Search Results

Search found 37348 results on 1494 pages for 'low end hardware'.

Page 139/1494 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • ASP.NET MVC Patterns

    - by Sam Striano
    Hello, I am fairly new to MVC, but after playing with it (MVC 3/Razor), I am hooked. I have a few questions: 1) What is the best, or most widely used pattern to develop MVC apps in? Repository, DDD, UOW? 2) I am using the Entity Framework 4, so could some please explain to me or point me to a good source that will explain the Repository Pattern w/EF4? Doesn't EF4 take place as the business layer and the data access layer? Does the Repository Pattern even provide a benefit? 3) Also, one last question, could someone explain the whole relationship between the Controller, the Model and the View? I get the basics, but maybe a little more in depth of the correct way to use it. View Models - Say I have a view that displays customer info, and one that edits it, should I have a view model and an edit model, or can the be passed around? 4) Examples?? Thanks for the help up front, $("Sam") ** EDIT ** Am I on the right track here: Public Class HomeController Inherits System.Web.Mvc.Controller Function Index(ByVal id As Integer) As ActionResult Return View(New HomeModel) End Function <HttpPost()> _ Function Index(ByVal Model As HomeModel) As ActionResult Return View(Model) End Function End Class Public Class HomeModel Private _Repository As IRepository(Of Customer) Public Property Customer As Customer Public Sub New() End Sub Public Sub New(ByVal ID As Integer) _Repository = New CustomerRepository Customer = _Repository.GetByID(ID) End Sub End Class Public Interface IRepository(Of T) Function GetByID(ByVal ID As Integer) As T Sub Add(ByVal Entity As T) Sub Delete(ByVal Entity As T) End Interface Public Class CustomerRepository Implements IRepository(Of Customer) Public Sub Add(ByVal Entity As Customer) Implements IRepository(Of Customer).Add End Sub Public Sub Delete(ByVal Entity As Customer) Implements IRepository(Of Customer).Delete End Sub Public Function GetByID(ByVal ID As Integer) As Customer Implements IRepository(Of Customer).GetByID Return New Customer With {.ID = ID, .FirstName = "Sam", .LastName = "Striano"} End Function End Class Public Class Customer Public Property ID As Integer Public Property FirstName As String Public Property LastName As String End Class

    Read the article

  • about option buttons in User form

    - by Mars
    I have a question: I need to create a user form that contain that usual OK and Cancel Buttons. It also should contain two sets of Options buttons, each set placed inside a frame. The captions on the first set should be basketball, baseball, football, the captions on the second set should be watch on TV and Go to games. I need to write the event handlers and code in a module so that when the program runs, the user sees the form. If the user makes a couple of choices and clicks OK, he should see a message like "Your favorite sport is basketball, and you usually watch on TV." If the user clicks Cancel, the message "Sorry you don't want to play" should appear. I think I almost have it working, but I don't know why I cannot successfully execute the Macro. My Code is : Option Explicit Private Sub CommandButton2_Click() MsgBox ("sorry if you don't want to play") End Sub Private Sub commandbuttons_Click() Dim optbasket As String, optbaseball As String, optfootball As String Dim optwog As String, optgtg As String Select Case True Case optbasket optbasket = True Case optbaseball optbaseball = True Case optfootball optfootball = True End Select If optwog Then optwog = True Else optgtg = True End If btnok = MsgBox("you favorite sport is " & Frame1.Value & "you usually " & Frame2.Value & ",") End Sub Private Sub OptionButton1_Click() End Sub Private Sub btmcancel_Click() End Sub Private Sub btnok_Click() End Sub Private Sub Frame1_Click() End Sub Private Sub Frame2_Click() End Sub Private Sub optbaseball_Click() End Sub Private Sub optbasketball_Click() End Sub Private Sub optfootball_Click() End Sub Thank you very much!!!

    Read the article

  • Paperclip: Stay put on edit

    - by EricR
    When a user edits something in my application, they're forced to re-upload their image via paperclip even if they aren't changing it. Failing to do so will cause an error, since I validate_presence_of :image. This is quite annoying. How can I make it so Paperclip won't update its attributes if a user simply doesn't supply a new image on an edit? The photo controller is fresh out of Rails' scaffold generator. The rest of the source code is provided below. models/accommodation.rb class Accommodation < ActiveRecord::Base attr_accessible :photo validates_presence_of :photo has_one :photo has_many :notifications belongs_to :user accepts_nested_attributes_for :photo, :allow_destroy => true end controllers/accommodation_controller.rb class AccommodationsController < ApplicationController def index @accommodations = Accommodation.all end def show @accommodation = Accommodation.find(params[:id]) rescue ActiveRecord::RecordNotFound flash[:error] = "Accommodation not found." redirect_to :home end def new @accommodation = current_user.accommodations.build @accommodation.build_photo end def create @accommodation = current_user.accommodations.build(params[:accommodation]) if @accommodation.save flash[:notice] = "Successfully created your accommodation." redirect_to @accommodation else @accommodation.build_photo render :new end end def edit @accommodation = Accommodation.find(params[:id]) @accommodation.build_photo rescue ActiveRecord::RecordNotFound flash[:error] = "Accommodation not found." redirect_to :home end def update @accommodation = Accommodation.find(params[:id]) if @accommodation.update_attributes(params[:accommodation]) flash[:notice] = "Successfully updated accommodation." redirect_to @accommodation else @accommodation.build_photo render :edit end end def destroy @accommodation = Accommodation.find(params[:id]) @accommodation.destroy flash[:notice] = "Successfully destroyed accommodation." redirect_to :inkeep end end models/photo.rb class Photo < ActiveRecord::Base attr_accessible :image, :primary belongs_to :accommodation has_attached_file :image, :styles => { :thumb=> "100x100#", :small => "150x150>" } end

    Read the article

  • How do I get more separation between the end of the 1st div and the start of the 2nd div?

    - by user3075987
    I'm trying to get the 2nd div (the picture of the orange and copy) to go below the 1st div (the picture of the pear and copy), but see how the Orange copy is going up into the Pear copy. How can I have the Orange copy start below the Pear picture? Here's my jsfiddle: http://jsfiddle.net/huskydawgs/g8mbgr1e/4/ Here's my code: <div class="alignleft"> <p><img alt="Pear" src="http://eofdreams.com/data_images/dreams/pear/pear-01.jpg" width="144" height="150" /></p> The pear is native to coastal and mildly temperate regions of the Old World, from western Europe and north Africa east right across Asia. It is a medium-sized tree, reaching 10–17 metres (33–56 ft) tall, often with a tall, narrow crown; a few species are shrubby. The fruit is composed of the receptacle or upper end of the flower-stalk (the so-called calyx tube) greatly dilated. Enclosed within its cellular flesh is the true fruit: five cartilaginous carpels, known colloquially as the "core". From the upper rim of the receptacle are given off the five sepals[vague], the five petals, and the very numerous stamens. In ancient Egypt, artists used an orange mineral pigment called realgar for tomb paintings, as well as other uses. It was also used later by Medieval artists for the colouring of manuscripts. Pigments were also made in ancient times from a mineral known as orpiment. Orpiment was an important item of trade in the Roman Empire and was used as a medicine in China although it contains arsenic and is highly toxic. It was also used as a fly poison and to poison arrows. Because of its yellow-orange colour, it was also a favourite with alchemists searching for a way to make gold, both in China and the West. The pineapple is a herbaceous perennial which grows to 1.0 to 1.5 meters (3.3 to 4.9 ft) tall, although sometimes it can be taller. In appearance, the plant itself has a short, stocky stem with tough, waxy leaves. When creating its fruit, it usually produces up to 200 flowers, although some large-fruited cultivars can exceed this. Once it flowers, the individual fruits of the flowers join together to create what is commonly referred to as a pineapple. After the first fruit is produced, side shoots (called 'suckers' by commercial growers) are produced in the leaf axils of the main stem. These may be removed for propagation, or left to produce additional fruits on the original plant.[4] Commercially, suckers that appear around the base are cultivated. It has 30 or more long, narrow, fleshy, trough-shaped leaves with sharp spines along the margins that are 30 to 100 centimeters (1.0 to 3.3 ft) long, surrounding a thick stem. In the first year of growth, the axis lengthens and thickens, bearing numerous leaves in close spirals. After 12 to 20 months, the stem grows into a spike-like inflorescence up to 15 cm (6 in) long with over 100 spirally arranged, trimerous flowers, each subtended by a bract. Flower colors vary, depending on variety, from lavender, through light purple to red. Here's my CSS: .alignleft { float: left; margin: 0px 30px 20px 0px; } .alignright { float: right; margin: 0px 0px 20px 30px; }

    Read the article

  • How do I avoid a race condition in my Rails app?

    - by Cathal
    Hi, I have a really simple Rails application that allows users to register their attendance on a set of courses. The ActiveRecord models are as follows: class Course < ActiveRecord::Base has_many :scheduled_runs ... end class ScheduledRun < ActiveRecord::Base belongs_to :course has_many :attendances has_many :attendees, :through => :attendances ... end class Attendance < ActiveRecord::Base belongs_to :user belongs_to :scheduled_run, :counter_cache => true ... end class User < ActiveRecord::Base has_many :attendances has_many :registered_courses, :through => :attendances, :source => :scheduled_run end A ScheduledRun instance has a finite number of places available, and once the limit is reached, no more attendances can be accepted. def full? attendances_count == capacity end attendances_count is a counter cache column holding the number of attendance associations created for a particular ScheduledRun record. My problem is that I don't fully know the correct way to ensure that a race condition doesn't occur when 1 or more people attempt to register for the last available place on a course at the same time. My Attendance controller looks like this: class AttendancesController < ApplicationController before_filter :load_scheduled_run before_filter :load_user, :only => :create def new @user = User.new end def create unless @user.valid? render :action => 'new' end @attendance = @user.attendances.build(:scheduled_run_id => params[:scheduled_run_id]) if @attendance.save flash[:notice] = "Successfully created attendance." redirect_to root_url else render :action => 'new' end end protected def load_scheduled_run @run = ScheduledRun.find(params[:scheduled_run_id]) end def load_user @user = User.create_new_or_load_existing(params[:user]) end end As you can see, it doesn't take into account where the ScheduledRun instance has already reached capacity. Any help on this would be greatly appreciated.

    Read the article

  • Pass Arguments to Included Module in Ruby?

    - by viatropos
    I'm hoping to implement something like all of the great plugins out there for ruby, so that you can do this: acts_as_commentable has_attached_file :avatar But I have one constraint: That helper method can only include a module; it can't define any variables or methods. The reason for this is because, I want the options hash to define something like type, and that could be converted into one of say 20 different 'workhorse' modules, all of which I could sum up in a line like this: def dynamic_method(options = {}) include ("My::Helpers::#{options[:type].to_s.camelize}").constantize(options) end Then those 'workhorses' would handle the options, doing things like: has_many "#{options[:something]}" Here's what the structure looks like, and I'm wondering if you know the missing piece in the puzzle: # 1 - The workhorse, encapsuling all dynamic variables module My::Module def self.included(base) base.extend ClassMethods base.class_eval do include InstanceMethods end end module InstanceMethods self.instance_eval %Q? def #{options[:my_method]} "world!" end ? end module ClassMethods end end # 2 - all this does is define that helper method module HelperModule def self.included(base) base.extend(ClassMethods) end module ClassMethods def dynamic_method(options = {}) # don't know how to get options through! include My::Module(options) end end end # 3 - send it to active_record ActiveRecord::Base.send(:include, HelperModule) # 4 - what it looks like class TestClass < ActiveRecord::Base dynamic_method :my_method => "hello" end puts TestClass.new.hello #=> "world!" That %Q? I'm not totally sure how to use, but I'm basically just wanting to somehow be able to pass the options hash from that helper method into the workhorse module. Is that possible? That way, the workhorse module could define all sorts of functionality, but I could name the variables whatever I wanted at runtime.

    Read the article

  • [Ruby On Rails] belongs_to with :class_name option fails.

    - by crackpot
    I have no idea what went wrong but I can't get belongs_to work with :class_name option. Could somebody enlighten me. Thanks a lot! Here is a snip from my code. class CreateUsers < ActiveRecord::Migration def self.up create_table :users do |t| t.text :name end end def self.down drop_table :users end end ##################################################### class CreateBooks < ActiveRecord::Migration def self.up create_table :books do |t| t.text :title t.integer :author_id, :null => false end end def self.down drop_table :books end end ##################################################### class User < ActiveRecord::Base has_many: books end ##################################################### class Book < ActiveRecord::Base belongs_to :author, :class_name => 'User', :validate => true end ##################################################### class BooksController < ApplicationController def create user = User.new({:name => 'John Woo'}) user.save @failed_book = Book.new({:title => 'Failed!', :author => @user}) @failed_book.save # missing author_id @success_book = Book.new({:title => 'Nice day', :author_id => @user.id}) @success_book.save # no error! end end environment: ruby 1.9.1-p387 Rails 2.3.5

    Read the article

  • Is this the correct way to set up has many with multiple associations?

    - by user323763
    I'm trying to set up a new project for a music site. I'm learning ROR and am a bit confused about how to make join models/tables. Does this look right? I have users, playlists, songs, and comments. Users can have multiple playlists. Users can have multiple comments on their profile. Playlists can have multiple songs. Playlists can have comments. Songs can have comments. class CreateTables < ActiveRecord::Migration def self.up create_table :users do |t| t.string :login t.string :email t.string :firstname t.string :lastname t.timestamps end create_table :playlists do |t| t.string :title t.text :description t.timestamps end create_table :songs do |t| t.string :title t.string :artist t.string :album t.integer :duration t.string :image t.string :source t.timestamps end create_table :comments do |t| t.string :title t.text :body t.timestamps end create_table :users_playlists do |t| t.integer :user_id t.integer :playlist_id t.timestamps end create_table :playlists_songs do |t| t.integer :playlist_id t.integer :song_id t.integer :position t.timestamps end create_table :users_comments do |t| t.integer :user_id t.integer :comment_id t.timestamps end create_table :playlists_comments do |t| t.integer :playlist_id t.integer :comment_id t.timestamps end create_table :songs_comments do |t| t.integer :song_id t.integer :comment_id t.timestamps end end def self.down drop_table :playlists drop_table :comments drop_table :songs_comments drop_table :users_comments drop_table :users_playlists drop_table :users drop_table :playlists drop_table :songs drop_table :playlists end end

    Read the article

  • NoMethodError Rails multiple file uploads

    - by Danny McClelland
    Hi Everyone, I am working on getting multiple file uploads working for an model in my application, I have included the code below: delivers_controller.rb # POST /delivers def create @deliver = Deliver.new(params[:deliver]) process_file_uploads(@deliver) if @deliver.save flash[:notice] = 'Task was successfully created.' redirect_to(@deliver) else render :action => "new" end end protected def process_file_uploads(deliver) i = 0 while params[:attachment]['file_'+i.to_s] != "" && !params[:attachment]['file_'+i.to_s].nil? deliver.assets.build(:data => params[:attachment]['file_'+i.to_s]) i += 1 end end deliver.rb has_many :assets, :as => :attachable, :dependent => :destroy validate :validate_attachments Max_Attachments = 5 Max_Attachment_Size = 5.megabyte def validate_attachments errors.add_to_base("Too many attachments - maximum is #{Max_Attachments}") if assets.length > Max_Attachments assets.each {|a| errors.add_to_base("#{a.name} is over #{Max_Attachment_Size/1.megabyte}MB") if a.file_size > Max_Attachment_Size} end assets_controller.rb class AssetsController < ApplicationController def show asset = Asset.find(params[:id]) # do security check here send_file asset.data.path, :type => asset.data_content_type end def destroy asset = Asset.find(params[:id]) @asset_id = asset.id.to_s @allowed = Deliver::Max_Attachments - asset.attachable.assets.count asset.destroy end end asset.rb class Asset < ActiveRecord::Base has_attached_file :data, belongs_to :attachable, :polymorphic => true def url(*args) data.url(*args) end def name data_file_name end def content_type data_content_type end def file_size data_file_size end end Whenever I create a new deliver item and try to attach any files I get the following error: NoMethodError in DeliversController#create You have a nil object when you didn't expect it! You might have expected an instance of ActiveRecord::Base. The error occurred while evaluating nil.[] /Users/danny/Dropbox/SVN/railsapps/macandco/surveymanager/trunk/app/controllers/delivers_controller.rb:60:in `process_file_uploads' /Users/danny/Dropbox/SVN/railsapps/macandco/surveymanager/trunk/app/controllers/delivers_controller.rb:46:in `create' new.html.erb (Deliver view) <% content_for :header do -%> Deliver Repositories <% end -%> <% form_for(@deliver, :html => { :multipart => true }) do |f| %> <%= f.error_messages %> <p> <%= f.label :caseref %><br /> <%= f.text_field :caseref %> </p> <p> <%= f.label :casesubject %><br /> <%= f.text_area :casesubject %> </p> <p> <%= f.label :description %><br /> <%= f.text_area :description %> </p> <p>Pending Attachments: (Max of <%= Deliver::Max_Attachments %> each under <%= Deliver::Max_Attachment_Size/1.megabyte%>MB) <% if @deliver.assets.count >= Deliver::Max_Attachments %> <input id="newfile_data" type="file" disabled /> <% else %> <input id="newfile_data" type="file" /> <% end %> <div id="attachment_list"><ul id="pending_files"></ul></div> </p> <p> <%= f.submit 'Create' %> </p> <% end %> <%= link_to 'Back', delivers_path %> Show.html.erb (Delivers view) <% content_for :header do -%> Deliver Repositories <% end -%> <p> <b>Title:</b> <%=h @deliver.caseref %> </p> <p> <b>Body:</b> <%=h @deliver.casesubject %> </p> <p><b>Attached Files:</b><div id="attachment_list"><%= render :partial => "attachment", :collection => @deliver.assets %></div></p> <%= link_to 'Edit', edit_deliver_path(@deliver) %> | <%= link_to 'Back', deliver_path %> <%- if logged_in? %> <%= link_to 'Edit', edit_deliver_path(@deliver) %> | <%= link_to 'Back', delivers_path %> <% end %> _attachment.html.erb (Delivers view) <% if !attachment.id.nil? %><li id='attachment_<%=attachment.id %>'><a href='<%=attachment.url %>'><%=attachment.name %></a> (<%=attachment.file_size/1.kilobyte %>KB) <%= link_to_remote "Remove", :url => asset_path(:id => attachment), :method => :delete, :html => { :title => "Remove this attachment", :id => "remove" } %></li> <% end %> I have been banging my head against the wall with the error all day, if anyone can shed some light on it, I would be eternally grateful! Thanks, Danny

    Read the article

  • Rails User-Profile model challenges

    - by Craig
    I am attempting to create an enrollment process similar to SO's: route to an OpenID provider provider returns the user's information to the UsersController (a guess) UsersController creates user, then routes to the ProfilesController's new or edit action. For now, I'm simply trying to create the user, then route to the ProfilesController's new or edit action (not sure which I should be using). Here's what I have thus far: Models: class User < ActiveRecord::Base has_one :profile end class Profile < ActiveRecord::Base belongs_to :user end Routes: map.resources :users do |user| user.resource :profile end new_user_profile GET /users/:user_id/profile/new(.:format) {:controller=>"profiles", :action=>"new"} edit_user_profile GET /users/:user_id/profile/edit(.:format) {:controller=>"profiles", :action=>"edit"} user_profile GET /users/:user_id/profile(.:format) {:controller=>"profiles", :action=>"show"} PUT /users/:user_id/profile(.:format) {:controller=>"profiles", :action=>"update"} DELETE /users/:user_id/profile(.:format) {:controller=>"profiles", :action=>"destroy"} POST /users/:user_id/profile(.:format) {:controller=>"profiles", :action=>"create"} users GET /users(.:format) {:controller=>"users", :action=>"index"} POST /users(.:format) {:controller=>"users", :action=>"create"} new_user GET /users/new(.:format) {:controller=>"users", :action=>"new"} edit_user GET /users/:id/edit(.:format) {:controller=>"users", :action=>"edit"} user GET /users/:id(.:format) {:controller=>"users", :action=>"show"} PUT /users/:id(.:format) {:controller=>"users", :action=>"update"} DELETE /users/:id(.:format) {:controller=>"users", :action=>"destroy"} Controllers: class UsersController < ApplicationController # generate new-user form def new @user = User.new end # process new-user-form post def create @user = User.new(params[:user]) if @user.save redirect_to new_user_profile_path(@user) ... end end # generate edit-user form def edit @user = User.find(params[:id]) end # process edit-user-form post def update @user = User.find(params[:id]) respond_to do |format| if @user.update_attributes(params[:user]) flash[:notice] = 'User was successfully updated.' format.html { redirect_to(users_path) } format.xml { head :ok } ... end end end class ProfilesController < ApplicationController before_filter :get_user def get_user @user = User.find(params[:user_id]) end # generate new-profile form def new @user.profile = Profile.new @profile = @user.profile end # process new-profile-form post def create @user.profile = Profile.new(params[:profile]) @profile = @user.profile respond_to do |format| if @profile.save flash[:notice] = 'Profile was successfully created.' format.html { redirect_to(@profile) } format.xml { render :xml => @profile, :status => :created, :location => @profile } ... end end end # generate edit-profile form def edit @profile = @user.profile end # generate edit-profile-form post def update @profile = @user.profile respond_to do |format| if @profile.update_attributes(params[:profile]) flash[:notice] = 'Profile was successfully updated.' # format.html { redirect_to(@profile) } format.html { redirect_to(user_profile(@user)) } format.xml { head :ok } else format.html { render :action => "edit" } format.xml { render :xml => @profile.errors, :status => :unprocessable_entity } end end end Edit-User View: ... <% form_for(@user) do |f| %> ... New-Profile View: ... <% form_for([@user,@profile]) do |f| %> .. I'm having two problems: When saving an edit to the User model, the UsersController attempts to route to http://localhost:3000/users/1/profile.%23%3Cprofile:0x10438e3e8%3E, instead of http://localhost:3000/users/1/profile When the new-profile form is being rendered, it throws an error that reads: undefined method `user_profiles_path' for # Is it better to create a blank profile when the user is created (in the UsersController), then edit it OR follow the rest-ful convention of creating the profile in the ProfilesController (as I have done)? What am I missing? I did review Associating Two Models in Rails (user and profile), but it didn't address my needs. Thanks for your time.

    Read the article

  • How to obtain a random sub-datatable from another data table

    - by developerit
    Introduction In this article, I’ll show how to get a random subset of data from a DataTable. This is useful when you already have queries that are filtered correctly but returns all the rows. Analysis I came across this situation when I wanted to display a random tag cloud. I already had the query to get the keywords ordered by number of clicks and I wanted to created a tag cloud. Tags that are the most popular should have more chance to get picked and should be displayed larger than less popular ones. Implementation In this code snippet, there is everything you need. ' Min size, in pixel for the tag Private Const MIN_FONT_SIZE As Integer = 9 ' Max size, in pixel for the tag Private Const MAX_FONT_SIZE As Integer = 14 ' Basic function that retreives Tags from a DataBase Public Shared Function GetTags() As MediasTagsDataTable ' Simple call to the TableAdapter, to get the Tags ordered by number of clicks Dim dt As MediasTagsDataTable = taMediasTags.GetDataValide ' If the query returned no result, return an empty DataTable If dt Is Nothing OrElse dt.Rows.Count < 1 Then Return New MediasTagsDataTable End If ' Set the font-size of the group of data ' We are dividing our results into sub set, according to their number of clicks ' Example: 10 results -> [0,2] will get font size 9, [3,5] will get font size 10, [6,8] wil get 11, ... ' This is the number of elements in one group Dim groupLenth As Integer = CType(Math.Floor(dt.Rows.Count / (MAX_FONT_SIZE - MIN_FONT_SIZE)), Integer) ' Counter of elements in the same group Dim counter As Integer = 0 ' Counter of groups Dim groupCounter As Integer = 0 ' Loop througt the list For Each row As MediasTagsRow In dt ' Set the font-size in a custom column row.c_FontSize = MIN_FONT_SIZE + groupCounter ' Increment the counter counter += 1 ' If the group counter is less than the counter If groupLenth <= counter Then ' Start a new group counter = 0 groupCounter += 1 End If Next ' Return the new DataTable with font-size Return dt End Function ' Function that generate the random sub set Public Shared Function GetRandomSampleTags(ByVal KeyCount As Integer) As MediasTagsDataTable ' Get the data Dim dt As MediasTagsDataTable = GetTags() ' Create a new DataTable that will contains the random set Dim rep As MediasTagsDataTable = New MediasTagsDataTable ' Count the number of row in the new DataTable Dim count As Integer = 0 ' Random number generator Dim rand As New Random() While count < KeyCount Randomize() ' Pick a random row Dim r As Integer = rand.Next(0, dt.Rows.Count - 1) Dim tmpRow As MediasTagsRow = dt(r) ' Import it into the new DataTable rep.ImportRow(tmpRow) ' Remove it from the old one, to be sure not to pick it again dt.Rows.RemoveAt(r) ' Increment the counter count += 1 End While ' Return the new sub set Return rep End Function Pro’s This method is good because it doesn’t require much work to get it work fast. It is a good concept when you are working with small tables, let says less than 100 records. Con’s If you have more than 100 records, out of memory exception may occur since we are coping and duplicating rows. I would consider using a stored procedure instead.

    Read the article

  • Interesting articles and blogs on SPARC T4

    - by mv
    Interesting articles and blogs on SPARC T4 processor   I have consolidated all the interesting information I could get on SPARC T4 processor and its hardware cryptographic capabilities.  Hope its useful. 1. Advantages of SPARC T4 processor  Most important points in this T4 announcement are : "The SPARC T4 processor was designed from the ground up for high speed security and has a cryptographic stream processing unit (SPU) integrated directly into each processor core. These accelerators support 16 industry standard security ciphers and enable high speed encryption at rates 3 to 5 times that of competing processors. By integrating encryption capabilities directly inside the instruction pipeline, the SPARC T4 processor eliminates the performance and cost barriers typically associated with secure computing and makes it possible to deliver high security levels without impacting the user experience." Data Sheet has more details on these  : "New on-chip Encryption Instruction Accelerators with direct non-privileged support for 16 industry-standard cryptographic algorithms plus random number generation in each of the eight cores: AES, Camellia, CRC32c, DES, 3DES, DH, DSA, ECC, Kasumi, MD5, RSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512" I ran "isainfo -v" command on Solaris 11 Sparc T4-1 system. It shows the new instructions as expected  : $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc 32-bit sparc applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32  2.  Dan Anderson's Blog have some interesting points about how these can be used : "New T4 crypto instructions include: aes_kexpand0, aes_kexpand1, aes_kexpand2,         aes_eround01, aes_eround23, aes_eround01_l, aes_eround_23_l, aes_dround01, aes_dround23, aes_dround01_l, aes_dround_23_l.       Having SPARC T4 hardware crypto instructions is all well and good, but how do we access it ?      The software is available with Solaris 11 and is used automatically if you are running Solaris a SPARC T4.  It is used internally in the kernel through kernel crypto modules.  It is available in user space through the PKCS#11 library." 3.   Dans' Blog on Where's the Crypto Libraries? Although this was written in 2009 but still is very useful  "Here's a brief tour of the major crypto libraries shown in the digraph:   The libpkcs11 library contains the PKCS#11 API (C_\*() functions, such as C_Initialize()). That in turn calls library pkcs11_softtoken or pkcs11_kernel, for userland or kernel crypto providers. The latter is used mostly for hardware-assisted cryptography (such as n2cp for Niagara2 SPARC processors), as that is performed more efficiently in kernel space with the "kCF" module (Kernel Crypto Framework). Additionally, for Solaris 10, strong crypto algorithms were split off in separate libraries, pkcs11_softtoken_extra libcryptoutil contains low-level utility functions to help implement cryptography. libsoftcrypto (OpenSolaris and Solaris Nevada only) implements several symmetric-key crypto algorithms in software, such as AES, RC4, and DES3, and the bignum library (used for RSA). libmd implements MD5, SHA, and SHA2 message digest algorithms" 4. Difference in T3 and T4 Diagram in this blog is good and self explanatory. Jeff's blog also highlights the differences  "The T4 servers have improved crypto acceleration, described at https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine. It is "just built in" so administrators no longer have to assign crypto accelerator units to domains - it "just happens". Every physical or virtual CPU on a SPARC-T4 has full access to hardware based crypto acceleration at all times. .... For completeness sake, it's worth noting that the T4 adds more crypto algorithms, and accelerates Camelia, CRC32c, and more SHA-x." 5. About performance counters In this blog, performance counters are explained : "Note that unlike T3 and before, T4 crypto doesn't require kernel modules like ncp or n2cp, there is no visibility of crypto hardware with kstats or cryptoadm. T4 does provide hardware counters for crypto operations.  You can see these using cpustat: cpustat -c pic0=Instr_FGU_crypto 5 You can check the general crypto support of the hardware and OS with the command "isainfo -v". Since T4 crypto's implementation now allows direct userland access, there are no "crypto units" visible to cryptoadm.  " For more details refer Martin's blog as well. 6. How to turn off  SPARC T4 or Intel AES-NI crypto acceleration  I found this interesting blog from Darren about how to turn off  SPARC T4 or Intel AES-NI crypto acceleration. "One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.   The alternate to this is having the application coded to call getisax(2) system call and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so and libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  For SPARC T4 : export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" .. For Intel systems with AES-NI support: export LD_HWCAP="-aes"" Note that LD_HWCAP is explained in  http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html "LD_HWCAP, LD_HWCAP_32, and LD_HWCAP_64 -  Identifies an alternative hardware capabilities value... A “-” prefix results in the capabilities that follow being removed from the alternative capabilities." 7. Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing This Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing explains more details.  It has DTrace scripts which may come in handy : "To ensure the hardware-assisted cryptographic acceleration is configured to use and working with the security scenarios, it is recommended to use the following Solaris DTrace script. #!/usr/sbin/dtrace -s pid$1:libsoftcrypto:yf*:entry, pid$target:libsoftcrypto:rsa*:entry, pid$1:libmd:yf*:entry { @[probefunc] = count(); } tick-1sec { printa(@ops); trunc(@ops); }" Note that I have slightly modified the D Script to have RSA "libsoftcrypto:rsa*:entry" as well as per recommendations from Chi-Chang Lin. 8. References http://www.oracle.com/us/corporate/features/sparc-t4-announcement-494846.html http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1-ds-487858.pdf https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine https://blogs.oracle.com/DanX/entry/where_s_the_crypto_libraries https://blogs.oracle.com/darren/entry/howto_turn_off_sparc_t4 http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html   https://blogs.oracle.com/hardware/entry/unleash_the_power_of_cryptography https://blogs.oracle.com/cmt/entry/t4_crypto_cheat_sheet https://blogs.oracle.com/martinm/entry/t4_performance_counters_explained  https://blogs.oracle.com/jsavit/entry/no_mau_required_on_a http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-business-wp-524472.pdf

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • A* PathFinding Poor Performance

    - by RedShft
    After debugging for a few hours, the algorithm seems to be working. Right now to check if it works i'm checking the end node position to the currentNode position when the while loop quits. So far the values look correct. The problem is, the farther I get from the NPC, who is current stationary, the worse the performance gets. It gets to a point where the game is unplayable less than 10 fps. My current PathGraph is 2500 nodes, which I believe is pretty small, right? Any ideas on how to improve performance? struct Node { bool walkable; //Whether this node is blocked or open vect2 position; //The tile's position on the map in pixels int xIndex, yIndex; //The index values of the tile in the array Node*[4] connections; //An array of pointers to nodes this current node connects to Node* parent; int gScore; int hScore; int fScore; } class AStar { private: SList!Node openList; SList!Node closedList; //Node*[4] connections; //The connections of the current node; Node currentNode; //The current node being processed Node[] Path; //The path found; const int connectionCost = 10; Node start, end; ////////////////////////////////////////////////////////// void AddToList(ref SList!Node list, ref Node node ) { list.insert( node ); } void RemoveFrom(ref SList!Node list, ref Node node ) { foreach( elem; list ) { if( node.xIndex == elem.xIndex && node.yIndex == elem.yIndex ) { auto a = find( list[] , elem ); list.linearRemove( take(a, 1 ) ); } } } bool IsInList( SList!Node list, ref Node node ) { foreach( elem; list ) { if( node.xIndex == elem.xIndex && node.yIndex == elem.yIndex ) return true; } return false; } void ClearList( SList!Node list ) { list.clear; } void SetParentNode( ref Node parent, ref Node child ) { child.parent = &parent; } void SetStartAndEndNode( vect2 vStart, vect2 vEnd, Node[] PathGraph ) { int startXIndex, startYIndex; int endXIndex, endYIndex; startXIndex = cast(int)( vStart.x / 32 ); startYIndex = cast(int)( vStart.y / 32 ); endXIndex = cast(int)( vEnd.x / 32 ); endYIndex = cast(int)( vEnd.y / 32 ); foreach( node; PathGraph ) { if( node.xIndex == startXIndex && node.yIndex == startYIndex ) { start = node; } if( node.xIndex == endXIndex && node.yIndex == endYIndex ) { end = node; } } } void SetStartScores( ref Node start ) { start.gScore = 0; start.hScore = CalculateHScore( start, end ); start.fScore = CalculateFScore( start ); } Node GetLowestFScore() { Node lowest; lowest.fScore = 10000; foreach( elem; openList ) { if( elem.fScore < lowest.fScore ) lowest = elem; } return lowest; } //This function current sets the program into an infinite loop //I still need to debug to figure out why the parent nodes aren't correct void GeneratePath() { while( currentNode.position != start.position ) { Path ~= currentNode; currentNode = *currentNode.parent; } } void ReversePath() { Node[] temp; for(int i = Path.length - 1; i >= 0; i-- ) { temp ~= Path[i]; } Path = temp.dup; } public: //@FIXME It seems to find the path, but now performance is terrible void FindPath( vect2 vStart, vect2 vEnd, Node[] PathGraph ) { openList.clear; closedList.clear; SetStartAndEndNode( vStart, vEnd, PathGraph ); SetStartScores( start ); AddToList( openList, start ); while( currentNode.position != end.position ) { currentNode = GetLowestFScore(); if( currentNode.position == end.position ) break; else { RemoveFrom( openList, currentNode ); AddToList( closedList, currentNode ); for( int i = 0; i < currentNode.connections.length; i++ ) { if( currentNode.connections[i] is null ) continue; else { if( IsInList( closedList, *currentNode.connections[i] ) && currentNode.gScore < currentNode.connections[i].gScore ) { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; } else if( IsInList( openList, *currentNode.connections[i] ) && currentNode.gScore < currentNode.connections[i].gScore ) { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; } else { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; AddToList( openList, *currentNode.connections[i] ); } } } } } writeln( "Current Node Position: ", currentNode.position ); writeln( "End Node Position: ", end.position ); if( currentNode.position == end.position ) { writeln( "Current Node Parent: ", currentNode.parent ); //GeneratePath(); //ReversePath(); } } Node[] GetPath() { return Path; } } This is my first attempt at A* so any help would be greatly appreciated.

    Read the article

  • My hardware MAC address is always 00:00:00:00:00:00 until I manually update 'eth0'. How can I fix this?

    - by user57184
    I am using Ubuntu 12.04. I use a wired connection. My network MAC address shows as 00:00:00:00:00:00. When I enter the commands below into a terminal window, it starts working again. sudo ifconfig eth0 down sudo ifconfig eth0 hw ether my mac address sudo ifconfig eth0 up I have to enter these commands every time I want to use the Internet. How can I fix this? Update copied from comment The contents of my /etc/NetworkManager/NetworkManager.conf file is: [main] plugins=ifupdown,keyfile dns=dnsmasq no-auto-default=00:00:00:00:00:00, [ifupdown] managed=false

    Read the article

  • Is it okay to define a [] method in ruby's NilClass?

    - by Silasj
    Ruby by default does not include the method [] for NilClass For example, to check if foo["bar"] exists when foo may be nil, I have to do: foo = something_that_may_or_may_not_return_nil if foo && foo["bar"] # do something with foo["bar"] here end If I define this method: class NilClass def [](arg) nil end end Something like that would make this possible, even if foo is nil: if foo["bar"] # do something with foo["bar"] end Or even: if foo["bar"]["baz"] # do something with foo["bar"]["baz"] here end Question: Is this a good idea or is there some reason ruby doesn't include this functionality by default?

    Read the article

  • ICalendar not readable by google calendar.

    - by Sagar
    Operating system : WinXP Program and version you use to access Google Calendar (FF3.5): I'm developing a script (based on an existing vCal ASP.NET class I found online) to generate an .ics file. This file works perfectly when importing to Outlook 2003. When I try to import to Google Calendar, I get the following error: Failed to import events: Unable to process your iCal/CSV file.. I don't know too much about the vCal format or syntax, but everything looks fine to me. I'll post the sample test calendar .ics below: BEGIN:VCALENDAR PRODID:-//jpalm.se//iCalendar example with ASP.NET MVC//EN VERSION:2.0 CALSCALE:GREGORIAN METHOD:PUBLISH X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100304T000000Z DTEND:20100304T000000Z TRANSP:OPAQUE SEQUENCE:0 UID:7c9d6dd7-41f2-4171-8ae4-35820974efa4 DESCRIPTION:uba:Project20100321:sagar . SUMMARY:First Milestone END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100330T230000Z DTEND:20100330T230000Z TRANSP:OPAQUE SEQUENCE:0 UID:8a982519-b99b-429a-8dad-c0f95c50d0e6 DESCRIPTION:uba:Project20100321:imanage2010 pm SUMMARY:upcoming milestones END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100329T230000Z DTEND:20100329T230000Z TRANSP:OPAQUE SEQUENCE:0 UID:588750a1-6f10-4b5d-8a51-3f3818024726 DESCRIPTION:uba:Project20100321:sagar . SUMMARY:test END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100407T230000Z DTEND:20100407T230000Z TRANSP:OPAQUE SEQUENCE:0 UID:36eaa726-a0a0-40a1-ba7c-09857f8ed006 DESCRIPTION:uba:Project20100321:imanage2010 pm SUMMARY:Rad apps devs END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100408T125632Z DTEND:20100408T125632Z TRANSP:OPAQUE SEQUENCE:0 UID:8521ad53-916a-43cc-8eeb-42c1b3d670d3 DESCRIPTION:uba:Project20100321:imanage2010 pm SUMMARY:this is a test ms END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100415T125643Z DTEND:20100415T125643Z TRANSP:OPAQUE SEQUENCE:0 UID:e4b295d8-2271-4393-9899-3e9c858f4e8c DESCRIPTION:uba:Project20100321:imanage2010 pm SUMMARY:Test msssss END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100430T055201Z DTEND:20100430T055201Z TRANSP:OPAQUE SEQUENCE:0 UID:1e464698-1064-4cb2-8166-2a843b63ca5a DESCRIPTION:uba:Project20100321:imanage2010 pm SUMMARY:this is a new milestones for testing on 30th april END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100731T093917Z DTEND:20100731T093917Z TRANSP:OPAQUE SEQUENCE:0 UID:5262ef58-73bc-4d66-a207-4e884e249629 DESCRIPTION:uba:Project20100321:imanage2010 pm SUMMARY:555555555555555555 END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100328T230000Z DTEND:20100328T230000Z TRANSP:OPAQUE SEQUENCE:0 UID:f654262d-714e-41d9-9690-005bb467f8aa DESCRIPTION:uba:Untitled project:imanage2010 pm SUMMARY:first milestone END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100401T095537Z DTEND:20100401T095537Z TRANSP:OPAQUE SEQUENCE:0 UID:3f4a6c16-f460-457d-a281-b4c010958796 DESCRIPTION:uba:ProjectIcal:imanage2010 pm SUMMARY:new ms ical END:VEVENT X-MS-OLK-FORCEINSPECTOROPEN:TRUE BEGIN:VEVENT DTSTART:20100331T230000Z DTEND:20100331T230000Z TRANSP:OPAQUE SEQUENCE:0 UID:e5bf28d1-3559-48e9-90f8-2b5233489a13 DESCRIPTION:uba:ProjectIcal:imanage2010 pm SUMMARY:new ms 2 ical END:VEVENT END:VCALENDAR And the source for generating the above code is which is nothing but the mvc view:: <%@ Import Namespace ="iManageProjectPM.Controllers" % <%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage"% BEGIN:VCALENDAR VERSION:2.0<%if (Model.Events.Count 1) {% CALSCALE:GREGORIAN METHOD:PUBLISH<%}% X-MS-OLK-FORCEINSPECTOROPEN:TRUE <%foreach(var evnt in Model.Events){% BEGIN:VEVENT DTSTART<%=Model.GetTimeString(evnt.StartTime)% DTEND<%=Model.GetTimeString(evnt.EndTime)% TRANSP:OPAQUE SEQUENCE:0 UID:<%=evnt.UID% DESCRIPTION:<%=evnt.Desc% SUMMARY:<%=evnt.Title% END:VEVENT<%}% END:VCALENDAR

    Read the article

  • Call child's method or cast parent to child in Rails

    - by Brian
    I have some STI structure like following: class Box has_many :part,:class_name = "Part" end class Part def self.dosomething() end end class TypeA<Part def self.dosomething() end end class TypeB<Part def self.dosomething() end end assuming we have some codes like boxtypeA = Box.new. I am wondering if there is a way to make boxtypeA.part.dosomething() to call TypeA's method not Part's or TypeB's. I think basically what we need to do is to convert the part to TypeA, how can we achieve that? Thx in advance!

    Read the article

  • GetHashCode on null fields?

    - by Shimmy
    How do I deal with null fields in GetHashCode function? Module Module1 Sub Main() Dim c As New Contact Dim hash = c.GetHashCode End Sub Public Class Contact : Implements IEquatable(Of Contact) Public Name As String Public Address As String Public Overloads Function Equals(ByVal other As Contact) As Boolean _ Implements System.IEquatable(Of Contact).Equals Return Name = other.Name AndAlso Address = other.Address End Function Public Overrides Function Equals(ByVal obj As Object) As Boolean If ReferenceEquals(Me, obj) Then Return True If TypeOf obj Is Contact Then Return Equals(DirectCast(obj, Contact)) Else Return False End If End Function Public Overrides Function GetHashCode() As Integer Return Name.GetHashCode Xor Address.GetHashCode End Function End Class End Module

    Read the article

  • question regarding rails framework code

    - by Joseph Misiti
    I noticed that the code in the rails framework is using the following convention all over the place: class SomeClass class << self def some function end end end rather than class SomeClass end def SomeClass.function end and class SomeClass def self.somefunction end end What is the reason for this design choice? They all seem to accomplish them same thing

    Read the article

  • sql server procedure error

    - by Mohan
    CREATE PROCEDURE USP_SEARCH_HOTELS ( @Text varchar(50), @Type varchar(40) ) AS BEGIN Declare @Query VARCHAR(60) IF @Type = 'By Country' BEGIN SET @Query = 'Hotel.countryName like '+ @Text+'%' END ELSE IF @Type = 'By State' BEGIN SET @Query = 'HOTEL.stateName like '+ @Text+'%' END ELSE IF @Type='By Property Name' BEGIN SET @Query='hotel.propertyname like'+ @Text+'%' End ELSE IF @Type='By Rating' BEGIN SET @Query='hotel.starRating='+ Cast(@Text as INT) END ELSE IF @Type='By City' BEGIN SET @Query='hotel.cityName like '+ @Text+'%' END begin select * from hotel,tbl_cust_info where hotel.agentID=Tbl_Cust_Info.Cust_ID and (@Query) end END WHAT IS THE ERROR IN THIS PROCEDURE PLEASE HELP.

    Read the article

  • alias_method and class_methods don't mix?

    - by Daniel
    Greetings, I've been trying to tinker with a global Cache module, but I can't figure out why this isn't working. Does anyone have any suggestions? This is the error produced for the below code: NameError: undefined method get' for moduleCache' from (irb):21:in `alias_method' module Cache def self.get puts "original" end end module Cache def self.get_modified puts "New get" end end def peek_a_boo Cache.module_eval do # make :get_not_modified alias_method :get_not_modified, :get alias_method :get, :get_modified end Cache.get Cache.module_eval do alias_method :get, :get_not_modified end end # test first round peek_a_boo # test second round peek_a_boo TIA! -daniel

    Read the article

  • How to assert certain method is called with Ruby minitest framework?

    - by steven.yang
    I want to test whether a function invokes other functions properly with minitest Ruby, but I cannot find a proper assert to test from the doc. The source code class SomeClass def invoke_function(name) name == "right" ? right () : wrong () end def right #... end def wrong #... end end The test code: describe SomeClass do it "should invoke right function" do # assert right() is called end it "should invoke other function" do # assert wrong() is called end end

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >