Search Results

Search found 21343 results on 854 pages for 'pass by reference'.

Page 135/854 | < Previous Page | 131 132 133 134 135 136 137 138 139 140 141 142  | Next Page >

  • What is the problem with this code?

    - by eSKay
    #include<stdio.h> class A { public: int a;}; class B: public A { public: static int b; B(){ b++; printf("B:%d\n",b); } }; int main() { A* a1 = new B[100]; A* a2 = new B(); return 0; } Error: In function `main': undefined reference to `B::b' undefined reference to `B::b' undefined reference to `B::b' undefined reference to `B::b'

    Read the article

  • List in C# - passing multiple entries as a single object

    - by Karthick
    Hi, I have a method (C#) public void MethodName(List<Order> Order, int ID) I need to pass this to a main page, in which i know to pass integer value to ID, am not able to pass multiple items in a single list. The List order should have two number entries, (ie. Order.number1 and Order.number2) How should i pass a single list as a parameter to this method containing multiple entries of number1 and 2, so that i can loop thro' and find it. Thanks.

    Read the article

  • Accessing Ember component scope from block form?

    - by user3009816
    I want to let a user pass a custom text field, App.CustomTextField, in a Ember component using block form. However, that App.CustomTextField needs access to the component to manipulate its properties. How can I pass the component to the textfield using block form? I would like to pass the component as a property to App.CustomTextField, but how do I access the component's scope? {{#blog-post}} {{view App.CustomTextField component=?}} {{/blog-post}}

    Read the article

  • Are Interfaces "Object"?

    - by PrashantGupta
    package inheritance; class A{ public String display(){ return "This is A!"; } } interface Workable{ public String work(); } class B extends A implements Workable{ public String work(){ return "B is working!"; } } public class TestInterfaceObject{ public static void main(String... args){ B obj=new B(); Workable w=obj; //System.out.println(w.work()); //invoking work method on Workable type reference System.out.println(w.display()); //invoking display method on Workable type reference //System.out.println(w.hashCode()); // invoking Object's hashCode method on Workable type reference } } As we know that methods which can be invoked depend upon the type of the reference variable on which we are going to invoke. Here, in the code, work() method was invoked on "w" reference (which is Workable type) so method invoking will compile successfully. Then, display() method is invoked on "w" which yields a compilation error which says display method was not found, quite obvious as Workable doesn't know about it. Then we try to invoke the Object class's method i.e. hashCode() which yields a successful compilation and execution. How is it possible? Any logical explanation?

    Read the article

  • SOA Suite Integration: Part 2: A basic BPEL process

    - by Anthony Shorten
    This is the next in the series about SOA Suite integration with Oracle Utilities Application Framework. One of the first scenarios I am going to illustrate in this series is building a basic BPEL process using Web Service calls to the Oracle Utilities Application Framework. The scenario is this. I will pass in the userid and the BPEL process will call our the AS-User Web Service we created in Part 1. This is just a basic test and illustrate how to import the Web Service into SOA Suite. To use this scenario, you will need access to Oracle SOA Suite, access to a copy of any Oracle Utilities Application Framework based product and Oracle JDeveloper (to build the process). First of all you need to start Oracle JDeveloper and create a new SOA Project to house the BPEL process in. For the purposes of this example I will call the project simpleBPEL and verify that SOA is part of the project. I will select "Composite with BPEL" to denote it as a BPEL process. I can also the same process to create a Mediator or OSB project (refer to the JDeveloper documentation on these technologies). For this example I will use BPEL 1.1 as my specification standard (BPEL 2.0 can also be used if desired). I give the individual BPEL process as simpleBPEL (you can use a different name but I wanted to keep the project and process the same for this example). I will also build a Synchronous BPEL Process as I want a response from the Web Service. I will leave the defaults to save time. I have no have a blank canvas to build my BPEL process against. Note: for simplicity I am going to use as much defaulting as possible. In fact I am not going to specify an input schema for the incoming call as I will use the basic single field used by BPEL as default. The first step is to import the AS-User Web Service into my BPEL project. To do this I use the standard Web Service BPEL component from the Component Palette to import the WSDL into the BPEL project. Now the tricky part (a joke), you drag and drop the component from the Palette onto the right side of the canvas in the Partner Links swim lane. This swim lane is reserved for Partner Links that have a Partner Role (i.e. being called rather than calling). When you drop the Web Service onto the canvas the Create Web Service wizard is invoked to ask for details of the Web Service. At this point you give the BPEL node a name. I have used the name RetrieveUser as a name. I placed the WSDL URL from the XAI Inbound Service screen in the WSDL URL. Once you specify the URL you can press the Find existing WSDL's button to load the information into BPEL from the call. You will notice the Port Type is prefilled with the port from the WSDL. I also suggest that you check copy wsdl and it's dependent artifacts into the project if you intending to work on the BPEL process offline. If you do not check this your target application must be accessible when you work on the BPEL process (that is not always convenient). Note: For the perceptive of you will notice that the URL specified in this example is different to the URL in the last post. The reason is for the demonstrations I shifted to a new server and did not redo all of the past screen captures. If you copy the WSDL into the project you will get an information screen about Localize Files. It is just a confirmation screen. The last confirmation screen is a summary of the partner link (the main tab is locked for editing at this stage). At this stage you have successfully imported the Web Service. To complete the setup of the Web Service you need to set the credentials for the Web Service to use. Refer to the past post on how to do that. Now to use the Web Service. To call the Web Service (as it is just imported not connected to the BPEL process yet), you must add an Invoke action to your BPEL Process. To do this, select Invoke action from the BPEL Constructs zone on the Component Palette and drop it on the edit nodes between the receiveInput and replyOutput nodes This will create an empty Invoke action. You will notice some connectors on the Invoke node. Grab the node closest to your Web Service and drag it to connect the Invoke to your Web Service. This instructs BPEL to use the Invoke to call the Web Service. Once the Invoke action is connected to the Web Service an Edit Invoke edit dialog is displayed. At this point I suggest you name the Invoke node. It is important to name the nodes straightaway and name them appropriately for you to trace the logic. I used InvokeUser as the name in this example. To complete the node configuration you must create Variables to hold the input and output for the call. To do this clock on Automatically Create Input Variable on the Edit Invoke dialog. You will be presented with a default variable name. It uses the node name (that is why it is important to name the node before hitting this button) as a prefix. You can name the variable anything but I usually take the default. Repeat the same for the output variable. You now have a completed node for invoking the service. You have a very basic BPEL process which contains an input, invoke and output node. It is not complete yet though. You need to tell the BPEL process how to pass data from the input to the invoke step and how to take the output from the service call and pass it back to the service. You need to now add an Assign node to assign the input to the Web Service. To do this select Assign activity from BPEL Constructs zone in the Component Palette. Drag and drop the Assign activity between the receiveInput and InvokeUser nodes as you want to pass data between these two nodes. You have now added a new Assign node to your BPEL process Double clicking the node allows you to specify the name of the node. I use AssignUser to describe that I am assigning user data. On the Copy Rules tab you can specify the mapping between the input variable InputVariable/payload/process/input string and the input variable for the Web Service call. We are passing data from the input to BPEL to the relevant input variable on the Web Service. This is simply drag and drop between the two data structures. In the example, I am using the input to pass to the user element in my Web Service as the user is the primary key for the object. The fields become linked (which means data from source will be copied to target). Almost there. You now need to process the output from the Web Service call to the outputVariable of the client call. I have decided to pass back one piece of data, the name associated with the user by concatenating the firstName and lastName elements from the Web Service call. To do this I will use a Transform as it is not just a matter of an Assign action. It is a concatenation operation. This also illustrates how you can use BPEL functionality to transform data from a Web Service call. As with the other components you drag and drop the Transform component to the appropriate place in the BPEL process. In this case we want to transform the output from the Web Service call so we want it after the InvokeUser action and the replyOutput action. The Transform component is actually part of the Oracle Extensions to the BPEL specification. Double clicking the Transform node will allow you to name the node.  In this example I used TransformName. To complete the transform I need to tell the product the source of the transformation and the target of the transform. In the example this is the InvokeUser output variable. I also named the mapper file to TransformName. By clicking the + or pencil icon next to the map I can create the map. The mapping screen is shows the source and target schemas for me to map across. As with the assign I can map the relevant elements. In my example, I first map the firstName from the Web Service to the result element. As I want to concatenate the names, I drop the concat function on the call line. I now attach the last name to the function to indicate the concatenation of the field. By default the names will be concatenated with no space. To make the name legible I add a space between the field by clicking the function and adding a space in the call. I now have a completed mapping. I can now save the whole project as my BPEL process is now complete. As you can see the following happens: We accept input from the client (the userid for the call) in the receiveInput step. We assign that value to the input parameters for the Web Service call in the AssignUser step. We invoke the Web Service call to retrieve the data from the product in the InvokeUser step. We take the output from the InvokeUser step and concatenate the names in the TransformName step. We pass back the data in the replyOutput step. At this point we can deploy the BPEL process to the SOA Suite server. I will not cover this aspect as it really all SOA Suite specific (it is all done via Oracle JDeveloper). Now we need to test the service in SOA Suite. We will use the Fusion Middleware Control test facility. I will assume that credentials have also been setup as per our previous post (else you will get a 401 error). You navigate to the deployed BPEL process within Fusion Middleware Control and select the Test Service option. Specify some test data on the payload at the bottom of the Test Service screen. In my case I am returning my own userid information. On the response tab you will see the result. It works. You can verify the steps using the Audit trace facility on individual calls. As you can see this is a basic BPEL but you get the idea of importing the Web Service is pretty straightforward. You can create more sophisticated BPEL processes using the full facilities in Oracle SOA Suite. I just showed you the basic principals.

    Read the article

  • array and array_view from amp.h

    - by Daniel Moth
    This is a very long post, but it also covers what are probably the classes (well, array_view at least) that you will use the most with C++ AMP, so I hope you enjoy it! Overview The concurrency::array and concurrency::array_view template classes represent multi-dimensional data of type T, of N dimensions, specified at compile time (and you can later access the number of dimensions via the rank property). If N is not specified, it is assumed that it is 1 (i.e. single-dimensional case). They are rectangular (not jagged). The difference between them is that array is a container of data, whereas array_view is a wrapper of a container of data. So in that respect, array behaves like an STL container, whereas the closest thing an array_view behaves like is an STL iterator (albeit with random access and allowing you to view more than one element at a time!). The data in the array (whether provided at creation time or added later) resides on an accelerator (which is specified at creation time either explicitly by the developer, or set to the default accelerator at creation time by the runtime) and is laid out contiguously in memory. The data provided to the array_view is not stored by/in the array_view, because the array_view is simply a view over the real source (which can reside on the CPU or other accelerator). The underlying data is copied on demand to wherever the array_view is accessed. Elements which differ by one in the least significant dimension of the array_view are adjacent in memory. array objects must be captured by reference into the lambda you pass to the parallel_for_each call, whereas array_view objects must be captured by value (into the lambda you pass to the parallel_for_each call). Creating array and array_view objects and relevant properties You can create array_view objects from other array_view objects of the same rank and element type (shallow copy, also possible via assignment operator) so they point to the same underlying data, and you can also create array_view objects over array objects of the same rank and element type e.g.   array_view<int,3> a(b); // b can be another array or array_view of ints with rank=3 Note: Unlike the constructors above which can be called anywhere, the ones in the rest of this section can only be called from CPU code. You can create array objects from other array objects of the same rank and element type (copy and move constructors) and from other array_view objects, e.g.   array<float,2> a(b); // b can be another array or array_view of floats with rank=2 To create an array from scratch, you need to at least specify an extent object, e.g. array<int,3> a(myExtent);. Note that instead of an explicit extent object, there are convenience overloads when N<=3 so you can specify 1-, 2-, 3- integers (dependent on the array's rank) and thus have the extent created for you under the covers. At any point, you can access the array's extent thought the extent property. The exact same thing applies to array_view (extent as constructor parameters, incl. convenience overloads, and property). While passing only an extent object to create an array is enough (it means that the array will be written to later), it is not enough for the array_view case which must always wrap over some other container (on which it relies for storage space and actual content). So in addition to the extent object (that describes the shape you'd like to be viewing/accessing that data through), to create an array_view from another container (e.g. std::vector) you must pass in the container itself (which must expose .data() and a .size() methods, e.g. like std::array does), e.g.   array_view<int,2> aaa(myExtent, myContainerOfInts); Similarly, you can create an array_view from a raw pointer of data plus an extent object. Back to the array case, to optionally initialize the array with data, you can pass an iterator pointing to the start (and optionally one pointing to the end of the source container) e.g.   array<double,1> a(5, myVector.begin(), myVector.end()); We saw that arrays are bound to an accelerator at creation time, so in case you don’t want the C++ AMP runtime to assign the array to the default accelerator, all array constructors have overloads that let you pass an accelerator_view object, which you can later access via the accelerator_view property. Note that at the point of initializing an array with data, a synchronous copy of the data takes place to the accelerator, and then to copy any data back we'll see that an explicit copy call is required. This does not happen with the array_view where copying is on demand... refresh and synchronize on array_view Note that in the previous section on constructors, unlike the array case, there was no overload that accepted an accelerator_view for array_view. That is because the array_view is simply a wrapper, so the allocation of the data has already taken place before you created the array_view. When you capture an array_view variable in your call to parallel_for_each, the copy of data between the non-CPU accelerator and the CPU takes place on demand (i.e. it is implicit, versus the explicit copy that has to happen with the array). There are some subtleties to the on-demand-copying that we cover next. The assumption when using an array_view is that you will continue to access the data through the array_view, and not through the original underlying source, e.g. the pointer to the data that you passed to the array_view's constructor. So if you modify the data through the array_view on the GPU, the original pointer on the CPU will not "know" that, unless one of two things happen: you access the data through the array_view on the CPU side, i.e. using indexing that we cover below you explicitly call the array_view's synchronize method on the CPU (this also gets called in the array_view's destructor for you) Conversely, if you make a change to the underlying data through the original source (e.g. the pointer), the array_view will not "know" about those changes, unless you call its refresh method. Finally, note that if you create an array_view of const T, then the data is copied to the accelerator on demand, but it does not get copied back, e.g.   array_view<const double, 5> myArrView(…); // myArrView will not get copied back from GPU There is also a similar mechanism to achieve the reverse, i.e. not to copy the data of an array_view to the GPU. copy_to, data, and global copy/copy_async functions Both array and array_view expose two copy_to overloads that allow copying them to another array, or to another array_view, and these operations can also be achieved with assignment (via the = operator overloads). Also both array and array_view expose a data method, to get a raw pointer to the underlying data of the array or array_view, e.g. float* f = myArr.data();. Note that for array_view, this only works when the rank is equal to 1, due to the data only being contiguous in one dimension as covered in the overview section. Finally, there are a bunch of global concurrency::copy functions returning void (and corresponding concurrency::copy_async functions returning a future) that allow copying between arrays and array_views and iterators etc. Just browse intellisense or amp.h directly for the full set. Note that for array, all copying described throughout this post is deep copying, as per other STL container expectations. You can never have two arrays point to the same data. indexing into array and array_view plus projection Reading or writing data elements of an array is only legal when the code executes on the same accelerator as where the array was bound to. In the array_view case, you can read/write on any accelerator, not just the one where the original data resides, and the data gets copied for you on demand. In both cases, the way you read and write individual elements is via indexing as described next. To access (or set the value of) an element, you can index into it by passing it an index object via the subscript operator. Furthermore, if the rank is 3 or less, you can use the function ( ) operator to pass integer values instead of having to use an index object. e.g. array<float,2> arr(someExtent, someIterator); //or array_view<float,2> arr(someExtent, someContainer); index<2> idx(5,4); float f1 = arr[idx]; float f2 = arr(5,4); //f2 ==f1 //and the reverse for assigning, e.g. arr(idx[0], 7) = 6.9; Note that for both array and array_view, regardless of rank, you can also pass a single integer to the subscript operator which results in a projection of the data, and (for both array and array_view) you get back an array_view of rank N-1 (or if the rank was 1, you get back just the element at that location). Not Covered In this already very long post, I am not going to cover three very cool methods (and related overloads) that both array and array_view expose: view_as, section, reinterpret_as. We'll revisit those at some point in the future, probably on the team blog. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • The Internet of Things & Commerce: Part 3 -- Interview with Kristen J. Flanagan, Commerce Product Management

    - by Katrina Gosek, Director | Commerce Product Strategy-Oracle
    Internet of Things & Commerce Series: Part 3 (of 3) And now for the final installment my three part series on the Internet of Things & Commerce. Post one, “The Next 7,000 Days”, introduced the idea of the Internet of Things, followed by a second post interviewing one of our chief commerce innovation strategists, Brian Celenza.  This final post in the series is an interview with Kristen J. Flanagan, lead product manager for Oracle Commerce omnichannel strategy. She takes us through the past, present, and future of how our Commerce Solution is re-imagining the way physical and digital shopping come together. ------- QUESTION: It’s your job to stay on top of what our customers’ need to not only run their online businesses effectively, but also to make sure they have product capabilities they can innovate and grow on. What key trend has been top-of-mind for you and our customers around this collision of physical and digital shopping? Kristen: I’ll agree with Brian Celenza that hands down mobile has forced a major disruption in shopping and selling behavior. A few years ago, mobile exploded at a pace I don't think anyone was expecting. Early on, we saw our customers scrambling to establish a mobile presence---mostly through "screen scraping" technologies. As smartphones continued to advance (at lightening speed!), our customers started to investigate ways to truly tap in to their eCommerce capabilities to deliver the mobile experience. They started looking to us for a means of using the eCommerce services and capabilities to deliver a mobile experience that is tailored for mobile rather than the desktop experience on a smaller screen. In the future, I think we'll see customers starting to really understand what their shoppers need and expect from a mobile offering and how they can adapt their content and delivery of that content to meet those needs. And, mobile shopping doesn’t stop at the consumer / buyer. Because the in-store experience is compelling and has advantages that digital just can't offer, we're also starting to see the eCommerce services being leveraged for mobile for in-store sales associates. Brick-and-mortar retailers are interested in putting the omnichannel product catalog, promotions, and cart into the hands of knowledgeable associates. Retailers are now looking to connect and harness the eCommerce data in-store so that shoppers have a reason to walk-in. I think we'll be seeing a lot more customers thinking about melding the in-store and digital experiences to present a richer offering for shoppers.    QUESTION: What are some examples of what our customers are doing currently to bring these concepts to reality? Kristen: Well, without question, connecting digital and brick-and-mortar worlds is becoming tablestakes for selling experiences. If a brand has a foot in both worlds (i.e., isn’t a pureplay online retailer), they have to connect the dots because shoppers – whether consumers or B2B buyers –don't think in clearly defined channels anymore. The expectation is connectedness – for on- and offline experiences, promotions, products, and customer data. What does this mean practically for businesses selling goods on- and offline? It touches a lot of systems: inventory info on the eCommerce site, fulfillment options across channels (buy online/pickup in store), order information (representing various channels for a cohesive view of shopper order history), promotions across digital and store, etc.  A few years ago, the main link between store and digital was the smartphone. We all remember when “apps” became a thing and many of our customers were scrambling to get a native app out there. Now we're seeing more strategic thinking around the benefits of mobile web vs. native and how that ties in to the purpose and role of mobile within the digital channel. Put it more broadly, how these pieces fit together in the overall brand puzzle.  The same could be said for “showrooming.” Where it was a major concern (i.e., shoppers using stores to look at merchandise and then order online from Amazon), in recent months, it’s emerged that the inverse is now becoming a a reality as well. "Webrooming" (using digital sites to do research before making a purchase in the store) is a new behavior pure play retailers are challenged with. There are many technologies, behaviors, and information that need to tie together to offer a holistic omnichannel shopping experience. As a result, brands are looking for ways to connect the digital and in-store experiences to bridge the gaps: shared assortments across channels, assisted selling apps that arm associates with information about shoppers, shared promotions, inventory, etc. QUESTION: How has Oracle Commerce been built to help brands make the link between in-store and digital over the last few years? Kristen: Over the last seven years, the product has been in step with the changes in industry needs. Here is a brief history of the evolution: Prior to Oracle’s acquisition of ATG and Endeca, key investments were made to cross-channel functionality that we are still building on today. Commerce Service Center (v2007.1) ATG introduced the Commerce Service Center in 2007.1 and marked the first entry into what was then called “cross-channel.” The Commerce Service Center is a call-center-agent-facing application that enables agents to see shopper orders, online catalog, promotions, and pricing. It is tightly integrated with the eCommerce capabilities of the platform and commerce engine and provided a means of connecting data from the call center and online channels.  REST services framework (v9.1)  In v9.1 we introduced the REST services framework and interface in the Platform that enabled customers to use ATG web services in other applications. This framework has become the basis for our subsequent omni-channel features and functionality. Multisite Architecture (v10) With the v10 release, we introduced the Multisite Architecture, which enabled customers to manage multiple sites (and channels) within a single instance of the BCC. Customers could create site- and channel-specific catalogs, promotions, targeters, and scenarios. Endeca Page Builder (2.x) / Experience Manager (3.x) With the introduction of Endeca for Mobile (now part of the core platform, available through the reference store – see blow) on top of Page Builder (and then eventually Experience Manager), Endeca gave business users the tools to create and manage native and mobile web applications. And since the acquisition of both ATG (2011) and Endeca (2012), Oracle Commerce has leveraged the best of each leading technology’s capabilities for omnichannel commerce to continue to drive innovation for our customers. Service enablement of core Oracle Commerce capabilities (v10.1.1, 10.2, & 11) After the establishment of the REST services framework and interface, we followed up in subsequent releases with service enablement of core Oracle Commerce capabilities throughout the iOS native app and the enablement of the core Commerce Service Center features. The result is that customers can leverage these services for their integrations with other systems, as well as their omnichannel initiatives.  Mobile web reference application (v10.1) In 10.1 we introduced the shopper-facing mobile reference application that showed how to use Oracle Commerce to deliver a mobile web experience for shoppers. This included the use of Experience Manager and cartridges to drive those experiences on select pages.  Native (iOS) reference application (v10.1.1)  We came out with the 10.1.1 shopper-facing native iOS ref app that illustrated how to use the Commerce REST services to deliver an iOS app. Also included Experience Manager-driven pages.   Assisted Selling reference application (v10.2.1)  The Assisted Selling reference application is our first reference application designed for the in-store associate. This iOS app shows customers how they can use Oracle Commerce data and information to provide a high-touch, consultative sales environment as well as to put the endless aisle into hands of their associates. Shoppers can start a cart online, and in-store associates can access that cart via the application to provide more information or add products and then transact using the ATG engine. Support for Retail promotions (v11) As part of the v11 release, we worked with teams in the Oracle Retail Global Business Unit (RGBU) to assess which promotion types and capabilities are supported across our products. Those products included Oracle Commerce, Oracle Point of Service (ORPOS), and Oracle Retail Price Management (RPM). The result is that customers can now more easily support omnichannel use cases between the store and digital.  Making sure Oracle Commerce can help support the omnichannel needs of our customers is core to our product strategy. With 89% of consumers now use two or more channels to make a single purchase, ensuring that cross-channel interactions are linked is critical to a great customer experience – and to sales. As Oracle Commerce evolves, we want to make it simple for organizations to create, deliver, and scale experiences across touchpoints with our create once, deploy commerce anywhere framework. We have a flexible, services-oriented architecture that allows data, content, catalogs, cart, experiences, personalization, and merchandising to be shared across touchpoints and easily extended in to new environments like mobile, social, in-store, Call Center, and new Websites. [For the latest downloads and Oracle Commerce documentation, please visit the Oracle Technical Network.] ------ Thank you to both Brian and Kristen for their contributions and to this blog series and their continued thought leadership for Oracle Commerce. We are all looking forward to the coming years of months of new shopping behaviors and opportunities to innovate. Because – if the digital fabric of our everyday lives continues to change at the same pace – the next five years (that just under 2,000 days), will be dramatic. ---------- THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY AND MAY NOT BE INCORPORATED INTO A CONTRACT OR AGREEMENT

    Read the article

  • C#/.NET Little Wonders: Constraining Generics with Where Clause

    - by James Michael Hare
    Back when I was primarily a C++ developer, I loved C++ templates.  The power of writing very reusable generic classes brought the art of programming to a brand new level.  Unfortunately, when .NET 1.0 came about, they didn’t have a template equivalent.  With .NET 2.0 however, we finally got generics, which once again let us spread our wings and program more generically in the world of .NET However, C# generics behave in some ways very differently from their C++ template cousins.  There is a handy clause, however, that helps you navigate these waters to make your generics more powerful. The Problem – C# Assumes Lowest Common Denominator In C++, you can create a template and do nearly anything syntactically possible on the template parameter, and C++ will not check if the method/fields/operations invoked are valid until you declare a realization of the type.  Let me illustrate with a C++ example: 1: // compiles fine, C++ makes no assumptions as to T 2: template <typename T> 3: class ReverseComparer 4: { 5: public: 6: int Compare(const T& lhs, const T& rhs) 7: { 8: return rhs.CompareTo(lhs); 9: } 10: }; Notice that we are invoking a method CompareTo() off of template type T.  Because we don’t know at this point what type T is, C++ makes no assumptions and there are no errors. C++ tends to take the path of not checking the template type usage until the method is actually invoked with a specific type, which differs from the behavior of C#: 1: // this will NOT compile! C# assumes lowest common denominator. 2: public class ReverseComparer<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } So why does C# give us a compiler error even when we don’t yet know what type T is?  This is because C# took a different path in how they made generics.  Unless you specify otherwise, for the purposes of the code inside the generic method, T is basically treated like an object (notice I didn’t say T is an object). That means that any operations, fields, methods, properties, etc that you attempt to use of type T must be available at the lowest common denominator type: object.  Now, while object has the broadest applicability, it also has the fewest specific.  So how do we allow our generic type placeholder to do things more than just what object can do? Solution: Constraint the Type With Where Clause So how do we get around this in C#?  The answer is to constrain the generic type placeholder with the where clause.  Basically, the where clause allows you to specify additional constraints on what the actual type used to fill the generic type placeholder must support. You might think that narrowing the scope of a generic means a weaker generic.  In reality, though it limits the number of types that can be used with the generic, it also gives the generic more power to deal with those types.  In effect these constraints says that if the type meets the given constraint, you can perform the activities that pertain to that constraint with the generic placeholders. Constraining Generic Type to Interface or Superclass One of the handiest where clause constraints is the ability to specify the type generic type must implement a certain interface or be inherited from a certain base class. For example, you can’t call CompareTo() in our first C# generic without constraints, but if we constrain T to IComparable<T>, we can: 1: public class ReverseComparer<T> 2: where T : IComparable<T> 3: { 4: public int Compare(T lhs, T rhs) 5: { 6: return lhs.CompareTo(rhs); 7: } 8: } Now that we’ve constrained T to an implementation of IComparable<T>, this means that our variables of generic type T may now call any members specified in IComparable<T> as well.  This means that the call to CompareTo() is now legal. If you constrain your type, also, you will get compiler warnings if you attempt to use a type that doesn’t meet the constraint.  This is much better than the syntax error you would get within C++ template code itself when you used a type not supported by a C++ template. Constraining Generic Type to Only Reference Types Sometimes, you want to assign an instance of a generic type to null, but you can’t do this without constraints, because you have no guarantee that the type used to realize the generic is not a value type, where null is meaningless. Well, we can fix this by specifying the class constraint in the where clause.  By declaring that a generic type must be a class, we are saying that it is a reference type, and this allows us to assign null to instances of that type: 1: public static class ObjectExtensions 2: { 3: public static TOut Maybe<TIn, TOut>(this TIn value, Func<TIn, TOut> accessor) 4: where TOut : class 5: where TIn : class 6: { 7: return (value != null) ? accessor(value) : null; 8: } 9: } In the example above, we want to be able to access a property off of a reference, and if that reference is null, pass the null on down the line.  To do this, both the input type and the output type must be reference types (yes, nullable value types could also be considered applicable at a logical level, but there’s not a direct constraint for those). Constraining Generic Type to only Value Types Similarly to constraining a generic type to be a reference type, you can also constrain a generic type to be a value type.  To do this you use the struct constraint which specifies that the generic type must be a value type (primitive, struct, enum, etc). Consider the following method, that will convert anything that is IConvertible (int, double, string, etc) to the value type you specify, or null if the instance is null. 1: public static T? ConvertToNullable<T>(IConvertible value) 2: where T : struct 3: { 4: T? result = null; 5:  6: if (value != null) 7: { 8: result = (T)Convert.ChangeType(value, typeof(T)); 9: } 10:  11: return result; 12: } Because T was constrained to be a value type, we can use T? (System.Nullable<T>) where we could not do this if T was a reference type. Constraining Generic Type to Require Default Constructor You can also constrain a type to require existence of a default constructor.  Because by default C# doesn’t know what constructors a generic type placeholder does or does not have available, it can’t typically allow you to call one.  That said, if you give it the new() constraint, it will mean that the type used to realize the generic type must have a default (no argument) constructor. Let’s assume you have a generic adapter class that, given some mappings, will adapt an item from type TFrom to type TTo.  Because it must create a new instance of type TTo in the process, we need to specify that TTo has a default constructor: 1: // Given a set of Action<TFrom,TTo> mappings will map TFrom to TTo 2: public class Adapter<TFrom, TTo> : IEnumerable<Action<TFrom, TTo>> 3: where TTo : class, new() 4: { 5: // The list of translations from TFrom to TTo 6: public List<Action<TFrom, TTo>> Translations { get; private set; } 7:  8: // Construct with empty translation and reverse translation sets. 9: public Adapter() 10: { 11: // did this instead of auto-properties to allow simple use of initializers 12: Translations = new List<Action<TFrom, TTo>>(); 13: } 14:  15: // Add a translator to the collection, useful for initializer list 16: public void Add(Action<TFrom, TTo> translation) 17: { 18: Translations.Add(translation); 19: } 20:  21: // Add a translator that first checks a predicate to determine if the translation 22: // should be performed, then translates if the predicate returns true 23: public void Add(Predicate<TFrom> conditional, Action<TFrom, TTo> translation) 24: { 25: Translations.Add((from, to) => 26: { 27: if (conditional(from)) 28: { 29: translation(from, to); 30: } 31: }); 32: } 33:  34: // Translates an object forward from TFrom object to TTo object. 35: public TTo Adapt(TFrom sourceObject) 36: { 37: var resultObject = new TTo(); 38:  39: // Process each translation 40: Translations.ForEach(t => t(sourceObject, resultObject)); 41:  42: return resultObject; 43: } 44:  45: // Returns an enumerator that iterates through the collection. 46: public IEnumerator<Action<TFrom, TTo>> GetEnumerator() 47: { 48: return Translations.GetEnumerator(); 49: } 50:  51: // Returns an enumerator that iterates through a collection. 52: IEnumerator IEnumerable.GetEnumerator() 53: { 54: return GetEnumerator(); 55: } 56: } Notice, however, you can’t specify any other constructor, you can only specify that the type has a default (no argument) constructor. Summary The where clause is an excellent tool that gives your .NET generics even more power to perform tasks higher than just the base "object level" behavior.  There are a few things you cannot specify with constraints (currently) though: Cannot specify the generic type must be an enum. Cannot specify the generic type must have a certain property or method without specifying a base class or interface – that is, you can’t say that the generic must have a Start() method. Cannot specify that the generic type allows arithmetic operations. Cannot specify that the generic type requires a specific non-default constructor. In addition, you cannot overload a template definition with different, opposing constraints.  For example you can’t define a Adapter<T> where T : struct and Adapter<T> where T : class.  Hopefully, in the future we will get some of these things to make the where clause even more useful, but until then what we have is extremely valuable in making our generics more user friendly and more powerful!   Technorati Tags: C#,.NET,Little Wonders,BlackRabbitCoder,where,generics

    Read the article

  • Passing Strings by Ref

    - by SGWellens
    Humbled yet again…DOH! No matter how much experience you acquire, no matter how smart you may be, no matter how hard you study, it is impossible to keep fully up to date on all the nuances of the technology we are exposed to. There will always be gaps in our knowledge: Little 'dead zones' of uncertainty. For me, this time, it was about passing string parameters to functions. I thought I knew this stuff cold. First, a little review... Value Types and Ref Integers and structs are value types (as opposed to reference types). When declared locally, their memory storage is on the stack; not on the heap. When passed to a function, the function gets a copy of the data and works on the copy. If a function needs to change a value type, you need to use the ref keyword.  Here's an example:     // ---- declaration -----------------     public struct MyStruct    {        public string StrTag;    }     // ---- functions -----------------------     void SetMyStruct(MyStruct myStruct)     // pass by value    {        myStruct.StrTag = "BBB";    }     void SetMyStruct(ref MyStruct myStruct)  // pass by ref    {        myStruct.StrTag = "CCC";    }     // ---- Usage -----------------------     protected void Button1_Click(object sender, EventArgs e)    {        MyStruct Data;        Data.StrTag = "AAA";         SetMyStruct(Data);        // Data.StrTag is still "AAA"         SetMyStruct(ref Data);        // Data.StrTag is now "CCC"    } No surprises here. All value types like ints, floats, datetimes, enums, structs, etc. work the same way. And now on to... Class Types and Ref     // ---- Declaration -----------------------------     public class MyClass    {        public string StrTag;    }     // ---- Functions ----------------------------     void SetMyClass(MyClass myClass)  // pass by 'value'    {        myClass.StrTag = "BBB";    }     void SetMyClass(ref MyClass myClass)   // pass by ref    {        myClass.StrTag = "CCC";    }     // ---- Usage ---------------------------------------     protected void Button2_Click(object sender, EventArgs e)    {        MyClass Data = new MyClass();        Data.StrTag = "AAA";         SetMyClass(Data);          // Data.StrTag is now "BBB"         SetMyClass(ref Data);        // Data.StrTag is now "CCC"    }  No surprises here either. Since Classes are reference types, you do not need the ref keyword to modify an object. What may seem a little strange is that with or without the ref keyword, the results are the same: The compiler knows what to do. So, why would you need to use the ref keyword when passing an object to a function? Because then you can change the reference itself…ie you can make it refer to a completely different object. Inside the function you can do: myClass = new MyClass() and the old object will be garbage collected and the new object will be returned to the caller. That ends the review. Now let's look at passing strings as parameters. The String Type and Ref Strings are reference types. So when you pass a String to a function, you do not need the ref keyword to change the string. Right? Wrong. Wrong, wrong, wrong. When I saw this, I was so surprised that I fell out of my chair. Getting up, I bumped my head on my desk (which really hurt). My bumping the desk caused a large speaker to fall off of a bookshelf and land squarely on my big toe. I was screaming in pain and hopping on one foot when I lost my balance and fell. I struck my head on the side of the desk (once again) and knocked myself out cold. When I woke up, I was in the hospital where due to a database error (thanks Oracle) the doctors had put casts on both my hands. I'm typing this ever so slowly with just my ton..tong ..tongu…tongue. But I digress. Okay, the only true part of that story is that I was a bit surprised. Here is what happens passing a String to a function.     // ---- Functions ----------------------------     void SetMyString(String myString)   // pass by 'value'    {        myString = "BBB";    }     void SetMyString(ref String myString)  // pass by ref    {        myString = "CCC";    }     // ---- Usage ---------------------------------     protected void Button3_Click(object sender, EventArgs e)    {        String MyString = "AAA";         SetMyString(MyString);        // MyString is still "AAA"  What!!!!         SetMyString(ref MyString);        // MyString is now "CCC"    } What the heck. We should not have to use the ref keyword when passing a String because Strings are reference types. Why didn't the string change? What is going on?   I spent hours unssuccessfully researching this anomaly until finally, I had a Eureka moment: This code: String MyString = "AAA"; Is semantically equivalent to this code (note this code doesn't actually compile): String MyString = new String(); MyString = "AAA"; Key Point: In the function, the copy of the reference is pointed to a new object and THAT object is modified. The original reference and what it points to is unchanged. You can simulate this behavior by modifying the class example code to look like this:      void SetMyClass(MyClass myClass)  // call by 'value'    {        //myClass.StrTag = "BBB";        myClass = new MyClass();        myClass.StrTag = "BBB";    } Now when you call the SetMyClass function without using ref, the parameter is unchanged...just like the string example.  I hope someone finds this useful. Steve Wellens

    Read the article

  • reiserfsck on lvm

    - by DaDaDom
    It seems like my filesystem got corrupted somehow during the last reboot of my server. I can't fsck some logical volumes anymore. The setup: root@rescue ~ # cat /mnt/rescue/etc/fstab proc /proc proc defaults 0 0 /dev/md0 /boot ext3 defaults 0 2 /dev/md1 / ext3 defaults,errors=remount-ro 0 1 /dev/systemlvm/home /home reiserfs defaults 0 0 /dev/systemlvm/usr /usr reiserfs defaults 0 0 /dev/systemlvm/var /var reiserfs defaults 0 0 /dev/systemlvm/tmp /tmp reiserfs noexec,nosuid 0 2 /dev/sda5 none swap defaults,pri=1 0 0 /dev/sdb5 none swap defaults,pri=1 0 0 [UPDATE] First question: what "part" should I check for bad blocks? The logical volume, the underlying /dev/md or the /dev/sdx below that? Is doing what I am doing the right way to go? [/UPDATE] The errormessage when checking /dev/systemlvm/usr: root@rescue ~ # reiserfsck /dev/systemlvm/usr reiserfsck 3.6.19 (2003 www.namesys.com) [...] Will read-only check consistency of the filesystem on /dev/systemlvm/usr Will put log info to 'stdout' Do you want to run this program?[N/Yes] (note need to type Yes if you do):Yes ########### reiserfsck --check started at Wed Feb 3 07:10:55 2010 ########### Replaying journal.. Reiserfs journal '/dev/systemlvm/usr' in blocks [18..8211]: 0 transactions replayed Checking internal tree.. Bad root block 0. (--rebuild-tree did not complete) Aborted Well so far, let's try --rebuild-tree: root@rescue ~ # reiserfsck --rebuild-tree /dev/systemlvm/usr reiserfsck 3.6.19 (2003 www.namesys.com) [...] Will rebuild the filesystem (/dev/systemlvm/usr) tree Will put log info to 'stdout' Do you want to run this program?[N/Yes] (note need to type Yes if you do):Yes Replaying journal.. Reiserfs journal '/dev/systemlvm/usr' in blocks [18..8211]: 0 transactions replayed ########### reiserfsck --rebuild-tree started at Wed Feb 3 07:12:27 2010 ########### Pass 0: ####### Pass 0 ####### Loading on-disk bitmap .. ok, 269716 blocks marked used Skipping 8250 blocks (super block, journal, bitmaps) 261466 blocks will be read 0%....20%....40%....60%....80%....100% left 0, 11368 /sec 52919 directory entries were hashed with "r5" hash. "r5" hash is selected Flushing..finished Read blocks (but not data blocks) 261466 Leaves among those 13086 Objectids found 53697 Pass 1 (will try to insert 13086 leaves): ####### Pass 1 ####### Looking for allocable blocks .. finished 0% left 12675, 0 /sec The problem has occurred looks like a hardware problem (perhaps memory). Send us the bug report only if the second run dies at the same place with the same block number. mark_block_used: (39508) used already Aborted Bad. But let's do it again as mentioned: [...] Flushing..finished Read blocks (but not data blocks) 261466 Leaves among those 13085 Objectids found 54305 Pass 1 (will try to insert 13085 leaves): ####### Pass 1 ####### Looking for allocable blocks .. finished 0%... left 12127, 958 /sec The problem has occurred looks like a hardware problem (perhaps memory). Send us the bug report only if the second run dies at the same place with the same block number. build_the_tree: Nothing but leaves are expected. Block 196736 - internal Aborted Same happens every time, only the actual error message changes. Sometimes I get mark_block_used: (somenumber) used already, other times the block number changes. Seems like something is REALLY broken. Are there any chances I can somehow get the partitions to work again? It's a server to which I don't have physical access directly (hosted server). Thanks in advance!

    Read the article

  • What's wrong with this vcl config for varnish-cache as load balancer?

    - by dabito
    I have the current configurations active on my default.vcl varnish file on the machine that balances the load for other two machines (the other two machines also have varnish active). My intention is to have this server do only the load balancing and the other machines do the processing and also their own caching. My problem is that even with the config testing (not even a stress test or anything, just a few requests a minute) I get the guru meditation error and have to restart varnish. This is the default.vcl for the load balancing server: backend vader { .host = "app1.server.com"; .probe = { .url = "/"; .interval = 10s; .timeout = 4s; .window = 5; .threshold = 3; } } backend malgus { .host = "app2.server.com"; .probe = { .url = "/"; .interval = 10s; .timeout = 4s; .window = 5; .threshold = 3; } } director dooku round-robin { { .backend = vader; } { .backend = malgus; } } sub vcl_recv { if (req.http.host ~ "^balancer.server.com$") { set req.backend = dooku; } } Am I doing something wrong or missing something? EDIT: This is varnishlog's output: 0 CLI - Rd ping 0 CLI - Wr 200 19 PONG 1345839995 1.0 0 CLI - Rd ping 0 CLI - Wr 200 19 PONG 1345839998 1.0 0 CLI - Rd ping 0 CLI - Wr 200 19 PONG 1345840001 1.0 0 Backend_health - malgus Still sick 4--X--- 0 3 5 0.000000 3.846876 0 Backend_health - vader Still sick 4--X--- 0 3 5 0.000000 3.839194 0 CLI - Rd ping 0 CLI - Wr 200 19 PONG 1345840004 1.0 14 SessionOpen c 10.150.7.151 38272 :80 14 ReqStart c 10.150.7.151 38272 458200540 14 RxRequest c GET 14 RxURL c / 14 RxProtocol c HTTP/1.1 14 RxHeader c Host: dooku-dev.excelsior.com 14 RxHeader c Connection: keep-alive 14 RxHeader c User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.47 Safari/536.11 14 RxHeader c Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 14 RxHeader c Accept-Encoding: gzip,deflate,sdch 14 RxHeader c Accept-Language: en-US,en;q=0.8,es-419;q=0.6,es;q=0.4 14 RxHeader c Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 14 RxHeader c Cookie: SESSa87d6c6da0c61037a9169122dc5e4a19=HR_0Srhgc-uDArT3aJFzOBy31FtzneTXg38byr1eGMU; __atuvc=4%7C33 14 VCL_call c recv pass 14 VCL_call c hash 14 Hash c / 14 Hash c dooku-dev.excelsior.com 14 VCL_return c hash 14 VCL_call c pass pass 14 FetchError c no backend connection 14 VCL_call c error deliver 14 VCL_call c deliver deliver 14 TxProtocol c HTTP/1.1 14 TxStatus c 503 14 TxResponse c Service Unavailable 14 TxHeader c Server: Varnish 14 TxHeader c Content-Type: text/html; charset=utf-8 14 TxHeader c Retry-After: 5 14 TxHeader c Content-Length: 418 14 TxHeader c Accept-Ranges: bytes 14 TxHeader c Date: Fri, 24 Aug 2012 20:26:44 GMT 14 TxHeader c X-Varnish: 458200540 14 TxHeader c Age: 0 14 TxHeader c Via: 1.1 varnish 14 TxHeader c Connection: close 14 Length c 418 14 ReqEnd c 458200540 1345840004.916415691 1345840004.965190172 0.020933390 0.048741817 0.000032663 14 SessionClose c error 14 StatSess c 10.150.7.151 38272 0 1 1 0 1 0 256 418 14 SessionOpen c 10.150.7.151 38273 :80 14 ReqStart c 10.150.7.151 38273 458200541 14 RxRequest c GET 14 RxURL c /favicon.ico 14 RxProtocol c HTTP/1.1 14 RxHeader c Host: dooku-dev.excelsior.com 14 RxHeader c Connection: keep-alive 14 RxHeader c Accept: */* 14 RxHeader c User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.47 Safari/536.11 14 RxHeader c Accept-Encoding: gzip,deflate,sdch 14 RxHeader c Accept-Language: en-US,en;q=0.8,es-419;q=0.6,es;q=0.4 14 RxHeader c Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 14 RxHeader c Cookie: SESSa87d6c6da0c61037a9169122dc5e4a19=HR_0Srhgc-uDArT3aJFzOBy31FtzneTXg38byr1eGMU; __atuvc=4%7C33 14 VCL_call c recv pass 14 VCL_call c hash 14 Hash c /favicon.ico 14 Hash c dooku-dev.excelsior.com 14 VCL_return c hash 14 VCL_call c pass pass 14 FetchError c no backend connection 14 VCL_call c error deliver 14 VCL_call c deliver deliver 14 TxProtocol c HTTP/1.1 14 TxStatus c 503 14 TxResponse c Service Unavailable 14 TxHeader c Server: Varnish 14 TxHeader c Content-Type: text/html; charset=utf-8 14 TxHeader c Retry-After: 5 14 TxHeader c Content-Length: 418 14 TxHeader c Accept-Ranges: bytes 14 TxHeader c Date: Fri, 24 Aug 2012 20:26:45 GMT 14 TxHeader c X-Varnish: 458200541 14 TxHeader c Age: 0 14 TxHeader c Via: 1.1 varnish 14 TxHeader c Connection: close 14 Length c 418 14 ReqEnd c 458200541 1345840005.226389885 1345840005.226457834 0.000026941 0.000043154 0.000024796 14 SessionClose c error 14 StatSess c 10.150.7.151 38273 0 1 1 0 1 0 256 418

    Read the article

  • Installation of LPRng (Ubuntu 13.04)

    - by Poulen
    I have problems with LPRng installation (I am linux beginner). http://lprng.com/LPRng-Reference/LPRng-Reference.html#INSTALLATION - installation guide http://lprng.com/PrintingCookbook/index.html#AEN1563 Could you write me here please, step by step, what I have to do (write into terminal) for succesful installation? I'm trying to do the first step of guide (h4: {4} % gunzip -c LPRng-.tgz | tar xvf -) but unsuccessfuly. (I put the source file to usr/bin, usr/sbin and usr/etc). I'm desperate, help me please :) Thank you and sorry for my english

    Read the article

  • Listing common SQL Code Smells.

    - by Phil Factor
    Once you’ve done a number of SQL Code-reviews, you’ll know those signs in the code that all might not be well. These ’Code Smells’ are coding styles that don’t directly cause a bug, but are indicators that all is not well with the code. . Kent Beck and Massimo Arnoldi seem to have coined the phrase in the "OnceAndOnlyOnce" page of www.C2.com, where Kent also said that code "wants to be simple". Bad Smells in Code was an essay by Kent Beck and Martin Fowler, published as Chapter 3 of the book ‘Refactoring: Improving the Design of Existing Code’ (ISBN 978-0201485677) Although there are generic code-smells, SQL has its own particular coding habits that will alert the programmer to the need to re-factor what has been written. See Exploring Smelly Code   and Code Deodorants for Code Smells by Nick Harrison for a grounding in Code Smells in C# I’ve always been tempted by the idea of automating a preliminary code-review for SQL. It would be so useful to trawl through code and pick up the various problems, much like the classic ‘Lint’ did for C, and how the Code Metrics plug-in for .NET Reflector by Jonathan 'Peli' de Halleux is used for finding Code Smells in .NET code. The problem is that few of the standard procedural code smells are relevant to SQL, and we need an agreed list of code smells. Merrilll Aldrich made a grand start last year in his blog Top 10 T-SQL Code Smells.However, I'd like to make a start by discovering if there is a general opinion amongst Database developers what the most important SQL Smells are. One can be a bit defensive about code smells. I will cheerfully write very long stored procedures, even though they are frowned on. I’ll use dynamic SQL occasionally. You can only use them as an aid for your own judgment and it is fine to ‘sign them off’ as being appropriate in particular circumstances. Also, whole classes of ‘code smells’ may be irrelevant for a particular database. The use of proprietary SQL, for example, is only a ‘code smell’ if there is a chance that the database will have to be ported to another RDBMS. The use of dynamic SQL is a risk only with certain security models. As the saying goes,  a CodeSmell is a hint of possible bad practice to a pragmatist, but a sure sign of bad practice to a purist. Plamen Ratchev’s wonderful article Ten Common SQL Programming Mistakes lists some of these ‘code smells’ along with out-and-out mistakes, but there are more. The use of nested transactions, for example, isn’t entirely incorrect, even though the database engine ignores all but the outermost: but it does flag up the possibility that the programmer thinks that nested transactions are supported. If anything requires some sort of general agreement, the definition of code smells is one. I’m therefore going to make this Blog ‘dynamic, in that, if anyone twitters a suggestion with a #SQLCodeSmells tag (or sends me a twitter) I’ll update the list here. If you add a comment to the blog with a suggestion of what should be added or removed, I’ll do my best to oblige. In other words, I’ll try to keep this blog up to date. The name against each 'smell' is the name of the person who Twittered me, commented about or who has written about the 'smell'. it does not imply that they were the first ever to think of the smell! Use of deprecated syntax such as *= (Dave Howard) Denormalisation that requires the shredding of the contents of columns. (Merrill Aldrich) Contrived interfaces Use of deprecated datatypes such as TEXT/NTEXT (Dave Howard) Datatype mis-matches in predicates that rely on implicit conversion.(Plamen Ratchev) Using Correlated subqueries instead of a join   (Dave_Levy/ Plamen Ratchev) The use of Hints in queries, especially NOLOCK (Dave Howard /Mike Reigler) Few or No comments. Use of functions in a WHERE clause. (Anil Das) Overuse of scalar UDFs (Dave Howard, Plamen Ratchev) Excessive ‘overloading’ of routines. The use of Exec xp_cmdShell (Merrill Aldrich) Excessive use of brackets. (Dave Levy) Lack of the use of a semicolon to terminate statements Use of non-SARGable functions on indexed columns in predicates (Plamen Ratchev) Duplicated code, or strikingly similar code. Misuse of SELECT * (Plamen Ratchev) Overuse of Cursors (Everyone. Special mention to Dave Levy & Adrian Hills) Overuse of CLR routines when not necessary (Sam Stange) Same column name in different tables with different datatypes. (Ian Stirk) Use of ‘broken’ functions such as ‘ISNUMERIC’ without additional checks. Excessive use of the WHILE loop (Merrill Aldrich) INSERT ... EXEC (Merrill Aldrich) The use of stored procedures where a view is sufficient (Merrill Aldrich) Not using two-part object names (Merrill Aldrich) Using INSERT INTO without specifying the columns and their order (Merrill Aldrich) Full outer joins even when they are not needed. (Plamen Ratchev) Huge stored procedures (hundreds/thousands of lines). Stored procedures that can produce different columns, or order of columns in their results, depending on the inputs. Code that is never used. Complex and nested conditionals WHILE (not done) loops without an error exit. Variable name same as the Datatype Vague identifiers. Storing complex data  or list in a character map, bitmap or XML field User procedures with sp_ prefix (Aaron Bertrand)Views that reference views that reference views that reference views (Aaron Bertrand) Inappropriate use of sql_variant (Neil Hambly) Errors with identity scope using SCOPE_IDENTITY @@IDENTITY or IDENT_CURRENT (Neil Hambly, Aaron Bertrand) Schemas that involve multiple dated copies of the same table instead of partitions (Matt Whitfield-Atlantis UK) Scalar UDFs that do data lookups (poor man's join) (Matt Whitfield-Atlantis UK) Code that allows SQL Injection (Mladen Prajdic) Tables without clustered indexes (Matt Whitfield-Atlantis UK) Use of "SELECT DISTINCT" to mask a join problem (Nick Harrison) Multiple stored procedures with nearly identical implementation. (Nick Harrison) Excessive column aliasing may point to a problem or it could be a mapping implementation. (Nick Harrison) Joining "too many" tables in a query. (Nick Harrison) Stored procedure returning more than one record set. (Nick Harrison) A NOT LIKE condition (Nick Harrison) excessive "OR" conditions. (Nick Harrison) User procedures with sp_ prefix (Aaron Bertrand) Views that reference views that reference views that reference views (Aaron Bertrand) sp_OACreate or anything related to it (Bill Fellows) Prefixing names with tbl_, vw_, fn_, and usp_ ('tibbling') (Jeremiah Peschka) Aliases that go a,b,c,d,e... (Dave Levy/Diane McNurlan) Overweight Queries (e.g. 4 inner joins, 8 left joins, 4 derived tables, 10 subqueries, 8 clustered GUIDs, 2 UDFs, 6 case statements = 1 query) (Robert L Davis) Order by 3,2 (Dave Levy) MultiStatement Table functions which are then filtered 'Sel * from Udf() where Udf.Col = Something' (Dave Ballantyne) running a SQL 2008 system in SQL 2000 compatibility mode(John Stafford)

    Read the article

  • WCF client hell (2 replies)

    I've a remote service available via tcp://. When I add a service reference on my client project, VS doesn't create all proxy objects! I miss every xxxClient class, and I have only types used as parameters in my methods. I tried to start a new empty project, add the same service reference, and in this project I can see al proxy objects! It's an hell, what can I do? thanks

    Read the article

  • WCF client hell (2 replies)

    I've a remote service available via tcp://. When I add a service reference on my client project, VS doesn't create all proxy objects! I miss every xxxClient class, and I have only types used as parameters in my methods. I tried to start a new empty project, add the same service reference, and in this project I can see al proxy objects! It's an hell, what can I do? thanks

    Read the article

  • Fresh Voices

    - by Paul Nielsen
    The PASS Summit 2010 Call for Speakers is closed. When the call went out I offered to review abstracts for anyone interested, which gave a peak into the content of the next PASS, albeit a skewed peak, but what I did see was encouraging. In all I reviewed about 50 abstracts (several of these I found on my junk folder, so I apologize to any that I didn’t see.) The abstracts I reviewed had a mix of new topics and core technologies from new speakers, regulars, and a few MVPs. The observation that stood...(read more)

    Read the article

  • SQL SERVER – DMV – sys.dm_exec_query_optimizer_info – Statistics of Optimizer

    - by pinaldave
    Incredibly, SQL Server has so much information to share with us. Every single day, I am amazed with this SQL Server technology. Sometimes I find several interesting information by just querying few of the DMV. And when I present this info in front of my client during performance tuning consultancy, they are surprised with my findings. Today, I am going to share one of the hidden gems of DMV with you, the one which I frequently use to understand what’s going on under the hood of SQL Server. SQL Server keeps the record of most of the operations of the Query Optimizer. We can learn many interesting details about the optimizer which can be utilized to improve the performance of server. SELECT * FROM sys.dm_exec_query_optimizer_info WHERE counter IN ('optimizations', 'elapsed time','final cost', 'insert stmt','delete stmt','update stmt', 'merge stmt','contains subquery','tables', 'hints','order hint','join hint', 'view reference','remote query','maximum DOP', 'maximum recursion level','indexed views loaded', 'indexed views matched','indexed views used', 'indexed views updated','dynamic cursor request', 'fast forward cursor request') All occurrence values are cumulative and are set to 0 at system restart. All values for value fields are set to NULL at system restart. I have removed a few of the internal counters from the script above, and kept only documented details. Let us check the result of the above query. As you can see, there is so much vital information that is revealed in above query. I can easily say so many things about how many times Optimizer was triggered and what the average time taken by it to optimize my queries was. Additionally, I can also determine how many times update, insert or delete statements were optimized. I was able to quickly figure out that my client was overusing the Query Hints using this dynamic management view. If you have been reading my blog, I am sure you are aware of my series related to SQL Server Views SQL SERVER – The Limitations of the Views – Eleven and more…. With this, I can take a quick look and figure out how many times Views were used in various solutions within the query. Moreover, you can easily know what fraction of the optimizations has been involved in tuning server. For example, the following query would tell me, in total optimizations, what the fraction of time View was “reference“. As this View also includes system Views and DMVs, the number is a bit higher on my machine. SELECT (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'view reference') / (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'optimizations') AS ViewReferencedFraction Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Python Forgiveness vs. Permission and Duck Typing

    - by darkfeline
    In Python, I often hear that it is better to "beg forgiveness" (exception catching) instead of "ask permission" (type/condition checking). In regards to enforcing duck typing in Python, is this try: x = foo.bar except AttributeError: pass else: do(x) better or worse than if hasattr(foo, "bar"): do(foo.bar) else: pass in terms of performance, readability, "pythonic", or some other important factor?

    Read the article

  • BIEE Answer Parameter Passing

    - by Tim Dexter
    A little off BIP topic today but I spent some time researching how to pass parameters between Answer reports and knocked up a document for a client this morning and thought, what the heck someone might find it useful. If you have a source Answer request and you want to link to another Answer in another subject area and pass values to the target request, read this.

    Read the article

  • 62 miles up

    - by fatherjack
    RedGate are known for being a software company with a big personality and having a huge presence in the SQL Community. They run the annual Exceptional DBA competition, having held a party at the PASS summit last night to celebrate this years winner - Jeff Moden. They have also got a great attitude towards their staff as demonstrated on their website. Today, just after the PASS Summit keynote speech they made an announcement that is literally going to give one lucky winner the ride of their life....(read more)

    Read the article

  • ANTS Memory Profiler 7.0 Review

    - by Michael B. McLaughlin
    (This is my first review as a part of the GeeksWithBlogs.net Influencers program. It’s a program in which I (and the others who have been selected for it) get the opportunity to check out new products and services and write reviews about them. We don’t get paid for this, but we do generally get to keep a copy of the software or retain an account for some period of time on the service that we review. In this case I received a copy of Red Gate Software’s ANTS Memory Profiler 7.0, which was released in January. I don’t have any upgrade rights nor is my review guided, restrained, influenced, or otherwise controlled by Red Gate or anyone else. But I do get to keep the software license. I will always be clear about what I received whenever I do a review – I leave it up to you to decide whether you believe I can be objective. I believe I can be. If I used something and really didn’t like it, keeping a copy of it wouldn’t be worth anything to me. In that case though, I would simply uninstall/deactivate/whatever the software or service and tell the company what I didn’t like about it so they could (hopefully) make it better in the future. I don’t think it’d be polite to write up a terrible review, nor do I think it would be a particularly good use of my time. There are people who get paid for a living to review things, so I leave it to them to tell you what they think is bad and why. I’ll only spend my time telling you about things I think are good.) Overview of Common .NET Memory Problems When coming to land of managed memory from the wilds of unmanaged code, it’s easy to say to one’s self, “Wow! Now I never have to worry about memory problems again!” But this simply isn’t true. Managed code environments, such as .NET, make many, many things easier. You will never have to worry about memory corruption due to a bad pointer, for example (unless you’re working with unsafe code, of course). But managed code has its own set of memory concerns. For example, failing to unsubscribe from events when you are done with them leaves the publisher of an event with a reference to the subscriber. If you eliminate all your own references to the subscriber, then that memory is effectively lost since the GC won’t delete it because of the publishing object’s reference. When the publishing object itself becomes subject to garbage collection then you’ll get that memory back finally, but that could take a very long time depending of the life of the publisher. Another common source of resource leaks is failing to properly release unmanaged resources. When writing a class that contains members that hold unmanaged resources (e.g. any of the Stream-derived classes, IsolatedStorageFile, most classes ending in “Reader” or “Writer”), you should always implement IDisposable, making sure to use a properly written Dispose method. And when you are using an instance of a class that implements IDisposable, you should always make sure to use a 'using' statement in order to ensure that the object’s unmanaged resources are disposed of properly. (A ‘using’ statement is a nicer, cleaner looking, and easier to use version of a try-finally block. The compiler actually translates it as though it were a try-finally block. Note that Code Analysis warning 2202 (CA2202) will often be triggered by nested using blocks. A properly written dispose method ensures that it only runs once such that calling dispose multiple times should not be a problem. Nonetheless, CA2202 exists and if you want to avoid triggering it then you should write your code such that only the innermost IDisposable object uses a ‘using’ statement, with any outer code making use of appropriate try-finally blocks instead). Then, of course, there are situations where you are operating in a memory-constrained environment or else you want to limit or even eliminate allocations within a certain part of your program (e.g. within the main game loop of an XNA game) in order to avoid having the GC run. On the Xbox 360 and Windows Phone 7, for example, for every 1 MB of heap allocations you make, the GC runs; the added time of a GC collection can cause a game to drop frames or run slowly thereby making it look bad. Eliminating allocations (or else minimizing them and calling an explicit Collect at an appropriate time) is a common way of avoiding this (the other way is to simplify your heap so that the GC’s latency is low enough not to cause performance issues). ANTS Memory Profiler 7.0 When the opportunity to review Red Gate’s recently released ANTS Memory Profiler 7.0 arose, I jumped at it. In order to review it, I was given a free copy (which does not include upgrade rights for future versions) which I am allowed to keep. For those of you who are familiar with ANTS Memory Profiler, you can find a list of new features and enhancements here. If you are an experienced .NET developer who is familiar with .NET memory management issues, ANTS Memory Profiler is great. More importantly still, if you are new to .NET development or you have no experience or limited experience with memory profiling, ANTS Memory Profiler is awesome. From the very beginning, it guides you through the process of memory profiling. If you’re experienced and just want dive in however, it doesn’t get in your way. The help items GAHSFLASHDAJLDJA are well designed and located right next to the UI controls so that they are easy to find without being intrusive. When you first launch it, it presents you with a “Getting Started” screen that contains links to “Memory profiling video tutorials”, “Strategies for memory profiling”, and the “ANTS Memory Profiler forum”. I’m normally the kind of person who looks at a screen like that only to find the “Don’t show this again” checkbox. Since I was doing a review, though, I decided I should examine them. I was pleasantly surprised. The overview video clocks in at three minutes and fifty seconds. It begins by showing you how to get started profiling an application. It explains that profiling is done by taking memory snapshots periodically while your program is running and then comparing them. ANTS Memory Profiler (I’m just going to call it “ANTS MP” from here) analyzes these snapshots in the background while your application is running. It briefly mentions a new feature in Version 7, a new API that give you the ability to trigger snapshots from within your application’s source code (more about this below). You can also, and this is the more common way you would do it, take a memory snapshot at any time from within the ANTS MP window by clicking the “Take Memory Snapshot” button in the upper right corner. The overview video goes on to demonstrate a basic profiling session on an application that pulls information from a database and displays it. It shows how to switch which snapshots you are comparing, explains the different sections of the Summary view and what they are showing, and proceeds to show you how to investigate memory problems using the “Instance Categorizer” to track the path from an object (or set of objects) to the GC’s root in order to find what things along the path are holding a reference to it/them. For a set of objects, you can then click on it and get the “Instance List” view. This displays all of the individual objects (including their individual sizes, values, etc.) of that type which share the same path to the GC root. You can then click on one of the objects to generate an “Instance Retention Graph” view. This lets you track directly up to see the reference chain for that individual object. In the overview video, it turned out that there was an event handler which was holding on to a reference, thereby keeping a large number of strings that should have been freed in memory. Lastly the video shows the “Class List” view, which lets you dig in deeply to find problems that might not have been clear when following the previous workflow. Once you have at least one memory snapshot you can begin analyzing. The main interface is in the “Analysis” tab. You can also switch to the “Session Overview” tab, which gives you several bar charts highlighting basic memory data about the snapshots you’ve taken. If you hover over the individual bars (and the individual colors in bars that have more than one), you will see a detailed text description of what the bar is representing visually. The Session Overview is good for a quick summary of memory usage and information about the different heaps. You are going to spend most of your time in the Analysis tab, but it’s good to remember that the Session Overview is there to give you some quick feedback on basic memory usage stats. As described above in the summary of the overview video, there is a certain natural workflow to the Analysis tab. You’ll spin up your application and take some snapshots at various times such as before and after clicking a button to open a window or before and after closing a window. Taking these snapshots lets you examine what is happening with memory. You would normally expect that a lot of memory would be freed up when closing a window or exiting a document. By taking snapshots before and after performing an action like that you can see whether or not the memory is really being freed. If you already know an area that’s giving you trouble, you can run your application just like normal until just before getting to that part and then you can take a few strategic snapshots that should help you pin down the problem. Something the overview didn’t go into is how to use the “Filters” section at the bottom of ANTS MP together with the Class List view in order to narrow things down. The video tutorials page has a nice 3 minute intro video called “How to use the filters”. It’s a nice introduction and covers some of the basics. I’m going to cover a bit more because I think they’re a really neat, really helpful feature. Large programs can bring up thousands of classes. Even simple programs can instantiate far more classes than you might realize. In a basic .NET 4 WPF application for example (and when I say basic, I mean just MainWindow.xaml with a button added to it), the unfiltered Class List view will have in excess of 1000 classes (my simple test app had anywhere from 1066 to 1148 classes depending on which snapshot I was using as the “Current” snapshot). This is amazing in some ways as it shows you how in stark detail just how immensely powerful the WPF framework is. But hunting through 1100 classes isn’t productive, no matter how cool it is that there are that many classes instantiated and doing all sorts of awesome things. Let’s say you wanted to examine just the classes your application contains source code for (in my simple example, that would be the MainWindow and App). Under “Basic Filters”, click on “Classes with source” under “Show only…”. Voilà. Down from 1070 classes in the snapshot I was using as “Current” to 2 classes. If you then click on a class’s name, it will show you (to the right of the class name) two little icon buttons. Hover over them and you will see that you can click one to view the Instance Categorizer for the class and another to view the Instance List for the class. You can also show classes based on which heap they live on. If you chose both a Baseline snapshot and a Current snapshot then you can use the “Comparing snapshots” filters to show only: “New objects”; “Surviving objects”; “Survivors in growing classes”; or “Zombie objects” (if you aren’t sure what one of these means, you can click the helpful “?” in a green circle icon to bring up a popup that explains them and provides context). Remember that your selection(s) under the “Show only…” heading will still apply, so you should update those selections to make sure you are seeing the view you want. There are also links under the “What is my memory problem?” heading that can help you diagnose the problems you are seeing including one for “I don’t know which kind I have” for situations where you know generally that your application has some problems but aren’t sure what the behavior you have been seeing (OutOfMemoryExceptions, continually growing memory usage, larger memory use than expected at certain points in the program). The Basic Filters are not the only filters there are. “Filter by Object Type” gives you the ability to filter by: “Objects that are disposable”; “Objects that are/are not disposed”; “Objects that are/are not GC roots” (GC roots are things like static variables); and “Objects that implement _______”. “Objects that implement” is particularly neat. Once you check the box, you can then add one or more classes and interfaces that an object must implement in order to survive the filtering. Lastly there is “Filter by Reference”, which gives you the option to pare down the list based on whether an object is “Kept in memory exclusively by” a particular item, a class/interface, or a namespace; whether an object is “Referenced by” one or more of those choices; and whether an object is “Never referenced by” one or more of those choices. Remember that filtering is cumulative, so anything you had set in one of the filter sections still remains in effect unless and until you go back and change it. There’s quite a bit more to ANTS MP – it’s a very full featured product – but I think I touched on all of the most significant pieces. You can use it to debug: a .NET executable; an ASP.NET web application (running on IIS); an ASP.NET web application (running on Visual Studio’s built-in web development server); a Silverlight 4 browser application; a Windows service; a COM+ server; and even something called an XBAP (local XAML browser application). You can also attach to a .NET 4 process to profile an application that’s already running. The startup screen also has a large number of “Charting Options” that let you adjust which statistics ANTS MP should collect. The default selection is a good, minimal set. It’s worth your time to browse through the charting options to examine other statistics that may also help you diagnose a particular problem. The more statistics ANTS MP collects, the longer it will take to collect statistics. So just turning everything on is probably a bad idea. But the option to selectively add in additional performance counters from the extensive list could be a very helpful thing for your memory profiling as it lets you see additional data that might provide clues about a particular problem that has been bothering you. ANTS MP integrates very nicely with all versions of Visual Studio that support plugins (i.e. all of the non-Express versions). Just note that if you choose “Profile Memory” from the “ANTS” menu that it will launch profiling for whichever project you have set as the Startup project. One quick tip from my experience so far using ANTS MP: if you want to properly understand your memory usage in an application you’ve written, first create an “empty” version of the type of project you are going to profile (a WPF application, an XNA game, etc.) and do a quick profiling session on that so that you know the baseline memory usage of the framework itself. By “empty” I mean just create a new project of that type in Visual Studio then compile it and run it with profiling – don’t do anything special or add in anything (except perhaps for any external libraries you’re planning to use). The first thing I tried ANTS MP out on was a demo XNA project of an editor that I’ve been working on for quite some time that involves a custom extension to XNA’s content pipeline. The first time I ran it and saw the unmanaged memory usage I was convinced I had some horrible bug that was creating extra copies of texture data (the demo project didn’t have a lot of texture data so when I saw a lot of unmanaged memory I instantly figured I was doing something wrong). Then I thought to run an empty project through and when I saw that the amount of unmanaged memory was virtually identical, it dawned on me that the CLR itself sits in unmanaged memory and that (thankfully) there was nothing wrong with my code! Quite a relief. Earlier, when discussing the overview video, I mentioned the API that lets you take snapshots from within your application. I gave it a quick trial and it’s very easy to integrate and make use of and is a really nice addition (especially for projects where you want to know what, if any, allocations there are in a specific, complicated section of code). The only concern I had was that if I hadn’t watched the overview video I might never have known it existed. Even then it took me five minutes of hunting around Red Gate’s website before I found the “Taking snapshots from your code" article that explains what DLL you need to add as a reference and what method of what class you should call in order to take an automatic snapshot (including the helpful warning to wrap it in a try-catch block since, under certain circumstances, it can raise an exception, such as trying to call it more than 5 times in 30 seconds. The difficulty in discovering and then finding information about the automatic snapshots API was one thing I thought could use improvement. Another thing I think would make it even better would be local copies of the webpages it links to. Although I’m generally always connected to the internet, I imagine there are more than a few developers who aren’t or who are behind very restrictive firewalls. For them (and for me, too, if my internet connection happens to be down), it would be nice to have those documents installed locally or to have the option to download an additional “documentation” package that would add local copies. Another thing that I wish could be easier to manage is the Filters area. Finding and setting individual filters is very easy as is understanding what those filter do. And breaking it up into three sections (basic, by object, and by reference) makes sense. But I could easily see myself running a long profiling session and forgetting that I had set some filter a long while earlier in a different filter section and then spending quite a bit of time trying to figure out why some problem that was clearly visible in the data wasn’t showing up in, e.g. the instance list before remembering to check all the filters for that one setting that was only culling a few things from view. Some sort of indicator icon next to the filter section names that appears you have at least one filter set in that area would be a nice visual clue to remind me that “oh yeah, I told it to only show objects on the Gen 2 heap! That’s why I’m not seeing those instances of the SuperMagic class!” Something that would be nice (but that Red Gate cannot really do anything about) would be if this could be used in Windows Phone 7 development. If Microsoft and Red Gate could work together to make this happen (even if just on the WP7 emulator), that would be amazing. Especially given the memory constraints that apps and games running on mobile devices need to work within, a good memory profiler would be a phenomenally helpful tool. If anyone at Microsoft reads this, it’d be really great if you could make something like that happen. Perhaps even a (subsidized) custom version just for WP7 development. (For XNA games, of course, you can create a Windows version of the game and use ANTS MP on the Windows version in order to get a better picture of your memory situation. For Silverlight on WP7, though, there’s quite a bit of educated guess work and WeakReference creation followed by forced collections in order to find the source of a memory problem.) The only other thing I found myself wanting was a “Back” button. Between my Windows Phone 7, Zune, and other things, I’ve grown very used to having a “back stack” that lets me just navigate back to where I came from. The ANTS MP interface is surprisingly easy to use given how much it lets you do, and once you start using it for any amount of time, you learn all of the different areas such that you know where to go. And it does remember the state of the areas you were previously in, of course. So if you go to, e.g., the Instance Retention Graph from the Class List and then return back to the Class List, it will remember which class you had selected and all that other state information. Still, a “Back” button would be a welcome addition to a future release. Bottom Line ANTS Memory Profiler is not an inexpensive tool. But my time is valuable. I can easily see ANTS MP saving me enough time tracking down memory problems to justify it on a cost basis. More importantly to me, knowing what is happening memory-wise in my programs and having the confidence that my code doesn’t have any hidden time bombs in it that will cause it to OOM if I leave it running for longer than I do when I spin it up real quickly for debugging or just to see how a new feature looks and feels is a good feeling. It’s a feeling that I like having and want to continue to have. I got the current version for free in order to review it. Having done so, I’ve now added it to my must-have tools and will gladly lay out the money for the next version when it comes out. It has a 14 day free trial, so if you aren’t sure if it’s right for you or if you think it seems interesting but aren’t really sure if it’s worth shelling out the money for it, give it a try.

    Read the article

  • Profiles and using the local profile for a domain user

    - by Harry
    I’m having some trouble with profiles and would like to reach out for some help. I’ve tried to do some research to help myself along, but I’m not making much progress on my own. I’ve pretty much taken over the sys admin duties for my small lab, I don’t have much experience to justify it besides I’m the only with the time and dedication to go at it (The environment was in a state of disrepair). My network and domain I look over are extremely small by most standards, about 10 users at a time. They are pretty intensive activity on the network, and we do work with fairly large files. None of the network is online, which is nice at the moment because it allows me not to have another headache. On to my profile problem, I have set up roaming profiles for the users in the network. Now after a little research, I think I will be switching this to a hybrid of folder redirection and roaming profiles as this seems to best practice. I also don’t want the users having to wait for a long time if they have a bloated profile. Now I’ve finally got a build working using MDT. We have Mac Pros, and it wasn’t fun getting everything to play nice. The way I did this was by setting up a reference computer and installing all the software and tools that each user would need and editing the settings preferences to how we would need them. I think used MDT to do a sys prep and capture to create the image of my reference computer. Using the reference image I can push out my images to the rest of the desktops in my environment. The issue I’m having is when we join the computer to domain. The user can login and operate fine on the computer, but I’d like a more. When the user is logged on with their domain user name they lose a lot of the icons I had on my reference image, as well as the desktop background and some other miscellaneous settings. I would love to have the user log on using their domain user name and see the icons and desktop environment as I had it setup on the reference computer. I’m not sure if it is possible, or something simple that I’m missing, but any help would be greatly appreciated!

    Read the article

  • Review the New Migration Guide to SQL Server 2012 Always On

    - by KKline
    I had the pleasure of meeting Mr. Cephas Lin, of Microsoft, last year at the SQL Saturday in Indianapolis and then later at the PASS Summit in the fall. Cephas has been writing content for SQL Server 2012 Always On. Cephas has recently published his first whitepaper, a migration guide to SQL Server AlwaysOn. Read it and then pass along any feedback: HERE Enjoy, -Kev - Follow me on Twitter !...(read more)

    Read the article

  • Trouble compiling MonoDevelop 4 on Ubuntu 12.04

    - by Mehran
    I'm trying to compile the latest version of MonoDevelop (4.0.9) on my Ubuntu 12.04 and I'm facing errors I can not overcome. Here are my machine's configurations: OS: Ubuntu 12.04 64-bit Mono: version 3.0.12 And here are the commands that I ran to download MonoDevelop: $ git clone git://github.com/mono/monodevelop.git $ cd monodevelop $ git submodule init $ git submodule update And afterwards to compile: ./configure --prefix=`pkg-config --variable=prefix mono` --profile=stable make Then I faced the following errors (sorry if it's long): ... Building ./Main.sln xbuild /verbosity:quiet /nologo /property:CodePage=65001 ./Main.sln /property:Configuration=Debug /home/mehran/git/monodevelop/main/Main.sln: warning : Don't know how to handle GlobalSection MonoDevelopProperties.Debug, Ignoring. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1. : warning CS1685: The predefined type `System.Runtime.CompilerServices.ExtensionAttribute' is defined in multiple assemblies. Using definition from `mscorlib' Editor/IDocument.cs(98,30): warning CS0419: Ambiguous reference in cref attribute `GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched PatternMatching/INode.cs(51,37): warning CS1574: XML comment on `ICSharpCode.NRefactory.PatternMatching.PatternExtensions.Match(this ICSharpCode.NRefactory.PatternMatching.INode, ICSharpCode.NRefactory.PatternMatching.INode)' has cref attribute `PatternMatching.Match.Success' that could not be resolved TextLocation.cs(35,23): warning CS0419: Ambiguous reference in cref attribute `Editor.IDocument.GetOffset'. Assuming `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(int, int)' but other overloads including `ICSharpCode.NRefactory.Editor.IDocument.GetOffset(ICSharpCode.NRefactory.TextLocation)' have also matched TypeSystem/FullTypeName.cs(87,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/INamedElement.cs(59,24): warning CS0419: Ambiguous reference in cref attribute `ReflectionHelper.ParseReflectionName'. Assuming `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string)' but other overloads including `ICSharpCode.NRefactory.TypeSystem.ReflectionHelper.ParseReflectionName(string, ref int)' have also matched TypeSystem/IType.cs(50,26): warning CS1584: XML comment on `ICSharpCode.NRefactory.TypeSystem.IType' has syntactically incorrect cref attribute `IEquatable{IType}.Equals(IType)' TypeSystem/IType.cs(319,38): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `GetMethods(Predicate{IUnresolvedMethod}, GetMemberOptions)' TypeSystem/TypeKind.cs(61,17): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' TypeSystem/SpecialType.cs(50,52): warning CS1580: Invalid type for parameter `1' in XML comment cref attribute `IType.GetNestedTypes(Predicate{ITypeDefinition}, GetMemberOptions)' /usr/lib/mono/4.0/Microsoft.CSharp.targets: error : Compiler crashed with code: 1.

    Read the article

  • An XEvent a Day (30 of 31) – Tracking Session and Statement Level Waits

    - by Jonathan Kehayias
    While attending PASS Summit this year, I got the opportunity to hang out with Brent Ozar ( Blog | Twitter ) one afternoon while he did some work for Yanni Robel ( Blog | Twitter ).  After looking at the wait stats information, Brent pointed out some potential problem points, and based on that information I pulled up my code for my PASS session the next day on Wait Statistics and Extended Events and made some changes to one of the demo’s so that the Event Session only focused on those potentially...(read more)

    Read the article

< Previous Page | 131 132 133 134 135 136 137 138 139 140 141 142  | Next Page >