBehaviorProperty, behavior); 32.} 33.return behavior; 34.} 35.public static SelectedItemChangedEventBehavior GetSelectedItemChangedEventBehavior(DependencyObject obj) 36.{ 37.return (SelectedItemChangedEventBehavior)obj.GetValue(SelectedItemChangedEventBehaviorProperty); 38.} 39.public static void SetSelectedItemChangedEventBehavior(DependencyObject obj, SelectedItemChangedEventBehavior value) 40.{ 41.obj.SetValue(SelectedItemChangedEventBehaviorProperty, value); 42.} 43.public static readonly DependencyProperty SelectedItemChangedEventBehaviorProperty = 44.DependencyProperty.RegisterAttached("SelectedItemChangedEventBehavior", 45.typeof(SelectedItemChangedEventBehavior), typeof(SelectedItemChangedEventClass), null); 46.} These end up looking very similar from command to command, but in a nutshell you create a command based on any event, determine what the parameter for it will be, then execute. It attaches via XAML and ties to a DelegateCommand in the viewmodel, so you get the full event experience (since some controls get a bit event-rich for added functionality). Simple enough, right? Viewmodel for the Job Posting View The Viewmodel is going to need to handle all events going back and forth, maintaining interactions with the data we are using, and both publishing and subscribing to events. Rather than breaking this into tons of little pieces, I'll give you a nice view of the entire viewmodel and then hit up the important points line-by-line: 001.public class JobPostingViewModel : ViewModelBase 002.{ 003.private readonly IEventAggregator eventAggregator; 004.private readonly IRegionManager regionManager; 005.public DelegateCommand<object> AddRecord { get; set; } 006.public DelegateCommand<object> EditRecord { get; set; } 007.public DelegateCommand<object> SelectedItemChanged { get; set; } 008.public RecruitingContext context; 009.private QueryableCollectionView _myJobs; 010.public QueryableCollectionView MyJobs 011.{ 012.get { return _myJobs; } 013.} 014.private QueryableCollectionView _selectionJobActionHistory; 015.public QueryableCollectionView SelectedJobActionHistory 016.{ 017.get { return _selectionJobActionHistory; } 018.} 019.private JobPosting _selectedJob; 020.public JobPosting SelectedJob 021.{ 022.get { return _selectedJob; } 023.set 024.{ 025.if (value != _selectedJob) 026.{ 027._selectedJob = value; 028.NotifyChanged("SelectedJob"); 029.} 030.} 031.} 032.public SubscriptionToken editToken = new SubscriptionToken(); 033.public SubscriptionToken addToken = new SubscriptionToken(); 034.public JobPostingViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 035.{ 036.// set Unity items 037.this.eventAggregator = eventAgg; 038.this.regionManager = regionmanager; 039.// load our context 040.context = new RecruitingContext(); 041.this._myJobs = new QueryableCollectionView(context.JobPostings); 042.context.Load(context.GetJobPostingsQuery()); 043.// set command events 044.this.AddRecord = new DelegateCommand<object>(this.AddNewRecord); 045.this.EditRecord = new DelegateCommand<object>(this.EditExistingRecord); 046.this.SelectedItemChanged = new DelegateCommand<object>(this.SelectedRecordChanged); 047.SetSubscriptions(); 048.} 049.#region DelegateCommands from View 050.public void AddNewRecord(object obj) 051.{ 052.this.eventAggregator.GetEvent<AddJobEvent>().Publish(true); 053.} 054.public void EditExistingRecord(object obj) 055.{ 056.if (_selectedJob == null) 057.{ 058.this.eventAggregator.GetEvent<NotifyUserEvent>().Publish("No job selected."); 059.} 060.else 061.{ 062.this._myJobs.EditItem(this._selectedJob); 063.this.eventAggregator.GetEvent<EditJobEvent>().Publish(this._selectedJob); 064.} 065.} 066.public void SelectedRecordChanged(object obj) 067.{ 068.if (obj.GetType() == typeof(ActionHistory)) 069.{ 070.// event bubbles up so we don't catch items from the ActionHistory grid 071.} 072.else 073.{ 074.JobPosting job = obj as JobPosting; 075.GrabHistory(job.PostingID); 076.} 077.} 078.#endregion 079.#region Subscription Declaration and Events 080.public void SetSubscriptions() 081.{ 082.EditJobCompleteEvent editComplete = eventAggregator.GetEvent<EditJobCompleteEvent>(); 083.if (editToken != null) 084.editComplete.Unsubscribe(editToken); 085.editToken = editComplete.Subscribe(this.EditCompleteEventHandler); 086.AddJobCompleteEvent addComplete = eventAggregator.GetEvent<AddJobCompleteEvent>(); 087.if (addToken != null) 088.addComplete.Unsubscribe(addToken); 089.addToken = addComplete.Subscribe(this.AddCompleteEventHandler); 090.} 091.public void EditCompleteEventHandler(bool complete) 092.{ 093.if (complete) 094.{ 095.JobPosting thisJob = _myJobs.CurrentEditItem as JobPosting; 096.this._myJobs.CommitEdit(); 097.this.context.SubmitChanges((s) => 098.{ 099.ActionHistory myAction = new ActionHistory(); 100.myAction.PostingID = thisJob.PostingID; 101.myAction.Description = String.Format("Job '{0}' has been edited by {1}", thisJob.JobTitle, "default user"); 102.myAction.TimeStamp = DateTime.Now; 103.eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 104.} 105., null); 106.} 107.else 108.{ 109.this._myJobs.CancelEdit(); 110.} 111.this.MakeMeActive(this.regionManager, "MainRegion", "JobPostingsView"); 112.} 113.public void AddCompleteEventHandler(JobPosting job) 114.{ 115.if (job == null) 116.{ 117.// do nothing, new job add cancelled 118.} 119.else 120.{ 121.this.context.JobPostings.Add(job); 122.this.context.SubmitChanges((s) => 123.{ 124.ActionHistory myAction = new ActionHistory(); 125.myAction.PostingID = job.PostingID; 126.myAction.Description = String.Format("Job '{0}' has been added by {1}", job.JobTitle, "default user"); 127.myAction.TimeStamp = DateTime.Now; 128.eventAggregator.GetEvent<AddActionEvent>().Publish(myAction); 129.} 130., null); 131.} 132.this.MakeMeActive(this.regionManager, "MainRegion", "JobPostingsView"); 133.} 134.#endregion 135.public void GrabHistory(int postID) 136.{ 137.context.ActionHistories.Clear(); 138._selectionJobActionHistory = new QueryableCollectionView(context.ActionHistories); 139.context.Load(context.GetHistoryForJobQuery(postID)); 140.} Taking it from the top, we're injecting an Event Aggregator and Region Manager for use down the road and also have the public DelegateCommands (just like in the Menu module). We also grab a reference to our context, which we'll obviously need for data, then set up a few fields with public properties tied to them. We're also setting subscription tokens, which we have not yet seen but I will get into below. The AddNewRecord (50) and EditExistingRecord (54) methods should speak for themselves for functionality, the one thing of note is we're sending events off to the Event Aggregator which some module, somewhere will take care of. Since these aren't entirely relying on one another, the Jobs View doesn't care if anyone is listening, but it will publish AddJobEvent (52), NotifyUserEvent (58) and EditJobEvent (63)regardless. Don't mind the GrabHistory() method so much, that is just grabbing history items (visibly being created in the SubmitChanges callbacks), and adding them to the database. Every action will trigger a history event, so we'll know who modified what and when, just in case. ;) So where are we at? Well, if we click to Add a job, we publish an event, if we edit a job, we publish an event with the selected record (attained through the magic of binding). Where is this all going though? To the Viewmodel, of course! XAML for the AddEditJobView This is pretty straightforward except for one thing, noted below: 001.<Grid x:Name="LayoutRoot" 002.Background="White"> 003.<Grid x:Name="xEditGrid" 004.Margin="10" 005.validationHelper:ValidationScope.Errors="{Binding Errors}"> 006.<Grid.Background> 007.<LinearGradientBrush EndPoint="0.5,1" 008.StartPoint="0.5,0"> 009.<GradientStop Color="#FFC7C7C7" 010.Offset="0" /> 011.<GradientStop Color="#FFF6F3F3" 012.Offset="1" /> 013.</LinearGradientBrush> 014.</Grid.Background> 015.<Grid.RowDefinitions> 016.<RowDefinition Height="40" /> 017.<RowDefinition Height="40" /> 018.<RowDefinition Height="40" /> 019.<RowDefinition Height="100" /> 020.<RowDefinition Height="100" /> 021.<RowDefinition Height="100" /> 022.<RowDefinition Height="40" /> 023.<RowDefinition Height="40" /> 024.<RowDefinition Height="40" /> 025.</Grid.RowDefinitions> 026.<Grid.ColumnDefinitions> 027.<ColumnDefinition Width="150" /> 028.<ColumnDefinition Width="150" /> 029.<ColumnDefinition Width="300" /> 030.<ColumnDefinition Width="100" /> 031.</Grid.ColumnDefinitions> 032.<!-- Title --> 033.<TextBlock Margin="8" 034.Text="{Binding AddEditString}" 035.TextWrapping="Wrap" 036.Grid.Column="1" 037.Grid.ColumnSpan="2" 038.FontSize="16" /> 039.<!-- Data entry area--> 040. 041.<TextBlock Margin="8,0,0,0" 042.Style="{StaticResource LabelTxb}" 043.Grid.Row="1" 044.Text="Job Title" 045.VerticalAlignment="Center" /> 046.<TextBox x:Name="xJobTitleTB" 047.Margin="0,8" 048.Grid.Column="1" 049.Grid.Row="1" 050.Text="{Binding activeJob.JobTitle, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 051.Grid.ColumnSpan="2" /> 052.<TextBlock Margin="8,0,0,0" 053.Grid.Row="2" 054.Text="Location" 055.d:LayoutOverrides="Height" 056.VerticalAlignment="Center" /> 057.<TextBox x:Name="xLocationTB" 058.Margin="0,8" 059.Grid.Column="1" 060.Grid.Row="2" 061.Text="{Binding activeJob.Location, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 062.Grid.ColumnSpan="2" /> 063. 064.<TextBlock Margin="8,11,8,0" 065.Grid.Row="3" 066.Text="Description" 067.TextWrapping="Wrap" 068.VerticalAlignment="Top" /> 069. 070.<TextBox x:Name="xDescriptionTB" 071.Height="84" 072.TextWrapping="Wrap" 073.ScrollViewer.VerticalScrollBarVisibility="Auto" 074.Grid.Column="1" 075.Grid.Row="3" 076.Text="{Binding activeJob.Description, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 077.Grid.ColumnSpan="2" /> 078.<TextBlock Margin="8,11,8,0" 079.Grid.Row="4" 080.Text="Requirements" 081.TextWrapping="Wrap" 082.VerticalAlignment="Top" /> 083. 084.<TextBox x:Name="xRequirementsTB" 085.Height="84" 086.TextWrapping="Wrap" 087.ScrollViewer.VerticalScrollBarVisibility="Auto" 088.Grid.Column="1" 089.Grid.Row="4" 090.Text="{Binding activeJob.Requirements, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 091.Grid.ColumnSpan="2" /> 092.<TextBlock Margin="8,11,8,0" 093.Grid.Row="5" 094.Text="Qualifications" 095.TextWrapping="Wrap" 096.VerticalAlignment="Top" /> 097. 098.<TextBox x:Name="xQualificationsTB" 099.Height="84" 100.TextWrapping="Wrap" 101.ScrollViewer.VerticalScrollBarVisibility="Auto" 102.Grid.Column="1" 103.Grid.Row="5" 104.Text="{Binding activeJob.Qualifications, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}" 105.Grid.ColumnSpan="2" /> 106.<!-- Requirements Checkboxes--> 107. 108.<CheckBox x:Name="xResumeRequiredCB" Margin="8,8,8,15" 109.Content="Resume Required" 110.Grid.Row="6" 111.Grid.ColumnSpan="2" 112.IsChecked="{Binding activeJob.NeedsResume, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 113. 114.<CheckBox x:Name="xCoverletterRequiredCB" Margin="8,8,8,15" 115.Content="Cover Letter Required" 116.Grid.Column="2" 117.Grid.Row="6" 118.IsChecked="{Binding activeJob.NeedsCV, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 119. 120.<CheckBox x:Name="xOverviewRequiredCB" Margin="8,8,8,15" 121.Content="Overview Required" 122.Grid.Row="7" 123.Grid.ColumnSpan="2" 124.IsChecked="{Binding activeJob.NeedsOverview, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 125. 126.<CheckBox x:Name="xJobActiveCB" Margin="8,8,8,15" 127.Content="Job is Active" 128.Grid.Column="2" 129.Grid.Row="7" 130.IsChecked="{Binding activeJob.IsActive, Mode=TwoWay, NotifyOnValidationError=True, ValidatesOnExceptions=True}"/> 131. 132.<!-- Buttons --> 133. 134.<Button x:Name="xAddEditButton" Margin="8,8,0,10" 135.Content="{Binding AddEditButtonString}" 136.cal:Click.Command="{Binding AddEditCommand}" 137.Grid.Column="2" 138.Grid.Row="8" 139.HorizontalAlignment="Left" 140.Width="125" 141.telerik:StyleManager.Theme="Windows7" /> 142. 143.<Button x:Name="xCancelButton" HorizontalAlignment="Right" 144.Content="Cancel" 145.cal:Click.Command="{Binding CancelCommand}" 146.Margin="0,8,8,10" 147.Width="125" 148.Grid.Column="2" 149.Grid.Row="8" 150.telerik:StyleManager.Theme="Windows7" /> 151.</Grid> 152.</Grid> The 'validationHelper:ValidationScope' line may seem odd. This is a handy little trick for catching current and would-be validation errors when working in this whole setup. This all comes from an approach found on theJoy Of Code blog, although it looks like the story for this will be changing slightly with new advances in SL4/WCF RIA Services, so this section can definitely get an overhaul a little down the road. The code is the fun part of all this, so let us see what's happening under the hood. Viewmodel for the AddEditJobView We are going to see some of the same things happening here, so I'll skip over the repeat info and get right to the good stuff: 001.public class AddEditJobViewModel : ViewModelBase 002.{ 003.private readonly IEventAggregator eventAggregator; 004.private readonly IRegionManager regionManager; 005. 006.public RecruitingContext context; 007. 008.private JobPosting _activeJob; 009.public JobPosting activeJob 010.{ 011.get { return _activeJob; } 012.set 013.{ 014.if (_activeJob != value) 015.{ 016._activeJob = value; 017.NotifyChanged("activeJob"); 018.} 019.} 020.} 021. 022.public bool isNewJob; 023. 024.private string _addEditString; 025.public string AddEditString 026.{ 027.get { return _addEditString; } 028.set 029.{ 030.if (_addEditString != value) 031.{ 032._addEditString = value; 033.NotifyChanged("AddEditString"); 034.} 035.} 036.} 037. 038.private string _addEditButtonString; 039.public string AddEditButtonString 040.{ 041.get { return _addEditButtonString; } 042.set 043.{ 044.if (_addEditButtonString != value) 045.{ 046._addEditButtonString = value; 047.NotifyChanged("AddEditButtonString"); 048.} 049.} 050.} 051. 052.public SubscriptionToken addJobToken = new SubscriptionToken(); 053.public SubscriptionToken editJobToken = new SubscriptionToken(); 054. 055.public DelegateCommand<object> AddEditCommand { get; set; } 056.public DelegateCommand<object> CancelCommand { get; set; } 057. 058.private ObservableCollection<ValidationError> _errors = new ObservableCollection<ValidationError>(); 059.public ObservableCollection<ValidationError> Errors 060.{ 061.get { return _errors; } 062.} 063. 064.private ObservableCollection<ValidationResult> _valResults = new ObservableCollection<ValidationResult>(); 065.public ObservableCollection<ValidationResult> ValResults 066.{ 067.get { return this._valResults; } 068.} 069. 070.public AddEditJobViewModel(IEventAggregator eventAgg, IRegionManager regionmanager) 071.{ 072.// set Unity items 073.this.eventAggregator = eventAgg; 074.this.regionManager = regionmanager; 075. 076.context = new RecruitingContext(); 077. 078.AddEditCommand = new DelegateCommand<object>(this.AddEditJobCommand); 079.CancelCommand = new DelegateCommand<object>(this.CancelAddEditCommand); 080. 081.SetSubscriptions(); 082.} 083. 084.#region Subscription Declaration and Events 085. 086.public void SetSubscriptions() 087.{ 088.AddJobEvent addJob = this.eventAggregator.GetEvent<AddJobEvent>(); 089. 090.if (addJobToken != null) 091.addJob.Unsubscribe(addJobToken); 092. 093.addJobToken = addJob.Subscribe(this.AddJobEventHandler); 094. 095.EditJobEvent editJob = this.eventAggregator.GetEvent<EditJobEvent>(); 096. 097.if (editJobToken != null) 098.editJob.Unsubscribe(editJobToken); 099. 100.editJobToken = editJob.Subscribe(this.EditJobEventHandler); 101.} 102. 103.public void AddJobEventHandler(bool isNew) 104.{ 105.this.activeJob = null; 106.this.activeJob = new JobPosting(); 107.this.activeJob.IsActive = true; // We assume that we want a new job to go up immediately 108.this.isNewJob = true; 109.this.AddEditString = "Add New Job Posting"; 110.this.AddEditButtonString = "Add Job"; 111. 112.MakeMeActive(this.regionManager, "MainRegion", "AddEditJobView"); 113.} 114. 115.public void EditJobEventHandler(JobPosting editJob) 116.{ 117.this.activeJob = null; 118.this.activeJob = editJob; 119.this.isNewJob = false; 120.this.AddEditString = "Edit Job Posting"; 121.this.AddEditButtonString = "Edit Job"; 122. 123.MakeMeActive(this.regionManager, "MainRegion", "AddEditJobView"); 124.} 125. 126.#endregion 127. 128.#region DelegateCommands from View 129. 130.public void AddEditJobCommand(object obj) 131.{ 132.if (this.Errors.Count > 0) 133.{ 134.List<string> errorMessages = new List<string>(); 135. 136.foreach (var valR in this.Errors) 137.{ 138.errorMessages.Add(valR.Exception.Message); 139.} 140. 141.this.eventAggregator.GetEvent<DisplayValidationErrorsEvent>().Publish(errorMessages); 142. 143.} 144.else if (!Validator.TryValidateObject(this.activeJob, new ValidationContext(this.activeJob, null, null), _valResults, true)) 145.{ 146.List<string> errorMessages = new List<string>(); 147. 148.foreach (var valR in this._valResults) 149.{ 150.errorMessages.Add(valR.ErrorMessage); 151.} 152. 153.this._valResults.Clear(); 154. 155.this.eventAggregator.GetEvent<DisplayValidationErrorsEvent>().Publish(errorMessages); 156.} 157.else 158.{ 159.if (this.isNewJob) 160.{ 161.this.eventAggregator.GetEvent<AddJobCompleteEvent>().Publish(this.activeJob); 162.} 163.else 164.{ 165.this.eventAggregator.GetEvent<EditJobCompleteEvent>().Publish(true); 166.} 167.} 168.} 169. 170.public void CancelAddEditCommand(object obj) 171.{ 172.if (this.isNewJob) 173.{ 174.this.eventAggregator.GetEvent<AddJobCompleteEvent>().Publish(null); 175.} 176.else 177.{ 178.this.eventAggregator.GetEvent<EditJobCompleteEvent>().Publish(false); 179.} 180.} 181. 182.#endregion 183.} 184.} We start seeing something new on line 103- the AddJobEventHandler will create a new job and set that to the activeJob item on the ViewModel. When this is all set, the view calls that familiar MakeMeActive method to activate itself. I made a bit of a management call on making views self-activate like this, but I figured it works for one reason. As I create this application, views may not exist that I have in mind, so after a view receives its 'ping' from being subscribed to an event, it prepares whatever it needs to do and then goes active. This way if I don't have 'edit' hooked up, I can click as the day is long on the main view and won't get lost in an empty region. Total personal preference here. :) Everything else should again be pretty straightforward, although I do a bit of validation checking in the AddEditJobCommand, which can either fire off an event back to the main view/viewmodel if everything is a success or sent a list of errors to our notification module, which pops open a RadWindow with the alerts if any exist. As a bonus side note, here's what my WCF RIA Services metadata looks like for handling all of the validation: private JobPostingMetadata() { } [StringLength(2500, ErrorMessage = "Description should be more than one and less than 2500 characters.", MinimumLength = 1)] [Required(ErrorMessage = "Description is required.")] public string Description; [Required(ErrorMessage="Active Status is Required")] public bool IsActive; [StringLength(100, ErrorMessage = "Posting title must be more than 3 but less than 100 characters.", MinimumLength = 3)] [Required(ErrorMessage = "Job Title is required.")] public bool JobTitle; [Required] public string Location; public bool NeedsCV; public bool NeedsOverview; public bool NeedsResume; public int PostingID; [Required(ErrorMessage="Qualifications are required.")] [StringLength(2500, ErrorMessage="Qualifications should be more than one and less than 2500 characters.", MinimumLength=1)] public string Qualifications; [StringLength(2500, ErrorMessage = "Requirements should be more than one and less than 2500 characters.", MinimumLength = 1)] [Required(ErrorMessage="Requirements are required.")] public string Requirements;   The RecruitCB Alternative See all that Xaml I pasted above? Those are now two pieces sitting in the JobsView.xaml file now. The only real difference is that the xEditGrid now sits in the same place as xJobsGrid, with visibility swapping out between the two for a quick switch. I also took out all the cal: and command: command references and replaced Button events with clicks and the Grid selection command replaced with a SelectedItemChanged event. Also, at the bottom of the xEditGrid after the last button, I add a ValidationSummary (with Visibility=Collapsed) to catch any errors that are popping up. Simple as can be, and leads to this being the single code-behind file: 001.public partial class JobsView : UserControl 002.{ 003.public RecruitingContext context; 004.public JobPosting activeJob; 005.public bool isNew; 006.private ObservableCollection<ValidationResult> _valResults = new ObservableCollection<ValidationResult>(); 007.public ObservableCollection<ValidationResult> ValResults 008.{ 009.get { return this._valResults; } 010.} 011.public JobsView() 012.{ 013.InitializeComponent(); 014.this.Loaded += new RoutedEventHandler(JobsView_Loaded); 015.} 016.void JobsView_Loaded(object sender, RoutedEventArgs e) 017.{ 018.context = new RecruitingContext(); 019.xJobsGrid.ItemsSource = context.JobPostings; 020.context.Load(context.GetJobPostingsQuery()); 021.} 022.private void xAddRecordButton_Click(object sender, RoutedEventArgs e) 023.{ 024.activeJob = new JobPosting(); 025.isNew = true; 026.xAddEditTitle.Text = "Add a Job Posting"; 027.xAddEditButton.Content = "Add"; 028.xEditGrid.DataContext = activeJob; 029.HideJobsGrid(); 030.} 031.private void xEditRecordButton_Click(object sender, RoutedEventArgs e) 032.{ 033.activeJob = xJobsGrid.SelectedItem as JobPosting; 034.isNew = false; 035.xAddEditTitle.Text = "Edit a Job Posting"; 036.xAddEditButton.Content = "Edit"; 037.xEditGrid.DataContext = activeJob; 038.HideJobsGrid(); 039.} 040.private void xAddEditButton_Click(object sender, RoutedEventArgs e) 041.{ 042.if (!Validator.TryValidateObject(this.activeJob, new ValidationContext(this.activeJob, null, null), _valResults, true)) 043.{ 044.List<string> errorMessages = new List<string>(); 045.foreach (var valR in this._valResults) 046.{ 047.errorMessages.Add(valR.ErrorMessage); 048.} 049.this._valResults.Clear(); 050.ShowErrors(errorMessages); 051.} 052.else if (xSummary.Errors.Count > 0) 053.{ 054.List<string> errorMessages = new List<string>(); 055.foreach (var err in xSummary.Errors) 056.{ 057.errorMessages.Add(err.Message); 058.} 059.ShowErrors(errorMessages); 060.} 061.else 062.{ 063.if (this.isNew) 064.{ 065.context.JobPostings.Add(activeJob); 066.context.SubmitChanges((s) => 067.{ 068.ActionHistory thisAction = new ActionHistory(); 069.thisAction.PostingID = activeJob.PostingID; 070.thisAction.Description = String.Format("Job '{0}' has been edited by {1}", activeJob.JobTitle, "default user"); 071.thisAction.TimeStamp = DateTime.Now; 072.context.ActionHistories.Add(thisAction); 073.context.SubmitChanges(); 074.}, null); 075.} 076.else 077.{ 078.context.SubmitChanges((s) => 079.{ 080.ActionHistory thisAction = new ActionHistory(); 081.thisAction.PostingID = activeJob.PostingID; 082.thisAction.Description = String.Format("Job '{0}' has been added by {1}", activeJob.JobTitle, "default user"); 083.thisAction.TimeStamp = DateTime.Now; 084.context.ActionHistories.Add(thisAction); 085.context.SubmitChanges(); 086.}, null); 087.} 088.ShowJobsGrid(); 089.} 090.} 091.private void xCancelButton_Click(object sender, RoutedEventArgs e) 092.{ 093.ShowJobsGrid(); 094.} 095.private void ShowJobsGrid() 096.{ 097.xAddEditRecordButtonPanel.Visibility = Visibility.Visible; 098.xEditGrid.Visibility = Visibility.Collapsed; 099.xJobsGrid.Visibility = Visibility.Visible; 100.} 101.private void HideJobsGrid() 102.{ 103.xAddEditRecordButtonPanel.Visibility = Visibility.Collapsed; 104.xJobsGrid.Visibility = Visibility.Collapsed; 105.xEditGrid.Visibility = Visibility.Visible; 106.} 107.private void ShowErrors(List<string> errorList) 108.{ 109.string nm = "Errors received: \n"; 110.foreach (string anerror in errorList) 111.nm += anerror + "\n"; 112.RadWindow.Alert(nm); 113.} 114.} The first 39 lines should be pretty familiar, not doing anything too unorthodox to get this up and running. Once we hit the xAddEditButton_Click on line 40, we're still doing pretty much the same things except instead of checking the ValidationHelper errors, we both run a check on the current activeJob object as well as check the ValidationSummary errors list. Once that is set, we again use the callback of context.SubmitChanges (lines 68 and 78) to create an ActionHistory which we will use to track these items down the line. That's all? Essentially... yes. If you look back through this post, most of the code and adventures we have taken were just to get things working in the MVVM/Prism setup. Since I have the whole 'module' self-contained in a single JobView+code-behind setup, I don't have to worry about things like sending events off into space for someone to pick up, communicating through an Infrastructure project, or even re-inventing events to be used with attached behaviors. Everything just kinda works, and again with much less code. Here's a picture of the MVVM and Code-behind versions on the Jobs and AddEdit views, but since the functionality is the same in both apps you still cannot tell them apart (for two-strike): Looking ahead, the Applicants module is effectively the same thing as the Jobs module, so most of the code is being cut-and-pasted back and forth with minor tweaks here and there. So that one is being taken care of by me behind the scenes. Next time, we get into a new world of fun- the interview scheduling module, which will pull from available jobs and applicants for each interview being scheduled, tying everything together with RadScheduler to the rescue. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Get Current QuarterEnd for a given FYE Date

    - by Rohit Gupta
    Here is the code to get the Current Quarter End for a Given FYE Date: 1: public static DateTime ThisQuarterEnd(this DateTime date, DateTime fyeDate) 2: { 3: IEnumerable<DateTime> candidates = 4: QuartersInYear(date.Year, fyeDate.Month).Union(QuartersInYear(date.Year + 1, fyeDate.Month)); 5: return candidates.Where(d => d.Subtract(date).Days >= 0).First(); 6: } 7:  8: public static IEnumerable<DateTime> QuartersInYear(int year, int q4Month) 9: { 10: int q1Month = 3, q2Month = 6, q3Month = 9; 11: int q1year = year, q2year = year, q3year = year; 12: int q1Day = 31, q2Day = 31, q3Day = 31, q4Day = 31; 13:  14: 15: q3Month = q4Month - 3; 16: if (q3Month <= 0) 17: { 18: q3Month = q3Month + 12; 19: q3year = year - 1; 20: } 21: q2Month = q4Month - 6; 22: if (q2Month <= 0) 23: { 24: q2Month = q2Month + 12; 25: q2year = year - 1; 26: } 27: q1Month = q4Month - 9; 28: if (q1Month <= 0) 29: { 30: q1Month = q1Month + 12; 31: q1year = year - 1; 32: } 33:  34: q1Day = new DateTime(q1year, q1Month, 1).AddMonths(1).AddDays(-1).Day; 35: q2Day = new DateTime(q2year, q2Month, 1).AddMonths(1).AddDays(-1).Day; 36: q3Day = new DateTime(q3year, q3Month, 1).AddMonths(1).AddDays(-1).Day; 37: q4Day = new DateTime(year, q4Month, 1).AddMonths(1).AddDays(-1).Day; 38:  39: return new List<DateTime>() { 40: new DateTime(q1year, q1Month, q1Day), 41: new DateTime(q2year, q2Month, q2Day), 42: new DateTime(q3year, q3Month, q3Day), 43: new DateTime(year, q4Month, q4Day), 44: }; 45:  46: } The code to get the NextQuarterEnd is simple, just Change the Where clause to read d.Subtract(date).Days > 0 instead of d.Subtract(date).Days >= 0 1: public static DateTime NextQuarterEnd(this DateTime date, DateTime fyeDate) 2: { 3: IEnumerable<DateTime> candidates = 4: QuartersInYear(date.Year, fyeDate.Month).Union(QuartersInYear(date.Year + 1, fyeDate.Month)); 5: return candidates.Where(d => d.Subtract(date).Days > 0).First(); 6: } Also if you need to get the Quarter Label for a given Date, given a particular FYE date then following is the code to use: 1: public static string GetQuarterLabel(this DateTime date, DateTime fyeDate) 2: { 3: int q1Month = fyeDate.Month - 9, q2Month = fyeDate.Month - 6, q3Month = fyeDate.Month - 3; 4:  5: int year = date.Year, q1Year = date.Year, q2Year = date.Year, q3Year = date.Year; 6: 7: if (q1Month <= 0) 8: { 9: q1Month += 12; 10: q1Year = year + 1; 11: } 12: if (q2Month <= 0) 13: { 14: q2Month += 12; 15: q2Year = year + 1; 16: } 17: if (q3Month <= 0) 18: { 19: q3Month += 12; 20: q3Year = year + 1; 21: } 22:  23: string qtr = ""; 24: if (date.Month == q1Month) 25: { 26: qtr = "Qtr1"; 27: year = q1Year; 28: } 29: else if (date.Month == q2Month) 30: { 31: qtr = "Qtr2"; 32: year = q2Year; 33: } 34: else if (date.Month == q3Month) 35: { 36: qtr = "Qtr3"; 37: year = q3Year; 38: } 39: else if (date.Month == fyeDate.Month) 40: { 41: qtr = "Qtr4"; 42: year = date.Year; 43: } 44:  45: return string.Format("{0} - {1}", qtr, year.ToString()); 46: }

    Read the article

  • about the JOGL 2 problem

    - by Chuchinyi
    Please some help me about the JOGL 2 problem(Sorry for previous error format). I complied JOGL2Template.java ok. but execut it with following error. D:\java\java\jogl>javac JOGL2Template.java <== compile ok D:\java\java\jogl>java JOGL2Template <== execute error Exception in thread "main" java.lang.ExceptionInInitializerError at javax.media.opengl.GLProfile.<clinit>(GLProfile.java:1176) at JOGL2Template.<init>(JOGL2Template.java:24) at JOGL2Template.main(JOGL2Template.java:57) Caused by: java.lang.SecurityException: no certificate for gluegen-rt.dll in D:\ java\lib\gluegen-rt-natives-windows-i586.jar at com.jogamp.common.util.JarUtil.validateCertificate(JarUtil.java:350) at com.jogamp.common.util.JarUtil.validateCertificates(JarUtil.java:324) at com.jogamp.common.util.cache.TempJarCache.validateCertificates(TempJa rCache.java:328) at com.jogamp.common.util.cache.TempJarCache.bootstrapNativeLib(TempJarC ache.java:283) at com.jogamp.common.os.Platform$3.run(Platform.java:308) at java.security.AccessController.doPrivileged(Native Method) at com.jogamp.common.os.Platform.loadGlueGenRTImpl(Platform.java:298) at com.jogamp.common.os.Platform.<clinit>(Platform.java:207) ... 3 more there is JOGL2Template.java source code: import java.awt.Dimension; import java.awt.Frame; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import com.jogamp.opengl.util.FPSAnimator; import javax.swing.JFrame; /* * JOGL 2.0 Program Template For AWT applications */ public class JOGL2Template extends JFrame implements GLEventListener { private static final int CANVAS_WIDTH = 640; // Width of the drawable private static final int CANVAS_HEIGHT = 480; // Height of the drawable private static final int FPS = 60; // Animator's target frames per second // Constructor to create profile, caps, drawable, animator, and initialize Frame public JOGL2Template() { // Get the default OpenGL profile that best reflect your running platform. GLProfile glp = GLProfile.getDefault(); // Specifies a set of OpenGL capabilities, based on your profile. GLCapabilities caps = new GLCapabilities(glp); // Allocate a GLDrawable, based on your OpenGL capabilities. GLCanvas canvas = new GLCanvas(caps); canvas.setPreferredSize(new Dimension(CANVAS_WIDTH, CANVAS_HEIGHT)); canvas.addGLEventListener(this); // Create a animator that drives canvas' display() at 60 fps. final FPSAnimator animator = new FPSAnimator(canvas, FPS); addWindowListener(new WindowAdapter() { // For the close button @Override public void windowClosing(WindowEvent e) { // Use a dedicate thread to run the stop() to ensure that the // animator stops before program exits. new Thread() { @Override public void run() { animator.stop(); System.exit(0); } }.start(); } }); add(canvas); pack(); setTitle("OpenGL 2 Test"); setVisible(true); animator.start(); // Start the animator } public static void main(String[] args) { new JOGL2Template(); } @Override public void init(GLAutoDrawable drawable) { // Your OpenGL codes to perform one-time initialization tasks // such as setting up of lights and display lists. } @Override public void display(GLAutoDrawable drawable) { // Your OpenGL graphic rendering codes for each refresh. } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int w, int h) { // Your OpenGL codes to set up the view port, projection mode and view volume. } @Override public void dispose(GLAutoDrawable drawable) { // Hardly used. } }

    Read the article

  • Unit Testing DateTime – The Crazy Way

    - by João Angelo
    We all know that the process of unit testing code that depends on DateTime, particularly the current time provided through the static properties (Now, UtcNow and Today), it’s a PITA. If you go ask how to unit test DateTime.Now on stackoverflow I’ll bet that you’ll get two kind of answers: Encapsulate the current time in your own interface and use a standard mocking framework; Pull out the big guns like Typemock Isolator, JustMock or Microsoft Moles/Fakes and mock the static property directly. Now each alternative has is pros and cons and I would have to say that I glean more to the second approach because the first adds a layer of abstraction just for the sake of testability. However, the second approach depends on commercial tools that not every shop wants to buy or in the not so friendly Microsoft Moles. (Sidenote: Moles is now named Fakes and it will ship with VS 2012) This tends to leave people without an acceptable and simple solution so after reading another of these types of questions in SO I came up with yet another alternative, one based on the first alternative that I presented here but tries really hard to not get in your way with yet another layer of abstraction. So, without further dues, I present you, the Tardis. The Tardis is single section of conditionally compiled code that overrides the meaning of the DateTime expression inside a single class. You still get the normal coding experience of using DateTime all over the place, but in a DEBUG compilation your tests will be able to mock every static method or property of the DateTime class. An example follows, while the full Tardis code can be downloaded from GitHub: using System; using NSubstitute; using NUnit.Framework; using Tardis; public class Example { public Example() : this(string.Empty) { } public Example(string title) { #if DEBUG this.DateTime = DateTimeProvider.Default; this.Initialize(title); } internal IDateTimeProvider DateTime { get; set; } internal Example(string title, IDateTimeProvider provider) { this.DateTime = provider; #endif this.Initialize(title); } private void Initialize(string title) { this.Title = title; this.CreatedAt = DateTime.UtcNow; } private string title; public string Title { get { return this.title; } set { this.title = value; this.UpdatedAt = DateTime.UtcNow; } } public DateTime CreatedAt { get; private set; } public DateTime UpdatedAt { get; private set; } } public class TExample { public void T001() { // Arrange var tardis = Substitute.For<IDateTimeProvider>(); tardis.UtcNow.Returns(new DateTime(2000, 1, 1, 6, 6, 6)); // Act var sut = new Example("Title", tardis); // Assert Assert.That(sut.CreatedAt, Is.EqualTo(tardis.UtcNow)); } public void T002() { // Arrange var tardis = Substitute.For<IDateTimeProvider>(); var sut = new Example("Title", tardis); tardis.UtcNow.Returns(new DateTime(2000, 1, 1, 6, 6, 6)); // Act sut.Title = "Updated"; // Assert Assert.That(sut.UpdatedAt, Is.EqualTo(tardis.UtcNow)); } } This approach is also suitable for other similar classes with commonly used static methods or properties like the ConfigurationManager class.

    Read the article

  • Improvements to Joshua Bloch's Builder Design Pattern?

    - by Jason Fotinatos
    Back in 2007, I read an article about Joshua Blochs take on the "builder pattern" and how it could be modified to improve the overuse of constructors and setters, especially when an object has a large number of properties, most of which are optional. A brief summary of this design pattern is articled here [http://rwhansen.blogspot.com/2007/07/theres-builder-pattern-that-joshua.html]. I liked the idea, and have been using it since. The problem with it, while it is very clean and nice to use from the client perspective, implementing it can be a pain in the bum! There are so many different places in the object where a single property is reference, and thus creating the object, and adding a new property takes a lot of time. So...I had an idea. First, an example object in Joshua Bloch's style: Josh Bloch Style: public class OptionsJoshBlochStyle { private final String option1; private final int option2; // ...other options here <<<< public String getOption1() { return option1; } public int getOption2() { return option2; } public static class Builder { private String option1; private int option2; // other options here <<<<< public Builder option1(String option1) { this.option1 = option1; return this; } public Builder option2(int option2) { this.option2 = option2; return this; } public OptionsJoshBlochStyle build() { return new OptionsJoshBlochStyle(this); } } private OptionsJoshBlochStyle(Builder builder) { this.option1 = builder.option1; this.option2 = builder.option2; // other options here <<<<<< } public static void main(String[] args) { OptionsJoshBlochStyle optionsVariation1 = new OptionsJoshBlochStyle.Builder().option1("firefox").option2(1).build(); OptionsJoshBlochStyle optionsVariation2 = new OptionsJoshBlochStyle.Builder().option1("chrome").option2(2).build(); } } Now my "improved" version: public class Options { // note that these are not final private String option1; private int option2; // ...other options here public String getOption1() { return option1; } public int getOption2() { return option2; } public static class Builder { private final Options options = new Options(); public Builder option1(String option1) { this.options.option1 = option1; return this; } public Builder option2(int option2) { this.options.option2 = option2; return this; } public Options build() { return options; } } private Options() { } public static void main(String[] args) { Options optionsVariation1 = new Options.Builder().option1("firefox").option2(1).build(); Options optionsVariation2 = new Options.Builder().option1("chrome").option2(2).build(); } } As you can see in my "improved version", there are 2 less places in which we need to add code about any addition properties (or options, in this case)! The only negative that I can see is that the instance variables of the outer class are not able to be final. But, the class is still immutable without this. Is there really any downside to this improvement in maintainability? There has to be a reason which he repeated the properties within the nested class that I'm not seeing?

    Read the article

  • Can't get bonding and bridging to work for KVM

    - by user9546
    Hi everyone. I can't for the life of me get bonding and bridging to work for the KVM setup I'm building. I'm using a fresh install (not an upgrade) of Ubuntu Server 10.10. I have 4 NICs on the same subnet (two intended for each of my two VMs). I'm trying to achieve the setup that Uthark describes here. But following his guidelines didn't work for me. My eth0 and eth1 did not come up, and "brctl show" showed that br0 didn't have any interfaces (the bond). I assumed it didn't work because he's using 10.4, and this article says there's a recent change in bonding: [I can't post more than one hyperlink per post because I'm a newbie.] I had to use this article to get my interfaces to work at all on the same subnet, which is why I have the post-up lines on some of my interfaces: [I can't post more than one hyperlink per post because I'm a newbie.] I installed ifenslave and ethtool. I also created /etc/modprobe.d/aliases.conf with the following content: alias bond0 bonding options bonding mode=6 miimon=100 downdelay=200 updelay=200 And I included "bonding" in /etc/modules So, after several approaches, here is my latest interfaces file: auto lo iface lo inet loopback auto eth5 iface eth5 inet manual auto br5 iface br5 inet static post-up /sbin/ip rule add from [network].79 lookup 10 post-up /sbin/ip route add table 10 default via [network].1 src [network].79 dev br5 address [network].79 netmask 255.255.255.0 network [network].0 broadcast [network].255 gateway [network].1 bridge_ports eth5 bridge_stp off bridge_fd 0 bridge_maxwait 0 auto eth2 iface eth2 inet manual auto br2 iface br2 inet static post-up /sbin/ip rule add from [network].78 lookup 11 post-up /sbin/ip route add table 11 default via [network].1 src [network].78 dev br2 address [network].78 netmask 255.255.255.0 network [network].0 broadcast [network].255 gateway [network].1 bridge_ports eth2 bridge_stp off bridge_fd 0 bridge_maxwait 0 iface eth0 inet manual iface eth1 inet manual auto bond0 iface bond0 inet static bond_miimon 100 bond_mode balance-alb up /sbin/ifenslave bond0 eth0 eth1 down /sbin/ifenslave -d bond0 eth0 eth1 auto br0 iface br0 inet static address [network].60 netmask 255.255.255.0 network [network].0 broadcast [network].255 gateway [network].1 bridge_ports bond0 eth2, eth5, br2, and br5 all seem to be working fine. The only other thing I could find that looked suspicious is an error regarding bonding in /var/log/messages: kernel: [ 3.828684] bonding: Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details. even though there is a bond-miimon line in /etc/network/interfaces (if that's what they're talking about). Also, the bond seems to go in and out of promiscuous mode several times on boot: Jan 20 14:19:02 kvmhost kernel: [ 3.902378] device bond0 entered promiscuous mode Jan 20 14:19:02 kvmhost kernel: [ 3.902390] device bond0 left promiscuous mode Jan 20 14:19:02 kvmhost kernel: [ 3.902393] device bond0 entered promiscuous mode Jan 20 14:19:02 kvmhost kernel: [ 3.902397] device bond0 left promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.998990] device bond0 entered promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.999005] device bond0 left promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.999008] device bond0 entered promiscuous mode Jan 20 14:19:03 kvmhost kernel: [ 4.999012] device bond0 left promiscuous mode Any advice would be greatly appreciated. It seems that this must be possible, based on other posts, but I can't see what I'm doing wrong. Thanks.

    Read the article

  • RPi and Java Embedded GPIO: Sensor Reading using Java Code

    - by hinkmond
    And, now to program the Java code for reading the fancy-schmancy static electricity sensor connected to your Raspberry Pi, here is the source code we'll use: First, we need to initialize ourselves... /* * Java Embedded Raspberry Pi GPIO Input app */ package jerpigpioinput; import java.io.FileWriter; import java.io.RandomAccessFile; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Calendar; /** * * @author hinkmond */ public class JerpiGPIOInput { static final String GPIO_IN = "in"; // Add which GPIO ports to read here static String[] GpioChannels = { "7" }; /** * @param args the command line arguments */ public static void main(String[] args) { try { /*** Init GPIO port(s) for input ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); for (String gpioChannel : GpioChannels) { System.out.println(gpioChannel); // Reset the port unexportFile.write(gpioChannel); unexportFile.flush(); // Set the port for use exportFile.write(gpioChannel); exportFile.flush(); // Open file handle to input/output direction control of port FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio" + gpioChannel + "/direction"); // Set port for input directionFile.write(GPIO_IN); directionFile.flush(); } And, next we will open up a RandomAccessFile pointer to the GPIO port. /*** Read data from each GPIO port ***/ RandomAccessFile[] raf = new RandomAccessFile[GpioChannels.length]; int sleepPeriod = 10; final int MAXBUF = 256; byte[] inBytes = new byte[MAXBUF]; String inLine; int zeroCounter = 0; // Get current timestamp with Calendar() Calendar cal; DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss.SSS"); String dateStr; // Open RandomAccessFile handle to each GPIO port for (int channum=0; channum Then, loop forever to read in the values to the console. // Loop forever while (true) { // Get current timestamp for latest event cal = Calendar.getInstance(); dateStr = dateFormat.format(cal.getTime()); // Use RandomAccessFile handle to read in GPIO port value for (int channum=0; channum Rinse, lather, and repeat... Compile this Java code on your host PC or Mac with javac from the JDK. Copy over the JAR or class file to your Raspberry Pi, "sudo -i" to become root, then start up this Java app in a shell on your RPi. That's it! You should see a "1" value get logged each time you bring a statically charged item (like a balloon you rub on the cat) near the antenna of the sensor. There you go. You've just seen how Java Embedded technology on the Raspberry Pi is an easy way to access sensors. Hinkmond

    Read the article

  • JOGL2 test compiles, but doesn't execute - help?

    - by Chuchinyi
    I have a problem with JOGL2. My JOGL2Template.java compiles fine, but executing it results in the following error: D:\java\java\jogl>javac JOGL2Template.java <== compile ok D:\java\java\jogl>java JOGL2Template <== execute error Exception in thread "main" java.lang.ExceptionInInitializerError at javax.media.opengl.GLProfile.<clinit>(GLProfile.java:1176) at JOGL2Template.<init>(JOGL2Template.java:24) at JOGL2Template.main(JOGL2Template.java:57) Caused by: java.lang.SecurityException: no certificate for gluegen-rt.dll in D:\ java\lib\gluegen-rt-natives-windows-i586.jar at com.jogamp.common.util.JarUtil.validateCertificate(JarUtil.java:350) at com.jogamp.common.util.JarUtil.validateCertificates(JarUtil.java:324) at com.jogamp.common.util.cache.TempJarCache.validateCertificates(TempJa rCache.java:328) at com.jogamp.common.util.cache.TempJarCache.bootstrapNativeLib(TempJarC ache.java:283) at com.jogamp.common.os.Platform$3.run(Platform.java:308) at java.security.AccessController.doPrivileged(Native Method) at com.jogamp.common.os.Platform.loadGlueGenRTImpl(Platform.java:298) at com.jogamp.common.os.Platform.<clinit>(Platform.java:207) ... 3 more Here is the JOGL2Template.java source code: import java.awt.Dimension; import java.awt.Frame; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import com.jogamp.opengl.util.FPSAnimator; import javax.swing.JFrame; /* * JOGL 2.0 Program Template For AWT applications */ public class JOGL2Template extends JFrame implements GLEventListener { private static final int CANVAS_WIDTH = 640; // Width of the drawable private static final int CANVAS_HEIGHT = 480; // Height of the drawable private static final int FPS = 60; // Animator's target frames per second // Constructor to create profile, caps, drawable, animator, and initialize Frame public JOGL2Template() { // Get the default OpenGL profile that best reflect your running platform. GLProfile glp = GLProfile.getDefault(); // Specifies a set of OpenGL capabilities, based on your profile. GLCapabilities caps = new GLCapabilities(glp); // Allocate a GLDrawable, based on your OpenGL capabilities. GLCanvas canvas = new GLCanvas(caps); canvas.setPreferredSize(new Dimension(CANVAS_WIDTH, CANVAS_HEIGHT)); canvas.addGLEventListener(this); // Create a animator that drives canvas' display() at 60 fps. final FPSAnimator animator = new FPSAnimator(canvas, FPS); addWindowListener(new WindowAdapter() { // For the close button @Override public void windowClosing(WindowEvent e) { // Use a dedicate thread to run the stop() to ensure that the // animator stops before program exits. new Thread() { @Override public void run() { animator.stop(); System.exit(0); } }.start(); } }); add(canvas); pack(); setTitle("OpenGL 2 Test"); setVisible(true); animator.start(); // Start the animator } public static void main(String[] args) { new JOGL2Template(); } @Override public void init(GLAutoDrawable drawable) { // Your OpenGL codes to perform one-time initialization tasks // such as setting up of lights and display lists. } @Override public void display(GLAutoDrawable drawable) { // Your OpenGL graphic rendering codes for each refresh. } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int w, int h) { // Your OpenGL codes to set up the view port, projection mode and view volume. } @Override public void dispose(GLAutoDrawable drawable) { // Hardly used. } } Any ideas what might be the cause of these errors?

    Read the article

  • With a little effort you can &ldquo;SEMI&rdquo;-protect your C# assemblies with obfuscation.

    - by mbcrump
    This method will not protect your assemblies from a experienced hacker. Everyday we see new keygens, cracks, serials being released that contain ways around copy protection from small companies. This is a simple process that will make a lot of hackers quit because so many others use nothing. If you were a thief would you pick the house that has security signs and an alarm or one that has nothing? To so begin: Obfuscation is the concealment of meaning in communication, making it confusing and harder to interpret. Lets begin by looking at the cartoon below:     You are probably familiar with the term and probably ignored this like most programmers ignore user security. Today, I’m going to show you reflection and a way to obfuscate it. Please understand that I am aware of ways around this, but I believe some security is better than no security.  In this sample program below, the code appears exactly as it does in Visual Studio. When the program runs, you get either a true or false in a console window. Sample Program. using System; using System.Diagnostics; using System.Linq;   namespace ObfuscateMe {     class Program     {                static void Main(string[] args)         {               Console.WriteLine(IsProcessOpen("notepad")); //Returns a True or False depending if you have notepad running.             Console.ReadLine();         }             public static bool IsProcessOpen(string name)         {             return Process.GetProcesses().Any(clsProcess => clsProcess.ProcessName.Contains(name));         }     } }   Pretend, that this is a commercial application. The hacker will only have the executable and maybe a few config files, etc. After reviewing the executable, he can determine if it was produced in .NET by examing the file in ILDASM or Redgate’s Reflector. We are going to examine the file using RedGate’s Reflector. Upon launch, we simply drag/drop the exe over to the application. We have the following for the Main method:   and for the IsProcessOpen method:     Without any other knowledge as to how this works, the hacker could export the exe and get vs project build or copy this code in and our application would run. Using Reflector output. using System; using System.Diagnostics; using System.Linq;   namespace ObfuscateMe {     class Program     {                static void Main(string[] args)         {               Console.WriteLine(IsProcessOpen("notepad"));             Console.ReadLine();         }             public static bool IsProcessOpen(string name)         {             return Process.GetProcesses().Any<Process>(delegate(Process clsProcess)             {                 return clsProcess.ProcessName.Contains(name);             });         }       } } The code is not identical, but returns the same value. At this point, with a little bit of effort you could prevent the hacker from reverse engineering your code so quickly by using Eazfuscator.NET. Eazfuscator.NET is just one of many programs built for this. Visual Studio ships with a community version of Dotfoscutor. So download and load Eazfuscator.NET and drag/drop your exectuable/project into the window. It will work for a few minutes depending if you have a quad-core or not. After it finishes, open the executable in RedGate Reflector and you will get the following: Main After Obfuscation IsProcessOpen Method after obfuscation: As you can see with the jumbled characters, it is not as easy as the first example. I am aware of methods around this, but it takes more effort and unless the hacker is up for the challenge, they will just pick another program. This is also helpful if you are a consultant and make clients pay a yearly license fee. This would prevent the average software developer from jumping into your security routine after you have left. I hope this article helped someone. If you have any feedback, please leave it in the comments below.

    Read the article

  • Problem in udp socket programing in c

    - by Md. Talha
    I complile the following C code of UDP client after I run './udpclient localhost 9191' in terminal.I put "Enter Text= " as Hello, but it is showing error in sendto as below: Enter text: hello hello : error in sendto()guest-1SDRJ2@md-K42F:~/Desktop$ " Note: I open 1st the server port as below in other terminal ./server 9191. I beleive there is no error in server code. The udp client is not passing message to server. If I don't use thread , the message is passing .But I have to do it by thread. UDP client Code: /* simple UDP echo client */ #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <netdb.h> #include <stdio.h> #include <pthread.h> #define STRLEN 1024 static void *readdata(void *); static void *writedata(void *); int sockfd, n, slen; struct sockaddr_in servaddr; char sendline[STRLEN], recvline[STRLEN]; int main(int argc, char *argv[]) { pthread_t readid,writeid; struct sockaddr_in servaddr; struct hostent *h; if(argc != 3) { printf("Usage: %s <proxy server ip> <port>\n", argv[0]); exit(0); } /* create hostent structure from user entered host name*/ if ( (h = gethostbyname(argv[1])) == NULL) { printf("\n%s: error in gethostbyname()", argv[0]); exit(0); } /* create server address structure */ bzero(&servaddr, sizeof(servaddr)); /* initialize it */ servaddr.sin_family = AF_INET; memcpy((char *) &servaddr.sin_addr.s_addr, h->h_addr_list[0], h->h_length); servaddr.sin_port = htons(atoi(argv[2])); /* get the port number from argv[2]*/ /* create a UDP socket: SOCK_DGRAM */ if ( (sockfd = socket(AF_INET,SOCK_DGRAM, 0)) < 0) { printf("\n%s: error in socket()", argv[0]); exit(0); } pthread_create(&readid,NULL,&readdata,NULL); pthread_create(&writeid,NULL,&writedata,NULL); while(1) { }; close(sockfd); } static void * writedata(void *arg) { /* get user input */ printf("\nEnter text: "); do { if (fgets(sendline, STRLEN, stdin) == NULL) { printf("\n%s: error in fgets()"); exit(0); } /* send a text */ if (sendto(sockfd, sendline, sizeof(sendline), 0, (struct sockaddr *) &servaddr, sizeof(servaddr)) < 0) { printf("\n%s: error in sendto()"); exit(0); } }while(1); } static void * readdata(void *arg) { /* wait for echo */ slen = sizeof(servaddr); if ( (n = recvfrom(sockfd, recvline, STRLEN, 0, (struct sockaddr *) &servaddr, &slen)) < 0) { printf("\n%s: error in recvfrom()"); exit(0); } /* null terminate the string */ recvline[n] = 0; fputs(recvline, stdout); }

    Read the article

  • MVVM Prism Nested Regions Can't Find Child Regions

    - by Garry Clark
    I have a Menu (Telerik RadMenu) that has nested regions defined in the Shell. In my modules I will register the modules menu or toolbar items with these regions. Everything works fine for the root regions, but when I try and add something to a child region, such as the File region on the Menu, I get the error "The exception message was: The region manager does not contain the FileMenuRegion region." However like I said if I change this code regionManager.Regions[RegionNames.FileMenuRegion].Add(menuItem); to this regionManager.Regions[RegionNames.MainMenuRegion].Add(menuItem); everything works fine. Below is the XAML for my menu so you can see the region names and how they are constructed. Any help would greatly be appreciated as this is bewildering and driving me crazy. Menu <telerikNavigation:RadMenu x:Name="menuMain" DockPanel.Dock="Top" prismrgn:RegionManager.RegionName="{x:Static i:RegionNames.MainMenuRegion}" telerik:StyleManager.Theme="{Binding Source={StaticResource settings}, Path=Default.CurrentTheme}"> <telerikNavigation:RadMenuItem Header="{x:Static p:Resources.File}" prismrgn:RegionManager.RegionName="{x:Static i:RegionNames.FileMenuRegion}"> <telerikNavigation:RadMenuItem Header="{x:Static p:Resources.Exit}" Command="{Binding ExitCommand}"> <telerikNavigation:RadMenuItem.Icon> <Image Source="../Resources/Close.png" Stretch="None" /> </telerikNavigation:RadMenuItem.Icon> </telerikNavigation:RadMenuItem> </telerikNavigation:RadMenuItem> </telerikNavigation:RadMenu>

    Read the article

  • Noob Objective-C/C++ - Linker Problem/Method Signature Problem

    - by Josh
    There is a static class Pipe, defined in C++ header that I'm including. The static method I'm interested in calling (from Objetive-c) is here: static ERC SendUserGet(const UserId &_idUser,const GUID &_idStyle,const ZoneId &_idZone,const char *_pszMsg); I have access to an objetive-c data structure that appears to store a copy of userID, and zoneID -- it looks like: @interface DataBlock : NSObject { GUID userID; GUID zoneID; } Looked up the GUID def, and its a struct with a bunch of overloaded operators for equality. UserId and ZoneId from the first function signature are #typedef GUID Now when I try to call the method, no matter how I cast it (const UserId), (UserId), etc, I get the following linker error: Ld build/Debug/Seeker.app/Contents/MacOS/Seeker normal i386 cd /Users/josh/Development/project/Mac/Seeker setenv MACOSX_DEPLOYMENT_TARGET 10.5 /Developer/usr/bin/g++-4.2 -arch i386 -isysroot /Developer/SDKs/MacOSX10.5.sdk -L/Users/josh/Development/TS/Mac/Seeker/build/Debug -L/Users/josh/Development/TS/Mac/Seeker/../../../debug -L/Developer/Platforms/iPhoneOS.platform/Developer/usr/lib/gcc/i686-apple-darwin10/4.2.1 -F/Users/josh/Development/TS/Mac/Seeker/build/Debug -filelist /Users/josh/Development/TS/Mac/Seeker/build/Seeker.build/Debug/Seeker.build/Objects-normal/i386/Seeker.LinkFileList -mmacosx-version-min=10.5 -framework Cocoa -framework WebKit -lSAPI -lSPL -o /Users/josh/Development/TS/Mac/Seeker/build/Debug/Seeker.app/Contents/MacOS/Seeker Undefined symbols: "SocPipe::SendUserGet(_GUID const&, _GUID const&, _GUID const&, char const*)", referenced from: -[PeoplePaneController clickGet:] in PeoplePaneController.o ld: symbol(s) not found collect2: ld returned 1 exit status Is this a type/function signature error, or truly some sort of linker error? I have the headers where all these types and static classes are defined #imported -- I tried #include too, just in case, since I'm already stumbling :P Forgive me, I come from a web tech background, so this c-style memory management and immutability stuff is super hazy. Edit: Added full linker error text. Changed "function" to "method" Thanks, Josh

    Read the article

  • Binding to an ObservableCollection attached property.

    - by bwreichle
    I want to create an attached property of type ObservableCollection<Notification> and bind it to a property of the same type on the DataContext. Currently I have: internal static class Squiggle { public static readonly DependencyProperty NotificationsProperty = DependencyProperty.RegisterAttached( "Notifications", typeof(ObservableCollection<Notification>), typeof(TextBox), new FrameworkPropertyMetadata(null, NotificationsPropertyChanged, CoerceNotificationsPropertyValue)); public static void SetNotifications(TextBox textBox, ObservableCollection<Notification> value) { textBox.SetValue(NotificationsProperty, value); } public static ObservableCollection<Notification> GetNotifications(TextBox textBox) { return (ObservableCollection<Notification>)textBox.GetValue(NotificationsProperty); } ... } With the following XAML: <TextBox x:Name="configTextBox" Text="{Binding Path=ConfigText, UpdateSourceTrigger=PropertyChanged}" AcceptsReturn="True" AcceptsTab="True" local:Squiggle.Notifications="{Binding Path=Notifications}" /> Unfortunatly, when I actually run this I get an exception stating: A 'Binding' cannot be used within a 'TextBox' collection. A 'Binding' can only be set on a DependencyProperty of a DependencyObject. This only seems to be a problem when the attached property is of type ObservableCollection so it seems like WPF is trying to do something magical when binding properties of this type and getting confused in the process. Anyone know what I need to do to make it work?

    Read the article

  • How to call a .NET Webservice from Android using KSOAP2?

    - by Rajapandian
    Hai to All,I have a problem while calling the webservice,i have a .NET web service in the server and i am using KSOAP2(ksoap2-j2se-full-2.1.2) in android.While running the program i got an runtime Exception like "org.ksoap2.serialization.SoapPrimitive". I dont know what to do.Here is my code. package projects.ksoap2sample; import org.ksoap2.SoapEnvelope; import org.ksoap2.serialization.SoapObject; import org.ksoap2.serialization.SoapSerializationEnvelope; import org.ksoap2.transport.HttpTransportSE; import android.app.*; import android.os.*; import android.widget.TextView; public class ksoap2sample extends Activity { /** Called when the activity is first created. */ private static final String SOAP_ACTION = "http://tempuri.org/HelloWorld"; private static final String METHOD_NAME = "HelloWorld"; private static final String NAMESPACE = "http://tempuri.org/"; private static final String URL = "http://192.168.1.19/TestWeb/WebService.asmx"; TextView tv; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); tv=(TextView)findViewById(R.id.text1); try { SoapObject request = new SoapObject(NAMESPACE, METHOD_NAME); //request.addProperty("prop1", "myprop"); SoapSerializationEnvelope envelope = new SoapSerializationEnvelope(SoapEnvelope.VER11); envelope.dotNet=true; envelope.setOutputSoapObject(request); HttpTransportSE androidHttpTransport = new HttpTransportSE(URL); androidHttpTransport.call(SOAP_ACTION, envelope); Object result = (Object)envelope.getResponse(); String[] results = (String[]) result; tv.setText( ""+results[0]); } catch (Exception e) { tv.setText(e.getMessage()); } } } May be my code is wrong.please help me. Regards Rajapandian

    Read the article

  • SquidGuard and Active Directory groups

    - by Massimo
    I'm configuring a Linux proxy with Squid and SquidGuard to filter Internet traffic. I know how to authenticate users against Active Directory in Squid, and then how to filter access for users using SquidGuard. The question: how to use Active Directory groups in SquidGuard instead of plain user names? My goal is to be able to configure rules like "members of this group can go anywhere" or "members of this group can only visit certain sites". I know SquidGuard can't manage group membership directly, but it can do LDAP searches on its own; but the syntax to look up wheter a user is member of a given group seems to be quite cryptic, and I couldn't find any good documentation around.

    Read the article

  • Milliseconds in DateTime.Now on .NET Compact Framework always zero? [SOLVED]

    - by Marcel
    Hi all, i want to have a time stamp for logs on a Windows Mobile project. The accuracy must be in the range a hundred milliseconds at least. However my call to DateTime.Now returns a DateTime object with the Millisecond property set to zero. Also the Ticks property is rounded accordingly. How to get better time accuracy? Remember, that my code runs on on the Compact Framework, version 3.5. I use a HTC touch Pro 2 device. Based on the answer from MusiGenesis i have created the following class which solved this problem: /// <summary> /// A more precisely implementation of some DateTime properties on mobile devices. /// </summary> /// <devdoc>Tested on a HTC Touch Pro2.</devdoc> public static class DateTimePrecisely { /// <summary> /// Remembers the start time when this model was created. /// </summary> private static DateTime _start = DateTime.Now; /// <summary> /// Remembers the system uptime ticks when this model was created. This /// serves as a more precise time provider as DateTime.Now can do. /// </summary> private static int _startTick = Environment.TickCount; /// <summary> /// Gets a DateTime object that is set exactly to the current date and time on this computer, expressed as the local time. /// </summary> /// <returns></returns> public static DateTime Now { get { return _start.AddMilliseconds(Environment.TickCount - _startTick); } } }

    Read the article

  • Lists NotifyPropertyChanging

    - by Carlo
    Well BindingList and ObservableCollection work great to keep data updated and to notify when one of it's objects has changed. However, when notifying a property is about to change, I think these options are not very good. What I have to do right now to solve this (and I warn this is not elegant AT ALL), is to implement INotifyPropertyChanging on the list's type object and then tie that to the object that holds the list PropertyChanging event, or something like the following: // this object will be the type of the BindingList public class SomeObject : INotifyPropertyChanging, INotifyPropertyChanged { private int _intProperty = 0; private string _strProperty = String.Empty; public int IntProperty { get { return this._intProperty; } set { if (this._intProperty != value) { NotifyPropertyChanging("IntProperty"); this._intProperty = value; NotifyPropertyChanged("IntProperty"); } } } public string StrProperty { get { return this._strProperty; } set { if (this._strProperty != value) { NotifyPropertyChanging("StrProperty"); this._strProperty = value; NotifyPropertyChanged("StrProperty"); } } } #region INotifyPropertyChanging Members public event PropertyChangingEventHandler PropertyChanging; #endregion #region INotifyPropertyChanged Members public event PropertyChangedEventHandler PropertyChanged; #endregion public void NotifyPropertyChanging(string propertyName) { if (this.PropertyChanging != null) PropertyChanging(this, new PropertyChangingEventArgs(propertyName)); } public void NotifyPropertyChanged(string propertyName) { if (this.PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } public class ObjectThatHoldsTheList : INotifyPropertyChanging, INotifyPropertyChanged { public BindingList<SomeObject> BindingList { get; set; } public ObjectThatHoldsTheList() { this.BindingList = new BindingList<SomeObject>(); } // this helps notifie Changing and Changed on Add private void AddItem(SomeObject someObject) { // this will tie the PropertyChanging and PropertyChanged events of SomeObject to this object // so it gets notifies because the BindingList does not notify PropertyCHANGING someObject.PropertyChanging += new PropertyChangingEventHandler(someObject_PropertyChanging); someObject.PropertyChanged += new PropertyChangedEventHandler(someObject_PropertyChanged); this.NotifyPropertyChanging("BindingList"); this.BindingList.Add(someObject); this.NotifyPropertyChanged("BindingList"); } // this helps notifies Changing and Changed on Delete private void DeleteItem(SomeObject someObject) { if (this.BindingList.IndexOf(someObject) > 0) { // this unlinks the handlers so the garbage collector can clear the objects someObject.PropertyChanging -= new PropertyChangingEventHandler(someObject_PropertyChanging); someObject.PropertyChanged -= new PropertyChangedEventHandler(someObject_PropertyChanged); } this.NotifyPropertyChanging("BindingList"); this.BindingList.Remove(someObject); this.NotifyPropertyChanged("BindingList"); } // this notifies an item in the list is about to change void someObject_PropertyChanging(object sender, PropertyChangingEventArgs e) { NotifyPropertyChanging("BindingList." + e.PropertyName); } // this notifies an item in the list has changed void someObject_PropertyChanged(object sender, PropertyChangedEventArgs e) { NotifyPropertyChanged("BindingList." + e.PropertyName); } #region INotifyPropertyChanging Members public event PropertyChangingEventHandler PropertyChanging; #endregion #region INotifyPropertyChanged Members public event PropertyChangedEventHandler PropertyChanged; #endregion public void NotifyPropertyChanging(string propertyName) { if (this.PropertyChanging != null) PropertyChanging(this, new PropertyChangingEventArgs(propertyName)); } public void NotifyPropertyChanged(string propertyName) { if (this.PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } Sorry, I know this is a lot of code, which takes me back to my main point IT'S A LOT OF CODE to implement this. So my question is, does anyone know a better, shorter, more elegant solution? Thanks for your time and suggestions.

    Read the article

  • Renaming column in Android sqlite database results in error

    - by Apophenia Overload
    I've been modifying the Notepad tutorial for Android very subtly- all I did was rename the column from title to name: Before: public static final String KEY_TITLE = "title"; ... private static final String DATABASE_CREATE = "create table notes (_id integer primary key autoincrement, " + "title text not null, body text not null);"; After: public static final String KEY_TITLE = "name"; ... private static final String DATABASE_CREATE = "create table notes (_id integer primary key autoincrement, " + "name text not null, body text not null);"; However, it always results in this: 06-10 03:29:38.421: ERROR/AndroidRuntime(344): java.lang.RuntimeException: Unable to start activity ComponentInfo{com.android.demo.notepad1/com.android.demo.notepad1.Notepadv1}: android.database.sqlite.SQLiteException: no such column: name: , while compiling: SELECT _id, name, body FROM notes ... 06-10 03:29:38.421: ERROR/AndroidRuntime(344): Caused by: android.database.sqlite.SQLiteException: no such column: name: , while compiling: SELECT _id, name, body FROM notes Am I failing to rename something? All I am modifying is the Exercise 1 Solution program from the Notepad tutorial.

    Read the article

  • Bad to be logged in as admin all the time?

    - by poke
    At the office where I work, three of the other members of the IT staff are logged into their computers all the time with accounts that are members of the domain administrators group. I have serious concerns about being logged in with admin rights (either local or for the domain). As such, for everyday computer use, I use an account that just has regular user privelages. I also have an different account that is part of the domain admins group. I use this account when I need to do something that requires elevated privilages on my computer, one of the servers, or on another user's computer. What is the best practice here? Should network admins be logged in with rights to the entire network all the time (or even their local computer for that matter)?

    Read the article

  • Texture loading at joGL

    - by Nour
    hi I've been trying to load a bmp picture to use it as a texture at my program I've used a IOstream Class to extend DataInputStream to read the pixels at the photo with this code "based on a texture loader code for c++ " : //class Data members public static int BMPtextures[]; public static int BMPtexCount = 30; public static int currentTextureID = 0; //loading methode static int loadBMPTexture(int index, String fileName, GL gl) { try { IOStream wdis = new IOStream(fileName); wdis.skipBytes(18); int width = wdis.readIntW(); int height = wdis.readIntW(); wdis.skipBytes(28); byte buf[] = new byte[wdis.available()]; wdis.read(buf); wdis.close(); gl.glBindTexture(GL.GL_TEXTURE_2D, BMPtextures[index]); gl.glTexImage2D(GL.GL_TEXTURE_2D, 0, 3, width, height, 0, GL.GL_BGR, GL.GL_UNSIGNED_BYTE, buf); gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR); gl.glTexParameteri(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR); currentTextureID = index; return currentTextureID; } catch (IOException ex) { // Utils.msgBox("File Error\n" + fileName, "Error", Utils.MSG_WARN); return -1; } } and IOStream code : public class IOStream extends DataInputStream { public IOStream(String file) throws FileNotFoundException { super(new FileInputStream(file)); } public short readShortW() throws IOException { return (short)(readUnsignedByte() + readUnsignedByte() * 256); } public int readIntW() throws IOException { return readShortW() + readShortW() * 256 * 256; } void read(Buffer[] buf) { } } and the calling: GTexture.loadBMPTexture(1,"/BasicJOGL/src/basicjogl/data/Font.bmp",gl); after debugging I figured out that when it come to this line : IOStream wdis = new IOStream(fileName); an IOExeption occurred and it's a dispatchException .. what this impose to mean ?? and how can I solve it ? by the way i tried to : 1- use \ and \ and / and // 2- change the path of the photo and take all the path from c:\ to the photoname.bmp 3- rename the photo using numbers like 1.bmp but nothing seems to work :(

    Read the article

  • Lambdas within Extension methods: Possible memory leak?

    - by Oliver
    I just gave an answer to a quite simple question by using an extension method. But after writing it down i remembered that you can't unsubscribe a lambda from an event handler. So far no big problem. But how does all this behave within an extension method?? Below is my code snipped again. So can anyone enlighten me, if this will lead to myriads of timers hanging around in memory if you call this extension method multiple times? I would say no, cause the scope of the timer is limited within this function. So after leaving it no one else has a reference to this object. I'm just a little unsure, cause we're here within a static function in a static class. public static class LabelExtensions { public static Label BlinkText(this Label label, int duration) { Timer timer = new Timer(); timer.Interval = duration; timer.Tick += (sender, e) => { timer.Stop(); label.Font = new Font(label.Font, label.Font.Style ^ FontStyle.Bold); }; label.Font = new Font(label.Font, label.Font.Style | FontStyle.Bold); timer.Start(); return label; } }

    Read the article

  • Java performance problem with LinkedBlockingQueue

    - by lofthouses
    Hello, this is my first post on stackoverflow...i hope someone can help me i have a big performance regression with Java 6 LinkedBlockingQueue. In the first thread i generate some objects which i push in to the queue In the second thread i pull these objects out. The performance regression occurs when the take() method of the LinkedBlockingQueue is called frequently. I monitored the whole program and the take() method claimed the most time overall. And the throughput goes from ~58Mb/s to 0.9Mb/s... the queue pop and take methods ar called with a static method from this class public class C_myMessageQueue { private static final LinkedBlockingQueue<C_myMessageObject> x_queue = new LinkedBlockingQueue<C_myMessageObject>( 50000 ); /** * @param message * @throws InterruptedException * @throws NullPointerException */ public static void addMyMessage( C_myMessageObject message ) throws InterruptedException, NullPointerException { x_queue.put( message ); } /** * @return Die erste message der MesseageQueue * @throws InterruptedException */ public static C_myMessageObject getMyMessage() throws InterruptedException { return x_queue.take(); } } how can i tune the take() method to accomplish at least 25Mb/s, or is there a other class i can use which will block when the "queue" is full or empty. kind regards Bart P.S.: sorry for my bad english, i'm from germany ;)

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >