Search Results

Search found 20484 results on 820 pages for 'small projects'.

Page 136/820 | < Previous Page | 132 133 134 135 136 137 138 139 140 141 142 143  | Next Page >

  • Restricting Input in HTML Textboxes to Numeric Values

    - by Rick Strahl
    Ok, here’s a fairly basic one – how to force a textbox to accept only numeric input. Somebody asked me this today on a support call so I did a few quick lookups online and found the solutions listed rather unsatisfying. The main problem with most of the examples I could dig up was that they only include numeric values, but that provides a rather lame user experience. You need to still allow basic operational keys for a textbox – navigation keys, backspace and delete, tab/shift tab and the Enter key - to work or else the textbox will feel very different than a standard text box. Yes there are plug-ins that allow masked input easily enough but most are fixed width which is difficult to do with plain number input. So I took a few minutes to write a small reusable plug-in that handles this scenario. Imagine you have a couple of textboxes on a form like this: <div class="containercontent"> <div class="label">Enter a number:</div> <input type="text" name="txtNumber1" id="txtNumber1" value="" class="numberinput" /> <div class="label">Enter a number:</div> <input type="text" name="txtNumber2" id="txtNumber2" value="" class="numberinput" /> </div> and you want to restrict input to numbers. Here’s a small .forceNumeric() jQuery plug-in that does what I like to see in this case: [Updated thanks to Elijah Manor for a couple of small tweaks for additional keys to check for] <script type="text/javascript"> $(document).ready(function () { $(".numberinput").forceNumeric(); }); // forceNumeric() plug-in implementation jQuery.fn.forceNumeric = function () { return this.each(function () { $(this).keydown(function (e) { var key = e.which || e.keyCode; if (!e.shiftKey && !e.altKey && !e.ctrlKey && // numbers key >= 48 && key <= 57 || // Numeric keypad key >= 96 && key <= 105 || // comma, period and minus key == 190 || key == 188 || key == 109 || // Backspace and Tab and Enter key == 8 || key == 9 || key == 13 || // Home and End key == 35 || key == 36 || // left and right arrows key == 37 || key == 39 || // Del and Ins key == 46 || key == 45) return true; return false; }); }); } </script> With the plug-in in place in your page or an external .js file you can now simply use a selector to apply it: $(".numberinput").forceNumeric(); The plug-in basically goes through each selected element and hooks up a keydown() event handler. When a key is pressed the handler is fired and the keyCode of the event object is sent. Recall that jQuery normalizes the JavaScript Event object between browsers. The code basically white-lists a few key codes and rejects all others. It returns true to indicate the keypress is to go through or false to eat the keystroke and not process it which effectively removes it. Simple and low tech, and it works without too much change of typical text box behavior.© Rick Strahl, West Wind Technologies, 2005-2011Posted in JavaScript  jQuery  HTML  

    Read the article

  • Add Spell Checking to Your Favorite Windows Apps

    - by Asian Angel
    Some but not all Windows apps have built-in spell checking of some sort. If you want to add spell checking to all of your apps (or a select group) then join us as we look at tinySpell. Note: There is a paid version of this software (tinySpell+) available as well for those who want extra functionality. tinySpell in Action The installation process is simple and straightforward…as soon as you have finished installing tinySpell you will see your new “System Tray Icon”. You can see tinySpell’s “Context Menu” here. Before going any further you may want to have a look through the settings to make any desired display modifications. During our tests we found it very helpful to modify the Spelling Tip options…it will make for a much nicer and easier to read display when you have a spelling error. Clicking on the Applications… Command in the Context Menu will bring up the following window. You can really finesse how active tinySpell will be here: Create a special list of apps that tinySpell will not monitor Create a custom list of apps that tinySpell will monitor If you have any particular or unique words that you would like to add to tinySpell’s Dictionary ahead of time you can do that by clicking on the Dictionary… Command in the Context Menu. Want to check the spelling of a word ahead of time or find that you are just curious about how it is spelled? Click on Open spelling window in the Context Menu to access a special spell check window. For our example we misspelled “spelling” on purpose…notice that the word has turned red. Clicking on the Check Mark Button will open a drop-down list with suggested spellings for the word that you are inquiring about. Click on the appropriate listing if you intend to copy and paste the word. Next we moved on to Notepad. As we were typing tinySpell alerted us when we typed the word “app”. You will hear a small default system sound and see a small popup as shown here if tinySpell thinks a word has been misspelled. The System Tray Icon will also change to a yellow color. You can access the list of suggested spellings by either left clicking on the small popup or the System Tray Icon. If the word is a properly spelled “abbreviation” (or special/custom) like our word here you can select Add to dictionary. Going further in our text document we once again purposely misspelled “spelling”… Left clicking on the popup gave us access to the drop-down list of suggested spellings… And clicking on the correct spelling automatically inserted it into our document in place of the misspelled word. As you can see here tinySpell was even monitoring file names when we went to save the document. Very thorough indeed. Conclusion If your favorite app does not have built-in spell checking, then tinySpell will definitely be a welcome (and very helpful) addition to your Windows system. They offer a portable version as well so you can take it with you to any PC. Links Download tinySpell *Note: The download link is located approximately half-way down the page. Similar Articles Productive Geek Tips Quick Tip: Spell Check Firefox Text Input FieldsEdit the Windows Live Writer Custom DictionaryAccess Your Favorite Google Services in Chrome the Easy WayLaunch External Apps from FirefoxNinite Makes Installing Software Incredibly Simple TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 OpenDNS Guide Google TV The iPod Revolution Ultimate Boot CD can help when disaster strikes Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app

    Read the article

  • Review: ComponentOne Studio for Entity Framework

    - by Tim Murphy
    While I have always been a fan of libraries that improve coding efficiency and reduce code redundancy I have mostly been using ones that were in the public domain.  As part of the Geeks With Blogs Influencers program a got my hands on ComponentOne’s Studio for Entity Framework.  Below are my thought after working with the product for several weeks. My coding preference has always been maintainable code that is reusable across an enterprises protfolio.  Because of this my focus in reviewing this product is less on the RAD components and more on its benefits for layered applications using code first Entity Framework. Before we get into the pros and cons here is a summary of the main feature listed for SEF. Unified Data Context Virtual Data Access More Powerful Data Binding Pros The first thing that I found to my liking is the C1DataSource. It basically manages a cache for your Entity Model context.  Under RAD conditions this is setup automatically when you drop the object on a your design surface.  If you are like me and want to abstract you data management into a library it takes a little more work, but it is still acceptable and gains the same benefits. The second feature that I found beneficial is the definition of views with improved sorting and filtering.  Again the ease of use of these features is greater on the RAD side but no capabilities are missing when manipulating object in code. Linq has become my friend over the last couple of years and it was great to see that ComponentOne had ensured that it remained a first class citizen in their design.  When you look into this product yourself I would suggest taking a dive into LiveLinq which allow the joining of different data source types. As I went through discovering the features of this framework I appreciated the number of examples that they supplied for different uses.  Besides showing how to use SEF with WinForms, WPF and Silverlight they also showed how to accomplish tasks both RAD, code only and MVVM approaches. Cons The only area that I would really like to see improvement is in there level of detail in their documentation.  Specifically I would like to have seen some of the supporting code explained, such as what some supporting object did, in the examples instead of having to go to the programmer’s reference. I did find some times where currently existing projects had some trouble determining scope that the RAD controls were allowed, but I expect this is something that is in part end user related. Summary Overall I found the Studio for Entity Framework capable and well thought out.  If you are already using the Entity Framework this product will fit into your environment with little effort in return for greater flexibility and greater robustness in your solutions. Whether the $895 list price for a standard version works for you will depend on your return on investment. Smaller companies with only a small number of projects may not be able to stomach it, you get a full featured product that is supported by a well established company.  The more projects and the more code you have the greater your return on investment will be. Personally I intend to apply this product to some production systems and will probably have some tips and tricks in the future. del.icio.us Tags: ComponentOne,Studio for Entity Framework,Geeks With Blogs,Influencers,Product Reviews

    Read the article

  • Reconciling the Boy Scout Rule and Opportunistic Refactoring with code reviews

    - by t0x1n
    I am a great believer in the Boy Scout Rule: Always check a module in cleaner than when you checked it out." No matter who the original author was, what if we always made some effort, no matter how small, to improve the module. What would be the result? I think if we all followed that simple rule, we'd see the end of the relentless deterioration of our software systems. Instead, our systems would gradually get better and better as they evolved. We'd also see teams caring for the system as a whole, rather than just individuals caring for their own small little part. I am also a great believer in the related idea of Opportunistic Refactoring: Although there are places for some scheduled refactoring efforts, I prefer to encourage refactoring as an opportunistic activity, done whenever and wherever code needs to cleaned up - by whoever. What this means is that at any time someone sees some code that isn't as clear as it should be, they should take the opportunity to fix it right there and then - or at least within a few minutes Particularly note the following excerpt from the refactoring article: I'm wary of any development practices that cause friction for opportunistic refactoring ... My sense is that most teams don't do enough refactoring, so it's important to pay attention to anything that is discouraging people from doing it. To help flush this out be aware of any time you feel discouraged from doing a small refactoring, one that you're sure will only take a minute or two. Any such barrier is a smell that should prompt a conversation. So make a note of the discouragement and bring it up with the team. At the very least it should be discussed during your next retrospective. Where I work, there is one development practice that causes heavy friction - Code Review (CR). Whenever I change anything that's not in the scope of my "assignment" I'm being rebuked by my reviewers that I'm making the change harder to review. This is especially true when refactoring is involved, since it makes "line by line" diff comparison difficult. This approach is the standard here, which means opportunistic refactoring is seldom done, and only "planned" refactoring (which is usually too little, too late) takes place, if at all. I claim that the benefits are worth it, and that 3 reviewers will work a little harder (to actually understand the code before and after, rather than look at the narrow scope of which lines changed - the review itself would be better due to that alone) so that the next 100 developers reading and maintaining the code will benefit. When I present this argument my reviewers, they say they have no problem with my refactoring, as long as it's not in the same CR. However I claim this is a myth: (1) Most of the times you only realize what and how you want to refactor when you're in the midst of your assignment. As Martin Fowler puts it: As you add the functionality, you realize that some code you're adding contains some duplication with some existing code, so you need to refactor the existing code to clean things up... You may get something working, but realize that it would be better if the interaction with existing classes was changed. Take that opportunity to do that before you consider yourself done. (2) Nobody is going to look favorably at you releasing "refactoring" CRs you were not supposed to do. A CR has a certain overhead and your manager doesn't want you to "waste your time" on refactoring. When it's bundled with the change you're supposed to do, this issue is minimized. The issue is exacerbated by Resharper, as each new file I add to the change (and I can't know in advance exactly which files would end up changed) is usually littered with errors and suggestions - most of which are spot on and totally deserve fixing. The end result is that I see horrible code, and I just leave it there. Ironically, I feel that fixing such code not only will not improve my standings, but actually lower them and paint me as the "unfocused" guy who wastes time fixing things nobody cares about instead of doing his job. I feel bad about it because I truly despise bad code and can't stand watching it, let alone call it from my methods! Any thoughts on how I can remedy this situation ?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • SQL SERVER – Why Do We Need Data Quality Services – Importance and Significance of Data Quality Services (DQS)

    - by pinaldave
    Databases are awesome.  I’m sure my readers know my opinion about this – I have made SQL Server my life’s work after all!  I love technology and all things computer-related.  Of course, even with my love for technology, I have to admit that it has its limits.  For example, it takes a human brain to notice that data has been input incorrectly.  Computer “brains” might be faster than humans, but human brains are still better at pattern recognition.  For example, a human brain will notice that “300” is a ridiculous age for a human to be, but to a computer it is just a number.  A human will also notice similarities between “P. Dave” and “Pinal Dave,” but this would stump most computers. In a database, these sorts of anomalies are incredibly important.  Databases are often used by multiple people who rely on this data to be true and accurate, so data quality is key.  That is why the improved SQL Server features Master Data Management talks about Data Quality Services.  This service has the ability to recognize and flag anomalies like out of range numbers and similarities between data.  This allows a human brain with its pattern recognition abilities to double-check and ensure that P. Dave is the same as Pinal Dave. A nice feature of Data Quality Services is that once you set the rules for the program to follow, it will not only keep your data organized in the future, but go to the past and “fix up” any data that has already been entered.  It also allows you do combine data from multiple places and it will apply these rules across the board, so that you don’t have any weird issues that crop up when trying to fit a round peg into a square hole. There are two parts of Data Quality Services that help you accomplish all these neat things.  The first part is DQL Server, which you can think of as the hardware component of the system.  It is installed on the side of (it needs to install separately after SQL Server is installed) SQL Server and runs quietly in the background, performing all its cleanup services. DQS Client is the user interface that you can interact with to set the rules and check over your data.  There are three main aspects of Client: knowledge base management, data quality projects and administration.  Knowledge base management is the part of the system that allows you to set the rules, or program the “knowledge base,” so that your database is clean and consistent. Data Quality projects are what run in the background and clean up the data that is already present.  The administration allows you to check out what DQS Client is doing, change rules, and generally oversee the entire process.  The whole process is user-friendly and a pleasure to use.  I highly recommend implementing Data Quality Services in your database. Here are few of my blog posts which are related to Data Quality Services and I encourage you to try this out. SQL SERVER – Installing Data Quality Services (DQS) on SQL Server 2012 SQL SERVER – Step by Step Guide to Beginning Data Quality Services in SQL Server 2012 – Introduction to DQS SQL SERVER – DQS Error – Cannot connect to server – A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions” – SetDataQualitySessionPhaseTwo SQL SERVER – Configuring Interactive Cleansing Suggestion Min Score for Suggestions in Data Quality Services (DQS) – Sensitivity of Suggestion SQL SERVER – Unable to DELETE Project in Data Quality Projects (DQS) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Data Quality Services, DQS

    Read the article

  • Integrating JavaFX Scene Builder in the IDEs

    - by Jerome Cambon
    I experienced recently using Scene Builder from Netbeans, Eclipse and IntelliJ IDEA. As you may know, Scene Builder is a standalone tool, that can be used independently of any IDE. But it can be very convenient to use it with your favorite IDE, for instance start it by double-clicking on an FXML file, or run samples delivered with Scene Builder.  I'm sharing here with you few tweaks that I had to do for a better integration. Scene Builder 1.1 Developer Preview should be installed before doing the tweaks. The steps below have been done on Windows 7. It should be very similar on both Mac OS and Linux. Please tell me if you find any issue on one of these 2 platforms. Netbeans 7.3 Netbeans 7.3 can be downloaded from here. Creating a New FXML project Part of the JavaFx projects, Netbeans allows to create a 'JavaFX FXML Application', that creates a JavaFx project based on FXML description. The FXML file will be editable with Scene Builder. Starting Scene Builder from Netbeans If SceneBuilder 1.1 is installed, Netbeans will discover it automatically.In case of issue, one can open the Options panel, Java section, JavaFx tab. Scene Builder home should appear here. You can then either Open the FXML file with Scene Builder, or edit it with the Netbeans FXML editor : When 'Open' is selected, Scene Builder appears on top of the Netbeans window : When 'Edit' is selected, the FXML is opened in the Netbeans FXML editor, which support syntax highlighting and completion : Using Scene Builder Samples Scene Builder provides Netbeans projects, that can be opened/run directly : Eclipse 4.2.1 + e(fx)clipse 0.1.1 JavaFX integration in Eclipse has been done with the e(fx)clipse plugin. A distribution bundle containing Eclipse and e(fx)clipse is provided here. Creating New FXML project All the JavaFX-related projects can be found in 'Other' section : First create a new JavaFX project: Enter the project name (Test here). JavaFX delivery will be found in the JRE. Then, create a 'New FXML Document': Enter the FXML file name (Sample here). You may also want to choose the FXML document root element (AnchorPane by default). Dynamic root is for advanced users which want to manage custom types. Starting Scene Builder from Eclipse Once created, you can then either Open the FXML file with Scene Builder, or Open it in the Eclipse FXML editor : Using Scene Builder Samples from Eclipse To use Scene Builder samples, first create a new JavaFX Project (from 'Other' section): Then, on the next panel, 'Link additionnal source': … and select the source directory of a Scene Builder example : HelloWorld here (the parent directory of the java package should be selected).Then, choose a 'Folder name' for your sample: You can now run the Scene Builder example by right-clicking the Main.java source file: IntelliJ IDEA 11.1.3 IntelliJ IDEA Community Edition can be downloaded from here. IntelliJ IDEA has no specific JavaFX integration. Creating New IntelliJ project from existing source Since IntelliJ has no JavaFX project knowledge, we are using the Scene Builder samples as a starting point. We are going to create a new Java project from the HelloWorld sample: Then, click twice on 'Next' (nothing to change), then 'Finish'. The 'HelloWorld' project is created. Starting Scene Builder from IntelliJ We need to tell the IDE that FXML files are opened with an external application. Then, the OS file association will be used. To do this, open the File->Settings panel. Then, select 'File Types' and 'Files opened in associated applications'. And add a new wildcard : '*.fxml' : Now, from the HelloWorld project, you can double-click on HelloWorld.fxml : Scene Builder window appears on top of the IntelliJ window : Using Scene Builder Samples from IntelliJ We need to tell IntelliJ that the fxml files must be copied in the build directory.To do that, from the HelloWorld directory, open the 'idea' section, and edit the 'compiler.xml' file. We need to add an '*.fxml' entry: Then, you can run the sample from HelloWorld project, by right-clicking the Main class:

    Read the article

  • Increasing touch surface (#wp7dev)

    - by Laurent Bugnion
    When you design for Windows Phone 7 (or for any touch device, for that matter, and most especially small screens), you need to be very careful to give enough surface to your users’ fingers. It is easy to miss a touch on such small screens, and that can be horrifyingly frustrating. This is especially true when people are on the move, and trying to hit the control while walking and holding their device in one hand, or when the device is mounted in a car and vibrating with the engine. In my experience, a touch surface should be ideally minimum 60x60 pixels to be easy to activate on the Windows Phone 7 screen (which is, as we know, 800 pixels x 480 pixels). Ideally, I try to make my touch surfaces 80x80 pixels minimum. This causes a few design challenges of course. Using transparent backgrounds However, one thing is helping us tremendously: some surfaces can be made transparent, and yet react to touch. The secret is the following: If you have a panel that has a Null background (i.e. the Background is not set at all), then the empty surface does not react to touch. If however the Background is set to the Transparent color (or any color where the Alpha channel is set to 0), then it will react to touch. Setting a transparent background is easy. For example: <Grid Background="#00000000"> </Grid> or <Grid Background="Transparent"> </Grid> In C#: var grid = new Grid { Background = new SolidColorBrush( Colors.Transparent) }; Using negative margins Having a transparent background reactive to touch is a good start, but in addition, you must make sure that the surface is big enough for my clumsy fingers. One way to achieve that is to increase the transparent, touch-reactive surface, and reposition the element using negative margins. For example, consider the following UI. I changed the transparent background of the HyperlinkButton to Red, in order to visualize the touch surface. In this figure, the Settings HyperlinkButton is 105 pixels x 31 pixels. This is wide enough, but really small in height and easy to miss. To improve this, we can use negative margins, for instance: <HyperlinkButton Content="Settings" HorizontalAlignment="Right" VerticalAlignment="Bottom" Height="60" Margin="0,0,0,-15" /> Notice the usage of negative bottom margin to bring the HyperlinkButton back at the bottom of the main Grid’s first row, where it belongs. And the result is: Notice how the touch surface is much bigger than before. This makes the HyperlinkButton easier to reach, and improves the user experience. With the background set back to normal, the UI looks exactly the same, as it should: In summary: Remember to maximize the touch surface for your controls. Plan your design in consequence by reserving enough room around each control to allow their hit surface to be expanded as shown in this article. Do not cram too many controls in one page. If REALLY needed, use an additional page (or even better: use a Pivot control with multiple pivot items) for the controls that don’t fit on the first one. This should ensure a smoother user experience and improved touch behavior. Happy coding! Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • PHP and Ruby: how to leverage both? and, is it worth it?

    - by dukeofgaming
    As you might have noticed from the title, this is not a "PHP or Ruby", or a "PHP vs. Ruby" question. This is a question on how to leverage PHP + Ruby in the same business. I myself am a PHP developer, I love the language because of its convenience and I specially love the ecosystem of resources that surround it: Joomla, Drupal, Wordpress, Symfony2, Doctrine2, etc. However, the language itself can be a little disappointing sometimes. OTOH, Ruby looks like a very beautiful language and —from studying it superficially in several aspects— I could say it is leaner than Python as a language per se. However, from what I've seen there is pretty much only RoR making noise, and I don't like RoR so much (mainly because its model layer). As Co-CEO and CTO at my company I'm trying to think outside of the box since I want to start to focus on the human side of technology and see if its sane to use both PHP and Ruby. Here are some random thoughts: Ruby folk seem to be generally better suited programmers than PHP folk (in terms of averages), I know the previous statement is somewhat baloney because very good and well architected PHP can be written, but I'd say the Ruby programmer culture is better than PHP's. The thing about Ruby is that it seems better suited for rapid development, I don't really know if this is only the case for RoR, but I do know that there are certain practices (perhaps not so good) like monkey patching that let business needs be satified quicker. From a marketing point of view (yep, sometimes you need to leverage the marketing BS for the sake of your company) Ruby seems better while PHP carries some stigmas. PHP 5.4 is bringing traits, and that is better/cleaner than mixins. That could really make PHP as lean as Ruby —or more— for certain stuff. Now, concretely, my questions: Would a PHP programmer want to learn Ruby?, I know I do, but conversely, would a Ruby programmer want to learn PHP?. What kinds of projects or situations would be better suited for Ruby that are not suited for PHP?. What is the actual ecosystem of Ruby?, aside from RoR, I have not seen other hyped technologies/frameworks (I've seen RSpec, but I confess being a total noob on what BDD really consists of and its implications). Supposing there are a certain type of projects ideal for Ruby, would there be a moment that its better to move it to PHP?. I know PHP can handle lots of stuff, but I've read that Ruby has its limitations when scaling (or is that RoR?, or is that baloney for both?). Finally and most importantly, would it be sane to maintain projects in two languages?, or is that just stupid. As I said, it looks like Ruby is leaner on the short term and that can make a project happen and succeed, but I'm not so sure about that on the long run. I'm looking for insights mainly from people that know well the strengths and weaknesses of the languages —preferably both of them— and Ruby's ecosystem in real practice, meaning: frameworks and applications like the ones I quoted from PHP's ecosystem. Best regards and thanks for your time.

    Read the article

  • DataBinder Eval and Indexed properties

    - by erwin21
    As you probably know you can “Eval” an array property like below: <%# Eval("MyArray[0].Title") %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }But what if your data object has indexed property? how do “Eval” that? Well it’s easier then you think it is: <%# Eval("[0]") %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }And if your indexed property is based on for example a NameValueCollection you can “Eval” it like this: <%# Eval("[key]") %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } As you see it’s very easy to “Eval” this kind of properties in you web application.

    Read the article

  • Tip on Reusing Classes in Different .NET Project Types

    - by psheriff
    All of us have class libraries that we developed for use in our projects. When you create a .NET Class Library project with many classes, you can use that DLL in ASP.NET, Windows Forms and WPF applications. However, for Silverlight and Windows Phone, these .NET Class Libraries cannot be used. The reason is Silverlight and Windows Phone both use a scaled down version of .NET and thus do not have access to the full .NET framework class library. However, there are many classes and functionality that will work in the full .NET and in the scaled down versions that Silverlight and Windows Phone use.Let’s take an example of a class that you might want to use in all of the above mentioned projects. The code listing shown below might be something that you have in a Windows Form or an ASP.NET application. public class StringCommon{  public static bool IsAllLowerCase(string value)  {    return new Regex(@"^([^A-Z])+$").IsMatch(value);  }   public static bool IsAllUpperCase(string value)  {    return new Regex(@"^([^a-z])+$").IsMatch(value);  }} The StringCommon class is very simple with just two methods, but you know that the System.Text.RegularExpressions namespace is available in Silverlight and Windows Phone. Thus, you know that you may reuse this class in your Silverlight and Windows Phone projects. Here is the problem: if you create a Silverlight Class Library project and you right-click on that project in Solution Explorer and choose Add | Add Existing Item… from the menu, the class file StringCommon.cs will be copied from the original location and placed into the Silverlight Class Library project. You now have two files with the same code. If you want to change the code you will now need to change it in two places! This is a maintenance nightmare that you have just created. If you then add this to a Windows Phone Class Library project, you now have three places you need to modify the code! Add As LinkInstead of creating three separate copies of the same class file, you want to leave the original class file in its original location and just create a link to that file from the Silverlight and Windows Phone class libraries. Visual Studio will allow you to do this, but you need to do one additional step in the Add Existing Item dialog (see Figure 1). You will still right mouse click on the project and choose Add | Add Existing Item… from the menu. You will still highlight the file you want to add to your project, but DO NOT click on the Add button. Instead click on the drop down portion of the Add button and choose the “Add As Link” menu item. This will now create a link to the file on disk and will not copy the file into your new project. Figure 1: Add as Link will create a link, not copy the file over. When this linked file is added to your project, there will be a different icon next to that file in the Solution Explorer window. This icon signifies that this is a link to a file in another folder on your hard drive.   Figure 2: The Linked file will have a different icon to show it is a link. Of course, if you have code that will not work in Silverlight or Windows Phone -- because the code has dependencies on features of .NET that are not supported on those platforms – you  can always wrap conditional compilation code around the offending code so it will be removed when compiled in those class libraries. SummaryIn this short blog entry you learned how to reuse one of your class libraries from ASP.NET, Windows Forms or WPF applications in your Silverlight or Windows Phone class libraries. You can do this without creating a maintenance nightmare by using the “Add a Link” feature of the Add Existing Item dialog. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.

    Read the article

  • A tiny Utility to recycle an IIS Application Pool

    - by Rick Strahl
    In the last few weeks I've annoyingly been having problems with an area on my Web site. It's basically ancient articles that are using ASP classic pages and for reasons unknown ASP classic locks up on these pages frequently. It's not an individual page, but ALL ASP classic pages lock up. Ah yes, gotta old tech gone bad. It's not super critical since the content is really old, but still a hassle since it's linked content that still gets quite a bit of traffic. When it happens all ASP classic in that AppPool dies. I've been having a hard time tracking this one down - I suspect an errant COM object I have a Web Monitor running on the server that's checking for failures and while the monitor can detect the failures when the timeouts occur, I didn't have a good way to just restart that particular application pool. I started putzing around with PowerShell, but - as so often seems the case - I can never get the PowerShell syntax right - I just don't use it enough and have to dig out cheat sheets etc. In any case, after about 20 minutes of that I decided to just create a small .NET Console Application that does the trick instead, and in a few minutes I had this:using System; using System.Collections.Generic; using System.Text; using System.DirectoryServices; namespace RecycleApplicationPool { class Program { static void Main(string[] args) { string appPoolName = "DefaultAppPool"; string machineName = "LOCALHOST"; if (args.Length > 0) appPoolName = args[0]; if (args.Length > 1) machineName = args[1]; string error = null; DirectoryEntry root = null; try { Console.WriteLine("Restarting Application Pool " + appPoolName + " on " + machineName + "..."); root = new DirectoryEntry("IIS://" + machineName + "/W3SVC/AppPools/" +appPoolName); Console.WriteLine(root.InvokeGet("Name")); root.Invoke("Recycle"); Console.WriteLine("Application Pool recycling complete..."); } catch(Exception ex) { error = "Error: Unable to access AppPool: " + ex.Message; } if ( !string.IsNullOrEmpty(error) ) { Console.WriteLine(error); return; } } } } To run in you basically provide the name of the ApplicationPool and optionally a machine name if it's not on the local box. RecyleApplicationPool.exe "WestWindArticles" And off it goes. What's nice about AppPool recycling versus doing a full IISRESET is that it only affects the AppPool, and more importantly AppPool recycles happen in a staggered fashion - the existing instance isn't shut down immediately until requests finish while a new instance is fired up to handle new requests. So, now I can easily plug this Executable into my West Wind Web Monitor as an action to take when the site is not responding or timing out which is a big improvement than hanging for an unspecified amount of time. I'm posting this fairly trivial bit of code just in case somebody (maybe myself a few months down the road) is searching for ApplicationPool recyling code. It's clearly trivial, but I've written batch files for this a bunch of times before and actually having a small utility around without having to worry whether Powershell is installed and configured right is actually an improvement. Next time I think about using PowerShell remind me that it's just easier to just build a small .NET Console app, 'k? :-) Resources Download Executable and VS Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in IIS7  .NET  Windows   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • What Counts For a DBA: Imagination

    - by drsql
    "Imagination…One little spark, of inspiration… is at the heart, of all creation." – From the song "One Little Spark", by the Sherman Brothers I have a confession to make. Despite my great enthusiasm for databases and programming, it occurs to me that every database system I've ever worked on has been, in terms of its inputs and outputs, downright dull. Most have been glorified e-spreadsheets, many replacing manual systems built on actual spreadsheets. I've created a lot of database-driven software whose main job was to "count stuff"; phone calls, web visitors, payments, donations, pieces of equipment and so on. Sometimes, instead of counting stuff, the database recorded values from other stuff, such as data from sensors or networking devices. Yee hah! So how do we, as DBAs, maintain high standards and high spirits when we realize that so much of our work would fail to raise the pulse of even the most easily excitable soul? The answer lies in our imagination. To understand what I mean by this, consider a role that, in terms of its output, offers an extreme counterpoint to that of the DBA: the Disney Imagineer. Their job is to design Disney's Theme Parks, of which I'm a huge fan. To me this has always seemed like a fascinating and exciting job. What must an Imagineer do, every day, to inspire the feats of creativity that are so clearly evident in those spectacular rides and shows? Here, if ever there was one, is a role where "dull moments" must be rare indeed, surely? I wanted to find out, and so parted with a considerable sum of money for my wife and I to have lunch with one; I reasoned that if I found one small way to apply their secrets to my own career, it would be money well spent. Early in the conversation with our Imagineer (Cindy Cote), the job did indeed sound magical. However, as talk turned to management meetings, budget-wrangling and insane deadlines, I came to the strange realization that, in fact, her job was a lot more like mine than I would ever have guessed. Much like databases, all those spectacular Disney rides bring with them a vast array of complex plumbing, lighting, safety features, and all manner of other "boring bits", kept well out of sight of the end user, but vital for creating the desired experience; and, of course, it is these "boring bits" that take up much of the Imagineer's time. Naturally, there is still a vital part of their job that is spent testing out new ideas, putting themselves in the place of a park visitor, from a 9-year-old boy to a 90-year-old grandmother, and trying to imagine what experiences they'd like to have. It is these small, but vital, sparks of imagination and creativity that have the biggest impact. The real feat of a successful Imagineer is clearly to never to lose sight of this fact, in among all the rote tasks. It is the same for a DBA. Not matter how seemingly dull is the task at hand, try to put yourself in the shoes of the end user, and imagine how your input will affect the experience he or she will have with the database you're building, and how that may affect the world beyond the bits stored in your database. Then, despite the inevitable rush to be "done", find time to go the extra mile and hone the design so that it delivers something as close to that imagined experience as you can get. OK, our output still can't and won't reach the same spectacular heights as the "Journey into The Imagination" ride at EPCOT Theme Park in Orlando, where I first heard "One Little Spark". However, our imaginative sparks and efforts can, and will, make a difference to the user who now feels slightly more at home with a database application, or to the manager holding a report presented with enough clarity to drive an interesting decision or two. They are small victories, but worth having, and appreciated, or at least that's how I imagine it.

    Read the article

  • Dark Sun Dispatch 001

    - by Chris Williams
    If you aren't into tabletop (aka pen & paper) RPGs, you might as well click to the next post now... Still here? Awesome. I've recently started running a new D&D 4.0 Dark Sun campaign. If you don't know anything about Dark Sun, here's a quick intro: The campaign take place on the world of Athas, formerly a lush green world that is now a desert wasteland. Forests are rare in the extreme, as is water and metal. Coins are made of ceramic and weapons are often made of hardened wood, bone or obsidian. The green age of Athas was centuries ago and the current state was brought about through the reckless use of sorcerous magic. (In this world, you can augment spells by drawing on the life force of the world & people around you. This is called defiling. Preserving magic draws upon the casters life force and does not damage the surrounding world, but it isn't as powerful.) Humans are pretty much unchanged, but the traditional fantasy races have changed quite a bit. Elves don't live in the forest, they are shifty and untrustworthy desert traders known for their ability to run long distances through the wastes. Halflings are not short, fat, pleasant little riverside people. Instead they are bloodthirsty feral cannibals that roam the few remaining forests and ride reptilians beasts akin to raptors. Gnomes are extinct, as are orcs. Dwarves are mostly farmers and gladiators, and live out in the sun instead of staying under the mountains. Goliaths are half-giants, not known for their intellect. Muls are a Dwarf & Human crossbreed that displays the best traits of both races (human height and dwarven stoutness.) Thri-Kreen are sentient mantis people that are extremely fast. Most of the same character classes are available, with a few new twists. There are no divine characters (such as Priests, Paladins, etc) because the gods are gone. Nobody alive today can remember a time when they were still around. Instead, some folks worship the elemental forces (although they don't give out spells.) The cities are all ruled by Sorcerer King tyrants (except one city: Tyr) who are hundreds of years old and still practice defiling magic whenever they please. Serving the Sorcerer Kings are the Templars, who are also defilers and psionicists. Crossing them is as bad, in many cases, as crossing the Kings themselves. Between the cities you have small towns and trading outposts, and mostly barren desert with sometimes 4-5 days on foot between towns and the nearest oasis. Being caught out in the desert without adequate supplies and protection from the elements is pretty much a death sentence for even the toughest heroes. When you add in the natural (and unnatural) predators that roam the wastes, often in packs, most people don't last long alone. In this campaign, the adventure begins in the (small) trading fortress of Altaruk, a couple weeks walking distance from the newly freed city of Tyr. A caravan carrying trade goods from Altaruk has not made it to Tyr and the local merchant house has dispatched the heroes to find out what happened and to retrieve the goods (and drivers) if possible. The unlikely heroes consist of a human shaman, a thri-kreen monk, a human wizard, a kenku assassin and a (void aspect) genasi swordmage. Gathering up supplies and a little liquid courage, they set out into the desert and manage to find the northbound tracks of the wagon. Shortly after finding the tracks, they are ambushed by a pack of silt-runners (small lizard people with very large teeth and poisoned pointy spears.) The party makes short work of the creatures, taking a few minor wounds in the process. Proceeding onward without resting, they find the remains of the wagon and manage to sneak up on a pack of Kruthiks picking through the rubble and spilled goods. Unfortunately, they failed to take advantage of the opportunity and had a hard fight ahead of them. The party defeated the kruthiks, but took heavy damage (and almost lost a couple of their own) in the process. Once the kruthiks were dispatched, they followed a set of tracks further north to a ruined tower...

    Read the article

  • RC of Entity Framework 4.1 (which includes EF Code First)

    - by ScottGu
    Last week the data team shipped the Release Candidate of Entity Framework 4.1.  You can learn more about it and download it here. EF 4.1 includes the new “EF Code First” option that I’ve blogged about several times in the past.  EF Code First provides a really elegant and clean way to work with data, and enables you to do so without requiring a designer or XML mapping file.  Below are links to some tutorials I’ve written in the past about it: Code First Development with Entity Framework 4.x EF Code First: Custom Database Schema Mapping Using EF Code First with an Existing Database The above tutorials were written against the CTP4 release of EF Code First (and so some APIs might be a little different) – but the concepts and scenarios outlined in them are the same as with the RC. Go Live License Last week’s EF 4.1 RC ships with a “go live” license that enables you to use it in production environments.  The final release of EF 4.1 will ship within the next 4 weeks and will be 100% API compatible with the RC release. Improvements with the RC The RC includes several improvements and enhancements.  The EF team has a good blog post summarizing the RC changes.  Scott Hanselman also has a nice video interview with the data team that talks more about the release. One of my favorite improvements introduced with last week’s RC is its support for medium trust security.  This enables you to use EF 4.1 (and code-first) within low-cost ASP.NET shared hosting web environments – without requiring a hoster to install anything to use it. EF 4.1 also now supports validation with not only code-first scenarios, but also model-first and database-first workflows.  Upgrading from previous releases The RC does include a few API tweaks and changes from the prior CTP builds.  Read the release notes that come with the release to get a more detailed listing of the changes. John Papa also has an excellent Upgrading to EF 4.1 RC blog post that describes the steps he took when upgrading a large project he wrote with the previous CTP5 release.  The work to upgrade is pretty straight forward and easy – use his write-up as a guide on how to quickly update projects of your own. NuGet Package Rename One of the changes that the data team made between the CTP5 and RC releases was to rename the NuGet package name from “EFCodeFirst” to “EntityFramework”. They decided to make this change since the EF 4.1 release now includes several additions above and beyond just code first. If you already have installed the “EFCodeFirst” NuGet package, you’ll want to uninstall it and then install the new “EntityFramework” NuGet package.  John Papa’s blog post details the exact steps on how to do this (it only takes ~20 seconds to do this). More EF Tutorials Julie Lerman has created some nice whitepapers and tutorials for MSDN that show using the new EF4 and EF 4.1 feature set. Click here to find links to read and watch them. Summary I’m really excited about the EF 4.1 release that will be shipping next month.  It significantly improves the Entity Framework, and makes it even easier and cleaner to work with data inside of .NET.  You can take advantage of it within all ASP.NET projects (including both Web Forms and MVC), within client projects using Windows Forms and WPF, and within other project types like WCF, Console and Services.  You can use NuGet to easily install it within all of them. Hope this helps, Scott P.S. I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Building a personal website using Silverlight.

    - by mbcrump
    I’ve always believed that as a developer you should always have a hobby project going on. I think a hobby project needs to contain at least one of following things: Something that you have never done before. Something that you are interested in. Something that you can work on in your spare time without affecting your *paying* job. I decided my hobby project would be an entire web application written in Silverlight that could be used as a self-promotion/marketing tool. This goal of the site is to provide information on the work that I’ve done to conferences, future employers and anyone else that wanted to learn more about me. Before I go any further, if you just want to check out the site then it is located at http://michaelcrump.info. So, what did I use to create it? MVVM Light – I’m a big fan of this software. The item and project templates plus code snippets make this a huge win for any SL/WPF/WP7 application. Jetpack Theme by Microsoft – I suck at designing so I used this template to help speed up this project. ComponentOne 3rd Party Controls – I have a license and really like several of their products. A User Control that Jeremy Likness created called DynamicXaml (used with his permission). I had created my own version of this a while back, but Jeremy’s implementation was simply better. Main Page – Designed to create my “brand”. This was built for a quick glimpse of who I am and what do I do.  Blog – The best marketing tool for a developer is their blog. I decided to go with an HTML page displaying my site and the user could pop into full-screen if desired. I also included my feed and Silverlight-Zone. (Another site I work on) Online – This page links to sites that I have been featured on as well as community involvement and awards. I also have a web service that I can update this information without re-compiling the Silverlight App. Projects – I’ve been wanting to use a CoverFlow for a really long time now. =) This page list several hobby projects as well as a few professional projects.  Resume Page – This page only exist because I got tired of sending companies my resume in e-mail. I can now provide a deep link to this page and the recruiter can print, search or save my resume. The PDF of my resume exist in a folder that I can easily update without recompiling the app. Contact Page – Just a contact page with a web service that sends the email. The Send button becomes disabled after a successful send. I thought of adding captcha to this page but in the end didn’t think it was worth it. Looking back at this app, I’m happy with how it turned out. I love Silverlight and I am already thinking of my next hobby project. (Thinking another Windows Phone 7 app or MVC3).  Subscribe to my feed

    Read the article

  • When to use Aspect Oriented Architecture (AOA/AOD)

    When is it appropriate to use aspect oriented architecture? I think the only honest answer to this question is that it depends on the context for which the question is being asked. There really are no hard and fast rules regarding the selection of an architectural model(s) for a project because each model provides good and bad benefits. Every system is built with a unique requirements and constraints. This context will dictate when to use one type of architecture over another or in conjunction with others. To me aspect oriented architecture models should be a sub-phase in the architectural modeling and design process especially when creating enterprise level models. Personally, I like to use this approach to create a base architectural model that is defined by non-functional requirements and system quality attributes.   This general model can then be used as a starting point for additional models because it is targets all of the business key quality attributes required by the system.Aspect oriented architecture is a method for modeling non-functional requirements and quality attributes of a system known as aspects. These models do not deal directly with specific functionality. They do categorize functionality of the system. This approach allows a system to be created with a strong emphasis on separating system concerns into individual components. These cross cutting components enables a systems to create with compartmentalization in regards to non-functional requirements or quality attributes.  This allows for the reduction in code because an each component maintains an aspect of a system that can be called by other aspects. This approach also allows for a much cleaner and smaller code base during the implementation and support of a system. Additionally, enabling developers to develop systems based on aspect-oriented design projects will be completed faster and will be more reliable because existing components can be shared across a system; thus, the time needed to create and test the functionality is reduced.   Example of an effective use of Aspect Oriented ArchitectureIn my experiences, aspect oriented architecture can be very effective with large or more complex systems. Typically, these types of systems have a large number of concerns so the act of defining them is very beneficial for reducing the system’s complexity because components can be developed to address each concern while exposing functionality to the other system components. The benefits to using the aspect oriented approach as the starting point for a system is that it promotes communication between IT and the business due to the fact that the aspect oriented models are quality attributes focused so not much technical understanding is needed to understand the model.An example of this can be in developing a new intranet website. Common Intranet Concerns: Error Handling Security Logging Notifications Database connectivity Example of a not as effective use of Aspect Oriented ArchitectureAgain in my experiences, aspect oriented architecture is not as effective with small or less complex systems in comparison.  There is no need to model concerns for a system that has a limited amount of them because the added overhead would not be justified for the actual benefits of creating the aspect oriented architecture model.  Furthermore, these types of projects typically have a reduced time schedule and a limited budget.  The creation of the Aspect oriented models would increase the overhead of a project and thus increase the time needed to implement the system. An example of this is seen by creating a small application to poll a network share for new files and then FTP them to a new location.  The two primary concerns for this project is to monitor a network drive and FTP files to a new location.  There is no need to create an aspect model for this system because there will never be a need to share functionality amongst either of these concerns.  To add to my point, this system is so small that it could be created with just a few classes so the added layer of componentizing the concerns would be complete overkill for this situation. References:Brichau, Johan; D'Hondt, Theo. (2006) Aspect-Oriented Software Development (AOSD) - An Introduction. Retreived from: http://www.info.ucl.ac.be/~jbrichau/courses/introductionToAOSD.pdf

    Read the article

  • ArchBeat Link-o-Rama Top 10 - September 16-22, 2012

    - by Bob Rhubart
    The Top 10 most popular items shared on the OTN ArchBeat Facebook Page for the week of September 16-22, 2012. The Real Architects of LA: OTN Architect Day in Los Angeles - Oct 25No gossip. No drama. No hair pulling. Just a full day of technical sessions and peer interaction focused on using Oracle technologies in today's cloud and SOA architectures. The event is free, but seating is limited, so register now. Thursday October 25, 2012. 8:00 a.m. – 5:00 p.m. Sofitel Los Angeles, 8555 Beverly Boulevard, Los Angeles, CA 90048. OIM-OAM-OAAM integration using TAP – Request Flow you must understand!! | Atul KumarAtul Kumar's post addresses "key points and request flow that you must understand" when integrating three Oracle Identity Management product Oracle Identity Management, Oracle Access Management, and Oracle Adaptive Access Manager. Cloud, automation drive new growth in SOA governance market | ZDNet "SOA governance tools and processes learned over the past decade are now underpinning cloud projects as they scale across enterprises," reports Joe McKendrick. But there remains a lack of understanding about SOA Governance. DevOps Basics: Track Down High CPU Thread with ps, top and the new JDK7 jcmd Tool | Frank Munz "The approach is very generic and works for WebLogic, Glassfish or any other Java application," say Frank Munz. "UNIX commands in the example are run on CentOS, so they will work without changes for Oracle Enterprise Linux or RedHat. Creating the thread dump at the end of the video is done with the jcmd tool from JDK7." Frank has captured the process in the posted video. Oracle OpenWorld 2012 Hands-on Lab: "Leading Your Everyday Application Integration Projects with Enterprise SOA" Yet another session to squeeze into your already-jammed Oracle OpenWorld schedule. This hands-on lab focuses on how "Oracle Enterprise Repository, Oracle Application Integration Architecture (AIA) Foundation Pack, and Oracle SOA Suite work together to help you drive your enterprisewide integration projects." Loving VirtualBox 4.2… | The ORACLE-BASE Blog Is it wrong for a man to love a technology? Oracle ACE Director Tim Hall has several very good reasons for his feelings… ADF Create and CreateInsert Operations for ADF Table | Andrejus Baranovskis Oracle ACE Director Andrejus Baranovskis answers the question, "What operation is best to use to insert a new row into an ADF table, Create or CreateInsert?" Fault Handling Slides and Q&A | Ronald van Luttikhuizen Oracle ACE Director Ronald van Luttikhuizen shares the slides and a Q&A transcript from a presentation he and fellow ACE Director Guido Schmutz gave at the recent Oracle OpenWorld and JavaOne preview event organized by AMIS Technology. Why IT is a profession in 'flux' | ZDNet I usuallly don't post two items from the same person in one day, but this post from ZDNet blogger Joe McKendrick deals with some critical issues affecting those in IT. As McKendrick puts it: "IT professionals are under considerable pressure to deliver more value to the business, versus being good at coding and testing and deploying and integrating." Running RichFaces on WebLogic 12c | Markus Eisele "With all the JMS magic and the different provider checks in the showcase this has become some kind of a challenge to simply build and deploy it," says Oracle ACE Director Markus Eisele. His detailed post will help you to meet that challenge. Thought for the Day "Less is more." — Ludwig Mies van der Rohe (March 27, 1886 – August 17, 1969) Source: BrainyQuote.com

    Read the article

  • How to write simple code using TDD [migrated]

    - by adeel41
    Me and my colleagues do a small TDD-Kata practice everyday for 30 minutes. For reference this is the link for the excercise http://osherove.com/tdd-kata-1/ The objective is to write better code using TDD. This is my code which I've written public class Calculator { public int Add( string numbers ) { const string commaSeparator = ","; int result = 0; if ( !String.IsNullOrEmpty( numbers ) ) result = numbers.Contains( commaSeparator ) ? AddMultipleNumbers( GetNumbers( commaSeparator, numbers ) ) : ConvertToNumber( numbers ); return result; } private int AddMultipleNumbers( IEnumerable getNumbers ) { return getNumbers.Sum(); } private IEnumerable GetNumbers( string separator, string numbers ) { var allNumbers = numbers .Replace( "\n", separator ) .Split( new string[] { separator }, StringSplitOptions.RemoveEmptyEntries ); return allNumbers.Select( ConvertToNumber ); } private int ConvertToNumber( string number ) { return Convert.ToInt32( number ); } } and the tests for this class are [TestFixture] public class CalculatorTests { private int ArrangeAct( string numbers ) { var calculator = new Calculator(); return calculator.Add( numbers ); } [Test] public void Add_WhenEmptyString_Returns0() { Assert.AreEqual( 0, ArrangeAct( String.Empty ) ); } [Test] [Sequential] public void Add_When1Number_ReturnNumber( [Values( "1", "56" )] string number, [Values( 1, 56 )] int expected ) { Assert.AreEqual( expected, ArrangeAct( number ) ); } [Test] public void Add_When2Numbers_AddThem() { Assert.AreEqual( 3, ArrangeAct( "1,2" ) ); } [Test] public void Add_WhenMoreThan2Numbers_AddThemAll() { Assert.AreEqual( 6, ArrangeAct( "1,2,3" ) ); } [Test] public void Add_SeparatorIsNewLine_AddThem() { Assert.AreEqual( 6, ArrangeAct( @"1 2,3" ) ); } } Now I'll paste code which they have written public class StringCalculator { private const char Separator = ','; public int Add( string numbers ) { const int defaultValue = 0; if ( ShouldReturnDefaultValue( numbers ) ) return defaultValue; return ConvertNumbers( numbers ); } private int ConvertNumbers( string numbers ) { var numberParts = GetNumberParts( numbers ); return numberParts.Select( ConvertSingleNumber ).Sum(); } private string[] GetNumberParts( string numbers ) { return numbers.Split( Separator ); } private int ConvertSingleNumber( string numbers ) { return Convert.ToInt32( numbers ); } private bool ShouldReturnDefaultValue( string numbers ) { return String.IsNullOrEmpty( numbers ); } } and the tests [TestFixture] public class StringCalculatorTests { [Test] public void Add_EmptyString_Returns0() { ArrangeActAndAssert( String.Empty, 0 ); } [Test] [TestCase( "1", 1 )] [TestCase( "2", 2 )] public void Add_WithOneNumber_ReturnsThatNumber( string numberText, int expected ) { ArrangeActAndAssert( numberText, expected ); } [Test] [TestCase( "1,2", 3 )] [TestCase( "3,4", 7 )] public void Add_WithTwoNumbers_ReturnsSum( string numbers, int expected ) { ArrangeActAndAssert( numbers, expected ); } [Test] public void Add_WithThreeNumbers_ReturnsSum() { ArrangeActAndAssert( "1,2,3", 6 ); } private void ArrangeActAndAssert( string numbers, int expected ) { var calculator = new StringCalculator(); var result = calculator.Add( numbers ); Assert.AreEqual( expected, result ); } } Now the question is which one is better? My point here is that we do not need so many small methods initially because StringCalculator has no sub classes and secondly the code itself is so simple that we don't need to break it up too much that it gets confusing after having so many small methods. Their point is that code should read like english and also its better if they can break it up earlier than doing refactoring later and third when they will do refactoring it would be much easier to move these methods quite easily into separate classes. My point of view against is that we never made a decision that code is difficult to understand so why we are breaking it up so early. So I need a third person's opinion to understand which option is much better.

    Read the article

  • Detect Unicode Usage in SQL Column

    One optimization you can make to a SQL table that is overly large is to change from nvarchar (or nchar) to varchar (or char).  Doing so will cut the size used by the data in half, from 2 bytes per character (+ 2 bytes of overhead for varchar) to only 1 byte per character.  However, you will lose the ability to store Unicode characters, such as those used by many non-English alphabets.  If the tables are storing user-input, and your application is or might one day be used internationally, its likely that using Unicode for your characters is a good thing.  However, if instead the data is being generated by your application itself or your development team (such as lookup data), and you can be certain that Unicode character sets are not required, then switching such columns to varchar/char can be an easy improvement to make. Avoid Premature Optimization If you are working with a lookup table that has a small number of rows, and is only ever referenced in the application by its numeric ID column, then you wont see any benefit to using varchar vs. nvarchar.  More generally, for small tables, you wont see any significant benefit.  Thus, if you have a general policy in place to use nvarchar/nchar because it offers more flexibility, do not take this post as a recommendation to go against this policy anywhere you can.  You really only want to act on measurable evidence that suggests that using Unicode is resulting in a problem, and that you wont lose anything by switching to varchar/char. Obviously the main reason to make this change is to reduce the amount of space required by each row.  This in turn affects how many rows SQL Server can page through at a time, and can also impact index size and how much disk I/O is required to respond to queries, etc.  If for example you have a table with 100 million records in it and this table has a column of type nchar(5), this column will use 5 * 2 = 10 bytes per row, and with 100M rows that works out to 10 bytes * 100 million = 1000 MBytes or 1GB.  If it turns out that this column only ever stores ASCII characters, then changing it to char(5) would reduce this to 5*1 = 5 bytes per row, and only 500MB.  Of course, if it turns out that it only ever stores the values true and false then you could go further and replace it with a bit data type which uses only 1 byte per row (100MB  total). Detecting Whether Unicode Is In Use So by now you think that you have a problem and that it might be alleviated by switching some columns from nvarchar/nchar to varchar/char but youre not sure whether youre currently using Unicode in these columns.  By definition, you should only be thinking about this for a column that has a lot of rows in it, since the benefits just arent there for a small table, so you cant just eyeball it and look for any non-ASCII characters.  Instead, you need a query.  Its actually very simple: SELECT DISTINCT(CategoryName)FROM CategoriesWHERE CategoryName <> CONVERT(varchar, CategoryName) Summary Gregg Stark for the tip. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Viewport / Camera Calculation in 2D Game

    - by Dave
    we have a 2D game with some sprites and tiles and some kind of camera/viewport, that "moves" around the scene. so far so good, if we wouldn't had some special behaviour for your camera/viewport translation. normally you could stick the camera to your player figure and center it, resulting in a very cheap, undergraduate, translation equation, like : vec_translation -/+= speed (depending in what keys are pressed. WASD as default.) buuuuuuuuuut, we want our player figure be able to actually reach the bounds, when the viewport/camera has reached a maximum translation. we came up with the following solution (only keys a and d are the shown here, the rest is just adaption of calculation or maybe YOUR super-cool and elegant solution :) ): if(keys[A]) { playerX -= speed; if(playerScreenX <= width / 2 && tx < 0) { playerScreenX = width / 2; tx += speed; } else if(playerScreenX <= width / 2 && (tx) >= 0) { playerScreenX -= speed; tx = 0; if(playerScreenX < 0) playerScreenX = 0; } else if(playerScreenX >= width / 2 && (tx) < 0) { playerScreenX -= speed; } } if(keys[D]) { playerX += speed; if(playerScreenX >= width / 2 && (-tx + width) < sceneWidth) { playerScreenX = width / 2; tx -= speed; } if(playerScreenX >= width / 2 && (-tx + width) >= sceneWidth) { playerScreenX += speed; tx = -(sceneWidth - width); if(playerScreenX >= width - player.width) playerScreenX = width - player.width; } if(playerScreenX <= width / 2 && (-tx + width) < sceneWidth) { playerScreenX += speed; } } i think the code is rather self explaining: keys is a flag container for currently active keys, playerX/-Y is the position of the player according to world origin, tx/ty are the translation components vital to background / npc / item offset calculation, playerOnScreenX/-Y is the actual position of the player figure (sprite) on screen and width/height are the dimensions of the camera/viewport. this all looks quite nice and works well, but there is a very small and nasty calculation error, which in turn sums up to some visible effect. let's consider following piece of code: if(playerScreenX <= width / 2 && tx < 0) { playerScreenX = width / 2; tx += speed; } it can be translated into plain english as : if the x position of your player figure on screen is less or equal the half of your display / camera / viewport size AND there is enough space left LEFT of your viewport/camera then set players x position on screen to width half, increase translation (because we subtract the translation from something we want to move). easy, right?! doing this will create a small delta between playerX and playerScreenX. after so much talking, my question appears now here at the bottom of this document: how do I stick the calculation of my player-on-screen to the actual position of the player AND having a viewport that is not always centered aroung the players figure? here is a small test-case in processing: http://pastebin.com/bFaTauaa thank you for reading until now and thank you in advance for probably answering my question.

    Read the article

  • Apache config that uses two document roots based on whether the requested resource exists in the first [closed]

    - by mattalexx
    Background I have a client site that consists of a CakePHP installation and a Magento installation: /web/example.com/ /web/example.com/app/ <== CakePHP /web/example.com/app/webroot/ <== DocumentRoot /web/example.com/app/webroot/store/ <== Magento /web/example.com/config/ <== Site-wide config /web/example.com/vendors/ <== Site-wide libraries The server runs Apache 2.2.3. The problem The whole company has FTP access and got used to clogging up the /web/example.com/, /web/example.com/app/webroot/, and /web/example.com/app/webroot/store/ directories with their own files. Sometimes these files need HTTP access and sometimes they don't. In any case, this mess makes my job harder when it comes to maintaining the site. Code merges, tarring the live code, etc, is very complicated and usually requires a bunch of filters. Abandoned solution At first, I thought I would set up a new subdomain on the same server, move all of their files there, and change their FTP chroot. But that wouldn't work for these reasons: Firstly, I have no idea (and neither do they remember) what marketing materials they've sent out that contain URLs to certain resources they've uploaded to the server, using the main domain, and also using abstract subdomains that use the main virtual host because it has ServerAlias *.example.com. So suddenly having them only use static.example.com isn't feasible. Secondly, The PHP scripts in their projects are potentially very non-portable. I want their files to stay in as similar an environment as they were built as I can. Also, I do not want to debug their code to make it portable. Half-baked solution After some thought, I decided to find a way to section off the actual website files into another directory that they would not touch. The company's uploaded files would stay where they were. This would ensure that I didn't break any of their projects that needed HTTP access. It would look something like this: /web/example.com/ <== A bunch of their files are in here /web/example.com/app/webroot/ <== 1st DocumentRoot; A bunch of their files are in here /web/example.com/app/webroot/store/ <== Some more are in here /web/example.com/site/ <== New dir; Contains only site files /web/example.com/site/app/ <== CakePHP /web/example.com/site/app/webroot/ <== 2nd DocumentRoot /web/example.com/site/app/webroot/store/ <== Magento /web/example.com/site/config/ <== Site-wide config /web/example.com/site/vendors/ <== Site-wide libraries After I made this change, I would not need to pay attention to anything except for the stuff within /web/example.com/site/ and my job would be a lot easier. I would be the only one changing stuff in there. So here's where the Apache magic would happen: I need an HTTP request to http://www.example.com/ to first use /web/example.com/app/webroot/ as the document root. If nothing is found (no miscellaneous uploaded company projects are found), try finding something within /web/example.com/site/app/webroot/. Another thing to keep in mind is, the site might have some problems if the $_SERVER['DOCUMENT_ROOT'] variable reads /web/example.com/app/webroot/ but the actual files are within /web/example.com/site/app/webroot/. It would be better if the DOCUMENT_ROOT environment variable could be /web/example.com/site/app/webroot/ for anything within the /web/example.com/site/app/webroot/ directory. Conclusion Is my half-baked solution possible with Apache 2.2.3? Is there a better way to solve this problem?

    Read the article

  • PCI Encryption Key Management

    - by Unicorn Bob
    (Full disclosure: I'm already an active participant here and at StackOverflow, but for reasons that should hopefully be obvious, I'm choosing to ask this particular question anonymously). I currently work for a small software shop that produces software that's sold commercially to manage small- to mid-size business in a couple of fairly specialized industries. Because these industries are customer-facing, a large portion of the software is related to storing and managing customer information. In particular, the storage (and securing) of customer credit card information. With that, of course, comes PCI compliance. To make a long story short, I'm left with a couple of questions about why certain things were done the way they were, and I'm unfortunately without much of a resource at the moment. This is a very small shop (I report directly to the owner, as does the only other full-time employee), and the owner doesn't have an answer to these questions, and the previous developer is...err...unavailable. Issue 1: Periodic Re-encryption As of now, the software prompts the user to do a wholesale re-encryption of all of the sensitive information in the database (basically credit card numbers and user passwords) if either of these conditions is true: There are any NON-encrypted pieces of sensitive information in the database (added through a manual database statement instead of through the business object, for example). This should not happen during the ordinary use of the software. The current key has been in use for more than a particular period of time. I believe it's 12 months, but I'm not certain of that. The point here is that the key "expires". This is my first foray into commercial solution development that deals with PCI, so I am unfortunately uneducated on the practices involved. Is there some aspect of PCI compliance that mandates (or even just strongly recommends) periodic key updating? This isn't a huge issue for me other than I don't currently have a good explanation to give to end users if they ask why they are being prompted to run it. Question 1: Is the concept of key expiration standard, and, if so, is that simply industry-standard or an element of PCI? Issue 2: Key Storage Here's my real issue...the encryption key is stored in the database, just obfuscated. The key is padded on the left and right with a few garbage bytes and some bits are twiddled, but fundamentally there's nothing stopping an enterprising person from examining our (dotfuscated) code, determining the pattern used to turn the stored key into the real key, then using that key to run amok. This seems like a horrible practice to me, but I want to make sure that this isn't just one of those "grin and bear it" practices that people in this industry have taken to. I have developed an alternative approach that would prevent such an attack, but I'm just looking for a sanity check here. Question 2: Is this method of key storage--namely storing the key in the database using an obfuscation method that exists in client code--normal or crazy? Believe me, I know that free advice is worth every penny that I've paid for it, nobody here is an attorney (or at least isn't offering legal advice), caveat emptor, etc. etc., but I'm looking for any input that you all can provide. Thank you in advance!

    Read the article

  • A programmer who doesn't get to program - where to turn? [closed]

    - by Just an Anon
    I'm in my mid 20's, and have been working as a full time programmer / developer for the last ~6 years, with several years of part-time freelancing before this, and three straight years of freelancing in the middle of this short career. I work mostly with PHP and the Drupal framework. By and large, I focus on programming custom pieces of functionality; these, of course, vary greatly from project to project. I've got years of solid experience with OOP (have done some Java & C# years ago, too) including intensive experience with front-end development, and even some design work. I've lead small teams (2-4 people) of developers. And of course, given the large amount of freelancing, I've got decent project- & client-management skills. My problem is staying motivated at any place of employment. In the time mentioned I've worked (full-time) at six local companies. The longest I've stayed at any company was just over a year. I find that I'll get hired and be very excited and motivated for the first few months, but the work quickly gets "stale." By that I mean that the interesting components (ie. the programming) get done, and the rest of the work turns into boring cleanup (move a button, add text, change colours, add a field). I don't get challenged, and I don't feel like I'm learning anything new. This happens repeatedly time and time again, and I always end up leaving for either a new opportunity, or to freelance. I'm wondering if perhaps I've painted myself into a corner with the rather niche work market (although with very high demand and good compensation) and need to explore other career choices. Another possibility is that I may be choosing the wrong places of employment, mostly small agencies, and need to look into working for a larger, more established firm. I find programming, writing code, and architecting solutions very rewarding. When I'm working on an interesting problem I lose all sense of time and 14-16 hours can fly by like minutes. I get the same exciting feeling when I'm doing high-level planning of a complex system, breaking up the work and figuring out how everything will tie-in together. I absolutely hate doing small, "stupid" changes that pose no challenge, yet seem to make up more and more of my work. I want to find a workplace where I will get to work on such tasks, be challenged, and improve in all areas of product development. This maybe a programming job, management, architecture of desktop apps, or may be managing a taco stand on a beach in Mexico - I don't know, and I need some advice and real-world feedback. What are some job areas worth exploring? The requirements are fairly simple: working with computers interacting with others challenging decent pay (I'm making just short of 90k / year with a month of vacation & some benefits, and would like to stay in this range, but am willing to take a temporary cut in pay for a more interesting position) Any advice would be much appreciated!

    Read the article

  • Guidance: A Branching strategy for Scrum Teams

    - by Martin Hinshelwood
    Having a good branching strategy will save your bacon, or at least your code. Be careful when deviating from your branching strategy because if you do, you may be worse off than when you started! This is one possible branching strategy for Scrum teams and I will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even assess your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Acknowledgements Bill Heys – Bill offered some good feedback on this post and helped soften the language. Note: Bill is a VS ALM Ranger and co-wrote the Branching Guidance for TFS 2010 Willy-Peter Schaub – Willy-Peter is an ex Visual Studio ALM MVP turned blue badge and has been involved in most of the guidance including the Branching Guidance for TFS 2010 Chris Birmele – Chris wrote some of the early TFS Branching and Merging Guidance. Dr Paul Neumeyer, Ph.D Parallel Processes, ScrumMaster and SSW Solution Architect – Paul wanted to have feature branches coming from the release branch as well. We agreed that this is really a spin-off that needs own project, backlog, budget and Team. Scenario: A product is developed RTM 1.0 is released and gets great sales.  Extra features are demanded but the new version will have double to price to pay to recover costs, work is approved by the guys with budget and a few sprints later RTM 2.0 is released.  Sales a very low due to the pricing strategy. There are lots of clients on RTM 1.0 calling out for patches. As I keep getting Reverse Integration and Forward Integration mixed up and Bill keeps slapping my wrists I thought I should have a reminder: You still seemed to use reverse and/or forward integration in the wrong context. I would recommend reviewing your document at the end to ensure that it agrees with the common understanding of these terms merge (forward integration) from parent to child (same direction as the branch), and merge  (reverse integration) from child to parent (the reverse direction of the branch). - one of my many slaps on the wrist from Bill Heys.   As I mentioned previously we are using a single feature branching strategy in our current project. The single biggest mistake developers make is developing against the “Main” or “Trunk” line. This ultimately leads to messy code as things are added and never finished. Your only alternative is to NEVER check in unless your code is 100%, but this does not work in practice, even with a single developer. Your ADD will kick in and your half-finished code will be finished enough to pass the build and the tests. You do use builds don’t you? Sadly, this is a very common scenario and I have had people argue that branching merely adds complexity. Then again I have seen the other side of the universe ... branching  structures from he... We should somehow convince everyone that there is a happy between no-branching and too-much-branching. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   A key benefit of branching for development is to isolate changes from the stable Main branch. Branching adds sanity more than it adds complexity. We do try to stress in our guidance that it is important to justify a branch, by doing a cost benefit analysis. The primary cost is the effort to do merges and resolve conflicts. A key benefit is that you have a stable code base in Main and accept changes into Main only after they pass quality gates, etc. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft The second biggest mistake developers make is branching anything other than the WHOLE “Main” line. If you branch parts of your code and not others it gets out of sync and can make integration a nightmare. You should have your Source, Assets, Build scripts deployment scripts and dependencies inside the “Main” folder and branch the whole thing. Some departments within MSFT even go as far as to add the environments used to develop the product in there as well; although I would not recommend that unless you have a massive SQL cluster to house your source code. We tried the “add environment” back in South-Africa and while it was “phenomenal”, especially when having to switch between environments, the disk storage and processing requirements killed us. We opted for virtualization to skin this cat of keeping a ready-to-go environment handy. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   I think people often think that you should have separate branches for separate environments (e.g. Dev, Test, Integration Test, QA, etc.). I prefer to think of deploying to environments (such as from Main to QA) rather than branching for QA). - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   You can read about SSW’s Rules to better Source Control for some additional information on what Source Control to use and how to use it. There are also a number of branching Anti-Patterns that should be avoided at all costs: You know you are on the wrong track if you experience one or more of the following symptoms in your development environment: Merge Paranoia—avoiding merging at all cost, usually because of a fear of the consequences. Merge Mania—spending too much time merging software assets instead of developing them. Big Bang Merge—deferring branch merging to the end of the development effort and attempting to merge all branches simultaneously. Never-Ending Merge—continuous merging activity because there is always more to merge. Wrong-Way Merge—merging a software asset version with an earlier version. Branch Mania—creating many branches for no apparent reason. Cascading Branches—branching but never merging back to the main line. Mysterious Branches—branching for no apparent reason. Temporary Branches—branching for changing reasons, so the branch becomes a permanent temporary workspace. Volatile Branches—branching with unstable software assets shared by other branches or merged into another branch. Note   Branches are volatile most of the time while they exist as independent branches. That is the point of having them. The difference is that you should not share or merge branches while they are in an unstable state. Development Freeze—stopping all development activities while branching, merging, and building new base lines. Berlin Wall—using branches to divide the development team members, instead of dividing the work they are performing. -Branching and Merging Primer by Chris Birmele - Developer Tools Technical Specialist at Microsoft Pty Ltd in Australia   In fact, this can result in a merge exercise no-one wants to be involved in, merging hundreds of thousands of change sets and trying to get a consolidated build. Again, we need to find a happy medium. - Willy-Peter Schaub on Merge Paranoia Merge conflicts are generally the result of making changes to the same file in both the target and source branch. If you create merge conflicts, you will eventually need to resolve them. Often the resolution is manual. Merging more frequently allows you to resolve these conflicts close to when they happen, making the resolution clearer. Waiting weeks or months to resolve them, the Big Bang approach, means you are more likely to resolve conflicts incorrectly. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Main line, this is where your stable code lives and where any build has known entities, always passes and has a happy test that passes as well? Many development projects consist of, a single “Main” line of source and artifacts. This is good; at least there is source control . There are however a couple of issues that need to be considered. What happens if: you and your team are working on a new set of features and the customer wants a change to his current version? you are working on two features and the customer decides to abandon one of them? you have two teams working on different feature sets and their changes start interfering with each other? I just use labels instead of branches? That's a lot of “what if’s”, but there is a simple way of preventing this. Branching… In TFS, labels are not immutable. This does not mean they are not useful. But labels do not provide a very good development isolation mechanism. Branching allows separate code sets to evolve separately (e.g. Current with hotfixes, and vNext with new development). I don’t see how labels work here. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Creating a single feature branch means you can isolate the development work on that branch.   Its standard practice for large projects with lots of developers to use Feature branching and you can check the Branching Guidance for the latest recommendations from the Visual Studio ALM Rangers for other methods. In the diagram above you can see my recommendation for branching when using Scrum development with TFS 2010. It consists of a single Sprint branch to contain all the changes for the current sprint. The main branch has the permissions changes so contributors to the project can only Branch and Merge with “Main”. This will prevent accidental check-ins or checkouts of the “Main” line that would contaminate the code. The developers continue to develop on sprint one until the completion of the sprint. Note: In the real world, starting a new Greenfield project, this process starts at Sprint 2 as at the start of Sprint 1 you would have artifacts in version control and no need for isolation.   Figure: Once the sprint is complete the Sprint 1 code can then be merged back into the Main line. There are always good practices to follow, and one is to always do a Forward Integration from Main into Sprint 1 before you do a Reverse Integration from Sprint 1 back into Main. In this case it may seem superfluous, but this builds good muscle memory into your developer’s work ethic and means that no bad habits are learned that would interfere with additional Scrum Teams being added to the Product. The process of completing your sprint development: The Team completes their work according to their definition of done. Merge from “Main” into “Sprint1” (Forward Integration) Stabilize your code with any changes coming from other Scrum Teams working on the same product. If you have one Scrum Team this should be quick, but there may have been bug fixes in the Release branches. (we will talk about release branches later) Merge from “Sprint1” into “Main” to commit your changes. (Reverse Integration) Check-in Delete the Sprint1 branch Note: The Sprint 1 branch is no longer required as its useful life has been concluded. Check-in Done But you are not yet done with the Sprint. The goal in Scrum is to have a “potentially shippable product” at the end of every Sprint, and we do not have that yet, we only have finished code.   Figure: With Sprint 1 merged you can create a Release branch and run your final packaging and testing In 99% of all projects I have been involved in or watched, a “shippable product” only happens towards the end of the overall lifecycle, especially when sprints are short. The in-between releases are great demonstration releases, but not shippable. Perhaps it comes from my 80’s brain washing that we only ship when we reach the agreed quality and business feature bar. - Willy-Peter Schaub, VS ALM Ranger, Microsoft Although you should have been testing and packaging your code all the way through your Sprint 1 development, preferably using an automated process, you still need to test and package with stable unchanging code. This is where you do what at SSW we call a “Test Please”. This is first an internal test of the product to make sure it meets the needs of the customer and you generally use a resource external to your Team. Then a “Test Please” is conducted with the Product Owner to make sure he is happy with the output. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: If you find a deviation from the expected result you fix it on the Release branch. If during your final testing or your “Test Please” you find there are issues or bugs then you should fix them on the release branch. If you can’t fix them within the time box of your Sprint, then you will need to create a Bug and put it onto the backlog for prioritization by the Product owner. Make sure you leave plenty of time between your merge from the development branch to find and fix any problems that are uncovered. This process is commonly called Stabilization and should always be conducted once you have completed all of your User Stories and integrated all of your branches. Even once you have stabilized and released, you should not delete the release branch as you would with the Sprint branch. It has a usefulness for servicing that may extend well beyond the limited life you expect of it. Note: Don't get forced by the business into adding features into a Release branch instead that indicates the unspoken requirement is that they are asking for a product spin-off. In this case you can create a new Team Project and branch from the required Release branch to create a new Main branch for that product. And you create a whole new backlog to work from.   Figure: When the Team decides it is happy with the product you can create a RTM branch. Once you have fixed all the bugs you can, and added any you can’t to the Product Backlog, and you Team is happy with the result you can create a Release. This would consist of doing the final Build and Packaging it up ready for your Sprint Review meeting. You would then create a read-only branch that represents the code you “shipped”. This is really an Audit trail branch that is optional, but is good practice. You could use a Label, but Labels are not Auditable and if a dispute was raised by the customer you can produce a verifiable version of the source code for an independent party to check. Rare I know, but you do not want to be at the wrong end of a legal battle. Like the Release branch the RTM branch should never be deleted, or only deleted according to your companies legal policy, which in the UK is usually 7 years.   Figure: If you have made any changes in the Release you will need to merge back up to Main in order to finalise the changes. Nothing is really ever done until it is in Main. The same rules apply when merging any fixes in the Release branch back into Main and you should do a reverse merge before a forward merge, again for the muscle memory more than necessity at this stage. Your Sprint is now nearly complete, and you can have a Sprint Review meeting knowing that you have made every effort and taken every precaution to protect your customer’s investment. Note: In order to really achieve protection for both you and your client you would add Automated Builds, Automated Tests, Automated Acceptance tests, Acceptance test tracking, Unit Tests, Load tests, Web test and all the other good engineering practices that help produce reliable software.     Figure: After the Sprint Planning meeting the process begins again. Where the Sprint Review and Retrospective meetings mark the end of the Sprint, the Sprint Planning meeting marks the beginning. After you have completed your Sprint Planning and you know what you are trying to achieve in Sprint 2 you can create your new Branch to develop in. How do we handle a bug(s) in production that can’t wait? Although in Scrum the only work done should be on the backlog there should be a little buffer added to the Sprint Planning for contingencies. One of these contingencies is a bug in the current release that can’t wait for the Sprint to finish. But how do you handle that? Willy-Peter Schaub asked an excellent question on the release activities: In reality Sprint 2 starts when sprint 1 ends + weekend. Should we not cater for a possible parallelism between Sprint 2 and the release activities of sprint 1? It would introduce FI’s from main to sprint 2, I guess. Your “Figure: Merging print 2 back into Main.” covers, what I tend to believe to be reality in most cases. - Willy-Peter Schaub, VS ALM Ranger, Microsoft I agree, and if you have a single Scrum team then your resources are limited. The Scrum Team is responsible for packaging and release, so at least one run at stabilization, package and release should be included in the Sprint time box. If more are needed on the current production release during the Sprint 2 time box then resource needs to be pulled from Sprint 2. The Product Owner and the Team have four choices (in order of disruption/cost): Backlog: Add the bug to the backlog and fix it in the next Sprint Buffer Time: Use any buffer time included in the current Sprint to fix the bug quickly Make time: Remove a Story from the current Sprint that is of equal value to the time lost fixing the bug(s) and releasing. Note: The Team must agree that it can still meet the Sprint Goal. Cancel Sprint: Cancel the sprint and concentrate all resource on fixing the bug(s) Note: This can be a very costly if the current sprint has already had a lot of work completed as it will be lost. The choice will depend on the complexity and severity of the bug(s) and both the Product Owner and the Team need to agree. In this case we will go with option #2 or #3 as they are uncomplicated but severe bugs. Figure: Real world issue where a bug needs fixed in the current release. If the bug(s) is urgent enough then then your only option is to fix it in place. You can edit the release branch to find and fix the bug, hopefully creating a test so it can’t happen again. Follow the prior process and conduct an internal and customer “Test Please” before releasing. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: After you have fixed the bug you need to ship again. You then need to again create an RTM branch to hold the version of the code you released in escrow.   Figure: Main is now out of sync with your Release. We now need to get these new changes back up into the Main branch. Do a reverse and then forward merge again to get the new code into Main. But what about the branch, are developers not working on Sprint 2? Does Sprint 2 now have changes that are not in Main and Main now have changes that are not in Sprint 2? Well, yes… and this is part of the hit you take doing branching. But would this scenario even have been possible without branching?   Figure: Getting the changes in Main into Sprint 2 is very important. The Team now needs to do a Forward Integration merge into their Sprint and resolve any conflicts that occur. Maybe the bug has already been fixed in Sprint 2, maybe the bug no longer exists! This needs to be identified and resolved by the developers before they continue to get further out of Sync with Main. Note: Avoid the “Big bang merge” at all costs.   Figure: Merging Sprint 2 back into Main, the Forward Integration, and R0 terminates. Sprint 2 now merges (Reverse Integration) back into Main following the procedures we have already established.   Figure: The logical conclusion. This then allows the creation of the next release. By now you should be getting the big picture and hopefully you learned something useful from this post. I know I have enjoyed writing it as I find these exploratory posts coupled with real world experience really help harden my understanding.  Branching is a tool; it is not a silver bullet. Don’t over use it, and avoid “Anti-Patterns” where possible. Although the diagram above looks complicated I hope showing you how it is formed simplifies it as much as possible.   Technorati Tags: Branching,Scrum,VS ALM,TFS 2010,VS2010

    Read the article

< Previous Page | 132 133 134 135 136 137 138 139 140 141 142 143  | Next Page >